#!/usr/bin/env python # def truncated_normal_b_mean ( mu, sigma, b ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_B_MEAN returns the mean of the upper Truncated Normal distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real MU, SIGMA, the parameters of the parent Normal Distribution. # # Input, real B, the upper truncation limit. # # Output, real VALUE, the mean of the PDF. # from normal_01_cdf import normal_01_cdf from normal_01_pdf import normal_01_pdf beta = ( b - mu ) / sigma alpha_cdf = 0.0 beta_cdf = normal_01_cdf ( beta ) alpha_pdf = 0.0 beta_pdf = normal_01_pdf ( beta ) value = mu + sigma * ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ) return value def truncated_normal_b_mean_test ( ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_B_MEAN_TEST tests TRUNCATED_NORMAL_B_MEAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # import numpy as np from truncated_normal_b_sample import truncated_normal_b_sample from r8vec_max import r8vec_max from r8vec_mean import r8vec_mean from r8vec_min import r8vec_min sample_num = 1000 seed = 123456789 b = 150.0 mu = 100.0 sigma = 25.0 print '' print 'TRUNCATED_NORMAL_B_MEAN_TEST' print ' TRUNCATED_NORMAL_B_MEAN computes the mean' print ' of the Truncated Normal distribution.' print '' print ' The "parent" normal distribution has' print ' mean = %g' % ( mu ) print ' standard deviation = %g' % ( sigma ) print ' The parent distribution is truncated to' print ' the interval (-oo,%g]' % ( b ) m = truncated_normal_b_mean ( mu, sigma, b ) print '' print ' PDF mean = %g' % ( m ) x = np.zeros ( sample_num ) for i in range ( 0, sample_num ): x[i], seed = truncated_normal_b_sample ( mu, sigma, b, seed ) ms = r8vec_mean ( sample_num, x ) xmax = r8vec_max ( sample_num, x ) xmin = r8vec_min ( sample_num, x ) print '' print ' Sample size = %6d' % ( sample_num ) print ' Sample mean = %14g' % ( ms ) print ' Sample maximum = %14g' % ( xmax ) print ' Sample minimum = %14g' % ( xmin ) print '' print 'TRUNCATED_NORMAL_B_MEAN_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) truncated_normal_b_mean_test ( ) timestamp ( )