#!/usr/bin/env python # def moment_method ( n, moments ): #*****************************************************************************80 # ## MOMENT_METHOD computes a quadrature rule by the method of moments. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Reference: # # Gene Golub, John Welsch, # Calculation of Gaussian Quadrature Rules, # Mathematics of Computation, # Volume 23, Number 106, April 1969, pages 221-230. # # Parameters: # # Input, integer N, the order of the quadrature rule. # # Input, real MOMENTS(2*N+1), moments 0 through 2*N. # # Output, real X(N), W(N), the points and weights of the quadrature rule. # import numpy as np debug = False if ( debug ): r8vec_print ( 2 * n + 1, moments, ' Moments:' ) # # Define the N+1 by N+1 Hankel matrix H(I,J) = moment(I+J). # h = np.zeros ( ( n + 1, n + 1 ) ) for i in range ( 0, n + 1 ): for j in range ( 0, n + 1 ): h[i,j] = moments[i+j] if ( debug ): r8mat_print ( n + 1, n + 1, h, ' Hankel matrix H:' ) # # Compute R, the upper triangular Cholesky factor of H. # r = np.linalg.cholesky ( h ) r = np.transpose ( r ) if ( debug ): r8mat_print ( n + 1, n + 1, r, ' Upper triangular Cholesky factor R:' ) # # Compute ALPHA and BETA from R, using Golub and Welsch's formula. # alpha = np.zeros ( n ) alpha[0] = r[0,1] / r[0,0] for i in range ( 1, n ): alpha[i] = r[i,i+1] / r[i,i] - r[i-1,i] / r[i-1,i-1] beta = np.zeros ( n - 1 ) for i in range ( 0, n - 1 ): beta[i] = r[i+1,i+1] / r[i,i] # # Set up the tridiagonal Jacobi matrix. # jacobi = np.diag ( alpha, k = 0 ) \ + np.diag ( beta, k = -1 ) \ + np.diag ( beta, k = +1 ) if ( debug ): r8mat_print ( n, n, jacobi, ' Jacobi matrix: ' ) # # Get the eigendecomposition of the Jacobi matrix. # x, eigvec = np.linalg.eig ( jacobi ) w = np.zeros ( n ) for j in range ( 0, n ): w[j] = moments[0] * ( float ( eigvec[0,j] ) ) ** 2 # # Sort X, and W accordingly. # for j in range ( 0, n ): for i in range ( j + 1, n ): if ( x[i] < x[j] ): t = x[i] x[i] = x[j] x[j] = t t = w[i] w[i] = w[j] w[j] = t return x, w def moment_method_test ( ): #*****************************************************************************80 # ## MOMENT_METHOD_TEST tests MOMENT_METHOD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # import numpy as np from normal_01_moment import normal_01_moment print '' print 'MOMENT_METHOD_TEST' print ' MOMENT_METHOD uses the method of moments for a quadrature rule.' n = 5 tnp1 = 2 * n + 1 moments = np.zeros ( tnp1 ) for i in range ( 0, tnp1 ): moments[i] = normal_01_moment ( i ) x, w = moment_method ( n, moments ) x_correct = np.array ( [ \ [ -2.85697001387280565416230426401 ], \ [ -1.35562617997426586583052129087 ], \ [ 0.0 ], \ [ +1.35562617997426586583052129087 ], \ [ +2.85697001387280565416230426401 ] ] ) w_correct = np.array ( [ \ [ 0.0112574113277206889333702151856 ], \ [ 0.222075922005612644399963118148 ], \ [ 0.533333333333333333333333333333 ], \ [ 0.222075922005612644399963118148 ], \ [ 0.0112574113277206889333702151856 ] ] ) print '' print ' Computed Correct' print ' I X X' print '' for i in range ( 0, n ): print ' %2d %14.6g %14.6g' % ( i, x[i], x_correct[i] ) print '' print ' Computed Correct' print ' I W W' print '' for i in range ( 0, n ): print ' %2d %14.6g %14.6g' % ( i, w[i], w_correct[i] ) # # Terminate. # print '' print 'MOMENT_METHOD_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) moment_method_test ( ) timestamp ( )