#!/usr/bin/env python def wathen_csc ( nx, ny, seed ): #*****************************************************************************80 # ## WATHEN_CSC: Wathen matrix stored in Compressed Sparse Column (CSC) format. # # Discussion: # # When dealing with sparse matrices in MATLAB, it can be much more efficient # to work first with a triple of I, J, and X vectors, and only once # they are complete, convert to MATLAB's sparse format. # # The Wathen matrix is a finite element matrix which is sparse. # # The entries of the matrix depend in part on a physical quantity # related to density. That density is here assigned random values between # 0 and 100. # # The matrix order N is determined by the input quantities NX and NY, # which would usually be the number of elements in the X and Y directions. # # The value of N is # # N = 3*NX*NY + 2*NX + 2*NY + 1, # # The matrix is the consistent mass matrix for a regular NX by NY grid # of 8 node serendipity elements. # # The local element numbering is # # 3--2--1 # | | # 4 8 # | | # 5--6--7 # # Here is an illustration for NX = 3, NY = 2: # # 23-24-25-26-27-28-29 # | | | | # 19 20 21 22 # | | | | # 12-13-14-15-16-17-18 # | | | | # 8 9 10 11 # | | | | # 1--2--3--4--5--6--7 # # For this example, the total number of nodes is, as expected, # # N = 3 * 3 * 2 + 2 * 2 + 2 * 3 + 1 = 29 # # The matrix is symmetric positive definite for any positive values of the # density RHO(X,Y). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 September 2014 # # Author: # # John Burkardt. # # Reference: # # Nicholas Higham, # Algorithm 694: A Collection of Test Matrices in MATLAB, # ACM Transactions on Mathematical Software, # Volume 17, Number 3, September 1991, pages 289-305. # # Andrew Wathen, # Realistic eigenvalue bounds for the Galerkin mass matrix, # IMA Journal of Numerical Analysis, # Volume 7, Number 4, October 1987, pages 449-457. # # Parameters: # # Input, integer NX, NY, values which determine the size of the matrix. # # Input, integer SEED, the random number seed. # # Output, real A(*,*), the compressed sparxe column version of the matrix. # # Output, integer SEED, the random number seed. # import numpy as np from r8_uniform_01 import r8_uniform_01 from scipy.sparse import coo_matrix em = np.array \ ( \ ( ( 6.0, -6.0, 2.0, -8.0, 3.0, -8.0, 2.0, -6.0 ), \ (-6.0, 32.0, -6.0, 20.0, -8.0, 16.0, -8.0, 20.0 ), \ ( 2.0, -6.0, 6.0, -6.0, 2.0, -8.0, 3.0, -8.0 ), \ (-8.0, 20.0, -6.0, 32.0, -6.0, 20.0, -8.0, 16.0 ), \ ( 3.0, -8.0, 2.0, -6.0, 6.0, -6.0, 2.0, -8.0 ), \ (-8.0, 16.0, -8.0, 20.0, -6.0, 32.0, -6.0, 20.0 ), \ ( 2.0, -8.0, 3.0, -8.0, 2.0, -6.0, 6.0, -6.0 ), \ (-6.0, 20.0, -8.0, 16.0, -8.0, 20.0, -6.0, 32.0 ) )\ ) node = np.zeros ( 8 ) st_num = 8 * 8 * nx * ny row = np.zeros ( st_num ) col = np.zeros ( st_num ) v = np.zeros ( st_num ) k = 0 for j in range ( 0, ny ): for i in range ( 0, nx ): node[0] = ( 3 * ( j + 1 ) ) * nx + 2 * ( j + 1 ) + 2 * ( i + 1 ) + 1 - 1 node[1] = node[0] - 1 node[2] = node[0] - 2 node[3] = ( 3 * ( j + 1 ) - 1 ) * nx + 2 * ( j + 1 ) + ( i + 1 ) - 1 - 1 node[7] = node[3] + 1 node[4] = ( 3 * ( j + 1 ) - 3 ) * nx + 2 * ( j + 1 ) + 2 * ( i + 1 ) - 3 - 1 node[5] = node[4] + 1 node[6] = node[4] + 2 rho, seed = r8_uniform_01 ( seed ) rho = 100.0 * rho for krow in range ( 0, 8 ): for kcol in range ( 0, 8 ): row[k] = node[krow] col[k] = node[kcol] v[k] = rho * em[krow,kcol] k = k + 1 # # Convert triplet to a Python COO matrix. # a = coo_matrix ( ( v, ( row, col ) ) ) # # Convert COO matrix to CSC format. # a = a.tocsc ( ) return a, seed