#!/usr/bin/env python # def normal_ms_moments ( order_max, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MOMENTS evaluates the moments of the Normal MS distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ORDER_MAX, the maximum order of the moments. # # Input, real MU, the mean of the distribution. # # Input, real SIGMA, the standard deviation of the distribution. # # Output, real VALUE[0:ORDER_MAX], the value of the moments. # import numpy as np value = np.zeros ( order_max + 1 ) for order in range ( 0, order_max + 1 ): value[order] = normal_ms_moment ( order, mu, sigma ) return value def normal_ms_moment ( order, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT evaluates a moment of the Normal MS distribution. # # Discussion: # # The formula was posted by John D Cook. # # Order Moment # ----- ------ # 0 1 # 1 mu # 2 mu ** 2 + sigma ** 2 # 3 mu ** 3 + 3 mu sigma ** 2 # 4 mu ** 4 + 6 mu ** 2 sigma ** 2 + 3 sigma ** 4 # 5 mu ** 5 + 10 mu ** 3 sigma ** 2 + 15 mu sigma ** 4 # 6 mu ** 6 + 15 mu ** 4 sigma ** 2 + 45 mu ** 2 sigma ** 4 + 15 sigma ** 6 # 7 mu ** 7 + 21 mu ** 5 sigma ** 2 + 105 mu ** 3 sigma ** 4 + 105 mu sigma ** 6 # 8 mu ** 8 + 28 mu ** 6 sigma ** 2 + 210 mu ** 4 sigma ** 4 + 420 mu ** 2 sigma ** 6 + 105 sigma ** 8 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ORDER, the order of the moment. # # Input, real MU, the mean of the distribution. # # Input, real SIGMA, the standard deviation of the distribution. # # Output, real VALUE, the value of the moment. # from r8_choose import r8_choose from r8_factorial2 import r8_factorial2 j_hi = ( order // 2 ) value = 0.0 for j in range ( 0, j_hi + 1 ): value = value \ + r8_choose ( order, 2 * j ) \ * r8_factorial2 ( 2 * j - 1 ) \ * mu ** ( order - 2 * j ) * sigma ** ( 2 * j ) return value def normal_ms_moment_values ( order, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT_VALUES evaluates moments 0 through 8 of the Normal PDF. # # Discussion: # # The formula was posted by John D Cook. # # Order Moment # ----- ------ # 0 1 # 1 mu # 2 mu ** 2 + sigma ** 2 # 3 mu ** 3 + 3 mu sigma ** 2 # 4 mu ** 4 + 6 mu ** 2 sigma ** 2 + 3 sigma ** 4 # 5 mu ** 5 + 10 mu ** 3 sigma ** 2 + 15 mu sigma ** 4 # 6 mu ** 6 + 15 mu ** 4 sigma ** 2 + 45 mu ** 2 sigma ** 4 + 15 sigma ** 6 # 7 mu ** 7 + 21 mu ** 5 sigma ** 2 + 105 mu ** 3 sigma ** 4 + 105 mu sigma ** 6 # 8 mu ** 8 + 28 mu ** 6 sigma ** 2 + 210 mu ** 4 sigma ** 4 + 420 mu ** 2 sigma ** 6 + 105 sigma ** 8 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ORDER, the order of the moment. # 0 <= ORDER <= 8. # # Input, real MU, the mean of the distribution. # # Input, real SIGMA, the standard deviation of the distribution. # # Output, real VALUE, the value of the central moment. # from sys import exit if ( order == 0 ): value = 1.0 elif ( order == 1 ): value = mu elif ( order == 2 ): value = mu ** 2 + sigma ** 2 elif ( order == 3 ): value = mu ** 3 + 3.0 * mu * sigma ** 2 elif ( order == 4 ): value = mu ** 4 + 6.0 * mu ** 2 * sigma ** 2 + 3.0 * sigma ** 4 elif ( order == 5 ): value = mu ** 5 + 10.0 * mu ** 3 * sigma ** 2 + 15.0 * mu * sigma ** 4 elif ( order == 6 ): value = mu ** 6 + 15.0 * mu ** 4 * sigma ** 2 + 45.0 * mu ** 2 * sigma ** 4 \ + 15.0 * sigma ** 6 elif ( order == 7 ): value = mu ** 7 + 21.0 * mu ** 5 * sigma ** 2 + 105.0 * mu ** 3 * sigma ** 4 \ + 105.0 * mu * sigma ** 6 elif ( order == 8 ): value = mu ** 8 + 28.0 * mu ** 6 * sigma ** 2 + 210.0 * mu ** 4 * sigma ** 4 \ + 420.0 * mu ** 2 * sigma ** 6 + 105.0 * sigma ** 8 else: print '' print 'NORMAL_MS_MOMENT_VALUES - Fatal error!' print ' Only ORDERS 0 through 8 are available.' exit ( 'NORMAL_MS_MOMENT_VALUES - Fatal error!' ) return value def normal_ms_moment_test ( ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT_TEST tests NORMAL_MS_MOMENT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # import numpy as np test_num = 4 mu_test = np.array ( [ 0.0, 2.0, 10.0, 0.0 ] ) sigma_test = np.array ( [ 1.0, 1.0, 2.0, 2.0 ] ) print '' print 'NORMAL_MS_MOMENT_TEST' print ' NORMAL_MS_MOMENT evaluates moments of the Normal MS distribution.' for test in range ( 0, test_num ): mu = mu_test[test] sigma = sigma_test[test] print '' print ' Mu = %g, Sigma = %g' % ( mu, sigma ) print ' Order Moment' print '\n' for order in range ( 0, 9 ): moment1 = normal_ms_moment ( order, mu, sigma ) moment2 = normal_ms_moment_values ( order, mu, sigma ) print ' %2d %12g %12g' % ( order, moment1, moment2 ) # # Terminate. # print '' print 'NORMAL_MS_MOMENT_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_ms_moment_test ( ) timestamp ( )