#!/usr/bin/env python def wathen_ge ( nx, ny, n, seed ): #*****************************************************************************80 # ## WATHEN_GE returns the Wathen matrix, using general (GE) storage. # # Discussion: # # The Wathen matrix is a finite element matrix which is sparse. # # The entries of the matrix depend in part on a physical quantity # related to density. That density is here assigned random values between # 0 and 100. # # The matrix order N is determined by the input quantities NX and NY, # which would usually be the number of elements in the X and Y directions. # The value of N is # # N = 3*NX*NY + 2*NX + 2*NY + 1, # # The matrix is the consistent mass matrix for a regular NX by NY grid # of 8 node serendipity elements. # # The local element numbering is # # 3--2--1 # | | # 4 8 # | | # 5--6--7 # # Here is an illustration for NX = 3, NY = 2: # # 23-24-25-26-27-28-29 # | | | | # 19 20 21 22 # | | | | # 12-13-14-15-16-17-18 # | | | | # 8 9 10 11 # | | | | # 1--2--3--4--5--6--7 # # For this example, the total number of nodes is, as expected, # # N = 3 * 3 * 2 + 2 * 2 + 2 * 3 + 1 = 29 # # The matrix is symmetric positive definite for any positive values of the # density RHO(X,Y). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 August 2014 # # Author: # # John Burkardt # # Reference: # # Nicholas Higham, # Algorithm 694: A Collection of Test Matrices in MATLAB, # ACM Transactions on Mathematical Software, # Volume 17, Number 3, September 1991, pages 289-305. # # Andrew Wathen, # Realistic eigenvalue bounds for the Galerkin mass matrix, # IMA Journal of Numerical Analysis, # Volume 7, Number 4, October 1987, pages 449-457. # # Parameters: # # Input, integer NX, NY, values which determine the size of the matrix. # # Input, integer N, the number of variables. # # Input/output, integer SEED, the random number seed. # # Output, real A(N,N), the matrix. # import numpy as np from r8_uniform_01 import r8_uniform_01 a = np.zeros ( ( n, n ) ) em = np.array \ ( \ ( ( 6.0, -6.0, 2.0, -8.0, 3.0, -8.0, 2.0, -6.0 ), \ (-6.0, 32.0, -6.0, 20.0, -8.0, 16.0, -8.0, 20.0 ), \ ( 2.0, -6.0, 6.0, -6.0, 2.0, -8.0, 3.0, -8.0 ), \ (-8.0, 20.0, -6.0, 32.0, -6.0, 20.0, -8.0, 16.0 ), \ ( 3.0, -8.0, 2.0, -6.0, 6.0, -6.0, 2.0, -8.0 ), \ (-8.0, 16.0, -8.0, 20.0, -6.0, 32.0, -6.0, 20.0 ), \ ( 2.0, -8.0, 3.0, -8.0, 2.0, -6.0, 6.0, -6.0 ), \ (-6.0, 20.0, -8.0, 16.0, -8.0, 20.0, -6.0, 32.0 ) )\ ) node = np.zeros ( 8 ) for j in range ( 0, ny ): for i in range ( 0, nx ): # # For the element (I,J), determine the indices of the 8 nodes. # node[0] = ( 3 * ( j + 1 ) ) * nx + 2 * ( j + 1 ) + 2 * ( i + 1 ) + 1 - 1 node[1] = node[0] - 1 node[2] = node[0] - 2 node[3] = ( 3 * ( j + 1 ) - 1 ) * nx + 2 * ( j + 1 ) + ( i + 1 ) - 1 - 1 node[7] = node[3] + 1 node[4] = ( 3 * ( j + 1 ) - 3 ) * nx + 2 * ( j + 1 ) + 2 * ( i + 1 ) - 3 - 1 node[5] = node[4] + 1 node[6] = node[4] + 2 [ rho, seed ] = r8_uniform_01 ( seed ) rho = 100.0 * rho for krow in range ( 0, 8 ): for kcol in range ( 0, 8 ): a[node[krow],node[kcol]] = a[node[krow],node[kcol]] \ + rho * em[krow,kcol] return a, seed