%!TEX root = std.tex \rSec0[containers]{Containers library} \rSec1[containers.general]{General} \pnum This Clause describes components that \Cpp{} programs may use to organize collections of information. \pnum The following subclauses describe container requirements, and components for sequence containers and associative containers, as summarized in \tref{containers.summary}. \begin{libsumtab}{Containers library summary}{containers.summary} \ref{container.requirements} & Requirements & \\ \rowsep \ref{sequences} & Sequence containers & \tcode{}, \tcode{}, \tcode{}, \tcode{}, \\ & & \tcode{}, \tcode{}, \tcode{} \\ \rowsep \ref{associative} & Associative containers & \tcode{}, \tcode{} \\ \rowsep \ref{unord} & Unordered associative containers & \tcode{}, \tcode{} \\ \rowsep \ref{container.adaptors} & Container adaptors & \tcode{}, \tcode{}, \tcode{}, \tcode{} \\ \rowsep \ref{views} & Views & \tcode{}, \tcode{} \\ \end{libsumtab} \rSec1[container.requirements]{Requirements}% \indextext{requirements!container} \rSec2[container.requirements.pre]{Preamble} \pnum Containers are objects that store other objects. They control allocation and deallocation of these objects through constructors, destructors, insert and erase operations. \pnum All of the complexity requirements in this Clause are stated solely in terms of the number of operations on the contained objects. \begin{example} The copy constructor of type \tcode{vector>} has linear complexity, even though the complexity of copying each contained \tcode{vector} is itself linear. \end{example} \pnum Allocator-aware containers\iref{container.alloc.reqmts} other than \tcode{basic_string} construct elements using the function \tcode{allocator_traits::rebind_traits::\brk{}construct} and destroy elements using the function \tcode{allocator_traits::rebind_traits::\brk{}destroy}\iref{allocator.traits.members}, where \tcode{U} is either \tcode{allocator_type::value_type} or an internal type used by the container. These functions are called only for the container's element type, not for internal types used by the container. \begin{note} This means, for example, that a node-based container would need to construct nodes containing aligned buffers and call \tcode{construct} to place the element into the buffer. \end{note} \rSec2[container.requirements.general]{General containers} \rSec3[container.intro.reqmts]{Introduction} \pnum In \ref{container.requirements.general}, \begin{itemize} \item \tcode{X} denotes a container class containing objects of type \tcode{T}, \item \tcode{a} denotes a value of type \tcode{X}, \item \tcode{b} and \tcode{c} denote values of type (possibly const) \tcode{X}, \item \tcode{i} and \tcode{j} denote values of type (possibly const) \tcode{X::iterator}, \item \tcode{u} denotes an identifier, \item \tcode{v} denotes an lvalue of type (possibly const) \tcode{X} or an rvalue of type \tcode{const X}, \item \tcode{s} and \tcode{t} denote non-const lvalues of type \tcode{X}, and \item \tcode{rv} denotes a non-const rvalue of type \tcode{X}. \end{itemize} \pnum The following exposition-only concept is used in the definition of containers: \begin{codeblock} template concept @\defexposconcept{container-compatible-range}@ = // \expos ranges::@\libconcept{input_range}@ && @\libconcept{convertible_to}@, T>; \end{codeblock} \rSec3[container.reqmts]{Container requirements} % Local command to index names as members of all containers. \newcommand{\indexcont}[1]{% \indexlibrarymisc{\idxcode{#1}}{containers}% \indexlibrarymemberx{array}{#1}% \indexlibrarymemberx{deque}{#1}% \indexlibrarymemberx{forward_list}{#1}% \indexlibrarymemberx{hive}{#1}% \indexlibrarymemberx{list}{#1}% \indexlibrarymemberx{vector}{#1}% \indexlibrarymemberx{inplace_vector}{#1}% \indexlibrarymemberx{map}{#1}% \indexlibrarymemberx{set}{#1}% \indexlibrarymemberx{multiset}{#1}% \indexlibrarymemberx{multimap}{#1}% \indexlibrarymemberx{unordered_map}{#1}% \indexlibrarymemberx{unordered_set}{#1}% \indexlibrarymemberx{unordered_multiset}{#1}% \indexlibrarymemberx{unordered_multimap}{#1}% \indexlibrarymemberx{flat_map}{#1}% \indexlibrarymemberx{flat_set}{#1}% \indexlibrarymemberx{flat_multiset}{#1}% \indexlibrarymemberx{flat_multimap}{#1}% } \pnum A type \tcode{X} meets the \defn{container} requirements if the following types, statements, and expressions are well-formed and have the specified semantics. \indexcont{value_type}% \begin{itemdecl} typename X::value_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{T} \pnum \expects \tcode{T} is \oldconcept{Erasable} from \tcode{X} (see~\ref{container.alloc.reqmts}, below). \end{itemdescr} \indexcont{reference}% \begin{itemdecl} typename X::reference \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{T\&} \end{itemdescr} \indexcont{const_reference}% \begin{itemdecl} typename X::const_reference \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const T\&} \end{itemdescr} \indexcont{iterator}% \begin{itemdecl} typename X::iterator \end{itemdecl} \begin{itemdescr} \pnum \result A type that meets the forward iterator requirements\iref{forward.iterators} with value type \tcode{T}. The type \tcode{X::iterator} is convertible to \tcode{X::const_iterator}. \end{itemdescr} \indexcont{const_iterator}% \begin{itemdecl} typename X::const_iterator \end{itemdecl} \begin{itemdescr} \pnum \result A type that meets the requirements of a constant iterator and those of a forward iterator with value type \tcode{T}. \end{itemdescr} \indexcont{difference_type}% \begin{itemdecl} typename X::difference_type \end{itemdecl} \begin{itemdescr} \pnum \result A signed integer type, identical to the difference type of \tcode{X::iterator} and \tcode{X::const_iterator}. \end{itemdescr} \indexcont{size_type}% \begin{itemdecl} typename X::size_type \end{itemdecl} \begin{itemdescr} \pnum \result An unsigned integer type that can represent any non-negative value of \tcode{X::difference_type}. \end{itemdescr} \begin{itemdecl} X u; X u = X(); \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{u.empty()} \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X u(v); X u = v; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X} (see below). \pnum \ensures \tcode{u == v}. \pnum \complexity Linear. \end{itemdescr} \begin{itemdecl} X u(rv); X u = rv; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{u} is equal to the value that \tcode{rv} had before this construction. \pnum \complexity Linear for \tcode{array} and \tcode{inplace_vector} and constant for all other standard containers. \end{itemdescr} \indexcont{operator=}% \begin{itemdecl} t = v \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&}. \pnum \ensures \tcode{t == v}. \pnum \complexity Linear. \end{itemdescr} \begin{itemdecl} t = rv \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&}. \pnum \effects All existing elements of \tcode{t} are either move assigned to or destroyed. \pnum \ensures If \tcode{t} and \tcode{rv} do not refer to the same object, \tcode{t} is equal to the value that \tcode{rv} had before this assignment. \pnum \complexity Linear. \end{itemdescr} \begin{itemdecl} a.~X() \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void}. \pnum \effects Destroys every element of \tcode{a}; any memory obtained is deallocated. \pnum \complexity Linear. \end{itemdescr} \indexcont{begin}% \begin{itemdecl} b.begin() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator referring to the first element in the container. \pnum \complexity Constant. \end{itemdescr} \indexcont{end}% \begin{itemdecl} b.end() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator which is the past-the-end value for the container. \pnum \complexity Constant. \end{itemdescr} \indexcont{cbegin}% \begin{itemdecl} b.cbegin() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_iterator}. \pnum \returns \tcode{const_cast(b).begin()} \pnum \complexity Constant. \end{itemdescr} \indexcont{cend}% \begin{itemdecl} b.cend() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_iterator}. \pnum \returns \tcode{const_cast(b).end()} \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} i <=> j \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{strong_ordering}. \pnum \constraints \tcode{X::iterator} meets the random access iterator requirements. \pnum \complexity Constant. \end{itemdescr} % hive is excluded here \indexlibrarymisc{\idxcode{operator==}}{containers}% \indexlibrarymemberx{array}{operator==}% \indexlibrarymemberx{deque}{operator==}% \indexlibrarymemberx{forward_list}{operator==}% \indexlibrarymemberx{list}{operator==}% \indexlibrarymemberx{vector}{operator==}% \indexlibrarymemberx{inplace_vector}{operator==}% \indexlibrarymemberx{map}{operator==}% \indexlibrarymemberx{set}{operator==}% \indexlibrarymemberx{multiset}{operator==}% \indexlibrarymemberx{multimap}{operator==}% \indexlibrarymemberx{unordered_map}{operator==}% \indexlibrarymemberx{unordered_set}{operator==}% \indexlibrarymemberx{unordered_multiset}{operator==}% \indexlibrarymemberx{unordered_multimap}{operator==}% \indexlibrarymemberx{flat_map}{operator==}% \indexlibrarymemberx{flat_set}{operator==}% \indexlibrarymemberx{flat_multiset}{operator==}% \indexlibrarymemberx{flat_multimap}{operator==}% \begin{itemdecl} c == b \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} meets the \oldconcept{EqualityComparable} requirements. \pnum \result \tcode{bool}. \pnum \returns \tcode{equal(c.begin(), c.end(), b.begin(), b.end())} \begin{note} The algorithm \tcode{equal} is defined in \ref{alg.equal}. \end{note} \pnum \complexity Constant if \tcode{c.size() != b.size()}, linear otherwise. \pnum \remarks \tcode{==} is an equivalence relation. \end{itemdescr} % hive is excluded here \indexlibrarymisc{\idxcode{operator"!=}}{containers}% \indexlibrarymemberx{array}{operator"!=}% \indexlibrarymemberx{deque}{operator"!=}% \indexlibrarymemberx{forward_list}{operator"!=}% \indexlibrarymemberx{list}{operator"!=}% \indexlibrarymemberx{vector}{operator"!=}% \indexlibrarymemberx{inplace_vector}{operator"!=}% \indexlibrarymemberx{map}{operator"!=}% \indexlibrarymemberx{set}{operator"!=}% \indexlibrarymemberx{multiset}{operator"!=}% \indexlibrarymemberx{multimap}{operator"!=}% \indexlibrarymemberx{unordered_map}{operator"!=}% \indexlibrarymemberx{unordered_set}{operator"!=}% \indexlibrarymemberx{unordered_multiset}{operator"!=}% \indexlibrarymemberx{unordered_multimap}{operator"!=}% \indexlibrarymemberx{flat_map}{operator"!=}% \indexlibrarymemberx{flat_set}{operator"!=}% \indexlibrarymemberx{flat_multiset}{operator"!=}% \indexlibrarymemberx{flat_multimap}{operator"!=}% \begin{itemdecl} c != b \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{!(c == b)}. \end{itemdescr} \indexcont{swap}% \begin{itemdecl} t.swap(s) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void}. \pnum \effects Exchanges the contents of \tcode{t} and \tcode{s}. \pnum \complexity Linear for \tcode{array} and \tcode{inplace_vector}, and constant for all other standard containers. \end{itemdescr} \begin{itemdecl} swap(t, s) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{t.swap(s)}. \end{itemdescr} \indexcont{size}% \begin{itemdecl} c.size() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type}. \pnum \returns \tcode{distance(c.begin(), c.end())}, i.e., the number of elements in the container. \pnum \complexity Constant. \pnum \remarks The number of elements is defined by the rules of constructors, inserts, and erases. \end{itemdescr} \indexcont{max_size}% \begin{itemdecl} c.max_size() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type}. \pnum \returns \tcode{distance(begin(), end())} for the largest possible container. \pnum \complexity Constant. \end{itemdescr} \indexcont{empty}% \begin{itemdecl} c.empty() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool}. \pnum \returns \tcode{c.begin() == c.end()} \pnum \complexity Constant. \pnum \remarks If the container is empty, then \tcode{c.empty()} is \tcode{true}. \end{itemdescr} \pnum In the expressions \begin{codeblock} i == j i != j i < j i <= j i >= j i > j i <=> j i - j \end{codeblock} where \tcode{i} and \tcode{j} denote objects of a container's \tcode{iterator} type, either or both may be replaced by an object of the container's \tcode{const_iterator} type referring to the same element with no change in semantics. \pnum Unless otherwise specified, all containers defined in this Clause obtain memory using an allocator (see~\ref{allocator.requirements}). \begin{note} In particular, containers and iterators do not store references to allocated elements other than through the allocator's pointer type, i.e., as objects of type \tcode{P} or \tcode{pointer_traits

::template re\-bind<\unspec>}, where \tcode{P} is \tcode{allocator_traits::pointer}. \end{note} Copy constructors for these container types obtain an allocator by calling \tcode{allocator_traits::select_on_container_copy_construction} on the allocator belonging to the container being copied. Move constructors obtain an allocator by move construction from the allocator belonging to the container being moved. Such move construction of the allocator shall not exit via an exception. All other constructors for these container types take a \tcode{const allocator_type\&} argument. \begin{note} If an invocation of a constructor uses the default value of an optional allocator argument, then the allocator type must support value-initialization. \end{note} A copy of this allocator is used for any memory allocation and element construction performed, by these constructors and by all other member functions, during the lifetime of each container object or until the allocator is replaced. The allocator may be replaced only via assignment or \tcode{swap()}. Allocator replacement is performed by copy assignment, move assignment, or swapping of the allocator only if \begin{itemize} \item \tcode{allocator_traits::propagate_on_container_copy_assignment::value}, \item \tcode{allocator_traits::propagate_on_container_move_assignment::value}, or \item \tcode{allocator_traits::propagate_on_container_swap::value} \end{itemize} is \tcode{true} within the implementation of the corresponding container operation. In all container types defined in this Clause, the member \tcode{get_allocator()} returns a copy of the allocator used to construct the container or, if that allocator has been replaced, a copy of the most recent replacement. \pnum The expression \tcode{a.swap(b)}, for containers \tcode{a} and \tcode{b} of a standard container type other than \tcode{array} and \tcode{inplace_vector}, shall exchange the values of \tcode{a} and \tcode{b} without invoking any move, copy, or swap operations on the individual container elements. Any \tcode{Compare}, \tcode{Pred}, or \tcode{Hash} types belonging to \tcode{a} and \tcode{b} shall meet the \oldconcept{Swappable} requirements and shall be exchanged by calling \tcode{swap} as described in~\ref{swappable.requirements}. If \tcode{allocator_traits::propagate_on_container_swap::value} is \tcode{true}, then \tcode{allocator_type} shall meet the \oldconcept{Swap\-pable} requirements and the allocators of \tcode{a} and \tcode{b} shall also be exchanged by calling \tcode{swap} as described in~\ref{swappable.requirements}. Otherwise, the allocators shall not be swapped, and the behavior is undefined unless \tcode{a.get_allocator() == b.get_allocator()}. Every iterator referring to an element in one container before the swap shall refer to the same element in the other container after the swap. It is unspecified whether an iterator with value \tcode{a.end()} before the swap will have value \tcode{b.end()} after the swap. \pnum Unless otherwise specified (see~\ref{associative.reqmts.except}, \ref{unord.req.except}, \ref{deque.modifiers}, \ref{inplace.vector.modifiers}, and \ref{vector.modifiers}) all container types defined in this Clause meet the following additional requirements: \begin{itemize} \item If an exception is thrown by an \tcode{insert()} or \tcode{emplace()} function while inserting a single element, that function has no effects. \item If an exception is thrown by a \tcode{push_back()}, \tcode{push_front()}, \tcode{emplace_back()}, or \tcode{emplace_front()} function, that function has no effects. \item No \tcode{erase()}, \tcode{clear()}, \tcode{pop_back()} or \tcode{pop_front()} function throws an exception. \item No copy constructor or assignment operator of a returned iterator throws an exception. \item No \tcode{swap()} function throws an exception. \item No \tcode{swap()} function invalidates any references, pointers, or iterators referring to the elements of the containers being swapped. \begin{note} The \tcode{end()} iterator does not refer to any element, so it can be invalidated. \end{note} \end{itemize} \pnum Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container member function or passing a container as an argument to a library function shall not invalidate iterators to, or change the values of, objects within that container. \pnum A \defnadj{contiguous}{container} is a container whose member types \tcode{iterator} and \tcode{const_iterator} meet the \oldconcept{RandomAccessIterator} requirements\iref{random.access.iterators} and model \libconcept{contiguous_iterator}\iref{iterator.concept.contiguous}. \pnum The behavior of certain container member functions and deduction guides depends on whether types qualify as input iterators or allocators. The extent to which an implementation determines that a type cannot be an input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators. Likewise, the extent to which an implementation determines that a type cannot be an allocator is unspecified, except that as a minimum a type \tcode{A} shall not qualify as an allocator unless it meets both of the following conditions: \begin{itemize} \item The \grammarterm{qualified-id} \tcode{A::value_type} is valid and denotes a type\iref{temp.deduct}. \item The expression \tcode{declval().allocate(size_t\{\})} is well-formed when treated as an unevaluated operand. \end{itemize} \rSec3[container.rev.reqmts]{Reversible container requirements} % Local command to index names as members of all containers. \renewcommand{\indexcont}[1]{% \indexlibrarymisc{\idxcode{#1}}{reversible containers}% \indexlibrarymemberx{array}{#1}% \indexlibrarymemberx{deque}{#1}% \indexlibrarymemberx{hive}{#1}% \indexlibrarymemberx{list}{#1}% \indexlibrarymemberx{vector}{#1}% \indexlibrarymemberx{inplace_vector}{#1}% \indexlibrarymemberx{map}{#1}% \indexlibrarymemberx{set}{#1}% \indexlibrarymemberx{multiset}{#1}% \indexlibrarymemberx{multimap}{#1}% \indexlibrarymemberx{unordered_map}{#1}% \indexlibrarymemberx{unordered_set}{#1}% \indexlibrarymemberx{unordered_multiset}{#1}% \indexlibrarymemberx{unordered_multimap}{#1}% \indexlibrarymemberx{flat_map}{#1}% \indexlibrarymemberx{flat_set}{#1}% \indexlibrarymemberx{flat_multiset}{#1}% \indexlibrarymemberx{flat_multimap}{#1}% } \pnum A type \tcode{X} meets the \defnadj{reversible}{container} requirements if \tcode{X} meets the container requirements, the iterator type of \tcode{X} belongs to the bidirectional or random access iterator categories\iref{iterator.requirements}, and the following types and expressions are well-formed and have the specified semantics. \indexcont{reverse_iterator}% \begin{itemdecl} typename X::reverse_iterator \end{itemdecl} \begin{itemdescr} \pnum \result The type \tcode{reverse_iterator}, an iterator type whose value type is \tcode{T}. \end{itemdescr} \indexcont{const_reverse_iterator}% \begin{itemdecl} typename X::const_reverse_iterator \end{itemdecl} \begin{itemdescr} \pnum \result The type \tcode{reverse_iterator}, a constant iterator type whose value type is \tcode{T}. \end{itemdescr} \indexcont{rbegin}% \begin{itemdecl} a.rbegin() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reverse_iterator}; \tcode{const_reverse_iterator} for constant \tcode{a}. \pnum \returns \tcode{reverse_iterator(end())} \pnum \complexity Constant. \end{itemdescr} \indexcont{rend}% \begin{itemdecl} a.rend() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reverse_iterator}; \tcode{const_reverse_iterator} for constant \tcode{a}. \pnum \returns \tcode{reverse_iterator(begin())} \pnum \complexity Constant. \end{itemdescr} \indexcont{crbegin}% \begin{itemdecl} a.crbegin() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_reverse_iterator}. \pnum \returns \tcode{\keyword{const_cast}(a).rbegin()} \pnum \complexity Constant. \end{itemdescr} \indexcont{crend}% \begin{itemdecl} a.crend() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_reverse_iterator}. \pnum \returns \tcode{\keyword{const_cast}(a).rend()} \pnum \complexity Constant. \end{itemdescr} \rSec3[container.opt.reqmts]{Optional container requirements} \pnum The following operations are provided for some types of containers but not others. Those containers for which the listed operations are provided shall implement the semantics as described unless otherwise stated. If the iterators passed to \tcode{lexicographical_compare_three_way} meet the constexpr iterator requirements\iref{iterator.requirements.general} then the operations described below are implemented by constexpr functions. % Local command to index a name as a member of all containers. \renewcommand{\indexcont}[1]{% \indexlibrarymisc{\idxcode{#1}}{optional container requirements}% \indexlibrarymemberx{array}{#1}% \indexlibrarymemberx{deque}{#1}% \indexlibrarymemberx{forward_list}{#1}% \indexlibrarymemberx{list}{#1}% \indexlibrarymemberx{vector}{#1}% \indexlibrarymemberx{map}{#1}% \indexlibrarymemberx{set}{#1}% \indexlibrarymemberx{multiset}{#1}% \indexlibrarymemberx{multimap}{#1}% \indexlibrarymemberx{flat_map}{#1}% \indexlibrarymemberx{flat_set}{#1}% \indexlibrarymemberx{flat_multiset}{#1}% \indexlibrarymemberx{flat_multimap}{#1}% \indexlibrarymemberx{basic_string}{#1}% } \indexcont{operator<=>}% \begin{itemdecl} a <=> b \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{\exposid{synth-three-way-result}}. \pnum \expects Either \tcode{T} models \libconcept{three_way_comparable}, or \tcode{<} is defined for values of type (possibly const) \tcode{T} and \tcode{<} is a total ordering relationship. \pnum \returns \tcode{lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end(),\newline \exposidnc{synth-three-way})} \begin{note} The algorithm \tcode{lexicographical_compare_three_way} is defined in \ref{algorithms}. \end{note} \pnum \complexity Linear. \end{itemdescr} \rSec3[container.alloc.reqmts]{Allocator-aware containers} \pnum Except for \tcode{array} and \tcode{inplace_vector}, all of the containers defined in \ref{containers}, \ref{stacktrace.basic}, \ref{basic.string}, and \ref{re.results} meet the additional requirements of an \defnadj{allocator-aware}{container}, as described below. \pnum Given an allocator type \tcode{A} and given a container type \tcode{X} having a \tcode{value_type} identical to \tcode{T} and an \tcode{allocator_type} identical to \tcode{allocator_traits::rebind_alloc} and given an lvalue \tcode{m} of type \tcode{A}, a pointer \tcode{p} of type \tcode{T*}, an expression \tcode{v} that denotes an lvalue of type \tcode{T} or \tcode{const T} or an rvalue of type \tcode{const T}, and an rvalue \tcode{rv} of type \tcode{T}, the following terms are defined. If \tcode{X} is not allocator-aware or is a specialization of \tcode{basic_string}, the terms below are defined as if \tcode{A} were \tcode{allocator} --- no allocator object needs to be created and user specializations of \tcode{allocator} are not instantiated: \begin{itemize} \item \tcode{T} is \defnx{\oldconcept{DefaultInsertable} into \tcode{X}} {\oldconceptname{DefaultInsertable} into X@\oldconcept{DefaultInsertable} into \tcode{X}} means that the following expression is well-formed: \begin{codeblock} allocator_traits::construct(m, p) \end{codeblock} \item An element of \tcode{X} is \defn{default-inserted} if it is initialized by evaluation of the expression \begin{codeblock} allocator_traits::construct(m, p) \end{codeblock} where \tcode{p} is the address of the uninitialized storage for the element allocated within \tcode{X}. \item \tcode{T} is \defnx{\oldconcept{MoveInsertable} into \tcode{X}} {\oldconceptname{MoveInsertable} into X@\oldconcept{MoveInsertable} into \tcode{X}} means that the following expression is well-formed: \begin{codeblock} allocator_traits::construct(m, p, rv) \end{codeblock} and its evaluation causes the following postcondition to hold: The value of \tcode{*p} is equivalent to the value of \tcode{rv} before the evaluation. \begin{note} \tcode{rv} remains a valid object. Its state is unspecified. \end{note} \item \tcode{T} is \defnx{\oldconcept{CopyInsertable} into \tcode{X}} {\oldconceptname{CopyInsertable} into X@\oldconcept{CopyInsertable} into \tcode{X}} means that, in addition to \tcode{T} being \oldconcept{MoveInsertable} into \tcode{X}, the following expression is well-formed: \begin{codeblock} allocator_traits::construct(m, p, v) \end{codeblock} and its evaluation causes the following postcondition to hold: The value of \tcode{v} is unchanged and is equivalent to \tcode{*p}. \item \tcode{T} is \defnx{\oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}} {\oldconceptname{EmplaceConstructible} into X from args@\oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}}, for zero or more arguments \tcode{args}, means that the following expression is well-formed: \begin{codeblock} allocator_traits::construct(m, p, args) \end{codeblock} \item \tcode{T} is \defnx{\oldconcept{Erasable} from \tcode{X}} {\oldconceptname{Erasable} from X@\oldconcept{Erasable} from \tcode{X}} means that the following expression is well-formed: \begin{codeblock} allocator_traits::destroy(m, p) \end{codeblock} \end{itemize} \begin{note} A container calls \tcode{allocator_traits::construct(m, p, args)} to construct an element at \tcode{p} using \tcode{args}, with \tcode{m == get_allocator()}. The default \tcode{construct} in \tcode{allocator} will call \tcode{::new((void*)p) T(args)}, but specialized allocators can choose a different definition. \end{note} \pnum In this subclause, \begin{itemize} \item \tcode{X} denotes an allocator-aware container class with a \tcode{value_type} of \tcode{T} using an allocator of type \tcode{A}, \item \tcode{u} denotes a variable, \item \tcode{a} and \tcode{b} denote non-const lvalues of type \tcode{X}, \item \tcode{c} denotes an lvalue of type \tcode{\keyword{const} X}, \item \tcode{t} denotes an lvalue or a const rvalue of type \tcode{X}, \item \tcode{rv} denotes a non-const rvalue of type \tcode{X}, and \item \tcode{m} is a value of type \tcode{A}. \end{itemize} % Local command to index names as members of all containers. \renewcommand{\indexcont}[1]{% \indexlibrarymisc{\idxcode{#1}}{allocator-aware containers}% \indexlibrarymemberx{deque}{#1}% \indexlibrarymemberx{forward_list}{#1}% \indexlibrarymemberx{hive}{#1}% \indexlibrarymemberx{list}{#1}% \indexlibrarymemberx{vector}{#1}% \indexlibrarymemberx{map}{#1}% \indexlibrarymemberx{set}{#1}% \indexlibrarymemberx{multiset}{#1}% \indexlibrarymemberx{multimap}{#1}% \indexlibrarymemberx{unordered_map}{#1}% \indexlibrarymemberx{unordered_set}{#1}% \indexlibrarymemberx{unordered_multiset}{#1}% \indexlibrarymemberx{unordered_multimap}{#1}% } A type \tcode{X} meets the allocator-aware container requirements if \tcode{X} meets the container requirements and the following types, statements, and expressions are well-formed and have the specified semantics. \indexcont{allocator_type}% \begin{itemdecl} typename X::allocator_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{A} \pnum \mandates \tcode{allocator_type::value_type} is the same as \tcode{X::value_type}. \end{itemdescr} \indexcont{get_allocator}% \begin{itemdecl} c.get_allocator() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{A} \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X u; X u = X(); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{A} meets the \oldconcept{DefaultConstructible} requirements. \pnum \ensures \tcode{u.empty()} returns \tcode{true}, \tcode{u.get_allocator() == A()}. \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X u(m); \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{u.empty()} returns \tcode{true}, \tcode{u.get_allocator() == m}. \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X u(t, m); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \ensures \tcode{u == t}, \tcode{u.get_allocator() == m}. \pnum \complexity Linear. \end{itemdescr} \begin{itemdecl} X u(rv); \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{u} has the same elements as \tcode{rv} had before this construction; the value of \tcode{u.get_allocator()} is the same as the value of \tcode{rv.get_allocator()} before this construction. \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X u(rv, m); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{X}. \pnum \ensures \tcode{u} has the same elements, or copies of the elements, that \tcode{rv} had before this construction, \tcode{u.get_allocator() == m}. \pnum \complexity Constant if \tcode{m == rv.get_allocator()}, otherwise linear. \end{itemdescr} \begin{itemdecl} a = t \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&}. \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \pnum \ensures \tcode{a == t} is \tcode{true}. \pnum \complexity Linear. \end{itemdescr} \indexcont{operator=}% \begin{itemdecl} a = rv \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&}. \pnum \expects If \tcode{allocator_traits::propagate_on_container_move_assign\-ment::value} is \tcode{false}, \tcode{T} is \oldconcept{MoveInsertable} into \tcode{X} and \oldconcept{MoveAssignable}. \pnum \effects All existing elements of \tcode{a} are either move assigned to or destroyed. \pnum \ensures If \tcode{a} and \tcode{rv} do not refer to the same object, \tcode{a} is equal to the value that \tcode{rv} had before this assignment. \pnum \complexity Linear. \end{itemdescr} \indexcont{swap}% \begin{itemdecl} a.swap(b) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \effects Exchanges the contents of \tcode{a} and \tcode{b}. \pnum \complexity Constant. \end{itemdescr} \rSec2[container.requirements.dataraces]{Container data races} \pnum For purposes of avoiding data races\iref{res.on.data.races}, implementations shall consider the following functions to be \keyword{const}: \tcode{begin}, \tcode{end}, \tcode{rbegin}, \tcode{rend}, \tcode{front}, \tcode{back}, \tcode{data}, \tcode{find}, \tcode{lower_bound}, \tcode{upper_bound}, \tcode{equal_range}, \tcode{at} and, except in associative or unordered associative containers, \tcode{operator[]}. \pnum Notwithstanding~\ref{res.on.data.races}, implementations are required to avoid data races when the contents of the contained object in different elements in the same container, excepting \tcode{vector}, are modified concurrently. \pnum \begin{note} For a \tcode{vector x} with a size greater than one, \tcode{x[1] = 5} and \tcode{*x.begin() = 10} can be executed concurrently without a data race, but \tcode{x[0] = 5} and \tcode{*x.begin() = 10} executed concurrently can result in a data race. As an exception to the general rule, for a \tcode{vector y}, \tcode{y[0] = true} can race with \tcode{y[1] = true}. \end{note} \rSec2[sequence.reqmts]{Sequence containers} \pnum A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement. The library provides the following basic kinds of sequence containers: \tcode{vector}, \tcode{inplace_vector}, \tcode{forward_list}, \tcode{list}, and \tcode{deque}. In addition, \tcode{array} and \tcode{hive} are provided as sequence containers which provide limited sequence operations, in \tcode{array}'s case because it has a fixed number of elements, and in \tcode{hive}'s case because insertion order is unspecified. The library also provides container adaptors that make it easy to construct abstract data types, such as \tcode{stack}s, \tcode{queue}s, \tcode{flat_map}s, \tcode{flat_multimap}s, \tcode{flat_set}s, or \tcode{flat_multiset}s, out of the basic sequence container kinds (or out of other program-defined sequence containers). \pnum In this subclause, \begin{itemize} \item \tcode{X} denotes a sequence container class, \item \tcode{a} denotes a value of type \tcode{X} containing elements of type \tcode{T}, \item \tcode{u} denotes the name of a variable being declared, \item \tcode{A} denotes \tcode{X::allocator_type} if the \grammarterm{qualified-id} \tcode{X::allocator_type} is valid and denotes a type\iref{temp.deduct} and \tcode{allocator} if it doesn't, \item \tcode{i} and \tcode{j} denote iterators that meet the \oldconcept{InputIterator} requirements and refer to elements implicitly convertible to \tcode{value_type}, \item \range{i}{j} denotes a valid range, \item \tcode{rg} denotes a value of a type \tcode{R} that models \tcode{\exposconcept{container-compatible-range}}, \item \tcode{il} designates an object of type \tcode{initializer_list}, \item \tcode{n} denotes a value of type \tcode{X::size_type}, \item \tcode{p} denotes a valid constant iterator to \tcode{a}, \item \tcode{q} denotes a valid dereferenceable constant iterator to \tcode{a}, \item \range{q1}{q2} denotes a valid range of constant iterators in \tcode{a}, \item \tcode{t} denotes an lvalue or a const rvalue of \tcode{X::value_type}, and \item \tcode{rv} denotes a non-const rvalue of \tcode{X::value_type}. \item \tcode{Args} denotes a template parameter pack; \item \tcode{args} denotes a function parameter pack with the pattern \tcode{Args\&\&}. \end{itemize} \pnum The complexities of the expressions are sequence dependent. % Local command to index names as members of all containers. \renewcommand{\indexcont}[1]{% \indexlibrarymisc{\idxcode{#1}}{sequence containers}% \indexlibrarymemberx{deque}{#1}% \indexlibrarymemberx{forward_list}{#1}% \indexlibrarymemberx{list}{#1}% \indexlibrarymemberx{vector}{#1}% \indexlibrarymemberx{inplace_vector}{#1}% } \pnum A type \tcode{X} meets the \defnadj{sequence}{container} requirements if \tcode{X} meets the container requirements and the following statements and expressions are well-formed and have the specified semantics. \begin{itemdecl} X u(n, t); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Constructs a sequence container with \tcode{n} copies of \tcode{t}. \pnum \ensures \tcode{distance(u.begin(), u.end()) == n} is \tcode{true}. \end{itemdescr} \begin{itemdecl} X u(i, j); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. For \tcode{vector}, if the iterator does not meet the \oldconcept{ForwardIterator} requirements\iref{forward.iterators}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}. \pnum \effects Constructs a sequence container equal to the range \range{i}{j}. Each iterator in the range \range{i}{j} is dereferenced exactly once. \pnum \ensures \tcode{distance(u.begin(), u.end()) == distance(i, j)} is \tcode{true}. \end{itemdescr} \begin{itemdecl} X(from_range, rg) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. For \tcode{vector}, if \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}} but not \tcode{ranges::\libconcept{sized_range}} or models \tcode{ranges::\libconcept{input_range}} but not \tcode{ranges::\libconcept{forward_range}}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}. \pnum \effects Constructs a sequence container equal to the range \tcode{rg}. Each iterator in the range \tcode{rg} is dereferenced exactly once. \pnum \recommended If \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}} and \tcode{ranges::distance(\linebreak{}rg) <= ranges::reserve_hint(rg)} is \tcode{true}, an implementation should not perform more than a single reallocation. \pnum \ensures \tcode{distance(begin(), end()) == ranges::distance(rg)} is \tcode{true}. \end{itemdescr} \begin{itemdecl} X(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end())}. \end{itemdescr} \begin{itemdecl} a = il \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&}. \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \pnum \effects Assigns the range \range{il.begin()}{il.end()} into \tcode{a}. All existing elements of \tcode{a} are either assigned to or destroyed. \pnum \returns \tcode{*this}. \end{itemdescr} \indexcont{emplace}% \begin{itemdecl} a.emplace(p, args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X} and \oldconcept{MoveAssignable}. \pnum \effects Inserts an object of type \tcode{T} constructed with \tcode{std::forward(args)...} before \tcode{p}. \begin{note} \tcode{args} can directly or indirectly refer to a value in \tcode{a}. \end{note} \pnum \returns An iterator that points to the new element. \end{itemdescr} \indexcont{insert}% \begin{itemdecl} a.insert(p, t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X}. For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is also \oldconcept{CopyAssignable}. \pnum \effects Inserts a copy of \tcode{t} before \tcode{p}. \pnum \returns An iterator that points to the copy of \tcode{t} inserted into \tcode{a}. \end{itemdescr} \begin{itemdecl} a.insert(p, rv) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{X}. For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is also \oldconcept{MoveAssignable}. \pnum \effects Inserts a copy of \tcode{rv} before \tcode{p}. \pnum \returns An iterator that points to the copy of \tcode{rv} inserted into \tcode{a}. \end{itemdescr} \begin{itemdecl} a.insert(p, n, t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \pnum \effects Inserts \tcode{n} copies of \tcode{t} before \tcode{p}. \pnum \returns An iterator that points to the copy of the first element inserted into \tcode{a}, or \tcode{p} if \tcode{n == 0}. \end{itemdescr} \begin{itemdecl} a.insert(p, i, j) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}, and \tcode{T} meets the \oldconcept{MoveConstructible}, \oldconcept{MoveAs\-signable}, and \oldconcept{Swappable}\iref{swappable.requirements} requirements. Neither \tcode{i} nor \tcode{j} are iterators into \tcode{a}. \pnum \effects Inserts copies of elements in \range{i}{j} before \tcode{p}. Each iterator in the range \range{i}{j} shall be dereferenced exactly once. \pnum \returns An iterator that points to the copy of the first element inserted into \tcode{a}, or \tcode{p} if \tcode{i == j}. \end{itemdescr} \indexcont{insert_range}% \begin{itemdecl} a.insert_range(p, rg) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}, and \tcode{T} meets the \oldconcept{Move\-Constructible}, \oldconcept{MoveAssignable}, and \oldconcept{Swappable}\iref{swappable.requirements} requirements. \tcode{rg} and \tcode{a} do not overlap. \pnum \effects Inserts copies of elements in \tcode{rg} before \tcode{p}. Each iterator in the range \tcode{rg} is dereferenced exactly once. \pnum \returns An iterator that points to the copy of the first element inserted into \tcode{a}, or \tcode{p} if \tcode{rg} is empty. \end{itemdescr} \begin{itemdecl} a.insert(p, il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.insert(p, il.begin(), il.end())}. \end{itemdescr} \indexcont{erase}% \begin{itemdecl} a.erase(q) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is \oldconcept{MoveAssignable}. \pnum \effects Erases the element pointed to by \tcode{q}. \pnum \returns An iterator that points to the element immediately following \tcode{q} prior to the element being erased. If no such element exists, \tcode{a.end()} is returned. \end{itemdescr} \begin{itemdecl} a.erase(q1, q2) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}. \pnum \expects For \tcode{vector}, \tcode{inplace_vector}, and \tcode{deque}, \tcode{T} is \oldconcept{MoveAssignable}. \pnum \effects Erases the elements in the range \range{q1}{q2}. \pnum \returns An iterator that points to the element pointed to by \tcode{q2} prior to any elements being erased. If no such element exists, \tcode{a.end()} is returned. \end{itemdescr} \indexcont{clear}% \begin{itemdecl} a.clear() \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \effects Destroys all elements in \tcode{a}. Invalidates all references, pointers, and iterators referring to the elements of \tcode{a} and may invalidate the past-the-end iterator. \pnum \ensures \tcode{a.empty()} is \tcode{true}. \pnum \complexity Linear. \end{itemdescr} \indexcont{assign}% \begin{itemdecl} a.assign(i, j) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i} and assignable from \tcode{*i}. For \tcode{vector}, if the iterator does not meet the forward iterator requirements\iref{forward.iterators}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}. Neither \tcode{i} nor \tcode{j} are iterators into \tcode{a}. \pnum \effects Replaces elements in \tcode{a} with a copy of \range{i}{j}. Invalidates all references, pointers and iterators referring to the elements of \tcode{a}. For \tcode{vector} and \tcode{deque}, also invalidates the past-the-end iterator. Each iterator in the range \range{i}{j} is dereferenced exactly once. \end{itemdescr} \indexcont{assign_range}% \begin{itemdecl} a.assign_range(rg) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \mandates \tcode{\libconcept{assignable_from}>} is modeled. For \tcode{inplace_vector}, if \tcode{ranges::size(rg)} is a constant expression, then $\tcode{ranges::size(rg)} \le \tcode{a.max_size()}$. \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. For \tcode{vector}, if \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}} but not \tcode{ranges::\libconcept{sized_range}} or models \tcode{ranges::\libconcept{input_range}} but not \tcode{ranges::\libconcept{forward_range}}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}. \tcode{rg} and \tcode{a} do not overlap. \pnum \effects Replaces elements in \tcode{a} with a copy of each element in \tcode{rg}. Invalidates all references, pointers, and iterators referring to the elements of \tcode{a}. For \tcode{vector} and \tcode{deque}, also invalidates the past-the-end iterator. Each iterator in the range \tcode{rg} is dereferenced exactly once. \pnum \recommended If \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}} and \tcode{ranges::distance(\linebreak{}rg) <= ranges::reserve_hint(rg)} is \tcode{true}, an implementation should not perform any reallocation. \end{itemdescr} \begin{itemdecl} a.assign(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.assign(il.begin(), il.end())}. \end{itemdescr} \begin{itemdecl} a.assign(n, t) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \tcode{t} is not a reference into \tcode{a}. \pnum \effects Replaces elements in \tcode{a} with \tcode{n} copies of \tcode{t}. Invalidates all references, pointers and iterators referring to the elements of \tcode{a}. For \tcode{vector} and \tcode{deque}, also invalidates the past-the-end iterator. \end{itemdescr} \pnum For every sequence container defined in this Clause and in \ref{strings}: \begin{itemize} \item If the constructor \begin{codeblock} template X(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type()); \end{codeblock} is called with a type \tcode{InputIterator} that does not qualify as an input iterator, then the constructor shall not participate in overload resolution. \item If the member functions of the forms: \begin{codeblock} template @\placeholdernc{return-type}@ @\placeholdernc{F}@(const_iterator p, InputIterator first, InputIterator last); // such as \tcode{insert} template @\placeholdernc{return-type}@ @\placeholdernc{F}@(InputIterator first, InputIterator last); // such as \tcode{append}, \tcode{assign} template @\placeholdernc{return-type}@ @\placeholdernc{F}@(const_iterator i1, const_iterator i2, InputIterator first, InputIterator last); // such as \tcode{replace} \end{codeblock} are called with a type \tcode{InputIterator} that does not qualify as an input iterator, then these functions shall not participate in overload resolution. \item A deduction guide for a sequence container shall not participate in overload resolution if it has an \tcode{InputIterator} template parameter and a type that does not qualify as an input iterator is deduced for that parameter, or if it has an \tcode{Allocator} template parameter and a type that does not qualify as an allocator is deduced for that parameter. \end{itemize} \pnum The following operations are provided for some types of sequence containers but not others. Operations other than \tcode{prepend_range} and \tcode{append_range} are implemented so as to take amortized constant time. \begin{itemdecl} a.front() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference; const_reference} for constant \tcode{a}. \pnum \hardexpects \tcode{a.empty()} is \tcode{false}. \pnum \returns \tcode{*a.begin()} \pnum \remarks Required for \tcode{basic_string}, \tcode{array}, \tcode{deque}, \tcode{forward_list}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.back() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference; const_reference} for constant \tcode{a}. \pnum \hardexpects \tcode{a.empty()} is \tcode{false}. \pnum \effects Equivalent to: \begin{codeblock} auto tmp = a.end(); --tmp; return *tmp; \end{codeblock} \pnum \remarks Required for \tcode{basic_string}, \tcode{array}, \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.emplace_front(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. \pnum \effects Prepends an object of type \tcode{T} constructed with \tcode{std::forward(args)...}. \pnum \returns \tcode{a.front()}. \pnum \remarks Required for \tcode{deque}, \tcode{forward_list}, and \tcode{list}. \end{itemdescr} \begin{itemdecl} a.emplace_back(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. For \tcode{vector}, \tcode{T} is also \oldconcept{MoveIn\-sert\-able} into \tcode{X}. \pnum \effects Appends an object of type \tcode{T} constructed with \tcode{std::forward(args)...}. \pnum \returns \tcode{a.back()}. \pnum \remarks Required for \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.push_front(t) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Prepends a copy of \tcode{t}. \pnum \remarks Required for \tcode{deque}, \tcode{forward_list}, and \tcode{list}. \end{itemdescr} \begin{itemdecl} a.push_front(rv) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{X}. \pnum \effects Prepends a copy of \tcode{rv}. \pnum \remarks Required for \tcode{deque}, \tcode{forward_list}, and \tcode{list}. \end{itemdescr} \begin{itemdecl} a.prepend_range(rg) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. For \tcode{deque}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}, and \tcode{T} meets the \oldconcept{MoveConstructible}, \oldconcept{MoveAssignable}, and \oldconcept{Swappable}\iref{swappable.requirements} requirements. \pnum \effects Inserts copies of elements in \tcode{rg} before \tcode{begin()}. Each iterator in the range \tcode{rg} is dereferenced exactly once. \begin{note} The order of elements in \tcode{rg} is not reversed. \end{note} \pnum \remarks Required for \tcode{deque}, \tcode{forward_list}, and \tcode{list}. \end{itemdescr} \begin{itemdecl} a.push_back(t) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Appends a copy of \tcode{t}. \pnum \remarks Required for \tcode{basic_string}, \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.push_back(rv) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{X}. \pnum \effects Appends a copy of \tcode{rv}. \pnum \remarks Required for \tcode{basic_string}, \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.append_range(rg) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. For \tcode{vector}, \tcode{T} is also \oldconcept{MoveInsertable} into \tcode{X}. \pnum \effects Inserts copies of elements in \tcode{rg} before \tcode{end()}. Each iterator in the range \tcode{rg} is dereferenced exactly once. \pnum \remarks Required for \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.pop_front() \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \hardexpects \tcode{a.empty()} is \tcode{false}. \pnum \effects Destroys the first element. \pnum \remarks Required for \tcode{deque}, \tcode{forward_list}, and \tcode{list}. \end{itemdescr} \begin{itemdecl} a.pop_back() \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \hardexpects \tcode{a.empty()} is \tcode{false}. \pnum \effects Destroys the last element. \pnum \remarks Required for \tcode{basic_string}, \tcode{deque}, \tcode{inplace_vector}, \tcode{list}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a[n] \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference; const_reference} for constant \tcode{a}. \pnum \hardexpects \tcode{n < a.size()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return *(a.begin() + n);} \pnum \remarks Required for \tcode{basic_string}, \tcode{array}, \tcode{deque}, \tcode{inplace_vector}, and \tcode{vector}. \end{itemdescr} \begin{itemdecl} a.at(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{reference; const_reference} for constant \tcode{a}. \pnum \returns \tcode{*(a.begin() + n)} \pnum \throws \tcode{out_of_range} if \tcode{n >= a.size()}. \pnum \remarks Required for \tcode{basic_string}, \tcode{array}, \tcode{deque}, \tcode{inplace_vector}, and \tcode{vector}. \end{itemdescr} \rSec2[container.node]{Node handles} \rSec3[container.node.overview]{Overview} \pnum A \defn{node handle} is an object that accepts ownership of a single element from an associative container\iref{associative.reqmts} or an unordered associative container\iref{unord.req}. It may be used to transfer that ownership to another container with compatible nodes. Containers with compatible nodes have the same node handle type. Elements may be transferred in either direction between container types in the same row of \tref{container.node.compat}. \begin{floattable}{Container types with compatible nodes}{container.node.compat} {ll} \topline \tcode{map} & \tcode{map} \\ \rowsep \tcode{map} & \tcode{multimap} \\ \rowsep \tcode{set} & \tcode{set} \\ \rowsep \tcode{set} & \tcode{multiset} \\ \rowsep \tcode{unordered_map} & \tcode{unordered_map} \\ \rowsep \tcode{unordered_map} & \tcode{unordered_multimap} \\ \rowsep \tcode{unordered_set} & \tcode{unordered_set} \\ \rowsep \tcode{unordered_set} & \tcode{unordered_multiset} \\ \end{floattable} \pnum If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container when the element was extracted. If a node handle is empty, it contains no allocator. \pnum Class \exposid{node-handle} is for exposition only. \pnum If a user-defined specialization of \tcode{pair} exists for \tcode{pair} or \tcode{pair}, where \tcode{Key} is the container's \tcode{key_type} and \tcode{T} is the container's \tcode{mapped_type}, the behavior of operations involving node handles is undefined. \begin{codeblock} template<@\unspecnc@> class @\placeholder{node-handle}@ { public: // These type declarations are described in \ref{associative.reqmts} and \ref{unord.req}. using value_type = @\seebelownc{}@; // not present for map containers using key_type = @\seebelownc{}@; // not present for set containers using mapped_type = @\seebelownc{}@; // not present for set containers using allocator_type = @\seebelownc{}@; private: using @\exposid{container-node-type}@ = @\unspecnc@; // \expos using @\exposid{ator-traits}@ = allocator_traits; // \expos typename @\exposid{ator-traits}@::template rebind_traits<@\exposid{container-node-type}@>::pointer @\exposid{ptr_}@; // \expos optional @\exposid{alloc_}@; // \expos public: // \ref{container.node.cons}, constructors, copy, and assignment constexpr @\placeholdernc{node-handle}@() noexcept : @\exposid{ptr_}@(), @\exposid{alloc_}@() {} constexpr @\placeholdernc{node-handle}@(@\placeholdernc{node-handle}@&&) noexcept; constexpr @\placeholdernc{node-handle}@& operator=(@\placeholdernc{node-handle}@&&); // \ref{container.node.dtor}, destructor constexpr ~@\placeholdernc{node-handle}@(); // \ref{container.node.observers}, observers constexpr value_type& value() const; // not present for map containers key_type& key() const; // not present for set containers constexpr mapped_type& mapped() const; // not present for set containers constexpr allocator_type get_allocator() const; constexpr explicit operator bool() const noexcept; constexpr bool empty() const noexcept; // \ref{container.node.modifiers}, modifiers constexpr void swap(@\placeholdernc{node-handle}@&) noexcept(@\exposid{ator-traits}@::propagate_on_container_swap::value || @\exposid{ator-traits}@::is_always_equal::value); friend constexpr void swap(@\placeholdernc{node-handle}@& x, @\placeholdernc{node-handle}@& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } }; \end{codeblock} \rSec3[container.node.cons]{Constructors, copy, and assignment} \begin{itemdecl} constexpr @\placeholdernc{node-handle}@(@\placeholdernc{node-handle}@&& nh) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \exposid{node-handle} object initializing \exposid{ptr_} with \tcode{nh.\exposid{ptr_}}. Move constructs \exposid{alloc_} with \tcode{nh.\exposid{alloc_}}. Assigns \keyword{nullptr} to \tcode{nh.\exposid{ptr_}} and assigns \tcode{nullopt} to \tcode{nh.\exposid{alloc_}}. \end{itemdescr} \begin{itemdecl} constexpr @\placeholdernc{node-handle}@& operator=(@\placeholdernc{node-handle}@&& nh); \end{itemdecl} \begin{itemdescr} \pnum \expects Either \tcode{!\exposid{alloc_}} is \tcode{true}, or \tcode{\exposidnc{ator-traits}::propagate_on_container_move_assign\-ment::value} is \tcode{true}, or \tcode{\exposid{alloc_} == nh.\exposid{alloc_}} is \tcode{true}. \pnum \effects \begin{itemize} \item If \tcode{\exposid{ptr_} != nullptr} is \tcode{true}, destroys the \tcode{value_type} subobject in the \exposid{container-node-type} object pointed to by \exposid{ptr_} by calling \tcode{\exposid{ator-traits}::destroy}, then deallocates \exposid{ptr_} by calling \tcode{\exposid{ator-\-traits}::template rebind_traits<\exposid{container-node-type}>::deallocate}. \item Assigns \tcode{nh.\exposid{ptr_}} to \exposid{ptr_}. \item If \tcode{!\exposid{alloc_}} is \tcode{true} or \tcode{\exposid{ator-traits}::propagate_on_container_move_assignment::value} is \tcode{true}, \linebreak move assigns \tcode{nh.\exposid{alloc_}} to \exposid{alloc_}. \item Assigns \keyword{nullptr} to \tcode{nh.\exposid{ptr_}} and assigns \tcode{nullopt} to \tcode{nh.\exposid{alloc_}}. \end{itemize} \pnum \returns \tcode{*this}. \pnum \throws Nothing. \end{itemdescr} \rSec3[container.node.dtor]{Destructor} \begin{itemdecl} constexpr ~@\placeholdernc{node-handle}@(); \end{itemdecl} \begin{itemdescr} \pnum \effects If \tcode{\exposid{ptr_} != nullptr} is \tcode{true}, destroys the \tcode{value_type} subobject in the \exposid{container-node-type} object pointed to by \exposid{ptr_} by calling \tcode{\exposid{ator-traits}::destroy}, then deallocates \exposid{ptr_} by calling \tcode{\exposid{ator-\-traits}::template rebind_traits<\exposid{container-node-type}>::deallocate}. \end{itemdescr} \rSec3[container.node.observers]{Observers} \begin{itemdecl} constexpr value_type& value() const; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{empty() == false}. \pnum \returns A reference to the \tcode{value_type} subobject in the \exposid{container-node-type} object pointed to by \exposid{ptr_}. \pnum \throws Nothing. \end{itemdescr} \begin{itemdecl} key_type& key() const; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{empty() == false}. \pnum \returns A non-const reference to the \tcode{key_type} member of the \tcode{value_type} subobject in the \exposid{contain\-er-node-type} object pointed to by \exposid{ptr_}. \pnum \throws Nothing. \pnum \remarks Modifying the key through the returned reference is permitted. \end{itemdescr} \begin{itemdecl} constexpr mapped_type& mapped() const; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{empty() == false}. \pnum \returns A reference to the \tcode{mapped_type} member of the \tcode{value_type} subobject in the \exposid{container-\-node-type} object pointed to by \exposid{ptr_}. \pnum \throws Nothing. \end{itemdescr} \begin{itemdecl} constexpr allocator_type get_allocator() const; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{empty() == false}. \pnum \returns \tcode{*\exposid{alloc_}}. \pnum \throws Nothing. \end{itemdescr} \begin{itemdecl} constexpr explicit operator bool() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{\exposid{ptr_} != nullptr}. \end{itemdescr} \begin{itemdecl} constexpr bool empty() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{\exposid{ptr_} == nullptr}. \end{itemdescr} \rSec3[container.node.modifiers]{Modifiers} \begin{itemdecl} constexpr void swap(@\placeholdernc{node-handle}@& nh) noexcept(@\exposid{ator-traits}@::propagate_on_container_swap::value || @\exposid{ator-traits}@::is_always_equal::value); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{!\exposid{alloc_}} is \tcode{true}, or \tcode{!nh.\exposid{alloc_}}, or \tcode{\exposid{ator-traits}::propagate_on_container_swap::\-value} is \tcode{true}, or \tcode{\exposid{alloc_} == nh.\exposid{alloc_}} is \tcode{true}. \pnum \effects Calls \tcode{swap(\exposid{ptr_}, nh.\exposid{ptr_})}. If \tcode{!\exposid{alloc_}} is \tcode{true}, or \tcode{!nh.\exposid{alloc_}} is \tcode{true}, or \tcode{\exposid{ator-traits}::\-propagate_on_container_swap::value} is \tcode{true} calls \tcode{swap(\exposid{alloc_}, nh.