#!/usr/bin/env python def truncated_normal_b_cdf_inv ( cdf, mu, sigma, b ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_B_CDF_INV inverts the upper truncated Normal CDF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real CDF, the value of the CDF. # 0.0 <= CDF <= 1.0. # # Input, real MU, SIGMA, the mean and standard deviation of the # parent Normal distribution. # # Input, real B, the upper truncation limit. # # Output, real X, the corresponding argument. # from normal_01_cdf import normal_01_cdf from normal_01_cdf_inv import normal_01_cdf_inv from sys import exit if ( cdf < 0.0 or 1.0 < cdf ): print '' print 'TRUNCATED_NORMAL_B_CDF_INV - Fatal error!' print ' CDF < 0 or 1 < CDF.' exit ( 'TRUNCATED_NORMAL_B_CDF_INV - Fatal error!' ) beta = ( b - mu ) / sigma alpha_cdf = 0.0 beta_cdf = normal_01_cdf ( beta ) xi_cdf = ( beta_cdf - alpha_cdf ) * cdf + alpha_cdf xi = normal_01_cdf_inv ( xi_cdf ) x = mu + sigma * xi return x def truncated_normal_b_cdf_inv_test ( ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_B_CDF_INV_TEST tests TRUNCATED_NORMAL_B_CDF_INV. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 March 2015 # # Author: # # John Burkardt # from truncated_normal_b_cdf import truncated_normal_b_cdf from truncated_normal_b_sample import truncated_normal_b_sample sample_num = 10 seed = 123456789 b = 150.0 mu = 100.0 sigma = 25.0 print '' print 'TRUNCATED_NORMAL_B_CDF_INV_TEST' print ' TRUNCATED_NORMAL_B_CDF_INV inverts the CDF of' print ' the Truncated Normal distribution.' print '' print ' The "parent" normal distribution has' print ' mean = %g' % ( mu ) print ' standard deviation = %g' % ( sigma ) print ' The parent distribution is truncated to' print ' the interval (-oo,%g]' % ( b ) print '' print ' X CDF CDF_INV' print '' for i in range ( 0, sample_num ): x, seed = truncated_normal_b_sample ( mu, sigma, b, seed ) cdf = truncated_normal_b_cdf ( x, mu, sigma, b ) x2 = truncated_normal_b_cdf_inv ( cdf, mu, sigma, b ) print ' %14.6g %14.6g %14.6g' % ( x, cdf, x2 ) print '' print 'TRUNCATED_NORMAL_B_CDF_INV_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) truncated_normal_b_cdf_inv_test ( ) timestamp ( )