\exposid{alloc_})}. \end{itemdescr} \rSec2[container.insert.return]{Insert return type} \pnum The associative containers with unique keys and the unordered containers with unique keys have a member function \tcode{insert} that returns a nested type \tcode{insert_return_type}. That return type is a specialization of the template specified in this subclause. \begin{codeblock} template struct @\placeholder{insert-return-type}@ { Iterator position; bool inserted; NodeType node; }; \end{codeblock} \pnum The name \exposid{insert-return-type} is for exposition only. \exposid{insert-return-type} has the template parameters, data members, and special members specified above. It has no base classes or members other than those specified. \rSec2[associative.reqmts]{Associative containers} \rSec3[associative.reqmts.general]{General} \pnum Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of associative containers: \tcode{set}, \tcode{multiset}, \tcode{map} and \tcode{multimap}. The library also provides container adaptors that make it easy to construct abstract data types, such as \tcode{flat_map}s, \tcode{flat_multimap}s, \tcode{flat_set}s, or \tcode{flat_multiset}s, out of the basic sequence container kinds (or out of other program-defined sequence containers). \pnum Each associative container is parameterized on \tcode{Key} and an ordering relation \tcode{Compare} that induces a strict weak ordering\iref{alg.sorting} on elements of \tcode{Key}. In addition, \tcode{map} and \tcode{multimap} associate an arbitrary \term{mapped type} \tcode{T} with the \tcode{Key}. The object of type \tcode{Compare} is called the \term{comparison object} of a container. \pnum The phrase ``equivalence of keys'' means the equivalence relation imposed by the comparison object. That is, two keys \tcode{k1} and \tcode{k2} are considered to be equivalent if for the comparison object \tcode{comp}, \tcode{comp(k1, k2) == false \&\& comp(k2, k1) == false}. \begin{note} This is not necessarily the same as the result of \tcode{k1 == k2}. \end{note} For any two keys \tcode{k1} and \tcode{k2} in the same container, calling \tcode{comp(k1, k2)} shall always return the same value. \pnum An associative container supports \term{unique keys} if it may contain at most one element for each key. Otherwise, it supports \term{equivalent keys}. The \tcode{set} and \tcode{map} classes support unique keys; the \tcode{multiset} and \tcode{multimap} classes support equivalent keys. For \tcode{multiset} and \tcode{multimap}, \tcode{insert}, \tcode{emplace}, and \tcode{erase} preserve the relative ordering of equivalent elements. \pnum For \tcode{set} and \tcode{multiset} the value type is the same as the key type. For \tcode{map} and \tcode{multimap} it is equal to \tcode{pair}. \pnum \tcode{iterator} of an associative container is of the bidirectional iterator category. For associative containers where the value type is the same as the key type, both \tcode{iterator} and \tcode{const_iterator} are constant iterators. It is unspecified whether or not \tcode{iterator} and \tcode{const_iterator} are the same type. \begin{note} \tcode{iterator} and \tcode{const_iterator} have identical semantics in this case, and \tcode{iterator} is convertible to \tcode{const_iterator}. Users can avoid violating the one-definition rule by always using \tcode{const_iterator} in their function parameter lists. \end{note} \pnum In this subclause, \begin{itemize} \item \tcode{X} denotes an associative container class, \item \tcode{a} denotes a value of type \tcode{X}, \item \tcode{a2} denotes a value of a type with nodes compatible with type \tcode{X} (\tref{container.node.compat}), \item \tcode{b} denotes a value of type \tcode{X} or \tcode{const X}, \item \tcode{u} denotes the name of a variable being declared, \item \tcode{a_uniq} denotes a value of type \tcode{X} when \tcode{X} supports unique keys, \item \tcode{a_eq} denotes a value of type \tcode{X} when \tcode{X} supports equivalent keys, \item \tcode{a_tran} denotes a value of type \tcode{X} or \tcode{const X} when the \grammarterm{qualified-id} \tcode{X::key_compare::is_transparent} is valid and denotes a type\iref{temp.deduct}, \item \tcode{i} and \tcode{j} meet the \oldconcept{InputIterator} requirements and refer to elements implicitly convertible to \tcode{value_type}, \item \range{i}{j} denotes a valid range, \item \tcode{rg} denotes a value of a type \tcode{R} that models \tcode{\exposconcept{container-compatible-range}}, \item \tcode{p} denotes a valid constant iterator to \tcode{a}, \item \tcode{q} denotes a valid dereferenceable constant iterator to \tcode{a}, \item \tcode{r} denotes a valid dereferenceable iterator to \tcode{a}, \item \range{q1}{q2} denotes a valid range of constant iterators in \tcode{a}, \item \tcode{il} designates an object of type \tcode{initializer_list}, \item \tcode{t} denotes a value of type \tcode{X::value_type}, \item \tcode{k} denotes a value of type \tcode{X::key_type}, and \item \tcode{c} denotes a value of type \tcode{X::key_compare} or \tcode{const X::key_compare}; \item \tcode{kl} is a value such that \tcode{a} is partitioned\iref{alg.sorting} with respect to \tcode{c(x, kl)}, with \tcode{x} the key value of \tcode{e} and \tcode{e} in \tcode{a}; \item \tcode{ku} is a value such that \tcode{a} is partitioned with respect to \tcode{!c(ku, x)}, with \tcode{x} the key value of \tcode{e} and \tcode{e} in \tcode{a}; \item \tcode{ke} is a value such that \tcode{a} is partitioned with respect to \tcode{c(x, ke)} and \tcode{!c(ke, x)}, with \tcode{c(x, ke)} implying \tcode{!c(ke, x)} and with \tcode{x} the key value of \tcode{e} and \tcode{e} in \tcode{a}; \item \tcode{kx} is a value such that \begin{itemize} \item \tcode{a} is partitioned with respect to \tcode{c(x, kx)} and \tcode{!c(kx, x)}, with \tcode{c(x, kx)} implying \tcode{!c(kx, x)} and with \tcode{x} the key value of \tcode{e} and \tcode{e} in \tcode{a}, and \item \tcode{kx} is not convertible to either \tcode{iterator} or \tcode{const_iterator}; and \end{itemize} \item \tcode{A} denotes the storage allocator used by \tcode{X}, if any, or \tcode{allocator} otherwise, \item \tcode{m} denotes an allocator of a type convertible to \tcode{A}, and \tcode{nh} denotes a non-const rvalue of type \tcode{X::node_type}. \end{itemize} \pnum A type \tcode{X} meets the \defnadj{associative}{container} requirements if \tcode{X} meets all the requirements of an allocator-aware container\iref{container.alloc.reqmts} and the following types, statements, and expressions are well-formed and have the specified semantics, except that for \tcode{map} and \tcode{multimap}, the requirements placed on \tcode{value_type} in \ref{container.reqmts} apply instead to \tcode{key_type} and \tcode{mapped_type}. \begin{note} For example, in some cases \tcode{key_type} and \tcode{mapped_type} need to be \oldconcept{CopyAssignable} even though the associated \tcode{value_type}, \tcode{pair}, is not \oldconcept{CopyAssignable}. \end{note} % Local command to index names as members of all ordered containers. \newcommand{\indexordmem}[1]{% \indexlibrary{\idxcode{#1}!ordered associative containers}% \indexlibrary{\idxcode{set}!\idxcode{#1}}% \indexlibrary{\idxcode{map}!\idxcode{#1}}% \indexlibrary{\idxcode{multiset}!\idxcode{#1}}% \indexlibrary{\idxcode{multimap}!\idxcode{#1}}% \indexlibrary{\idxcode{flat_set}!\idxcode{#1}}% \indexlibrary{\idxcode{flat_map}!\idxcode{#1}}% \indexlibrary{\idxcode{flat_multiset}!\idxcode{#1}}% \indexlibrary{\idxcode{flat_multimap}!\idxcode{#1}}% } \indexordmem{key_type}% \begin{itemdecl} typename X::key_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Key}. \end{itemdescr} \indexordmem{mapped_type}% \begin{itemdecl} typename X::mapped_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{T}. \pnum \remarks For \tcode{map} and \tcode{multimap} only. \end{itemdescr} \indexordmem{value_type}% \begin{itemdecl} typename X::value_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Key} for \tcode{set} and \tcode{multiset} only; \tcode{pair} for \tcode{map} and \tcode{multimap} only. \pnum \expects \tcode{X::value_type} is \oldconcept{Erasable} from \tcode{X}. \end{itemdescr} \indexordmem{key_compare}% \begin{itemdecl} typename X::key_compare \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Compare}. \pnum \expects \tcode{key_compare} is \oldconcept{CopyConstructible}. \end{itemdescr} \indexordmem{value_compare}% \begin{itemdecl} typename X::value_compare \end{itemdecl} \begin{itemdescr} \pnum \result A binary predicate type. It is the same as \tcode{key_compare} for \tcode{set} and \tcode{multiset}; is an ordering relation on pairs induced by the first component (i.e., \tcode{Key}) for \tcode{map} and \tcode{multimap}. \end{itemdescr} \indexordmem{node_type}% \begin{itemdecl} typename X::node_type \end{itemdecl} \begin{itemdescr} \pnum \result A specialization of the \exposid{node-handle} class template\iref{container.node}, such that the public nested types are the same types as the corresponding types in \tcode{X}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(c) \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty container. Uses a copy of \tcode{c} as a comparison object. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X u = X(); X u; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_compare} meets the \oldconcept{DefaultConstructible} requirements. \pnum \effects Constructs an empty container. Uses \tcode{Compare()} as a comparison object. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(i, j, c) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container and inserts elements from the range \range{i}{j} into it; uses \tcode{c} as a comparison object. \pnum \complexity $N \log N$ in general, where $N$ has the value \tcode{distance(i, j)}; linear if \range{i}{j} is sorted with respect to \tcode{value_comp()}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(i, j) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_compare} meets the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container and inserts elements from the range \range{i}{j} into it; uses \tcode{Compare()} as a comparison object. \pnum \complexity $N \log N$ in general, where $N$ has the value \tcode{distance(i, j)}; linear if \range{i}{j} is sorted with respect to \tcode{value_comp()}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(from_range, rg, c) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container and inserts each element from \tcode{rg} into it. Uses \tcode{c} as the comparison object. \pnum \complexity $N \log N$ in general, where $N$ has the value \tcode{ranges::distance(rg)}; linear if \tcode{rg} is sorted with respect to \tcode{value_comp()}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(from_range, rg) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_compare} meets the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container and inserts each element from \tcode{rg} into it. Uses \tcode{Compare()} as the comparison object. \pnum \complexity Same as \tcode{X(from_range, rg, c)}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(il, c) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end(), c)}. \end{itemdescr} \indexlibraryctor{set}% \indexlibraryctor{map}% \indexlibraryctor{multiset}% \indexlibraryctor{multimap}% \begin{itemdecl} X(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end())}. \end{itemdescr} \begin{itemdecl} a = il \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&} \pnum \expects \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \pnum \effects Assigns the range \range{il.begin()}{il.end()} into \tcode{a}. All existing elements of \tcode{a} are either assigned to or destroyed. \pnum \complexity $N \log N$ in general, where $N$ has the value \tcode{il.size() + a.size()}; linear if \range{il.begin()}{il.end()} is sorted with respect to \tcode{value_comp()}. \end{itemdescr} \indexordmem{key_comp}% \begin{itemdecl} b.key_comp() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X::key_compare} \pnum \returns The comparison object out of which \tcode{b} was constructed. \pnum \complexity Constant. \end{itemdescr} \indexordmem{value_comp}% \begin{itemdecl} b.value_comp() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X::value_compare} \pnum \returns An object of \tcode{value_compare} constructed out of the comparison object. \pnum \complexity Constant. \end{itemdescr} \indexordmem{emplace}% \begin{itemdecl} a_uniq.emplace(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. \pnum \effects Inserts a \tcode{value_type} object \tcode{t} constructed with \tcode{std::forward(args)...} if and only if there is no element in the container with key equivalent to the key of \tcode{t}. \pnum \returns The \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of \tcode{t}. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{emplace}% \begin{itemdecl} a_eq.emplace(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. \pnum \effects Inserts a \tcode{value_type} object \tcode{t} constructed with \tcode{std::forward(args)...}. If a range containing elements equivalent to \tcode{t} exists in \tcode{a_eq}, \tcode{t} is inserted at the end of that range. \pnum \returns An iterator pointing to the newly inserted element. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{emplace_hint}% \begin{itemdecl} a.emplace_hint(p, args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Equivalent to \tcode{a.emplace(std::forward(args)...)}, except that the element is inserted as close as possible to the position just prior to \tcode{p}. \pnum \returns The iterator returned by \tcode{emplace}. \pnum \complexity Logarithmic in general, but amortized constant if the element is inserted right before \tcode{p}. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a_uniq.insert(t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Inserts \tcode{t} if and only if there is no element in the container with key equivalent to the key of \tcode{t}. \pnum \returns The \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion takes place, and the \tcode{iterator} component of the pair points to the element with key equivalent to the key of \tcode{t}. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a_eq.insert(t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Inserts \tcode{t} and returns the iterator pointing to the newly inserted element. If a range containing elements equivalent to \tcode{t} exists in \tcode{a_eq}, \tcode{t} is inserted at the end of that range. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a.insert(p, t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Inserts \tcode{t} if and only if there is no element with key equivalent to the key of \tcode{t} in containers with unique keys; always inserts \tcode{t} in containers with equivalent keys. \tcode{t} is inserted as close as possible to the position just prior to \tcode{p}. \pnum \returns An iterator pointing to the element with key equivalent to the key of \tcode{t}. \pnum \complexity Logarithmic in general, but amortized constant if \tcode{t} is inserted right before \tcode{p}. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a.insert(i, j) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. Neither \tcode{i} nor \tcode{j} are iterators into \tcode{a}. \pnum \effects Inserts each element from the range \range{i}{j} if and only if there is no element with key equivalent to the key of that element in containers with unique keys; always inserts that element in containers with equivalent keys. \pnum \complexity $N \log (\tcode{a.size()} + N)$, where $N$ has the value \tcode{distance(i, j)}. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a.insert_range(rg) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \tcode{rg} and \tcode{a} do not overlap. \pnum \effects Inserts each element from \tcode{rg} if and only if there is no element with key equivalent to the key of that element in containers with unique keys; always inserts that element in containers with equivalent keys. \pnum \complexity $N \log (\tcode{a.size()} + N)$, where $N$ has the value \tcode{ranges::distance(rg)}. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a.insert(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.insert(il.begin(), il.end())}. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a_uniq.insert(nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{insert_return_type} \pnum \expects \tcode{nh} is empty or \tcode{a_uniq.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect. Otherwise, inserts the element owned by \tcode{nh} if and only if there is no element in the container with a key equivalent to \tcode{nh.key()}. \pnum \returns If \tcode{nh} is empty, \tcode{inserted} is \tcode{false}, \tcode{position} is \tcode{end()}, and \tcode{node} is empty. Otherwise if the insertion took place, \tcode{inserted} is \tcode{true}, \tcode{position} points to the inserted element, and \tcode{node} is empty; if the insertion failed, \tcode{inserted} is \tcode{false}, \tcode{node} has the previous value of \tcode{nh}, and \tcode{position} points to an element with a key equivalent to \tcode{nh.key()}. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a_eq.insert(nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{nh} is empty or \tcode{a_eq.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect and returns \tcode{a_eq.end()}. Otherwise, inserts the element owned by \tcode{nh} and returns an iterator pointing to the newly inserted element. If a range containing elements with keys equivalent to \tcode{nh.key()} exists in \tcode{a_eq}, the element is inserted at the end of that range. \pnum \ensures \tcode{nh} is empty. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{insert}% \begin{itemdecl} a.insert(p, nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{nh} is empty or \tcode{a.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect and returns \tcode{a.end()}. Otherwise, inserts the element owned by \tcode{nh} if and only if there is no element with key equivalent to \tcode{nh.key()} in containers with unique keys; always inserts the element owned by \tcode{nh} in containers with equivalent keys. The element is inserted as close as possible to the position just prior to \tcode{p}. \pnum \ensures \tcode{nh} is empty if insertion succeeds, unchanged if insertion fails. \pnum \returns An iterator pointing to the element with key equivalent to \tcode{nh.key()}. \pnum \complexity Logarithmic in general, but amortized constant if the element is inserted right before \tcode{p}. \end{itemdescr} \indexordmem{extract}% \begin{itemdecl} a.extract(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes the first element in the container with key equivalent to \tcode{k}. \pnum \returns A \tcode{node_type} owning the element if found, otherwise an empty \tcode{node_type}. \pnum \complexity $\log (\tcode{a.size()})$ \end{itemdescr} \indexordmem{extract}% \begin{itemdecl} a_tran.extract(kx) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes the first element in the container with key \tcode{r} such that \tcode{!c(r, kx) \&\& !c(kx, r)} is \tcode{true}. \pnum \returns A \tcode{node_type} owning the element if found, otherwise an empty \tcode{node_type}. \pnum \complexity $\log(\tcode{a_tran.size()})$ \end{itemdescr} \indexordmem{extract}% \begin{itemdecl} a.extract(q) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes the element pointed to by \tcode{q}. \pnum \returns A \tcode{node_type} owning that element. \pnum \complexity Amortized constant. \end{itemdescr} \indexordmem{merge}% \begin{itemdecl} a.merge(a2) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{a.get_allocator() == a2.get_allocator()} is \tcode{true}. \pnum \effects Attempts to extract each element in \tcode{a2} and insert it into \tcode{a} using the comparison object of \tcode{a}. In containers with unique keys, if there is an element in \tcode{a} with key equivalent to the key of an element from \tcode{a2}, then that element is not extracted from \tcode{a2}. \pnum \ensures Pointers and references to the transferred elements of \tcode{a2} refer to those same elements but as members of \tcode{a}. If \tcode{a.begin()} and \tcode{a2.begin()} have the same type, iterators referring to the transferred elements will continue to refer to their elements, but they now behave as iterators into \tcode{a}, not into \tcode{a2}. \pnum \throws Nothing unless the comparison object throws. \pnum \complexity $N \log(\tcode{a.size()+} N)$, where $N$ has the value \tcode{a2.size()}. \end{itemdescr} \indexordmem{erase}% \begin{itemdecl} a.erase(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \effects Erases all elements in the container with key equivalent to \tcode{k}. \pnum \returns The number of erased elements. \pnum \complexity $\log (\tcode{a.size()}) + \tcode{a.count(k)}$ \end{itemdescr} \indexordmem{erase}% \begin{itemdecl} a_tran.erase(kx) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \effects Erases all elements in the container with key \tcode{r} such that \tcode{!c(r, kx) \&\& !c(kx, r)} is \tcode{true}. \pnum \returns The number of erased elements. \pnum \complexity $\log(\tcode{a_tran.size())} + \tcode{a_tran.count(kx)}$ \end{itemdescr} \indexordmem{erase}% \begin{itemdecl} a.erase(q) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases the element pointed to by \tcode{q}. \pnum \returns An iterator pointing to the element immediately following \tcode{q} prior to the element being erased. If no such element exists, returns \tcode{a.end()}. \pnum \complexity Amortized constant. \end{itemdescr} \indexordmem{erase}% \begin{itemdecl} a.erase(r) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases the element pointed to by \tcode{r}. \pnum \returns An iterator pointing to the element immediately following \tcode{r} prior to the element being erased. If no such element exists, returns \tcode{a.end()}. \pnum \complexity Amortized constant. \end{itemdescr} \indexordmem{erase}% \begin{itemdecl} a.erase(q1, q2) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases all the elements in the range \range{q1}{q2}. \pnum \returns An iterator pointing to the element pointed to by \tcode{q2} prior to any elements being erased. If no such element exists, \tcode{a.end()} is returned. \pnum \complexity $\log(\tcode{a.size()}) + N$, where $N$ has the value \tcode{distance(q1, q2)}. \end{itemdescr} \indexordmem{clear}% \begin{itemdecl} a.clear() \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.erase(a.begin(), a.end())}. \pnum \ensures \tcode{a.empty()} is \tcode{true}. \pnum \complexity Linear in \tcode{a.size()}. \end{itemdescr} \indexordmem{find}% \begin{itemdecl} b.find(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator pointing to an element with the key equivalent to \tcode{k}, or \tcode{b.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{find}% \begin{itemdecl} a_tran.find(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{a_tran}. \pnum \returns An iterator pointing to an element with key \tcode{r} such that \tcode{!c(r, ke) \&\& !c(ke, r)} is \tcode{true}, or \tcode{a_tran.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{count}% \begin{itemdecl} b.count(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns The number of elements with key equivalent to \tcode{k}. \pnum \complexity $\log (\tcode{b.size()}) + \tcode{b.count(k)}$ \end{itemdescr} \indexordmem{count}% \begin{itemdecl} a_tran.count(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns The number of elements with key \tcode{r} such that \tcode{!c(r, ke) \&\& !c(ke, r)}. \pnum \complexity $\log (\tcode{a_tran.size()}) + \tcode{a_tran.count(ke)}$ \end{itemdescr} \indexordmem{contains}% \begin{itemdecl} b.contains(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \effects Equivalent to: \tcode{return b.find(k) != b.end();} \end{itemdescr} \indexordmem{contains}% \begin{itemdecl} a_tran.contains(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \effects Equivalent to: \tcode{return a_tran.find(ke) != a_tran.end();} \end{itemdescr} \indexordmem{lower_bound}% \begin{itemdecl} b.lower_bound(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator pointing to the first element with key not less than \tcode{k}, or \tcode{b.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{lower_bound}% \begin{itemdecl} a_tran.lower_bound(kl) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{a_tran}. \pnum \returns An iterator pointing to the first element with key \tcode{r} such that \tcode{!c(r, kl)}, or \tcode{a_tran.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{upper_bound}% \begin{itemdecl} b.upper_bound(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator pointing to the first element with key greater than \tcode{k}, or \tcode{b.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{upper_bound}% \begin{itemdecl} a_tran.upper_bound(ku) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{a_tran}. \pnum \returns An iterator pointing to the first element with key \tcode{r} such that \tcode{c(ku, r)}, or \tcode{a_tran.end()} if such an element is not found. \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{equal_range}% \begin{itemdecl} b.equal_range(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair}; \tcode{pair} for constant \tcode{b}. \pnum \effects Equivalent to: \tcode{return make_pair(b.lower_bound(k), b.upper_bound(k));} \pnum \complexity Logarithmic. \end{itemdescr} \indexordmem{equal_range}% \begin{itemdecl} a_tran.equal_range(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair}; \tcode{pair} for constant \tcode{a_tran}. \pnum \effects Equivalent to: \tcode{return make_pair(a_tran.lower_bound(ke), a_tran.upper_bound(ke));} \pnum \complexity Logarithmic. \end{itemdescr} \pnum The \tcode{insert}, \tcode{insert_range}, and \tcode{emplace} members shall not affect the validity of iterators and references to the container, and the \tcode{erase} members shall invalidate only iterators and references to the erased elements. \pnum The \tcode{extract} members invalidate only iterators to the removed element; pointers and references to the removed element remain valid. However, accessing the element through such pointers and references while the element is owned by a \tcode{node_type} is undefined behavior. References and pointers to an element obtained while it is owned by a \tcode{node_type} are invalidated if the element is successfully inserted. \pnum The fundamental property of iterators of associative containers is that they iterate through the containers in the non-descending order of keys where non-descending is defined by the comparison that was used to construct them. For any two dereferenceable iterators \tcode{i} and \tcode{j} such that distance from \tcode{i} to \tcode{j} is positive, the following condition holds: \begin{codeblock} value_comp(*j, *i) == false \end{codeblock} \pnum For associative containers with unique keys the stronger condition holds: \begin{codeblock} value_comp(*i, *j) != false \end{codeblock} \pnum When an associative container is constructed by passing a comparison object the container shall not store a pointer or reference to the passed object, even if that object is passed by reference. When an associative container is copied, through either a copy constructor or an assignment operator, the target container shall then use the comparison object from the container being copied, as if that comparison object had been passed to the target container in its constructor. \pnum The member function templates \tcode{find}, \tcode{count}, \tcode{contains}, \tcode{lower_bound}, \tcode{upper_bound}, \tcode{equal_range}, \tcode{erase}, and \tcode{extract} shall not participate in overload resolution unless the \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type\iref{temp.deduct}. Additionally, the member function templates \tcode{extract} and \tcode{erase} shall not participate in overload resolution if \tcode{is_convertible_v || is_convertible_v} is \tcode{true}, where \tcode{K} is the type substituted as the first template argument. \pnum A deduction guide for an associative container shall not participate in overload resolution if any of the following are true: \begin{itemize} \item It has an \tcode{InputIterator} template parameter and a type that does not qualify as an input iterator is deduced for that parameter. \item It has an \tcode{Allocator} template parameter and a type that does not qualify as an allocator is deduced for that parameter. \item It has a \tcode{Compare} template parameter and a type that qualifies as an allocator is deduced for that parameter. \end{itemize} \rSec3[associative.reqmts.except]{Exception safety guarantees}% \indextext{associative containers!exception safety}% \indextext{associative containers!requirements}% \pnum For associative containers, no \tcode{clear()} function throws an exception. \tcode{erase(k)} does not throw an exception unless that exception is thrown by the container's \tcode{Compare} object (if any). \pnum For associative containers, if an exception is thrown by any operation from within an \tcode{insert} or \tcode{emplace} function inserting a single element, the insertion has no effect. \pnum For associative containers, no \tcode{swap} function throws an exception unless that exception is thrown by the swap of the container's \tcode{Compare} object (if any). \rSec2[unord.req]{Unordered associative containers}% \indextext{associative containers!unordered|see{unordered associative containers}} \indextext{hash tables|see{unordered associative containers}} \rSec3[unord.req.general]{General} \pnum \indextext{unordered associative containers!complexity}% Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case complexity for most operations is linear, but the average case is much faster. The library provides four unordered associative containers: \tcode{unordered_set}, \tcode{unordered_map}, \tcode{unordered_multiset}, and \tcode{unordered_multimap}. \pnum \indextext{unordered associative containers!lack of comparison functions}% \indextext{unordered associative containers!requirements}% \indextext{requirements!container!not required for unordered associated containers}% Unordered associative containers conform to the requirements for Containers\iref{container.requirements}, except that the expressions \tcode{a == b} and \tcode{a != b} have different semantics than for the other container types. \pnum Each unordered associative container is parameterized by \tcode{Key}, by a function object type \tcode{Hash} that meets the \oldconcept{Hash} requirements\iref{hash.requirements} and acts as a hash function for argument values of type \tcode{Key}, and by a binary predicate \tcode{Pred} that induces an equivalence relation on values of type \tcode{Key}. Additionally, \tcode{unordered_map} and \tcode{unordered_multimap} associate an arbitrary \textit{mapped type} \tcode{T} with the \tcode{Key}. \pnum \indextext{unordered associative containers!hash function}% \indextext{hash function}% The container's object of type \tcode{Hash} --- denoted by \tcode{hash} --- is called the \term{hash function} of the container. The container's object of type \tcode{Pred} --- denoted by \tcode{pred} --- is called the \term{key equality predicate} of the container. \pnum \indextext{unordered associative containers!equality function}% Two values \tcode{k1} and \tcode{k2} are considered equivalent if the container's key equality predicate \tcode{pred(k1, k2)} is valid and returns \tcode{true} when passed those values. If \tcode{k1} and \tcode{k2} are equivalent, the container's hash function shall return the same value for both. \begin{note} Thus, when an unordered associative container is instantiated with a non-default \tcode{Pred} parameter it usually needs a non-default \tcode{Hash} parameter as well. \end{note} For any two keys \tcode{k1} and \tcode{k2} in the same container, calling \tcode{pred(k1, k2)} shall always return the same value. For any key \tcode{k} in a container, calling \tcode{hash(k)} shall always return the same value. \pnum \indextext{unordered associative containers!unique keys}% \indextext{unordered associative containers!equivalent keys}% An unordered associative container supports \textit{unique keys} if it may contain at most one element for each key. Otherwise, it supports \textit{equivalent keys}. \tcode{unordered_set} and \tcode{unordered_map} support unique keys. \tcode{unordered_multiset} and \tcode{unordered_multimap} support equivalent keys. In containers that support equivalent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container. Thus, although the absolute order of elements in an unordered container is not specified, its elements are grouped into \defnx{equivalent-key groups}{equivalent-key group} such that all elements of each group have equivalent keys. Mutating operations on unordered containers shall preserve the relative order of elements within each equivalent-key group unless otherwise specified. \pnum For \tcode{unordered_set} and \tcode{unordered_multiset} the value type is the same as the key type. For \tcode{unordered_map} and \tcode{unordered_multimap} it is \tcode{pair}. \pnum For unordered containers where the value type is the same as the key type, both \tcode{iterator} and \tcode{const_iterator} are constant iterators. It is unspecified whether or not \tcode{iterator} and \tcode{const_iterator} are the same type. \begin{note} \tcode{iterator} and \tcode{const_iterator} have identical semantics in this case, and \tcode{iterator} is convertible to \tcode{const_iterator}. Users can avoid violating the one-definition rule by always using \tcode{const_iterator} in their function parameter lists. \end{note} \pnum \indextext{buckets}% \indextext{hash code}% The elements of an unordered associative container are organized into \textit{buckets}. Keys with the same hash code appear in the same bucket. The number of buckets is automatically increased as elements are added to an unordered associative container, so that the average number of elements per bucket is kept below a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets elements appear in, but does not invalidate pointers or references to elements. For \tcode{unordered_multiset} and \tcode{unordered_multimap}, rehashing preserves the relative ordering of equivalent elements. \pnum \indextext{unordered associative containers}% \indextext{unordered associative containers!requirements}% \indextext{requirements!unordered associative container}% \indextext{unordered associative containers!unique keys}% \indextext{unordered associative containers!equivalent keys}% \indextext{requirements!container}% In this subclause, \begin{itemize} \item \tcode{X} denotes an unordered associative container class, \item \tcode{a} denotes a value of type \tcode{X}, \item \tcode{a2} denotes a value of a type with nodes compatible with type \tcode{X} (\tref{container.node.compat}), \item \tcode{b} denotes a value of type \tcode{X} or \tcode{const X}, \item \tcode{a_uniq} denotes a value of type \tcode{X} when \tcode{X} supports unique keys, \item \tcode{a_eq} denotes a value of type \tcode{X} when \tcode{X} supports equivalent keys, \item \tcode{a_tran} denotes a value of type \tcode{X} or \tcode{const X} when the \grammarterm{qualified-id}s \tcode{X::key_equal::is_transparent} and \tcode{X::hasher::is_transparent} are both valid and denote types\iref{temp.deduct}, \item \tcode{i} and \tcode{j} denote input iterators that refer to \tcode{value_type}, \item \range{i}{j} denotes a valid range, \item \tcode{rg} denotes a value of a type \tcode{R} that models \tcode{\exposconcept{container-compatible-range}}, \item \tcode{p} and \tcode{q2} denote valid constant iterators to \tcode{a}, \item \tcode{q} and \tcode{q1} denote valid dereferenceable constant iterators to \tcode{a}, \item \tcode{r} denotes a valid dereferenceable iterator to \tcode{a}, \item \range{q1}{q2} denotes a valid range in \tcode{a}, \item \tcode{il} denotes a value of type \tcode{initializer_list}, \item \tcode{t} denotes a value of type \tcode{X::value_type}, \item \tcode{k} denotes a value of type \tcode{key_type}, \item \tcode{hf} denotes a value of type \tcode{hasher} or \tcode{const hasher}, \item \tcode{eq} denotes a value of type \tcode{key_equal} or \tcode{const key_equal}, \item \tcode{ke} is a value such that \begin{itemize} \item \tcode{eq(r1, ke) == eq(ke, r1)}, \item \tcode{hf(r1) == hf(ke)} if \tcode{eq(r1, ke)} is \tcode{true}, and \item if any two of \tcode{eq(r1, ke)}, \tcode{eq(r2, ke)}, and \tcode{eq(r1, r2)} are \tcode{true}, then all three are \tcode{true}, \end{itemize} where \tcode{r1} and \tcode{r2} are keys of elements in \tcode{a_tran}, \item \tcode{kx} is a value such that \begin{itemize} \item \tcode{eq(r1, kx) == eq(kx, r1)}, \item \tcode{hf(r1) == hf(kx)} if \tcode{eq(r1, kx)} is \tcode{true}, \item if any two of \tcode{eq(r1, kx)}, \tcode{eq(r2, kx)}, and \tcode{eq(r1, r2)} are \tcode{true}, then all three are \tcode{true}, and \item \tcode{kx} is not convertible to either \tcode{iterator} or \tcode{const_iterator}, \end{itemize} where \tcode{r1} and \tcode{r2} are keys of elements in \tcode{a_tran}, \item \tcode{n} denotes a value of type \tcode{size_type}, \item \tcode{z} denotes a value of type \tcode{float}, and \item \tcode{nh} denotes an rvalue of type \tcode{X::node_type}. \end{itemize} \pnum A type \tcode{X} meets the \defnadj{unordered associative}{container} requirements if \tcode{X} meets all the requirements of an allocator-aware container\iref{container.alloc.reqmts} and the following types, statements, and expressions are well-formed and have the specified semantics, except that for \tcode{unordered_map} and \tcode{unordered_multimap}, the requirements placed on \tcode{value_type} in \ref{container.reqmts} apply instead to \tcode{key_type} and \tcode{mapped_type}. \begin{note} For example, \tcode{key_type} and \tcode{mapped_type} sometimes need to be \oldconcept{CopyAssignable} even though the associated \tcode{value_type}, \tcode{pair}, is not \oldconcept{CopyAssignable}. \end{note} % Local command to index names as members of all unordered containers. \newcommand{\indexunordmem}[1]{% \indexlibrary{\idxcode{#1}!unordered associative containers}% \indexlibrary{\idxcode{unordered_set}!\idxcode{#1}}% \indexlibrary{\idxcode{unordered_map}!\idxcode{#1}}% \indexlibrary{\idxcode{unordered_multiset}!\idxcode{#1}}% \indexlibrary{\idxcode{unordered_multimap}!\idxcode{#1}}% } \indexunordmem{key_type}% \begin{itemdecl} typename X::key_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Key}. \end{itemdescr} \indexunordmem{mapped_type}% \begin{itemdecl} typename X::mapped_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{T}. \pnum \remarks For \tcode{unordered_map} and \tcode{unordered_multimap} only. \end{itemdescr} \indexunordmem{value_type}% \begin{itemdecl} typename X::value_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Key} for \tcode{unordered_set} and \tcode{unordered_multiset} only; \tcode{pair} for \tcode{unordered_map} and \tcode{unordered_multimap} only. \pnum \expects \tcode{value_type} is \oldconcept{Erasable} from \tcode{X}. \end{itemdescr} \indexunordmem{hasher}% \begin{itemdecl} typename X::hasher \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Hash}. \pnum \expects \tcode{Hash} is a unary function object type such that the expression \tcode{hf(k)} has type \tcode{size_t}. \end{itemdescr} \indexunordmem{key_equal}% \begin{itemdecl} typename X::key_equal \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{Pred}. \pnum \expects \tcode{Pred} meets the \oldconcept{CopyConstructible} requirements. \tcode{Pred} is a binary predicate that takes two arguments of type \tcode{Key}. \tcode{Pred} is an equivalence relation. \end{itemdescr} \indexunordmem{local_iterator}% \begin{itemdecl} typename X::local_iterator \end{itemdecl} \begin{itemdescr} \pnum \result An iterator type whose category, value type, difference type, and pointer and reference types are the same as \tcode{X::iterator}'s. \begin{note} A \tcode{local_iterator} object can be used to iterate through a single bucket, but cannot be used to iterate across buckets. \end{note} \end{itemdescr} \indexunordmem{const_local_iterator}% \begin{itemdecl} typename X::const_local_iterator \end{itemdecl} \begin{itemdescr} \pnum \result An iterator type whose category, value type, difference type, and pointer and reference types are the same as \tcode{X::const_iterator}'s. \begin{note} A \tcode{const_local_iterator} object can be used to iterate through a single bucket, but cannot be used to iterate across buckets. \end{note} \end{itemdescr} \indexunordmem{node_type}% \begin{itemdecl} typename X::node_type \end{itemdecl} \begin{itemdescr} \pnum \result A specialization of a \exposid{node-handle} class template\iref{container.node}, such that the public nested types are the same types as the corresponding types in \tcode{X}. \end{itemdescr} \indexlibraryctor{unordered_set}% \indexlibraryctor{unordered_map}% \indexlibraryctor{unordered_multiset}% \indexlibraryctor{unordered_multimap}% \begin{itemdecl} X(n, hf, eq) \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{eq} as the key equality predicate. \pnum \complexity \bigoh{\tcode{n}} \end{itemdescr} \begin{itemdecl} X(n, hf) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_equal} meets the \oldconcept{DefaultConstructible} requirements. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{key_equal()} as the key equality predicate. \pnum \complexity \bigoh{\tcode{n}} \end{itemdescr} \begin{itemdecl} X(n) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate. \pnum \complexity \bigoh{\tcode{n}} \end{itemdescr} \begin{itemdecl} X a = X(); X a; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \pnum \effects Constructs an empty container with an unspecified number of buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate. \pnum \complexity Constant. \end{itemdescr} \begin{itemdecl} X(i, j, n, hf, eq) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{eq} as the key equality predicate, and inserts elements from \range{i}{j} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{distance(i, j)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(i, j, n, hf) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_equal} meets the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{\-EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \range{i}{j} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{distance(i, j)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(i, j, n) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \range{i}{j} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{distance(i, j)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(i, j) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. \pnum \effects Constructs an empty container with an unspecified number of buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \range{i}{j} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{distance(i, j)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(from_range, rg, n, hf, eq) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{eq} as the key equality predicate, and inserts elements from \tcode{rg} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{ranges::distance(rg)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(from_range, rg, n, hf) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_equal} meets the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{\-EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hf} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \tcode{rg} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{ranges::distance(rg)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(from_range, rg, n) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container with at least \tcode{n} buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \tcode{rg} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{ranges::distance(rg)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(from_range, rg) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{hasher} and \tcode{key_equal} meet the \oldconcept{DefaultConstructible} requirements. \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \pnum \effects Constructs an empty container with an unspecified number of buckets, using \tcode{hasher()} as the hash function and \tcode{key_equal()} as the key equality predicate, and inserts elements from \tcode{rg} into it. \pnum \complexity Average case \bigoh{N} ($N$ is \tcode{ranges::distance(rg)}), worst case \bigoh{N^2}. \end{itemdescr} \begin{itemdecl} X(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end())}. \end{itemdescr} \begin{itemdecl} X(il, n) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end(), n)}. \end{itemdescr} \begin{itemdecl} X(il, n, hf) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end(), n, hf)}. \end{itemdescr} \begin{itemdecl} X(il, n, hf, eq) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{X(il.begin(), il.end(), n, hf, eq)}. \end{itemdescr} \begin{itemdecl} X(b) \end{itemdecl} \begin{itemdescr} \pnum \effects In addition to the container requirements\iref{container.reqmts}, copies the hash function, predicate, and maximum load factor. \pnum \complexity Average case linear in \tcode{b.size()}, worst case quadratic. \end{itemdescr} \begin{itemdecl} a = b \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&} \pnum \effects In addition to the container requirements, copies the hash function, predicate, and maximum load factor. \pnum \complexity Average case linear in \tcode{b.size()}, worst case quadratic. \end{itemdescr} \begin{itemdecl} a = il \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{X\&} \pnum \expects \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X} and \oldconcept{CopyAssignable}. \pnum \effects Assigns the range \range{il.begin()}{il.end()} into \tcode{a}. All existing elements of \tcode{a} are either assigned to or destroyed. \pnum \complexity Average case linear in \tcode{il.size()}, worst case quadratic. \end{itemdescr} \indexunordmem{hash_function}% \begin{itemdecl} b.hash_function() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{hasher} \pnum \returns \tcode{b}'s hash function. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{key_eq}% \begin{itemdecl} b.key_eq() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{key_equal} \pnum \returns \tcode{b}'s key equality predicate. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{emplace}% \begin{itemdecl} a_uniq.emplace(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. \pnum \effects Inserts a \tcode{value_type} object \tcode{t} constructed with \tcode{std::forward(args)...} if and only if there is no element in the container with key equivalent to the key of \tcode{t}. \pnum \returns The \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of \tcode{t}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_uniq.size()}}. \end{itemdescr} \indexunordmem{emplace}% \begin{itemdecl} a_eq.emplace(args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{args}. \pnum \effects Inserts a \tcode{value_type} object \tcode{t} constructed with \tcode{std::forward(args)...}. \pnum \returns An iterator pointing to the newly inserted element. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_eq.size()}}. \end{itemdescr} \indexunordmem{emplace_hint}% \begin{itemdecl} a.emplace_hint(p, args) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Equivalent to \tcode{a.emplace(std::forward(args)...)}, except that the \tcode{const_iterator} \tcode{p} is a hint pointing to where the search should start. Implementations are permitted to ignore the hint. \pnum \returns The iterator returned by \tcode{emplace}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a_uniq.insert(t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Inserts \tcode{t} if and only if there is no element in the container with key equivalent to the key of \tcode{t}. \pnum \returns The \tcode{bool} component of the returned pair indicates whether the insertion takes place, and the \tcode{iterator} component points to the element with key equivalent to the key of \tcode{t}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_uniq.size()}}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a_eq.insert(t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Inserts \tcode{t}. \pnum \returns An iterator pointing to the newly inserted element. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_eq.size()}}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a.insert(p, t) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects If \tcode{t} is a non-const rvalue, \tcode{value_type} is \oldconcept{MoveInsertable} into \tcode{X}; otherwise, \tcode{value_type} is \oldconcept{CopyInsertable} into \tcode{X}. \pnum \effects Equivalent to \tcode{a.insert(t)}. The iterator \tcode{p} is a hint pointing to where the search should start. Implementations are permitted to ignore the hint. \pnum \returns An iterator pointing to the element with the key equivalent to that of \tcode{t}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a.insert(i, j) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*i}. Neither \tcode{i} nor \tcode{j} are iterators into \tcode{a}. \pnum \effects Equivalent to \tcode{a.insert(t)} for each element in \range{i}{j}. \pnum \complexity Average case \bigoh{N}, where $N$ is \tcode{distance(i, j)}, worst case \bigoh{N(\tcode{a.size()} + 1)}. \end{itemdescr} \indexunordmem{insert_range}% \begin{itemdecl} a.insert_range(rg) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{X} from \tcode{*ranges::begin(rg)}. \tcode{rg} and \tcode{a} do not overlap. \pnum \effects Equivalent to \tcode{a.insert(t)} for each element \tcode{t} in \tcode{rg}. \pnum \complexity Average case \bigoh{N}, where $N$ is \tcode{ranges::distance(rg)}, worst case \bigoh{N(\tcode{a.size()} + 1)}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a.insert(il) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.insert(il.begin(), il.end())}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a_uniq.insert(nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{insert_return_type} \pnum \expects \tcode{nh} is empty or \tcode{a_uniq.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect. Otherwise, inserts the element owned by \tcode{nh} if and only if there is no element in the container with a key equivalent to \tcode{nh.key()}. \pnum \ensures If \tcode{nh} is empty, \tcode{inserted} is \tcode{false}, \tcode{position} is \tcode{end()}, and \tcode{node} is empty. Otherwise if the insertion took place, \tcode{inserted} is \tcode{true}, \tcode{position} points to the inserted element, and \tcode{node} is empty; if the insertion failed, \tcode{inserted} is \tcode{false}, \tcode{node} has the previous value of \tcode{nh}, and \tcode{position} points to an element with a key equivalent to \tcode{nh.key()}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_uniq.size()}}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a_eq.insert(nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{nh} is empty or \tcode{a_eq.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect and returns \tcode{a_eq.end()}. Otherwise, inserts the element owned by \tcode{nh} and returns an iterator pointing to the newly inserted element. \pnum \ensures \tcode{nh} is empty. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_eq.size()}}. \end{itemdescr} \indexunordmem{insert}% \begin{itemdecl} a.insert(q, nh) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \expects \tcode{nh} is empty or \tcode{a.get_allocator() == nh.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{nh} is empty, has no effect and returns \tcode{a.end()}. Otherwise, inserts the element owned by \tcode{nh} if and only if there is no element with key equivalent to \tcode{nh.key()} in containers with unique keys; always inserts the element owned by \tcode{nh} in containers with equivalent keys. The iterator \tcode{q} is a hint pointing to where the search should start. Implementations are permitted to ignore the hint. \pnum \ensures \tcode{nh} is empty if insertion succeeds, unchanged if insertion fails. \pnum \returns An iterator pointing to the element with key equivalent to \tcode{nh.key()}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{extract}% \begin{itemdecl} a.extract(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes an element in the container with key equivalent to \tcode{k}. \pnum \returns A \tcode{node_type} owning the element if found, otherwise an empty \tcode{node_type}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{extract}% \begin{itemdecl} a_tran.extract(kx) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes an element in the container with key equivalent to \tcode{kx}. \pnum \returns A \tcode{node_type} owning the element if found, otherwise an empty \tcode{node_type}. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_tran.size()}}. \end{itemdescr} \indexunordmem{extract}% \begin{itemdecl} a.extract(q) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{node_type} \pnum \effects Removes the element pointed to by \tcode{q}. \pnum \returns A \tcode{node_type} owning that element. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{merge}% \begin{itemdecl} a.merge(a2) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{a.get_allocator() == a2.get_allocator()}. \pnum \effects Attempts to extract each element in \tcode{a2} and insert it into \tcode{a} using the hash function and key equality predicate of \tcode{a}. In containers with unique keys, if there is an element in \tcode{a} with key equivalent to the key of an element from \tcode{a2}, then that element is not extracted from \tcode{a2}. \pnum \ensures Pointers and references to the transferred elements of \tcode{a2} refer to those same elements but as members of \tcode{a}. Iterators referring to the transferred elements and all iterators referring to \tcode{a} will be invalidated, but iterators to elements remaining in \tcode{a2} will remain valid. \pnum \complexity Average case \bigoh{N}, where $N$ is \tcode{a2.size()}, worst case \bigoh{N\tcode{*a.size() + N}}. \end{itemdescr} \indexunordmem{erase}% \begin{itemdecl} a.erase(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \effects Erases all elements with key equivalent to \tcode{k}. \pnum \returns The number of elements erased. \pnum \complexity Average case \bigoh{\tcode{a.count(k)}}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{erase}% \begin{itemdecl} a_tran.erase(kx) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \effects Erases all elements with key equivalent to \tcode{kx}. \pnum \returns The number of elements erased. \pnum \complexity Average case \bigoh{\tcode{a_tran.count(kx)}}, worst case \bigoh{\tcode{a_tran.size()}}. \end{itemdescr} \indexunordmem{erase}% \begin{itemdecl} a.erase(q) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases the element pointed to by \tcode{q}. \pnum \returns The iterator immediately following \tcode{q} prior to the erasure. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{erase}% \begin{itemdecl} a.erase(r) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases the element pointed to by \tcode{r}. \pnum \returns The iterator immediately following \tcode{r} prior to the erasure. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{erase}% \begin{itemdecl} a.erase(q1, q2) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator} \pnum \effects Erases all elements in the range \range{q1}{q2}. \pnum \returns The iterator immediately following the erased elements prior to the erasure. \pnum \complexity Average case linear in \tcode{distance(q1, q2)}, worst case \bigoh{\tcode{a.size()}}. \end{itemdescr} \indexunordmem{clear}% \begin{itemdecl} a.clear() \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \effects Erases all elements in the container. \pnum \ensures \tcode{a.empty()} is \tcode{true}. \pnum \complexity Linear in \tcode{a.size()}. \end{itemdescr} \indexunordmem{find}% \begin{itemdecl} b.find(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{b}. \pnum \returns An iterator pointing to an element with key equivalent to \tcode{k}, or \tcode{b.end()} if no such element exists. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{b.size()}}. \end{itemdescr} \indexunordmem{find}% \begin{itemdecl} a_tran.find(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{iterator}; \tcode{const_iterator} for constant \tcode{a_tran}. \pnum \returns An iterator pointing to an element with key equivalent to \tcode{ke}, or \tcode{a_tran.end()} if no such element exists. \pnum \complexity Average case \bigoh{1}, worst case \bigoh{\tcode{a_tran.size()}}. \end{itemdescr} \indexunordmem{count}% \begin{itemdecl} b.count(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns The number of elements with key equivalent to \tcode{k}. \pnum \complexity Average case \bigoh{\tcode{b.count(k)}}, worst case \bigoh{\tcode{b.size()}}. \end{itemdescr} \indexunordmem{count}% \begin{itemdecl} a_tran.count(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns The number of elements with key equivalent to \tcode{ke}. \pnum \complexity Average case \bigoh{\tcode{a_tran.count(ke)}}, worst case \bigoh{\tcode{a_tran.size()}}. \end{itemdescr} \indexunordmem{contains}% \begin{itemdecl} b.contains(k) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{b.find(k) != b.end()}. \end{itemdescr} \indexunordmem{contains}% \begin{itemdecl} a_tran.contains(ke) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a_tran.find(ke) != a_tran.end()}. \end{itemdescr} \indexunordmem{equal_range}% \begin{itemdecl} b.equal_range(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair}; \tcode{pair} for constant \tcode{b}. \pnum \returns A range containing all elements with keys equivalent to \tcode{k}. Returns \tcode{make_pair(b.end(), b.end())} if no such elements exist. \pnum \complexity Average case \bigoh{\tcode{b.count(k)}}, worst case \bigoh{\tcode{b.size()}}. \end{itemdescr} \indexunordmem{equal_range}% \begin{itemdecl} a_tran.equal_range(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{pair}; \tcode{pair} for constant \tcode{a_tran}. \pnum \returns A range containing all elements with keys equivalent to \tcode{ke}. Returns \tcode{make_pair(a_tran.end(), a_tran.end())} if no such elements exist. \pnum \complexity Average case \bigoh{\tcode{a_tran.count(ke)}}, worst case \bigoh{\tcode{a_tran.size()}}. \end{itemdescr} \indexunordmem{bucket_count}% \begin{itemdecl} b.bucket_count() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns The number of buckets that \tcode{b} contains. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{max_bucket_count}% \begin{itemdecl} b.max_bucket_count() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \returns An upper bound on the number of buckets that \tcode{b} can ever contain. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{bucket}% \begin{itemdecl} b.bucket(k) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \expects \tcode{b.bucket_count() > 0}. \pnum \returns The index of the bucket in which elements with keys equivalent to \tcode{k} would be found, if any such element existed. The return value is in the range \range{0}{b.bucket_count()}. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{bucket}% \begin{itemdecl} a_tran.bucket(ke) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \expects \tcode{a_tran.bucket_count() > 0}. \pnum \ensures The return value is in the range \range{0}{a_tran.bucket_count()}. \pnum \returns The index of the bucket in which elements with keys equivalent to \tcode{ke} would be found, if any such element existed. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{bucket_size}% \begin{itemdecl} b.bucket_size(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{size_type} \pnum \expects \tcode{n} shall be in the range \range{0}{b.bucket_count()}. \pnum \returns The number of elements in the $\tcode{n}^\text{th}$ bucket. \pnum \complexity \bigoh{\tcode{b.bucket_size(n)}} \end{itemdescr} \indexunordmem{begin}% \begin{itemdecl} b.begin(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{local_iterator}; \tcode{const_local_iterator} for constant \tcode{b}. \pnum \expects \tcode{n} is in the range \range{0}{b.bucket_count()}. \pnum \returns An iterator referring to the first element in the bucket. If the bucket is empty, then \tcode{b.begin(n) == b.end(n)}. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{end}% \begin{itemdecl} b.end(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{local_iterator}; \tcode{const_local_iterator} for constant \tcode{b}. \pnum \expects \tcode{n} is in the range \range{0}{b.bucket_count()}. \pnum \returns An iterator which is the past-the-end value for the bucket. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{cbegin}% \begin{itemdecl} b.cbegin(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_local_iterator} \pnum \expects \tcode{n} shall be in the range \range{0}{b.bucket_count()}. \pnum \returns An iterator referring to the first element in the bucket. If the bucket is empty, then \tcode{b.cbegin(n) == b.cend(n)}. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{cend}% \begin{itemdecl} b.cend(n) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const_local_iterator} \pnum \expects \tcode{n} is in the range \range{0}{b.bucket_count()}. \pnum \returns An iterator which is the past-the-end value for the bucket. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{load_factor}% \begin{itemdecl} b.load_factor() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{float} \pnum \returns The average number of elements per bucket. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{max_load_factor}% \begin{itemdecl} b.max_load_factor() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{float} \pnum \returns A positive number that the container attempts to keep the load factor less than or equal to. The container automatically increases the number of buckets as necessary to keep the load factor below this number. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{max_load_factor}% \begin{itemdecl} a.max_load_factor(z) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \expects \tcode{z} is positive. May change the container's maximum load factor, using \tcode{z} as a hint. \pnum \complexity Constant. \end{itemdescr} \indexunordmem{rehash}% \begin{itemdecl} a.rehash(n) \end{itemdecl} \begin{itemdescr} \pnum \result \keyword{void} \pnum \ensures \tcode{a.bucket_count() >= a.size() / a.max_load_factor()} and \tcode{a.bucket_count() >= n}.% \pnum \complexity Average case linear in \tcode{a.size()}, worst case quadratic. \end{itemdescr} \indexunordmem{reserve}% \begin{itemdecl} a.reserve(n) \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{a.rehash(ceil(n / a.max_load_factor()))}. \end{itemdescr} \pnum Two unordered containers \tcode{a} and \tcode{b} compare equal if \tcode{a.size() == b.size()} and, for every equivalent-key group \range{Ea1}{Ea2} obtained from \tcode{a.equal_range(Ea1)}, there exists an equivalent-key group \range{Eb1}{Eb2} obtained from \tcode{b.equal_range(Ea1)}, such that \tcode{is_permutation(Ea1, Ea2, Eb1, Eb2)} returns \tcode{true}. For \tcode{unordered_set} and \tcode{unordered_map}, the complexity of \tcode{operator==} (i.e., the number of calls to the \tcode{==} operator of the \tcode{value_type}, to the predicate returned by \tcode{key_eq()}, and to the hasher returned by \tcode{hash_function()}) is proportional to $N$ in the average case and to $N^2$ in the worst case, where $N$ is \tcode{a.size()}. For \tcode{unordered_multiset} and \tcode{unordered_multimap}, the complexity of \tcode{operator==} is proportional to $\sum E_i^2$ in the average case and to $N^2$ in the worst case, where $N$ is \tcode{a.size()}, and $E_i$ is the size of the $i^\text{th}$ equivalent-key group in \tcode{a}. However, if the respective elements of each corresponding pair of equivalent-key groups $Ea_i$ and $Eb_i$ are arranged in the same order (as is commonly the case, e.g., if \tcode{a} and \tcode{b} are unmodified copies of the same container), then the average-case complexity for \tcode{unordered_multiset} and \tcode{unordered_multimap} becomes proportional to $N$ (but worst-case complexity remains \bigoh{N^2}, e.g., for a pathologically bad hash function). The behavior of a program that uses \tcode{operator==} or \tcode{operator!=} on unordered containers is undefined unless the \tcode{Pred} function object has the same behavior for both containers and the equality comparison function for \tcode{Key} is a refinement \begin{footnote} Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions. \end{footnote} of the partition into equivalent-key groups produced by \tcode{Pred}. \pnum \indextext{unordered associative containers!iterators}% The iterator types \tcode{iterator} and \tcode{const_iterator} of an unordered associative container are of at least the forward iterator category. For unordered associative containers where the key type and value type are the same, both \tcode{iterator} and \tcode{const_iterator} are constant iterators. \pnum \indextext{unordered associative containers!iterator invalidation}% The \tcode{insert}, \tcode{insert_range}, and \tcode{emplace} members shall not affect the validity of references to container elements, but may invalidate all iterators to the container. The \tcode{erase} members shall invalidate only iterators and references to the erased elements, and preserve the relative order of the elements that are not erased. \pnum \indextext{unordered associative containers!iterator invalidation}% \indextext{unordered associative containers!requirements}% The \tcode{insert}, \tcode{insert_range}, and \tcode{emplace} members shall not affect the validity of iterators if \tcode{(N + n) <= z * B}, where \tcode{N} is the number of elements in the container prior to the insert operation, \tcode{n} is the number of elements inserted, \tcode{B} is the container's bucket count, and \tcode{z} is the container's maximum load factor. \pnum The \tcode{extract} members invalidate only iterators to the removed element, and preserve the relative order of the elements that are not erased; pointers and references to the removed element remain valid. However, accessing the element through such pointers and references while the element is owned by a \tcode{node_type} is undefined behavior. References and pointers to an element obtained while it is owned by a \tcode{node_type} are invalidated if the element is successfully inserted. \pnum The member function templates \tcode{find}, \tcode{count}, \tcode{equal_range}, \tcode{contains}, \tcode{extract}, \tcode{erase}, and \tcode{bucket} shall not participate in overload resolution unless the \grammarterm{qualified-id}s \tcode{Pred::is_transparent} and \tcode{Hash::is_transparent} are both valid and denote types\iref{temp.deduct}. Additionally, the member function templates \tcode{extract} and \tcode{erase} shall not participate in overload resolution if \tcode{is_convertible_v || is_convertible_v} is \tcode{true}, where \tcode{K} is the type substituted as the first template argument. \pnum A deduction guide for an unordered associative container shall not participate in overload resolution if any of the following are true: \begin{itemize} \item It has an \tcode{InputIterator} template parameter and a type that does not qualify as an input iterator is deduced for that parameter. \item It has an \tcode{Allocator} template parameter and a type that does not qualify as an allocator is deduced for that parameter. \item It has a \tcode{Hash} template parameter and an integral type or a type that qualifies as an allocator is deduced for that parameter. \item It has a \tcode{Pred} template parameter and a type that qualifies as an allocator is deduced for that parameter. \end{itemize} \rSec3[unord.req.except]{Exception safety guarantees} \pnum \indextext{unordered associative containers!exception safety}% \indextext{unordered associative containers!requirements}% For unordered associative containers, no \tcode{clear()} function throws an exception. \tcode{erase(k)} does not throw an exception unless that exception is thrown by the container's \tcode{Hash} or \tcode{Pred} object (if any). \pnum For unordered associative containers, if an exception is thrown by any operation other than the container's hash function from within an \tcode{insert} or \tcode{emplace} function inserting a single element, the insertion has no effect. \pnum For unordered associative containers, no \tcode{swap} function throws an exception unless that exception is thrown by the swap of the container's \tcode{Hash} or \tcode{Pred} object (if any). \pnum \indextext{unordered associative containers!exception safety}% \indextext{unordered associative containers!requirements}% For unordered associative containers, if an exception is thrown from within a \tcode{rehash()} function other than by the container's hash function or comparison function, the \tcode{rehash()} function has no effect. \rSec1[sequences]{Sequence containers} \rSec2[sequences.general]{General} \pnum The headers \libheaderref{array}, \libheaderref{deque}, \libheaderrefx{forward_list}{forward.list.syn}, \libheaderref{hive}, \libheaderrefx{inplace_vector}{inplace.vector.syn}, \libheaderref{list}, and \libheaderref{vector} define class templates that meet the requirements for sequence containers. \pnum The following exposition-only alias template may appear in deduction guides for sequence containers: \begin{codeblock} template using @\placeholdernc{iter-value-type}@ = iterator_traits::value_type; // \expos \end{codeblock} \rSec2[array.syn]{Header \tcode{} synopsis} \indexheader{array}% \begin{codeblock} // mostly freestanding #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{array}, class template \tcode{array} template struct array; // partially freestanding template constexpr bool operator==(const array& x, const array& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const array& x, const array& y); // \ref{array.special}, specialized algorithms template constexpr void swap(array& x, array& y) noexcept(noexcept(x.swap(y))); // \ref{array.creation}, array creation functions template constexpr array, N> to_array(T (&a)[N]); template constexpr array, N> to_array(T (&&a)[N]); // \ref{array.tuple}, tuple interface template struct tuple_size; template struct tuple_element; template struct tuple_size>; template struct tuple_element>; template constexpr T& get(array&) noexcept; template constexpr T&& get(array&&) noexcept; template constexpr const T& get(const array&) noexcept; template constexpr const T&& get(const array&&) noexcept; } \end{codeblock} \rSec2[array]{Class template \tcode{array}} \indexlibraryglobal{array}% \rSec3[array.overview]{Overview} \pnum \indextext{\idxcode{array}!contiguous storage}% The header \libheader{array} defines a class template for storing fixed-size sequences of objects. An \tcode{array} is a contiguous container\iref{container.reqmts}. An instance of \tcode{array} stores \tcode{N} elements of type \tcode{T}, so that \tcode{size() == N} is an invariant. \pnum \indextext{\idxcode{array}!initialization}% \indextext{\idxcode{array}!as aggregate}% An \tcode{array} is an aggregate\iref{dcl.init.aggr} that can be list-initialized with up to \tcode{N} elements whose types are convertible to \tcode{T}. \pnum \indextext{requirements!container}% An \tcode{array} meets all of the requirements of a container\iref{container.reqmts} and of a reversible container\iref{container.rev.reqmts}, except that a default constructed \tcode{array} object is not empty if $\tcode{N} > 0$. An \tcode{array} meets some of the requirements of a sequence container\iref{sequence.reqmts}. Descriptions are provided here only for operations on \tcode{array} that are not described in one of these tables and for operations where there is additional semantic information. \pnum \tcode{array} is a structural type\iref{term.structural.type} if \tcode{T} is a structural type. Two values \tcode{a1} and \tcode{a2} of type \tcode{array} are template-argument-equivalent\iref{temp.type} if and only if each pair of corresponding elements in \tcode{a1} and \tcode{a2} are template-argument-equivalent. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibraryglobal{array}% \indexlibrarymember{array}{begin}% \indexlibrarymember{array}{end}% \indexlibrarymember{array}{size}% \indexlibrarymember{array}{max_size}% \begin{codeblock} namespace std { template struct array { // types using value_type = T; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using size_type = size_t; using difference_type = ptrdiff_t; using iterator = @\impdefx{type of \tcode{array::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{array::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // no explicit construct/copy/destroy for aggregate type constexpr void fill(const T& u); constexpr void swap(array&) noexcept(is_nothrow_swappable_v); // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // element access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; constexpr reference at(size_type n); // freestanding-deleted constexpr const_reference at(size_type n) const; // freestanding-deleted constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; constexpr T* data() noexcept; constexpr const T* data() const noexcept; }; template array(T, U...) -> array; } \end{codeblock} \rSec3[array.cons]{Constructors, copy, and assignment} \pnum \indextext{\idxcode{array}!initialization}% \indextext{requirements!container}% An \tcode{array} relies on the implicitly-declared special member functions\iref{class.default.ctor,class.dtor,class.copy.ctor} to conform to the container requirements table in~\ref{container.requirements}. In addition to the requirements specified in the container requirements table, the implicitly-declared move constructor and move assignment operator for \tcode{array} require that \tcode{T} be \oldconcept{MoveConstructible} or \oldconcept{MoveAssignable}, respectively. \begin{itemdecl} template array(T, U...) -> array; \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{(is_same_v \&\& ...)} is \tcode{true}. \end{itemdescr} \rSec3[array.members]{Member functions} \indexlibrarymember{array}{size}% \begin{itemdecl} constexpr size_type size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{N}. \end{itemdescr} \indexlibrarymember{array}{data}% \begin{itemdecl} constexpr T* data() noexcept; constexpr const T* data() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns A pointer such that \range{data()}{data() + size()} is a valid range. For a non-empty array, \tcode{data() == addressof(front())} is \keyword{true}. \end{itemdescr} \indexlibrarymember{array}{fill}% \begin{itemdecl} constexpr void fill(const T& u); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by \tcode{fill_n(begin(), N, u)}. \end{itemdescr} \indexlibrarymember{array}{swap}% \begin{itemdecl} constexpr void swap(array& y) noexcept(is_nothrow_swappable_v); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{swap_ranges(begin(), end(), y.begin())}. \pnum \begin{note} Unlike the \tcode{swap} function for other containers, \tcode{array::swap} takes linear time, can exit via an exception, and does not cause iterators to become associated with the other container. \end{note} \end{itemdescr} \rSec3[array.special]{Specialized algorithms} \indexlibrarymember{array}{swap}% \begin{itemdecl} template constexpr void swap(array& x, array& y) noexcept(noexcept(x.swap(y))); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{N == 0} or \tcode{is_swappable_v} is \tcode{true}. \pnum \effects As if by \tcode{x.swap(y)}. \pnum \complexity Linear in \tcode{N}. \end{itemdescr} \rSec3[array.zero]{Zero-sized arrays} \indextext{\idxcode{array}!zero sized}% \pnum \tcode{array} shall provide support for the special case \tcode{N == 0}. \pnum In the case that \tcode{N == 0}, \tcode{begin() == end() ==} unique value. The return value of \tcode{data()} is unspecified. \pnum Member function \tcode{swap()} shall have a non-throwing exception specification. \rSec3[array.creation]{Array creation functions} \indextext{\idxcode{array}!creation}% \indexlibraryglobal{to_array}% \begin{itemdecl} template constexpr array, N> to_array(T (&a)[N]); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_array_v} is \tcode{false} and \tcode{is_constructible_v, T\&>} is \tcode{true}. \pnum \expects \tcode{T} meets the \oldconcept{CopyConstructible} requirements. \pnum \returns \tcode{\{\{ a[0], $\dotsc$, a[N - 1] \}\}}. \end{itemdescr} \indexlibraryglobal{to_array}% \begin{itemdecl} template constexpr array, N> to_array(T (&&a)[N]); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_array_v} is \tcode{false} and \tcode{is_constructible_v, T>} is \tcode{true}. \pnum \expects \tcode{T} meets the \oldconcept{MoveConstructible} requirements. \pnum \returns \tcode{\{\{ std::move(a[0]), $\dotsc$, std::move(a[N - 1]) \}\}}. \end{itemdescr} \rSec3[array.tuple]{Tuple interface} \indexlibraryglobal{array}% \indexlibraryglobal{tuple}% \indextext{\idxcode{array}!tuple interface to}% \indexlibraryglobal{tuple_size}% \begin{itemdecl} template struct tuple_size> : integral_constant { }; \end{itemdecl} \indexlibraryglobal{tuple_element}% \begin{itemdecl} template struct tuple_element> { using type = T; }; \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{I < N} is \tcode{true}. \end{itemdescr} \indexlibrarymember{array}{get}% \begin{itemdecl} template constexpr T& get(array& a) noexcept; template constexpr T&& get(array&& a) noexcept; template constexpr const T& get(const array& a) noexcept; template constexpr const T&& get(const array&& a) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{I < N} is \tcode{true}. \pnum \returns A reference to the $\tcode{I}^\text{th}$ element of \tcode{a}, where indexing is zero-based. \end{itemdescr} \rSec2[deque.syn]{Header \tcode{} synopsis} \indexheader{deque}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{deque}, class template \tcode{deque} template> class deque; template constexpr bool operator==(const deque& x, const deque& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const deque& x, const deque& y); template constexpr void swap(deque& x, deque& y) noexcept(noexcept(x.swap(y))); // \ref{deque.erasure}, erasure template constexpr typename deque::size_type erase(deque& c, const U& value); template constexpr typename deque::size_type erase_if(deque& c, Predicate pred); namespace pmr { template using deque = std::deque>; } } \end{codeblock} \rSec2[deque]{Class template \tcode{deque}} \rSec3[deque.overview]{Overview} \pnum A \indexlibraryglobal{deque}% \tcode{deque} is a sequence container that supports random access iterators\iref{random.access.iterators}. In addition, it supports constant time insert and erase operations at the beginning or the end; insert and erase in the middle take linear time. That is, a deque is especially optimized for pushing and popping elements at the beginning and end. Storage management is handled automatically. \pnum A \tcode{deque} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of a sequence container, including the optional sequence container requirements\iref{sequence.reqmts}. Descriptions are provided here only for operations on \tcode{deque} that are not described in one of these tables or for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \begin{codeblock} namespace std { template> class deque { public: // types using value_type = T; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{deque::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{deque::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{deque::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{deque::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // \ref{deque.cons}, construct/copy/destroy constexpr deque() : deque(Allocator()) { } constexpr explicit deque(const Allocator&); constexpr explicit deque(size_type n, const Allocator& = Allocator()); constexpr deque(size_type n, const T& value, const Allocator& = Allocator()); template constexpr deque(InputIterator first, InputIterator last, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr deque(from_range_t, R&& rg, const Allocator& = Allocator()); constexpr deque(const deque& x); constexpr deque(deque&&); constexpr deque(const deque&, const type_identity_t&); constexpr deque(deque&&, const type_identity_t&); constexpr deque(initializer_list, const Allocator& = Allocator()); constexpr ~deque(); constexpr deque& operator=(const deque& x); constexpr deque& operator=(deque&& x) noexcept(allocator_traits::is_always_equal::value); constexpr deque& operator=(initializer_list); template constexpr void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); constexpr void assign(size_type n, const T& t); constexpr void assign(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // \ref{deque.capacity}, capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; constexpr void resize(size_type sz); constexpr void resize(size_type sz, const T& c); constexpr void shrink_to_fit(); // element access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; constexpr reference at(size_type n); constexpr const_reference at(size_type n) const; constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; // \ref{deque.modifiers}, modifiers template constexpr reference emplace_front(Args&&... args); template constexpr reference emplace_back(Args&&... args); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr void push_front(const T& x); constexpr void push_front(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list); constexpr void pop_front(); constexpr void pop_back(); constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(deque&) noexcept(allocator_traits::is_always_equal::value); constexpr void clear() noexcept; }; template>> deque(InputIterator, InputIterator, Allocator = Allocator()) -> deque<@\placeholder{iter-value-type}@, Allocator>; template>> deque(from_range_t, R&&, Allocator = Allocator()) -> deque, Allocator>; } \end{codeblock} \rSec3[deque.cons]{Constructors, copy, and assignment} \indexlibraryctor{deque}% \begin{itemdecl} constexpr explicit deque(const Allocator&); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{deque}, using the specified allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{deque}% \begin{itemdecl} constexpr explicit deque(size_type n, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{deque}. \pnum \effects Constructs a \tcode{deque} with \tcode{n} default-inserted elements using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{deque}% \begin{itemdecl} constexpr deque(size_type n, const T& value, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{deque}. \pnum \effects Constructs a \tcode{deque} with \tcode{n} copies of \tcode{value}, using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{deque}% \begin{itemdecl} template constexpr deque(InputIterator first, InputIterator last, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{deque} equal to the range \range{first}{last}, using the specified allocator. \pnum \complexity Linear in \tcode{distance(first, last)}. \end{itemdescr} \indexlibraryctor{deque}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr deque(from_range_t, R&& rg, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{deque} with the elements of the range \tcode{rg}, using the specified allocator. \pnum \complexity Linear in \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[deque.capacity]{Capacity} \indexlibrarymember{resize}{deque}% \begin{itemdecl} constexpr void resize(size_type sz); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} and \oldconcept{DefaultInsertable} into \tcode{deque}. \pnum \effects If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} default-inserted elements to the sequence. \end{itemdescr} \indexlibrarymember{resize}{deque}% \begin{itemdecl} constexpr void resize(size_type sz, const T& c); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{deque}. \pnum \effects If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} copies of \tcode{c} to the sequence. \end{itemdescr} \indexlibrarymember{shrink_to_fit}{deque}% \begin{itemdecl} constexpr void shrink_to_fit(); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{deque}. \pnum \effects \tcode{shrink_to_fit} is a non-binding request to reduce memory use but does not change the size of the sequence. \begin{note} The request is non-binding to allow latitude for implementation-specific optimizations. \end{note} If the size is equal to the old capacity, or if an exception is thrown other than by the move constructor of a non-\oldconcept{CopyInsertable} \tcode{T}, then there are no effects. \pnum \complexity If the size is not equal to the old capacity, linear in the size of the sequence; otherwise constant. \pnum \remarks If the size is not equal to the old capacity, then invalidates all the references, pointers, and iterators referring to the elements in the sequence, as well as the past-the-end iterator. \end{itemdescr} \rSec3[deque.modifiers]{Modifiers} \indexlibrarymember{insert}{deque}% \indexlibrarymember{push_front}{deque}% \indexlibrarymember{push_back}{deque}% \indexlibrarymember{emplace}{deque}% \begin{itemdecl} constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list); template constexpr reference emplace_front(Args&&... args); template constexpr reference emplace_back(Args&&... args); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr void push_front(const T& x); constexpr void push_front(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects An insertion in the middle of the deque invalidates all the iterators and references to elements of the deque. An insertion at either end of the deque invalidates all the iterators to the deque, but has no effect on the validity of references to elements of the deque. \pnum \complexity The complexity is linear in the number of elements inserted plus the lesser of the distances to the beginning and end of the deque. Inserting a single element at either the beginning or end of a deque always takes constant time and causes a single call to a constructor of \tcode{T}. \pnum \remarks If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of \tcode{T}, there are no effects. If an exception is thrown while inserting a single element at either end, there are no effects. Otherwise, if an exception is thrown by the move constructor of a non-\oldconcept{CopyInsertable} \tcode{T}, the effects are unspecified. \end{itemdescr} \indexlibrarymember{erase}{deque}% \begin{itemdecl} constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void pop_front(); constexpr void pop_back(); \end{itemdecl} \begin{itemdescr} \pnum \effects An erase operation that erases the last element of a deque invalidates only the past-the-end iterator and all iterators and references to the erased elements. An erase operation that erases the first element of a deque but not the last element invalidates only iterators and references to the erased elements. An erase operation that erases neither the first element nor the last element of a deque invalidates the past-the-end iterator and all iterators and references to all the elements of the deque. \begin{note} \tcode{pop_front} and \tcode{pop_back} are erase operations. \end{note} \pnum \throws Nothing unless an exception is thrown by the assignment operator of \tcode{T}. \pnum \complexity The number of calls to the destructor of \tcode{T} is the same as the number of elements erased, but the number of calls to the assignment operator of \tcode{T} is no more than the lesser of the number of elements before the erased elements and the number of elements after the erased elements. \end{itemdescr} \rSec3[deque.erasure]{Erasure} \indexlibrarymember{erase}{deque}% \begin{itemdecl} template constexpr typename deque::size_type erase(deque& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove(c.begin(), c.end(), value); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{deque}% \begin{itemdecl} template constexpr typename deque::size_type erase_if(deque& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove_if(c.begin(), c.end(), pred); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \rSec2[forward.list.syn]{Header \tcode{} synopsis} \indexheader{forward_list}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{forward.list}, class template \tcode{forward_list} template> class forward_list; template constexpr bool operator==(const forward_list& x, const forward_list& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const forward_list& x, const forward_list& y); template constexpr void swap(forward_list& x, forward_list& y) noexcept(noexcept(x.swap(y))); // \ref{forward.list.erasure}, erasure template constexpr typename forward_list::size_type erase(forward_list& c, const U& value); template constexpr typename forward_list::size_type erase_if(forward_list& c, Predicate pred); namespace pmr { template using forward_list = std::forward_list>; } } \end{codeblock} \rSec2[forward.list]{Class template \tcode{forward_list}} \rSec3[forward.list.overview]{Overview} \pnum A \tcode{forward_list} is a container that supports forward iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Fast random access to list elements is not supported. \begin{note} It is intended that \tcode{forward_list} have zero space or time overhead relative to a hand-written C-style singly linked list. Features that would conflict with that goal have been omitted. \end{note} \pnum A \tcode{forward_list} meets all of the requirements of a container\iref{container.reqmts}, except that the \tcode{size()} member function is not provided and \tcode{operator==} has linear complexity. A \tcode{forward_list} also meets all of the requirements for an allocator-aware container\iref{container.alloc.reqmts}. In addition, a \tcode{forward_list} provides the \tcode{assign} member functions and several of the optional sequence container requirements\iref{sequence.reqmts}. Descriptions are provided here only for operations on \tcode{forward_list} that are not described in that table or for operations where there is additional semantic information. \pnum \begin{note} Modifying any list requires access to the element preceding the first element of interest, but in a \tcode{forward_list} there is no constant-time way to access a preceding element. For this reason, \tcode{erase_after} and \tcode{splice_after} take fully-open ranges, not semi-open ranges. \end{note} \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \begin{codeblock} namespace std { template> class forward_list { public: // types using value_type = T; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{forward_list::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{forward_list::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{forward_list::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{forward_list::const_iterator}}@; // see \ref{container.requirements} // \ref{forward.list.cons}, construct/copy/destroy constexpr forward_list() : forward_list(Allocator()) { } constexpr explicit forward_list(const Allocator&); constexpr explicit forward_list(size_type n, const Allocator& = Allocator()); constexpr forward_list(size_type n, const T& value, const Allocator& = Allocator()); template constexpr forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr forward_list(from_range_t, R&& rg, const Allocator& = Allocator()); constexpr forward_list(const forward_list& x); constexpr forward_list(forward_list&& x); constexpr forward_list(const forward_list& x, const type_identity_t&); constexpr forward_list(forward_list&& x, const type_identity_t&); constexpr forward_list(initializer_list, const Allocator& = Allocator()); constexpr ~forward_list(); constexpr forward_list& operator=(const forward_list& x); constexpr forward_list& operator=(forward_list&& x) noexcept(allocator_traits::is_always_equal::value); constexpr forward_list& operator=(initializer_list); template constexpr void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); constexpr void assign(size_type n, const T& t); constexpr void assign(initializer_list); constexpr allocator_type get_allocator() const noexcept; // \ref{forward.list.iter}, iterators constexpr iterator before_begin() noexcept; constexpr const_iterator before_begin() const noexcept; constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cbefore_begin() const noexcept; constexpr const_iterator cend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type max_size() const noexcept; // \ref{forward.list.access}, element access constexpr reference front(); constexpr const_reference front() const; // \ref{forward.list.modifiers}, modifiers template constexpr reference emplace_front(Args&&... args); constexpr void push_front(const T& x); constexpr void push_front(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); constexpr void pop_front(); template constexpr iterator emplace_after(const_iterator position, Args&&... args); constexpr iterator insert_after(const_iterator position, const T& x); constexpr iterator insert_after(const_iterator position, T&& x); constexpr iterator insert_after(const_iterator position, size_type n, const T& x); template constexpr iterator insert_after(const_iterator position, InputIterator first, InputIterator last); constexpr iterator insert_after(const_iterator position, initializer_list il); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range_after(const_iterator position, R&& rg); constexpr iterator erase_after(const_iterator position); constexpr iterator erase_after(const_iterator position, const_iterator last); constexpr void swap(forward_list&) noexcept(allocator_traits::is_always_equal::value); constexpr void resize(size_type sz); constexpr void resize(size_type sz, const value_type& c); constexpr void clear() noexcept; // \ref{forward.list.ops}, \tcode{forward_list} operations constexpr void splice_after(const_iterator position, forward_list& x); constexpr void splice_after(const_iterator position, forward_list&& x); constexpr void splice_after(const_iterator position, forward_list& x, const_iterator i); constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator i); constexpr void splice_after(const_iterator position, forward_list& x, const_iterator first, const_iterator last); constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator first, const_iterator last); constexpr size_type remove(const T& value); template constexpr size_type remove_if(Predicate pred); constexpr size_type unique(); template constexpr size_type unique(BinaryPredicate binary_pred); constexpr void merge(forward_list& x); constexpr void merge(forward_list&& x); template constexpr void merge(forward_list& x, Compare comp); template constexpr void merge(forward_list&& x, Compare comp); constexpr void sort(); template constexpr void sort(Compare comp); constexpr void reverse() noexcept; }; template>> forward_list(InputIterator, InputIterator, Allocator = Allocator()) -> forward_list<@\placeholder{iter-value-type}@, Allocator>; template>> forward_list(from_range_t, R&&, Allocator = Allocator()) -> forward_list, Allocator>; } \end{codeblock} \pnum An incomplete type \tcode{T} may be used when instantiating \tcode{forward_list} if the allocator meets the allocator completeness requirements\iref{allocator.requirements.completeness}. \tcode{T} shall be complete before any member of the resulting specialization of \tcode{forward_list} is referenced. \rSec3[forward.list.cons]{Constructors, copy, and assignment} \indexlibraryctor{forward_list}% \begin{itemdecl} constexpr explicit forward_list(const Allocator&); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{forward_list} object using the specified allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{forward_list}% \begin{itemdecl} constexpr explicit forward_list(size_type n, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{forward_list}. \pnum \effects Constructs a \tcode{forward_list} object with \tcode{n} default-inserted elements using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{forward_list}% \begin{itemdecl} constexpr forward_list(size_type n, const T& value, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{forward_list}. \pnum \effects Constructs a \tcode{forward_list} object with \tcode{n} copies of \tcode{value} using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{forward_list}% \begin{itemdecl} template constexpr forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{forward_list} object equal to the range \range{first}{last}. \pnum \complexity Linear in \tcode{distance(first, last)}. \end{itemdescr} \indexlibraryctor{forward_list}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr forward_list(from_range_t, R&& rg, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{forward_list} object with the elements of the range \tcode{rg}. \pnum \complexity Linear in \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[forward.list.iter]{Iterators} \indexlibrarymember{before_begin}{forward_list}% \indexlibrarymember{cbefore_begin}{forward_list}% \begin{itemdecl} constexpr iterator before_begin() noexcept; constexpr const_iterator before_begin() const noexcept; constexpr const_iterator cbefore_begin() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects \tcode{cbefore_begin()} is equivalent to \tcode{const_cast(*this).before_begin()}. \pnum \returns A non-dereferenceable iterator that, when incremented, is equal to the iterator returned by \tcode{begin()}. \pnum \remarks \tcode{before_begin() == end()} shall equal \tcode{false}. \end{itemdescr} \rSec3[forward.list.access]{Element access} \indexlibrarymember{front}{forward_list}% \begin{itemdecl} constexpr reference front(); constexpr const_reference front() const; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{*begin()} \end{itemdescr} \rSec3[forward.list.modifiers]{Modifiers} \pnum The member functions in this subclause do not affect the validity of iterators and references when inserting elements, and when erasing elements invalidate iterators and references to the erased elements only. If an exception is thrown by any of these member functions there is no effect on the container. Inserting \tcode{n} elements into a \tcode{forward_list} is linear in \tcode{n}, and the number of calls to the copy or move constructor of \tcode{T} is exactly equal to \tcode{n}. Erasing \tcode{n} elements from a \tcode{forward_list} is linear in \tcode{n} and the number of calls to the destructor of type \tcode{T} is exactly equal to \tcode{n}. \indexlibrarymember{emplace_front}{forward_list}% \begin{itemdecl} template constexpr reference emplace_front(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \effects Inserts an object of type \tcode{value_type} constructed with \tcode{value_type(std::forward(\brk{}args)...)} at the beginning of the list. \end{itemdescr} \indexlibrarymember{push_front}{forward_list}% \begin{itemdecl} constexpr void push_front(const T& x); constexpr void push_front(T&& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Inserts a copy of \tcode{x} at the beginning of the list. \end{itemdescr} \indexlibrarymember{prepend_range}{forward_list}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Inserts a copy of each element of \tcode{rg} at the beginning of the list. \begin{note} The order of elements is not reversed. \end{note} \end{itemdescr} \indexlibrarymember{pop}{forward_list}% \begin{itemdecl} constexpr void pop_front(); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by \tcode{erase_after(before_begin())}. \end{itemdescr} \indexlibrarymember{insert_after}{forward_list}% \begin{itemdecl} constexpr iterator insert_after(const_iterator position, const T& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{forward_list}. \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \pnum \effects Inserts a copy of \tcode{x} after \tcode{position}. \pnum \returns An iterator pointing to the copy of \tcode{x}. \end{itemdescr} \indexlibrarymember{insert_after}{forward_list}% \begin{itemdecl} constexpr iterator insert_after(const_iterator position, T&& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{forward_list}. \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \pnum \effects Inserts a copy of \tcode{x} after \tcode{position}. \pnum \returns An iterator pointing to the copy of \tcode{x}. \end{itemdescr} \indexlibrarymember{insert_after}{forward_list}% \begin{itemdecl} constexpr iterator insert_after(const_iterator position, size_type n, const T& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{forward_list}. \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \pnum \effects Inserts \tcode{n} copies of \tcode{x} after \tcode{position}. \pnum \returns An iterator pointing to the last inserted copy of \tcode{x}, or \tcode{position} if \tcode{n == 0} is \tcode{true}. \end{itemdescr} \indexlibrarymember{insert_after}{forward_list}% \begin{itemdecl} template constexpr iterator insert_after(const_iterator position, InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{forward_list} from \tcode{*first}. \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. Neither \tcode{first} nor \tcode{last} are iterators in \tcode{*this}. \pnum \effects Inserts copies of elements in \range{first}{last} after \tcode{position}. \pnum \returns An iterator pointing to the last inserted element, or \tcode{position} if \tcode{first == last} is \tcode{true}. \end{itemdescr} \indexlibrarymember{insert_range_after}{forward_list}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range_after(const_iterator position, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{forward_list} from \tcode{*ranges::begin(rg)}. \tcode{posi\-tion} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \tcode{rg} and \tcode{*this} do not overlap. \pnum \effects Inserts copies of elements in the range \tcode{rg} after \tcode{position}. \pnum \returns An iterator pointing to the last inserted element, or \tcode{position} if \tcode{rg} is empty. \end{itemdescr} \indexlibrarymember{insert_after}{forward_list}% \begin{itemdecl} constexpr iterator insert_after(const_iterator position, initializer_list il); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return insert_after(position, il.begin(), il.end());} \end{itemdescr} \indexlibrarymember{emplace_after}{forward_list}% \begin{itemdecl} template constexpr iterator emplace_after(const_iterator position, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{forward_list} from \tcode{std::forward(\linebreak args)...}. \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \pnum \effects Inserts an object of type \tcode{value_type} direct-non-list-initialized with \tcode{std::forward(\linebreak args)...} after \tcode{position}. \pnum \returns An iterator pointing to the new object. \end{itemdescr} \indexlibrarymember{erase_after}{forward_list}% \begin{itemdecl} constexpr iterator erase_after(const_iterator position); \end{itemdecl} \begin{itemdescr} \pnum \expects The iterator following \tcode{position} is dereferenceable. \pnum \effects Erases the element pointed to by the iterator following \tcode{position}. \pnum \returns An iterator pointing to the element following the one that was erased, or \tcode{end()} if no such element exists. \pnum \throws Nothing. \end{itemdescr} \begin{itemdecl} constexpr iterator erase_after(const_iterator position, const_iterator last); \end{itemdecl} \begin{itemdescr} \pnum \expects All iterators in the range \orange{position}{last} are dereferenceable. \pnum \effects Erases the elements in the range \orange{position}{last}. \pnum \returns \tcode{last}. \pnum \throws Nothing. \end{itemdescr} \indexlibrarymember{resize}{forward_list}% \begin{itemdecl} constexpr void resize(size_type sz); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{forward_list}. \pnum \effects If \tcode{sz < distance(begin(), end())}, erases the last \tcode{distance(begin(), end()) - sz} elements from the list. Otherwise, inserts \tcode{sz - distance(begin(), end())} default-inserted elements at the end of the list. \end{itemdescr} \begin{itemdecl} constexpr void resize(size_type sz, const value_type& c); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{forward_list}. \pnum \effects If \tcode{sz < distance(begin(), end())}, erases the last \tcode{distance(begin(), end()) - sz} elements from the list. Otherwise, inserts \tcode{sz - distance(begin(), end())} copies of \tcode{c} at the end of the list. \end{itemdescr} \indexlibrarymember{clear}{forward_list}% \begin{itemdecl} constexpr void clear() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Erases all elements in the range \range{begin()}{end()}. \pnum \remarks Does not invalidate past-the-end iterators. \end{itemdescr} \rSec3[forward.list.ops]{Operations} \pnum In this subclause, arguments for a template parameter named \tcode{Predicate} or \tcode{BinaryPredicate} shall meet the corresponding requirements in \ref{algorithms.requirements}. The semantics of \tcode{i + n}, where \tcode{i} is an iterator into the list and \tcode{n} is an integer, are the same as those of \tcode{next(i, n)}. The expression \tcode{i - n}, where \tcode{i} is an iterator into the list and \tcode{n} is an integer, means an iterator \tcode{j} such that \tcode{j + n == i} is \tcode{true}. For \tcode{merge} and \tcode{sort}, the definitions and requirements in \ref{alg.sorting} apply. \indexlibrarymember{splice_after}{forward_list}% \begin{itemdecl} constexpr void splice_after(const_iterator position, forward_list& x); constexpr void splice_after(const_iterator position, forward_list&& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \tcode{addressof(x) != this} is \tcode{true}. \pnum \effects Inserts the contents of \tcode{x} after \tcode{position}, and \tcode{x} becomes empty. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws Nothing. \pnum \complexity \bigoh{\tcode{distance(x.begin(), x.end())}} \end{itemdescr} \indexlibrarymember{splice_after}{forward_list}% \begin{itemdecl} constexpr void splice_after(const_iterator position, forward_list& x, const_iterator i); constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator i); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. The iterator following \tcode{i} is a dereferenceable iterator in \tcode{x}. \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \pnum \effects Inserts the element following \tcode{i} into \tcode{*this}, following \tcode{position}, and removes it from \tcode{x}. The result is unchanged if \tcode{position == i} or \tcode{position == ++i}. Pointers and references to \tcode{*++i} continue to refer to the same element but as a member of \tcode{*this}. Iterators to \tcode{*++i} continue to refer to the same element, but now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws Nothing. \pnum \complexity \bigoh{1} \end{itemdescr} \indexlibrarymember{splice_after}{forward_list}% \begin{itemdecl} constexpr void splice_after(const_iterator position, forward_list& x, const_iterator first, const_iterator last); constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator first, const_iterator last); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{position} is \tcode{before_begin()} or is a dereferenceable iterator in the range \range{begin()}{end()}. \orange{first}{last} is a valid range in \tcode{x}, and all iterators in the range \orange{first}{last} are dereferenceable. \tcode{position} is not an iterator in the range \orange{first}{last}. \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \pnum \effects Inserts elements in the range \orange{first}{last} after \tcode{position} and removes the elements from \tcode{x}. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \complexity \bigoh{\tcode{distance(first, last)}} \end{itemdescr} \indexlibrarymember{remove}{forward_list}% \indexlibrarymember{remove_if}{forward_list}% \begin{itemdecl} constexpr size_type remove(const T& value); template constexpr size_type remove_if(Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Erases all the elements in the list referred to by a list iterator \tcode{i} for which the following conditions hold: \tcode{*i == value} (for \tcode{remove()}), \tcode{pred(*i)} is \tcode{true} (for \tcode{remove_if()}). Invalidates only the iterators and references to the erased elements. \pnum \returns The number of elements erased. \pnum \throws Nothing unless an exception is thrown by the equality comparison or the predicate. \pnum \complexity Exactly \tcode{distance(begin(), end())} applications of the corresponding predicate. \pnum \remarks Stable\iref{algorithm.stable}. \end{itemdescr} \indexlibrarymember{unique}{forward_list}% \begin{itemdecl} constexpr size_type unique(); template constexpr size_type unique(BinaryPredicate binary_pred); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{binary_pred} be \tcode{equal_to<>\{\}} for the first overload. \pnum \expects \tcode{binary_pred} is an equivalence relation. \pnum \effects Erases all but the first element from every consecutive group of equivalent elements. That is, for a nonempty list, erases all elements referred to by the iterator \tcode{i} in the range \range{begin() + 1}{end()} for which \tcode{binary_pred(*i, *(i - 1))} is \tcode{true}. Invalidates only the iterators and references to the erased elements. \pnum \returns The number of elements erased. \pnum \throws Nothing unless an exception is thrown by the predicate. \pnum \complexity If \tcode{empty()} is \tcode{false}, exactly \tcode{distance(begin(), end()) - 1} applications of the corresponding predicate, otherwise no applications of the predicate. \end{itemdescr} \indexlibrarymember{merge}{forward_list}% \begin{itemdecl} constexpr void merge(forward_list& x); constexpr void merge(forward_list&& x); template constexpr void merge(forward_list& x, Compare comp); template constexpr void merge(forward_list&& x, Compare comp); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{comp} be \tcode{less<>{}} for the first two overloads. \pnum \expects \tcode{*this} and \tcode{x} are both sorted with respect to the comparator \tcode{comp}, and \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{addressof(x) == this}, there are no effects. Otherwise, merges the two sorted ranges \range{begin()}{end()} and \range{x.begin()}{x.end()}. The result is a range that is sorted with respect to the comparator \tcode{comp}. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \complexity At most \tcode{distance(begin(), end()) + distance(x.begin(), x.end()) - 1} comparisons if \tcode{addressof(x) != this}; otherwise, no comparisons are performed. \pnum \remarks Stable\iref{algorithm.stable}. If \tcode{addressof(x) != this}, \tcode{x} is empty after the merge. No elements are copied by this operation. If an exception is thrown other than by a comparison, there are no effects. \end{itemdescr} \indexlibrarymember{sort}{forward_list}% \begin{itemdecl} constexpr void sort(); template constexpr void sort(Compare comp); \end{itemdecl} \begin{itemdescr} \pnum \effects Sorts the list according to the \tcode{operator<} or the \tcode{comp} function object. If an exception is thrown, the order of the elements in \tcode{*this} is unspecified. Does not affect the validity of iterators and references. \pnum \complexity Approximately $N \log N$ comparisons, where $N$ is \tcode{distance(begin(), end())}. \pnum \remarks Stable\iref{algorithm.stable}. \end{itemdescr} \indexlibrarymember{reverse}{forward_list}% \begin{itemdecl} constexpr void reverse() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Reverses the order of the elements in the list. Does not affect the validity of iterators and references. \pnum \complexity Linear time. \end{itemdescr} \rSec3[forward.list.erasure]{Erasure} \indexlibrarymember{erase}{forward_list}% \begin{itemdecl} template constexpr typename forward_list::size_type erase(forward_list& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} return erase_if(c, [&](const auto& elem) -> bool { return elem == value; }); \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{forward_list}% \begin{itemdecl} template constexpr typename forward_list::size_type erase_if(forward_list& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return c.remove_if(pred);} \end{itemdescr} \rSec2[hive.syn]{Header \tcode{} synopsis} \indexheader{hive}% \begin{codeblock} #include // see \ref{initializer.list.syn} #include // see \ref{compare.syn} namespace std { struct @\libglobal{hive_limits}@ { size_t @\libmember{min}{hive_limits}@; size_t @\libmember{max}{hive_limits}@; constexpr hive_limits(size_t minimum, size_t maximum) noexcept : min(minimum), max(maximum) {} }; // \ref {hive}, class template \tcode{hive} template> class hive; template void swap(hive& x, hive& y) noexcept(noexcept(x.swap(y))); template typename hive::size_type erase(hive& c, const U& value); template typename hive::size_type erase_if(hive& c, Predicate pred); namespace pmr { template using hive = std::hive>; } } \end{codeblock} \rSec2[hive]{Class template \tcode{hive}} \rSec3[hive.overview]{Overview} \pnum A \tcode{hive} is a type of sequence container that provides constant-time insertion and erasure operations. Storage is automatically managed in multiple memory blocks, referred to as \defnx{element blocks}{element block}. Insertion\iref{hive.modifiers} position is determined by the container, and insertion may re-use the memory locations of erased elements. \begin{note} Construction and assignment are not considered to involve insertion operations. \end{note} \pnum Element blocks which contain elements are referred to as \defnadjx{active}{blocks}{block}, those which do not are referred to as \defnadjx{reserved}{blocks}{block}. Active blocks which become empty of elements are either deallocated or become reserved blocks. Reserved blocks become active blocks when they are used to store elements. A user can create additional reserved blocks by calling \tcode{reserve}. \pnum Erasures use unspecified techniques of constant time complexity to identify the memory locations of erased elements, which are subsequently skipped during iteration, as opposed to relocating subsequent elements during erasure. \pnum Active block capacities have an \impldef{growth factor of \tcode{hive} active block capacities} growth factor (which need not be integral), for example a new active block's capacity could be equal to the summed capacities of the pre-existing active blocks. \pnum Limits can be placed on both the minimum and maximum element capacities of element blocks, both by users and implementations. \begin{itemize} \item The minimum limit shall be no larger than the maximum limit. \item When limits are not specified by a user during construction, the implementation's default limits are used. \item The default limits of an implementation are not guaranteed to be the same as the minimum and maximum possible capacities for an implementation's element blocks. \begin{note} To allow latitude for both implementation-specific and user-directed optimization. \end{note} The latter are defined as hard limits. The maximum hard limit shall be no larger than \tcode{std::allocator_traits::max_size()}. \item If user-specified limits are not within hard limits, or if the specified minimum limit is greater than the specified maximum limit, the behavior is undefined. \item An element block is said to be \defnx{within the bounds}{element block!bounds} of a pair of minimum/maximum limits when its capacity is greater-or-equal-to the minimum limit and less-than-or-equal-to the maximum limit. \end{itemize} \pnum A \tcode{hive} conforms to the requirements for containers\iref{container.reqmts}, with the exception of operators \tcode{==} and \tcode{!=}. A \tcode{hive} also meets the requirements of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and some of the requirements of a sequence container\iref{sequence.reqmts}. Descriptions are provided here only for operations on \tcode{hive} that are not described in that table or for operations where there is additional semantic information. \pnum The iterators of \tcode{hive} meet the \oldconcept{BidirectionalIterator} requirements but also model \tcode{\libconcept{three_way_comparable}}. \begin{codeblock} namespace std { template> class @\libglobal{hive}@ { public: // types using value_type = T; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdef@; // see \ref{container.requirements} using difference_type = @\impdef@; // see \ref{container.requirements} using iterator = @\impdef@; // see \ref{container.requirements} using const_iterator = @\impdef@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; // see \ref{container.requirements} using const_reverse_iterator = std::reverse_iterator; // see \ref{container.requirements} // \ref{hive.cons}, construct/copy/destroy constexpr hive() noexcept(noexcept(Allocator())) : hive(Allocator()) {} constexpr explicit hive(const Allocator&) noexcept; constexpr explicit hive(hive_limits block_limits) : hive(block_limits, Allocator()) {} constexpr hive(hive_limits block_limits, const Allocator&); explicit hive(size_type n, const Allocator& = Allocator()); hive(size_type n, hive_limits block_limits, const Allocator& = Allocator()); hive(size_type n, const T& value, const Allocator& = Allocator()); hive(size_type n, const T& value, hive_limits block_limits, const Allocator& = Allocator()); template hive(InputIterator first, InputIterator last, const Allocator& = Allocator()); template hive(InputIterator first, InputIterator last, hive_limits block_limits, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> hive(from_range_t, R&& rg, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> hive(from_range_t, R&& rg, hive_limits block_limits, const Allocator& = Allocator()); hive(const hive& x); hive(hive&&) noexcept; hive(const hive& x, const type_identity_t& alloc); hive(hive&&, const type_identity_t& alloc); hive(initializer_list il, const Allocator& = Allocator()); hive(initializer_list il, hive_limits block_limits, const Allocator& = Allocator()); ~hive(); hive& operator=(const hive& x); hive& operator=(hive&& x) noexcept(@\seebelow@); hive& operator=(initializer_list); template void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> void assign_range(R&& rg); void assign(size_type n, const T& t); void assign(initializer_list); allocator_type get_allocator() const noexcept; // iterators iterator begin() noexcept; const_iterator begin() const noexcept; iterator end() noexcept; const_iterator end() const noexcept; reverse_iterator rbegin() noexcept; const_reverse_iterator rbegin() const noexcept; reverse_iterator rend() noexcept; const_reverse_iterator rend() const noexcept; const_iterator cbegin() const noexcept; const_iterator cend() const noexcept; const_reverse_iterator crbegin() const noexcept; const_reverse_iterator crend() const noexcept; // \ref{hive.capacity}, capacity bool empty() const noexcept; size_type size() const noexcept; size_type max_size() const noexcept; size_type capacity() const noexcept; void reserve(size_type n); void shrink_to_fit(); void trim_capacity() noexcept; void trim_capacity(size_type n) noexcept; constexpr hive_limits block_capacity_limits() const noexcept; static constexpr hive_limits block_capacity_default_limits() noexcept; static constexpr hive_limits block_capacity_hard_limits() noexcept; void reshape(hive_limits block_limits); // \ref{hive.modifiers}, modifiers template iterator emplace(Args&&... args); template iterator emplace_hint(const_iterator hint, Args&&... args); iterator insert(const T& x); iterator insert(T&& x); iterator insert(const_iterator hint, const T& x); iterator insert(const_iterator hint, T&& x); void insert(initializer_list il); template<@\exposconcept{container-compatible-range}@ R> void insert_range(R&& rg); template void insert(InputIterator first, InputIterator last); void insert(size_type n, const T& x); iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last); void swap(hive&) noexcept(@\seebelow@); void clear() noexcept; // \ref{hive.operations}, hive operations void splice(hive& x); void splice(hive&& x); template> size_type unique(BinaryPredicate binary_pred = BinaryPredicate()); template> void sort(Compare comp = Compare()); iterator get_iterator(const_pointer p) noexcept; const_iterator get_iterator(const_pointer p) const noexcept; private: hive_limits @\exposid{current-limits}@ = @\impdef@; // \expos }; template>> hive(InputIterator, InputIterator, Allocator = Allocator()) -> hive<@\exposid{iter-value-type}@, Allocator>; template>> hive(InputIterator, InputIterator, hive_limits, Allocator = Allocator()) -> hive<@\exposid{iter-value-type}@, Allocator>; template>> hive(from_range_t, R&&, Allocator = Allocator()) -> hive, Allocator>; template>> hive(from_range_t, R&&, hive_limits, Allocator = Allocator()) -> hive, Allocator>; } \end{codeblock} \rSec3[hive.cons]{Constructors, copy, and assignment} \indexlibraryctor{hive}% \begin{itemdecl} constexpr explicit hive(const Allocator&) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{hive}, using the specified allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} constexpr hive(hive_limits block_limits, const Allocator&); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{hive}, using the specified allocator. Initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} explicit hive(size_type n, const Allocator& = Allocator()); hive(size_type n, hive_limits block_limits, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{hive}. \pnum \effects Constructs a \tcode{hive} with \tcode{n} default-inserted elements, using the specified allocator. If the second overload is called, also initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} hive(size_type n, const T& value, const Allocator& = Allocator()); hive(size_type n, const T& value, hive_limits block_limits, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{hive}. \pnum \effects Constructs a \tcode{hive} with \tcode{n} copies of \tcode{value}, using the specified allocator. If the second overload is called, also initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} template hive(InputIterator first, InputIterator last, const Allocator& = Allocator()); template hive(InputIterator first, InputIterator last, hive_limits block_limits, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{hive} equal to the range \range{first}{last}, using the specified allocator. If the second overload is called, also initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Linear in \tcode{distance(first, last)}. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> hive(from_range_t, R&& rg, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> hive(from_range_t, R&& rg, hive_limits block_limits, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{hive} object equal to the range \tcode{rg}, using the specified allocator. If the second overload is called, also initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Linear in \tcode{ranges::distance(rg)}. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} hive(const hive& x); hive(const hive& x, const type_identity_t& alloc); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{hive}. \pnum \effects Constructs a \tcode{hive} object equal to \tcode{x}. If the second overload is called, uses \tcode{alloc}. Initializes \exposid{current-limits} with \tcode{x.\exposid{current-limits}}. \pnum \complexity Linear in \tcode{x.size()}. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} hive(hive&& x) noexcept; hive(hive&& x, const type_identity_t& alloc); \end{itemdecl} \begin{itemdescr} \pnum \expects For the second overload, when \tcode{allocator_traits::is_always_equal::\-value} is \tcode{false}, \tcode{T} meets the \oldconcept{MoveInsertable} requirements. \pnum \effects When the first overload is called, or the second overload is called and \tcode{alloc == x.get_allocator()} is \tcode{true}, \exposid{current-limits} is set to \tcode{x.\exposid{current-limits}} and each element block is moved from \tcode{x} into \tcode{*this}. Pointers and references to the elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the elements of \tcode{x} will continue to refer to their elements, but they now behave as iterators into \tcode{*this}. If the second overload is called and \tcode{alloc == x.get_allocator()} is \tcode{false}, each element in \tcode{x} is moved into \tcode{*this}. References, pointers and iterators referring to the elements of \tcode{x}, as well as the past-the-end iterator of \tcode{x}, are invalidated. \pnum \ensures \tcode{x.empty()} is \tcode{true}. The relative order of the elements of \tcode{*this} is the same as that of the elements of \tcode{x} prior to the call. \pnum \complexity If the second overload is called and \tcode{alloc == x.get_allocator()} is \tcode{false}, linear in \tcode{x.size()}. Otherwise constant. \end{itemdescr} \indexlibraryctor{hive}% \begin{itemdecl} hive(initializer_list il, const Allocator& = Allocator()); hive(initializer_list il, hive_limits block_limits, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{hive}. \pnum \effects Constructs a \tcode{hive} object equal to \tcode{il}, using the specified allocator. If the second overload is called, also initializes \exposid{current-limits} with \tcode{block_limits}. \pnum \complexity Linear in \tcode{il.size()}. \end{itemdescr} \indexlibrarymember{operator=}{hive}% \begin{itemdecl} hive& operator=(const hive& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{hive} and \oldconcept{CopyAssignable}. \pnum \effects All elements in \tcode{*this} are either copy-assigned to, or destroyed. All elements in \tcode{x} are copied into \tcode{*this}, maintaining their relative order. \begin{note} \exposid{current-limits} is unchanged. \end{note} \pnum \complexity Linear in \tcode{size() + x.size()}. \end{itemdescr} \indexlibrarymember{operator=}{hive}% \begin{itemdecl} hive& operator=(hive&& x) noexcept(allocator_traits::propagate_on_container_move_assignment::value || allocator_traits::is_always_equal::value); \end{itemdecl} \begin{itemdescr} \pnum \expects When \begin{codeblock} (allocator_traits::propagate_on_container_move_assignment::value || allocator_traits::is_always_equal::value) \end{codeblock} is \tcode{false}, \tcode{T} is \oldconcept{MoveInsertable} into \tcode{hive} and \oldconcept{MoveAssignable}. \pnum \effects Each element in \tcode{*this} is either move-assigned to, or destroyed. When \begin{codeblock} (allocator_traits::propagate_on_container_move_assignment::value || get_allocator() == x.get_allocator()) \end{codeblock} is \tcode{true}, \exposid{current-limits} is set to \tcode{x.\exposid{current-limits}} and each element block is moved from \tcode{x} into \tcode{*this}. Pointers and references to the elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the elements of \tcode{x} will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. When \begin{codeblock} (allocator_traits::propagate_on_container_move_assignment::value || get_allocator() == x.get_allocator()) \end{codeblock} is \tcode{false}, each element in \tcode{x} is moved into \tcode{*this}. References, pointers and iterators referring to the elements of \tcode{x}, as well as the past-the-end iterator of \tcode{x}, are invalidated. \pnum \ensures \tcode{x.empty()} is \tcode{true}. The relative order of the elements of \tcode{*this} is the same as that of the elements of \tcode{x} prior to this call. \pnum \complexity Linear in \tcode{size()}. If \begin{codeblock} (allocator_traits::propagate_on_container_move_assignment::value || get_allocator() == x.get_allocator()) \end{codeblock} is \tcode{false}, also linear in \tcode{x.size()}. \end{itemdescr} \rSec3[hive.capacity]{Capacity} \indexlibrarymember{capacity}{hive}% \begin{itemdecl} size_type capacity() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns The total number of elements that \tcode{*this} can hold without requiring allocation of more element blocks. \pnum \complexity Constant. \end{itemdescr} \indexlibrarymember{reserve}{hive}% \begin{itemdecl} void reserve(size_type n); \end{itemdecl} \begin{itemdescr} \pnum \effects If \tcode{n <= capacity()} is \tcode{true}, there are no effects. Otherwise increases \tcode{capacity()} by allocating reserved blocks. \pnum \ensures \tcode{capacity() >= n} is \tcode{true}. \pnum \throws \tcode{length_error} if \tcode{n > max_size()}, as well as any exceptions thrown by the allocator. \pnum \complexity Linear in the number of reserved blocks allocated. \pnum \remarks All references, pointers, and iterators referring to elements in \tcode{*this}, as well as the past-the-end iterator, remain valid. \end{itemdescr} \indexlibrarymember{shrink_to_fit}{hive}% \begin{itemdecl} void shrink_to_fit(); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{hive}. \pnum \effects \tcode{shrink_to_fit} is a non-binding request to reduce \tcode{capacity()} to be closer to \tcode{size()}. \begin{note} The request is non-binding to allow latitude for implementation-specific optimizations. \end{note} It does not increase \tcode{capacity()}, but may reduce \tcode{capacity()}. It may reallocate elements. If \tcode{capacity()} is already equal to \tcode{size()}, there are no effects. If an exception is thrown during allocation of a new element block, \tcode{capacity()} may be reduced and reallocation may occur. Otherwise if an exception is thrown, the effects are unspecified. \pnum \complexity If reallocation happens, linear in the size of the sequence. \pnum \remarks If reallocation happens, the order of the elements in \tcode{*this} may change and all references, pointers, and iterators referring to the elements in \tcode{*this}, as well as the past-the-end iterator, are invalidated. \end{itemdescr} \indexlibrarymember{trim_capacity}{hive}% \begin{itemdecl} void trim_capacity() noexcept; void trim_capacity(size_type n) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects For the first overload, all reserved blocks are deallocated, and \tcode{capacity()} is reduced accordingly. For the second overload, if \tcode{n >= capacity()} is \tcode{true}, there are no effects; otherwise, \tcode{capacity()} is reduced to no less than \tcode{n}. \pnum \complexity Linear in the number of reserved blocks deallocated. \pnum \remarks All references, pointers, and iterators referring to elements in \tcode{*this}, as well as the past-the-end iterator, remain valid. \end{itemdescr} \indexlibrarymember{block_capacity_limits}{hive}% \begin{itemdecl} constexpr hive_limits block_capacity_limits() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \exposid{current-limits}. \pnum \complexity Constant. \end{itemdescr} \indexlibrarymember{block_capacity_default_limits}{hive}% \begin{itemdecl} static constexpr hive_limits block_capacity_default_limits() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns A \tcode{hive_limits} struct with the \tcode{min} and \tcode{max} members set to the implementation's default limits. \pnum \complexity Constant. \end{itemdescr} \indexlibrarymember{block_capacity_hard_limits}{hive}% \begin{itemdecl} static constexpr hive_limits block_capacity_hard_limits() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns A \tcode{hive_limits} struct with the \tcode{min} and \tcode{max} members set to the implementation's hard limits. \pnum \complexity Constant. \end{itemdescr} \indexlibrarymember{reshape}{hive}% \begin{itemdecl} void reshape(hive_limits block_limits); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{hive}. \pnum \effects For any active blocks not within the bounds of \tcode{block_limits}, the elements within those active blocks are reallocated to new or existing element blocks which are within the bounds. Any element blocks not within the bounds of \tcode{block_limits} are deallocated. If an exception is thrown during allocation of a new element block, \tcode{capacity()} may be reduced, reallocation may occur, and \exposid{current-limits} may be assigned a value other than \tcode{block_limits}. Otherwise \tcode{block_limits} is assigned to \exposid{current-limits}. If any other exception is thrown the effects are unspecified. \pnum \ensures \tcode{size()} is unchanged. \pnum \complexity Linear in the number of element blocks in \tcode{*this}. If reallocation happens, also linear in the number of elements reallocated. \pnum \remarks This operation may change \tcode{capacity()}. If reallocation happens, the order of the elements in \tcode{*this} may change. Reallocation invalidates all references, pointers, and iterators referring to the elements in \tcode{*this}, as well as the past-the-end iterator. \begin{note} If no reallocation happens, they remain valid. \end{note} \end{itemdescr} \rSec3[hive.modifiers]{Modifiers} \indexlibrarymember{emplace}{hive}% \begin{itemdecl} template iterator emplace(Args&&... args); template iterator emplace_hint(const_iterator hint, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceConstructible} into \tcode{hive} from \tcode{args}. \pnum \effects Inserts an object of type \tcode{T} constructed with \tcode{std::forward(args)...}. The \tcode{hint} parameter is ignored. If an exception is thrown, there are no effects. \begin{note} \tcode{args} can directly or indirectly refer to a value in \tcode{*this}. \end{note} \pnum \returns An iterator that points to the new element. \pnum \complexity Constant. Exactly one object of type \tcode{T} is constructed. \pnum \remarks Invalidates the past-the-end iterator. \end{itemdescr} \indexlibrarymember{insert}{hive}% \begin{itemdecl} iterator insert(const T& x); iterator insert(const_iterator hint, const T& x); iterator insert(T&& x); iterator insert(const_iterator hint, T&& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return emplace(std::forward(x));} \begin{note} The \tcode{hint} parameter is ignored. \end{note} \end{itemdescr} \indexlibrarymember{insert}{hive}% \begin{itemdecl} void insert(initializer_list rg); template<@\exposconcept{container-compatible-range}@ R> void insert_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{EmplaceInsertable} into \tcode{hive} from \tcode{*ranges::begin(rg)}. \tcode{rg} and \tcode{*this} do not overlap. \pnum \effects Inserts copies of elements in \tcode{rg}. Each iterator in the range \tcode{rg} is dereferenced exactly once. \pnum \complexity Linear in the number of elements inserted. Exactly one object of type \tcode{T} is constructed for each element inserted. \pnum \remarks If an element is inserted, invalidates the past-the-end iterator. \end{itemdescr} \indexlibrarymember{insert}{hive}% \begin{itemdecl} void insert(size_type n, const T& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{hive}. \pnum \effects Inserts \tcode{n} copies of \tcode{x}. \pnum \complexity Linear in \tcode{n}. Exactly one object of type \tcode{T} is constructed for each element inserted. \pnum \remarks If an element is inserted, invalidates the past-the-end iterator. \end{itemdescr} \indexlibrarymember{insert}{hive}% \begin{itemdecl} template void insert(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert_range(ranges::subrange(first, last))}. \end{itemdescr} \indexlibrarymember{erase}{hive}% \begin{itemdecl} iterator erase(const_iterator position); iterator erase(const_iterator first, const_iterator last); \end{itemdecl} \begin{itemdescr} \pnum \complexity Linear in the number of elements erased. Additionally, if any active blocks become empty of elements as a result of the function call, at worst linear in the number of element blocks. \pnum \remarks Invalidates references, pointers and iterators referring to the erased elements. An erase operation that erases the last element in \tcode{*this} also invalidates the past-the-end iterator. \end{itemdescr} \indexlibrarymember{swap}{hive}% \begin{itemdecl} void swap(hive& x) noexcept(allocator_traits::propagate_on_container_swap::value || allocator_traits::is_always_equal::value); \end{itemdecl} \begin{itemdescr} \pnum \effects Exchanges the contents, \tcode{capacity()}, and \exposid{current-limits} of \tcode{*this} with that of \tcode{x}. \pnum \complexity Constant. \end{itemdescr} \rSec3[hive.operations]{Operations} \pnum In this subclause, arguments for a template parameter named \tcode{Predicate} or \tcode{BinaryPredicate} shall meet the corresponding requirements in \ref{algorithms.requirements}. The semantics of \tcode{i + n} and \tcode{i - n}, where \tcode{i} is an iterator into the \tcode{hive} and \tcode{n} is an integer, are the same as those of \tcode{next(i, n)} and \tcode{prev(i, n)}, respectively. For \tcode{sort}, the definitions and requirements in \ref{alg.sorting} apply. \indexlibrarymember{splice}{hive}% \begin{itemdecl} void splice(hive& x); void splice(hive&& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{addressof(x) == this} is \tcode{true}, the behavior is erroneous and there are no effects. If an exception is thrown, there are no effects. Otherwise, inserts the contents of \tcode{x} into \tcode{*this} and \tcode{x} becomes empty. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws \tcode{length_error} if any of \tcode{x}'s active blocks are not within the bounds of \exposid{current-limits}. \pnum \complexity Linear in the sum of all element blocks in \tcode{x} plus all element blocks in \tcode{*this}. \pnum \remarks Reserved blocks in \tcode{x} are not transferred into \tcode{*this}. If \tcode{addressof(x) == this} is \tcode{false}, invalidates the past-the-end iterator for both \tcode{x} and \tcode{*this}. \end{itemdescr} \indexlibrarymember{unique}{hive}% \begin{itemdecl} template> size_type unique(BinaryPredicate binary_pred = BinaryPredicate()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{binary_pred} is an equivalence relation. \pnum \effects Erases all but the first element from every consecutive group of equivalent elements. That is, for a nonempty \tcode{hive}, erases all elements referred to by the iterator \tcode{i} in the range \range{begin() + 1}{end()} for which \tcode{binary_pred(*i, *(i - 1))} is \tcode{true}. \pnum \returns The number of elements erased. \pnum \throws Nothing unless an exception is thrown by the predicate. \pnum \complexity If \tcode{empty()} is \tcode{false}, exactly \tcode{size() - 1} applications of the corresponding predicate, otherwise no applications of the predicate. \pnum \remarks Invalidates references, pointers, and iterators referring to the erased elements. If the last element in \tcode{*this} is erased, also invalidates the past-the-end iterator. \end{itemdescr} \indexlibrarymember{sort}{hive}% \begin{itemdecl} template> void sort(Compare comp = Compare()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{hive}, \oldconcept{MoveAssignable}, and \oldconcept{Swappable}. \pnum \effects Sorts \tcode{*this} according to the \tcode{comp} function object. If an exception is thrown, the order of the elements in \tcode{*this} is unspecified. \pnum \complexity \bigoh{N \log N} comparisons, where $N$ is \tcode{size()}. \pnum \remarks May allocate. References, pointers, and iterators referring to elements in \tcode{*this}, as well as the past-the-end iterator, may be invalidated. \begin{note} Not required to be stable\ref{algorithm.stable}. \end{note} \end{itemdescr} \indexlibrarymember{get_iterator}{hive}% \begin{itemdecl} iterator get_iterator(const_pointer p) noexcept; const_iterator get_iterator(const_pointer p) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{p} points to an element in \tcode{*this}. \pnum \returns An \tcode{iterator} or \tcode{const_iterator} pointing to the same element as \tcode{p}. \pnum \complexity Linear in the number of active blocks in \tcode{*this}. \end{itemdescr} \rSec3[hive.erasure]{Erasure} \indexlibrarymember{erase}{hive}% \begin{itemdecl} template typename hive::size_type erase(hive& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} return erase_if(c, [&](const auto& elem) -> bool { return elem == value; }); \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{hive}% \begin{itemdecl} template typename hive::size_type erase_if(hive& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(); i != c.end(); ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec2[list.syn]{Header \tcode{} synopsis} \indexheader{list}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{list}, class template \tcode{list} template> class list; template constexpr bool operator==(const list& x, const list& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const list& x, const list& y); template constexpr void swap(list& x, list& y) noexcept(noexcept(x.swap(y))); // \ref{list.erasure}, erasure template constexpr typename list::size_type erase(list& c, const U& value); template constexpr typename list::size_type erase_if(list& c, Predicate pred); namespace pmr { template using list = std::list>; } } \end{codeblock} \rSec2[list]{Class template \tcode{list}} \rSec3[list.overview]{Overview} \pnum \indexlibraryglobal{list}% A \tcode{list} is a sequence container that supports bidirectional iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Unlike vectors\iref{vector} and deques\iref{deque}, fast random access to list elements is not supported, but many algorithms only need sequential access anyway. \pnum A \tcode{list} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of a sequence container, including most of the optional sequence container requirements\iref{sequence.reqmts}. The exceptions are the \tcode{operator[]} and \tcode{at} member functions, which are not provided. \begin{footnote} These member functions are only provided by containers whose iterators are random access iterators. \end{footnote} Descriptions are provided here only for operations on \tcode{list} that are not described in one of these tables or for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\ref{iterator.requirements.general}. \begin{codeblock} namespace std { template> class list { public: // types using value_type = T; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{list::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{list::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{list::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{list::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // \ref{list.cons}, construct/copy/destroy constexpr list() : list(Allocator()) { } constexpr explicit list(const Allocator&); constexpr explicit list(size_type n, const Allocator& = Allocator()); constexpr list(size_type n, const T& value, const Allocator& = Allocator()); template constexpr list(InputIterator first, InputIterator last, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr list(from_range_t, R&& rg, const Allocator& = Allocator()); constexpr list(const list& x); constexpr list(list&& x); constexpr list(const list&, const type_identity_t&); constexpr list(list&&, const type_identity_t&); constexpr list(initializer_list, const Allocator& = Allocator()); constexpr ~list(); constexpr list& operator=(const list& x); constexpr list& operator=(list&& x) noexcept(allocator_traits::is_always_equal::value); constexpr list& operator=(initializer_list); template constexpr void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); constexpr void assign(size_type n, const T& t); constexpr void assign(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // \ref{list.capacity}, capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; constexpr void resize(size_type sz); constexpr void resize(size_type sz, const T& c); // element access constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; // \ref{list.modifiers}, modifiers template constexpr reference emplace_front(Args&&... args); template constexpr reference emplace_back(Args&&... args); constexpr void push_front(const T& x); constexpr void push_front(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); constexpr void pop_front(); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); constexpr void pop_back(); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list il); constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator position, const_iterator last); constexpr void swap(list&) noexcept(allocator_traits::is_always_equal::value); constexpr void clear() noexcept; // \ref{list.ops}, list operations constexpr void splice(const_iterator position, list& x); constexpr void splice(const_iterator position, list&& x); constexpr void splice(const_iterator position, list& x, const_iterator i); constexpr void splice(const_iterator position, list&& x, const_iterator i); constexpr void splice(const_iterator position, list& x, const_iterator first, const_iterator last); constexpr void splice(const_iterator position, list&& x, const_iterator first, const_iterator last); constexpr size_type remove(const T& value); template constexpr size_type remove_if(Predicate pred); constexpr size_type unique(); template constexpr size_type unique(BinaryPredicate binary_pred); constexpr void merge(list& x); constexpr void merge(list&& x); template constexpr void merge(list& x, Compare comp); template constexpr void merge(list&& x, Compare comp); constexpr void sort(); template constexpr void sort(Compare comp); constexpr void reverse() noexcept; }; template>> list(InputIterator, InputIterator, Allocator = Allocator()) -> list<@\placeholder{iter-value-type}@, Allocator>; template>> list(from_range_t, R&&, Allocator = Allocator()) -> list, Allocator>; } \end{codeblock} \pnum An incomplete type \tcode{T} may be used when instantiating \tcode{list} if the allocator meets the allocator completeness requirements\iref{allocator.requirements.completeness}. \tcode{T} shall be complete before any member of the resulting specialization of \tcode{list} is referenced. \rSec3[list.cons]{Constructors, copy, and assignment} \indexlibraryctor{list}% \begin{itemdecl} constexpr explicit list(const Allocator&); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty list, using the specified allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{list}% \begin{itemdecl} constexpr explicit list(size_type n, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{list}. \pnum \effects Constructs a \tcode{list} with \tcode{n} default-inserted elements using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{list}% \begin{itemdecl} constexpr list(size_type n, const T& value, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{list}. \pnum \effects Constructs a \tcode{list} with \tcode{n} copies of \tcode{value}, using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{list}% \begin{itemdecl} template constexpr list(InputIterator first, InputIterator last, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{list} equal to the range \range{first}{last}. \pnum \complexity Linear in \tcode{distance(first, last)}. \end{itemdescr} \indexlibraryctor{list}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr list(from_range_t, R&& rg, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{list} object with the elements of the range \tcode{rg}. \pnum \complexity Linear in \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[list.capacity]{Capacity} \indexlibrarymember{resize}{list}% \begin{itemdecl} constexpr void resize(size_type sz); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{list}. \pnum \effects If \tcode{size() < sz}, appends \tcode{sz - size()} default-inserted elements to the sequence. If \tcode{sz <= size()}, equivalent to: \begin{codeblock} list::iterator it = begin(); advance(it, sz); erase(it, end()); \end{codeblock} \end{itemdescr} \indexlibrarymember{resize}{list}% \begin{itemdecl} constexpr void resize(size_type sz, const T& c); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{list}. \pnum \effects As if by: \begin{codeblock} if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) { iterator i = begin(); advance(i, sz); erase(i, end()); } else ; // do nothing \end{codeblock} \end{itemdescr} \rSec3[list.modifiers]{Modifiers} \indexlibrarymember{insert}{list}% \begin{itemdecl} constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list); template constexpr reference emplace_front(Args&&... args); template constexpr reference emplace_back(Args&&... args); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr void push_front(const T& x); constexpr void push_front(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void prepend_range(R&& rg); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \complexity Insertion of a single element into a list takes constant time and exactly one call to a constructor of \tcode{T}. Insertion of multiple elements into a list is linear in the number of elements inserted, and the number of calls to the copy constructor or move constructor of \tcode{T} is exactly equal to the number of elements inserted. \pnum \remarks Does not affect the validity of iterators and references. If an exception is thrown, there are no effects. \end{itemdescr} \indexlibrarymember{erase}{list}% \begin{itemdecl} constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void pop_front(); constexpr void pop_back(); constexpr void clear() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Invalidates only the iterators and references to the erased elements. \pnum \throws Nothing. \pnum \complexity Erasing a single element is a constant time operation with a single call to the destructor of \tcode{T}. Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of type \tcode{T} is exactly equal to the size of the range. \end{itemdescr} \rSec3[list.ops]{Operations} \pnum Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically for them. \begin{footnote} As specified in~\ref{allocator.requirements}, the requirements in this Clause apply only to lists whose allocators compare equal. \end{footnote} In this subclause, arguments for a template parameter named \tcode{Predicate} or \tcode{BinaryPredicate} shall meet the corresponding requirements in \ref{algorithms.requirements}. The semantics of \tcode{i + n} and \tcode{i - n}, where \tcode{i} is an iterator into the list and \tcode{n} is an integer, are the same as those of \tcode{next(i, n)} and \tcode{prev(i, n)}, respectively. For \tcode{merge} and \tcode{sort}, the definitions and requirements in \ref{alg.sorting} apply. \pnum \tcode{list} provides three splice operations that destructively move elements from one list to another. The behavior of splice operations is undefined if \tcode{get_allocator() != x.get_allocator()}. \indexlibrarymember{splice}{list}% \begin{itemdecl} constexpr void splice(const_iterator position, list& x); constexpr void splice(const_iterator position, list&& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{addressof(x) != this} is \tcode{true}. \pnum \effects Inserts the contents of \tcode{x} before \tcode{position} and \tcode{x} becomes empty. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws Nothing. \pnum \complexity Constant time. \end{itemdescr} \indexlibrarymember{splice}{list}% \begin{itemdecl} constexpr void splice(const_iterator position, list& x, const_iterator i); constexpr void splice(const_iterator position, list&& x, const_iterator i); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i} is a valid dereferenceable iterator of \tcode{x}. \pnum \effects Inserts an element pointed to by \tcode{i} from list \tcode{x} before \tcode{position} and removes the element from \tcode{x}. The result is unchanged if \tcode{position == i} or \tcode{position == ++i}. Pointers and references to \tcode{*i} continue to refer to this same element but as a member of \tcode{*this}. Iterators to \tcode{*i} (including \tcode{i} itself) continue to refer to the same element, but now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws Nothing. \pnum \complexity Constant time. \end{itemdescr} \indexlibrarymember{splice}{list}% \begin{itemdecl} constexpr void splice(const_iterator position, list& x, const_iterator first, const_iterator last); constexpr void splice(const_iterator position, list&& x, const_iterator first, const_iterator last); \end{itemdecl} \begin{itemdescr} \pnum \expects \range{first}{last} is a valid range in \tcode{x}. \tcode{position} is not an iterator in the range \range{first}{last}. \pnum \effects Inserts elements in the range \range{first}{last} before \tcode{position} and removes the elements from \tcode{x}. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \throws Nothing. \pnum \complexity Constant time if \tcode{addressof(x) == this}; otherwise, linear time. \end{itemdescr} \indexlibrarymember{remove}{list}% \begin{itemdecl} constexpr size_type remove(const T& value); template constexpr size_type remove_if(Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Erases all the elements in the list referred to by a list iterator \tcode{i} for which the following conditions hold: \tcode{*i == value}, \tcode{pred(*i) != false}. Invalidates only the iterators and references to the erased elements. \pnum \returns The number of elements erased. \pnum \throws Nothing unless an exception is thrown by \tcode{*i == value} or \tcode{pred(*i) != false}. \pnum \complexity Exactly \tcode{size()} applications of the corresponding predicate. \pnum \remarks Stable\iref{algorithm.stable}. \end{itemdescr} \indexlibrarymember{unique}{list}% \begin{itemdecl} constexpr size_type unique(); template constexpr size_type unique(BinaryPredicate binary_pred); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{binary_pred} be \tcode{equal_to<>\{\}} for the first overload. \pnum \expects \tcode{binary_pred} is an equivalence relation. \pnum \effects Erases all but the first element from every consecutive group of equivalent elements. That is, for a nonempty list, erases all elements referred to by the iterator \tcode{i} in the range \range{begin() + 1}{end()} for which \tcode{binary_pred(*i, *(i - 1))} is \tcode{true}. Invalidates only the iterators and references to the erased elements. \pnum \returns The number of elements erased. \pnum \throws Nothing unless an exception is thrown by the predicate. \pnum \complexity If \tcode{empty()} is \tcode{false}, exactly \tcode{size() - 1} applications of the corresponding predicate, otherwise no applications of the predicate. \end{itemdescr} \indexlibrarymember{merge}{list}% \begin{itemdecl} constexpr void merge(list& x); constexpr void merge(list&& x); template constexpr void merge(list& x, Compare comp); template constexpr void merge(list&& x, Compare comp); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{comp} be \tcode{less<>{}} for the first two overloads. \pnum \expects \tcode{*this} and \tcode{x} are both sorted with respect to the comparator \tcode{comp}, and \tcode{get_allocator() == x.get_allocator()} is \tcode{true}. \pnum \effects If \tcode{addressof(x) == this}, there are no effects. Otherwise, merges the two sorted ranges \range{begin()}{end()} and \range{x.begin()}{x.end()}. The result is a range that is sorted with respect to the comparator \tcode{comp}. Pointers and references to the moved elements of \tcode{x} now refer to those same elements but as members of \tcode{*this}. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into \tcode{*this}, not into \tcode{x}. \pnum \complexity At most \tcode{size() + x.size() - 1} comparisons if \tcode{addressof(x) != this}; otherwise, no comparisons are performed. \pnum \remarks Stable\iref{algorithm.stable}. If \tcode{addressof(x) != this}, \tcode{x} is empty after the merge. No elements are copied by this operation. If an exception is thrown other than by a comparison, there are no effects. \end{itemdescr} \indexlibrarymember{reverse}{list}% \begin{itemdecl} constexpr void reverse() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Reverses the order of the elements in the list. Does not affect the validity of iterators and references. \pnum \complexity Linear time. \end{itemdescr} \indexlibrarymember{sort}{list}% \begin{itemdecl} void sort(); template void sort(Compare comp); \end{itemdecl} \begin{itemdescr} \pnum \effects Sorts the list according to the \tcode{operator<} or a \tcode{Compare} function object. If an exception is thrown, the order of the elements in \tcode{*this} is unspecified. Does not affect the validity of iterators and references. \pnum \complexity Approximately $N \log N$ comparisons, where $N$ is \tcode{size()}. \pnum \remarks Stable\iref{algorithm.stable}. \end{itemdescr} \rSec3[list.erasure]{Erasure} \indexlibrarymember{erase}{list}% \begin{itemdecl} template typename list::size_type constexpr erase(list& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} return erase_if(c, [&](const auto& elem) -> bool { return elem == value; }); \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{list}% \begin{itemdecl} template typename list::size_type constexpr erase_if(list& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return c.remove_if(pred);} \end{itemdescr} \rSec2[vector.syn]{Header \tcode{} synopsis} \indexheader{vector}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{vector}, class template \tcode{vector} template> class vector; template constexpr bool operator==(const vector& x, const vector& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const vector& x, const vector& y); template constexpr void swap(vector& x, vector& y) noexcept(noexcept(x.swap(y))); // \ref{vector.erasure}, erasure template constexpr typename vector::size_type erase(vector& c, const U& value); template constexpr typename vector::size_type erase_if(vector& c, Predicate pred); namespace pmr { template using vector = std::vector>; } // \ref{vector.bool}, specialization of \tcode{vector} for \tcode{bool} // \ref{vector.bool.pspc}, partial class template specialization \tcode{vector} template class vector; template constexpr bool @\exposid{is-vector-bool-reference}@ = @\seebelow@; // \expos // hash support template struct hash; template struct hash>; // \ref{vector.bool.fmt}, formatter specialization for \tcode{vector} template requires @\exposid{is-vector-bool-reference}@ struct formatter; } \end{codeblock} \rSec2[vector]{Class template \tcode{vector}} \rSec3[vector.overview]{Overview} \pnum \indexlibraryglobal{vector}% A \tcode{vector} is a sequence container that supports (amortized) constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage management is handled automatically, though hints can be given to improve efficiency. \pnum A \tcode{vector} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, of a sequence container, including most of the optional sequence container requirements\iref{sequence.reqmts}, and, for an element type other than \tcode{bool}, of a contiguous container\iref{container.reqmts}. The exceptions are the \tcode{push_front}, \tcode{prepend_range}, \tcode{pop_front}, and \tcode{emplace_front} member functions, which are not provided. Descriptions are provided here only for operations on \tcode{vector} that are not described in one of these tables or for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \begin{codeblock} namespace std { template> class vector { public: // types using value_type = T; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{vector::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{vector::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{vector::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{vector::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // \ref{vector.cons}, construct/copy/destroy constexpr vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { } constexpr explicit vector(const Allocator&) noexcept; constexpr explicit vector(size_type n, const Allocator& = Allocator()); constexpr vector(size_type n, const T& value, const Allocator& = Allocator()); template constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator()); constexpr vector(const vector& x); constexpr vector(vector&&) noexcept; constexpr vector(const vector&, const type_identity_t&); constexpr vector(vector&&, const type_identity_t&); constexpr vector(initializer_list, const Allocator& = Allocator()); constexpr ~vector(); constexpr vector& operator=(const vector& x); constexpr vector& operator=(vector&& x) noexcept(allocator_traits::propagate_on_container_move_assignment::value || allocator_traits::is_always_equal::value); constexpr vector& operator=(initializer_list); template constexpr void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); constexpr void assign(size_type n, const T& u); constexpr void assign(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // \ref{vector.capacity}, capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; constexpr size_type capacity() const noexcept; constexpr void resize(size_type sz); constexpr void resize(size_type sz, const T& c); constexpr void reserve(size_type n); constexpr void shrink_to_fit(); // element access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; constexpr reference at(size_type n); constexpr const_reference at(size_type n) const; constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; // \ref{vector.data}, data access constexpr T* data() noexcept; constexpr const T* data() const noexcept; // \ref{vector.modifiers}, modifiers template constexpr reference emplace_back(Args&&... args); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); constexpr void pop_back(); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list il); constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(vector&) noexcept(allocator_traits::propagate_on_container_swap::value || allocator_traits::is_always_equal::value); constexpr void clear() noexcept; }; template>> vector(InputIterator, InputIterator, Allocator = Allocator()) -> vector<@\placeholder{iter-value-type}@, Allocator>; template>> vector(from_range_t, R&&, Allocator = Allocator()) -> vector, Allocator>; } \end{codeblock}% \indexlibrarymember{vector}{operator==}% \indexlibrarymember{vector}{operator<} \pnum An incomplete type \tcode{T} may be used when instantiating \tcode{vector} if the allocator meets the allocator completeness requirements\iref{allocator.requirements.completeness}. \tcode{T} shall be complete before any member of the resulting specialization of \tcode{vector} is referenced. \rSec3[vector.cons]{Constructors} \indexlibraryctor{vector} \begin{itemdecl} constexpr explicit vector(const Allocator&) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{vector}, using the specified allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{vector} \begin{itemdecl} constexpr explicit vector(size_type n, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{vector}. \pnum \effects Constructs a \tcode{vector} with \tcode{n} default-inserted elements using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{vector} \begin{itemdecl} constexpr vector(size_type n, const T& value, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{vector}. \pnum \effects Constructs a \tcode{vector} with \tcode{n} copies of \tcode{value}, using the specified allocator. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{vector} \begin{itemdecl} template constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{vector} equal to the range \range{first}{last}, using the specified allocator. \pnum \complexity Makes only $N$ calls to the copy constructor of \tcode{T} (where $N$ is the distance between \tcode{first} and \tcode{last}) and no reallocations if \tcode{InputIterator} meets the \oldconcept{ForwardIterator} requirements. It makes order $N$ calls to the copy constructor of \tcode{T} and order $\log N$ reallocations if they are just input iterators. \end{itemdescr} \indexlibraryctor{vector}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs a \tcode{vector} object with the elements of the range \tcode{rg}, using the specified allocator. \pnum \complexity Initializes exactly $N$ elements from the results of dereferencing successive iterators of \tcode{rg}, where $N$ is \tcode{ranges::distance(rg)}. \pnum Performs no reallocations if: \begin{itemize} \item \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}}, and \tcode{ranges::distance(rg) <= ranges::re\-serve_hint(rg)} is \tcode{true}, or \item \tcode{R} models \tcode{ranges::\libconcept{forward_range}} and \tcode{R} does not model \tcode{ranges::\libconcept{approximately_sized_range}}. \end{itemize} Otherwise, performs order $\log N$ reallocations and order $N$ calls to the copy or move constructor of \tcode{T}. \end{itemdescr} \rSec3[vector.capacity]{Capacity} \indexlibrarymember{capacity}{vector}% \begin{itemdecl} constexpr size_type capacity() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns The total number of elements that the vector can hold without requiring reallocation. \pnum \complexity Constant time. \end{itemdescr} \indexlibrarymember{reserve}{vector}% \begin{itemdecl} constexpr void reserve(size_type n); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{vector}. \pnum \effects A directive that informs a \tcode{vector} of a planned change in size, so that it can manage the storage allocation accordingly. After \tcode{reserve()}, \tcode{capacity()} is greater or equal to the argument of \tcode{reserve} if reallocation happens; and equal to the previous value of \tcode{capacity()} otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of \tcode{reserve()}. If an exception is thrown other than by the move constructor of a non-\oldconcept{CopyInsertable} type, there are no effects. \pnum \throws \tcode{length_error} if \tcode{n > max_size()}. \begin{footnote} \tcode{reserve()} uses \tcode{Allocator::allocate()} which can throw an appropriate exception. \end{footnote} \pnum \complexity Linear in the size of the sequence. \pnum \remarks The size of the sequence is not changed. Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence, as well as the past-the-end iterator. \begin{note} If no reallocation happens, they remain valid. \end{note} No reallocation shall take place during insertions that happen after a call to \tcode{reserve()} until an insertion would make the size of the vector greater than the value of \tcode{capacity()}. \end{itemdescr} \indexlibrarymember{shrink_to_fit}{vector}% \begin{itemdecl} constexpr void shrink_to_fit(); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} into \tcode{vector}. \pnum \effects \tcode{shrink_to_fit} is a non-binding request to reduce \tcode{capacity()} to \tcode{size()}. \begin{note} The request is non-binding to allow latitude for implementation-specific optimizations. \end{note} It does not increase \tcode{capacity()}, but may reduce \tcode{capacity()} by causing reallocation. If an exception is thrown other than by the move constructor of a non-\oldconcept{CopyInsertable} \tcode{T}, there are no effects. \pnum \complexity If reallocation happens, linear in the size of the sequence. \pnum \remarks Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence as well as the past-the-end iterator. \begin{note} If no reallocation happens, they remain valid. \end{note} \end{itemdescr} \indexlibrarymember{swap}{vector}% \begin{itemdecl} constexpr void swap(vector& x) noexcept(allocator_traits::propagate_on_container_swap::value || allocator_traits::is_always_equal::value); \end{itemdecl} \begin{itemdescr} \pnum \effects Exchanges the contents and \tcode{capacity()} of \tcode{*this} with that of \tcode{x}. \pnum \complexity Constant time. \end{itemdescr} \indexlibrarymember{resize}{vector}% \begin{itemdecl} constexpr void resize(size_type sz); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{MoveInsertable} and \oldconcept{DefaultInsertable} into \tcode{vector}. \pnum \effects If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} default-inserted elements to the sequence. \pnum \remarks If an exception is thrown other than by the move constructor of a non-\oldconcept{CopyInsertable} \tcode{T}, there are no effects. \end{itemdescr} \indexlibrarymember{resize}{vector}% \begin{itemdecl} constexpr void resize(size_type sz, const T& c); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{vector}. \pnum \effects If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} copies of \tcode{c} to the sequence. \pnum \remarks If an exception is thrown, there are no effects. \end{itemdescr} \rSec3[vector.data]{Data} \indexlibrarymember{data}{vector}% \begin{itemdecl} constexpr T* data() noexcept; constexpr const T* data() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns A pointer such that \range{data()}{data() + size()} is a valid range. For a non-empty vector, \tcode{data() == addressof(front())} is \keyword{true}. \pnum \complexity Constant time. \end{itemdescr} \rSec3[vector.modifiers]{Modifiers} \indexlibrarymember{insert}{vector}% \begin{itemdecl} constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list); template constexpr reference emplace_back(Args&&... args); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr void push_back(const T& x); constexpr void push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \complexity If reallocation happens, linear in the number of elements of the resulting vector; otherwise, linear in the number of elements inserted plus the distance to the end of the vector. \pnum \remarks Causes reallocation if the new size is greater than the old capacity. Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence, as well as the past-the-end iterator. If no reallocation happens, then references, pointers, and iterators before the insertion point remain valid but those at or after the insertion point, including the past-the-end iterator, are invalidated. If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of \tcode{T} or by any \tcode{InputIterator} operation, there are no effects. If an exception is thrown while inserting a single element at the end and \tcode{T} is \oldconcept{CopyInsertable} or \tcode{is_nothrow_move_constructible_v} is \tcode{true}, there are no effects. Otherwise, if an exception is thrown by the move constructor of a non-\oldconcept{CopyInsertable} \tcode{T}, the effects are unspecified. \pnum For the declarations taking a range \tcode{R}, performs at most one reallocation if: \begin{itemize} \item \tcode{R} models \tcode{ranges::\libconcept{approximately_sized_range}} and \tcode{ranges::distance(rg) <= ranges::re\-serve_hint(rg)} is \tcode{true}, or \item \tcode{R} models \tcode{ranges::\libconcept{forward_range}} and \tcode{R} does not model \tcode{ranges::\libconcept{approximately_sized_range}}. \end{itemize} For the declarations taking a pair of \tcode{InputIterator}, performs at most one reallocation if \tcode{InputItera\-tor} meets the \oldconcept{ForwardIterator} requirements. \end{itemdescr} \indexlibrarymember{erase}{vector}% \begin{itemdecl} constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void pop_back(); \end{itemdecl} \begin{itemdescr} \pnum \effects Invalidates iterators and references at or after the point of the erase. \pnum \throws Nothing unless an exception is thrown by the assignment operator or move assignment operator of \tcode{T}. \pnum \complexity The destructor of \tcode{T} is called the number of times equal to the number of the elements erased, but the assignment operator of \tcode{T} is called the number of times equal to the number of elements in the vector after the erased elements. \end{itemdescr} \rSec3[vector.erasure]{Erasure} \indexlibrarymember{erase}{vector}% \begin{itemdecl} template constexpr typename vector::size_type erase(vector& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove(c.begin(), c.end(), value); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{vector}% \begin{itemdecl} template constexpr typename vector::size_type erase_if(vector& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove_if(c.begin(), c.end(), pred); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \rSec2[vector.bool]{Specialization of \tcode{vector} for \tcode{bool}} \rSec3[vector.bool.pspc]{Partial class template specialization \tcode{vector}} \pnum \indexlibraryglobal{vector}% To optimize space allocation, a partial specialization of \tcode{vector} for \tcode{bool} elements is provided: \begin{codeblock} namespace std { template class vector { public: // types using value_type = bool; using allocator_type = Allocator; using pointer = @\impdefx{type of \tcode{vector::pointer}}@; using const_pointer = @\impdefx{type of \tcode{vector::const_pointer}}@; using const_reference = bool; using size_type = @\impdefx{type of \tcode{vector::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{vector::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{vector::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{vector::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // bit reference class @\libmember{reference}{vector}@ { public: constexpr reference(const reference& x) noexcept; constexpr ~reference(); constexpr reference& operator=(bool x) noexcept; constexpr reference& operator=(const reference& x) noexcept; constexpr const reference& operator=(bool x) const noexcept; constexpr operator bool() const noexcept; constexpr void flip() noexcept; // flips the bit friend constexpr void swap(reference x, reference y) noexcept; friend constexpr void swap(reference x, bool& y) noexcept; friend constexpr void swap(bool& x, reference y) noexcept; }; // construct/copy/destroy constexpr vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { } constexpr explicit vector(const Allocator&) noexcept; constexpr explicit vector(size_type n, const Allocator& = Allocator()); constexpr vector(size_type n, const bool& value, const Allocator& = Allocator()); template constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator()); constexpr vector(const vector& x); constexpr vector(vector&& x) noexcept; constexpr vector(const vector&, const type_identity_t&); constexpr vector(vector&&, const type_identity_t&); constexpr vector(initializer_list, const Allocator& = Allocator()); constexpr ~vector(); constexpr vector& operator=(const vector& x); constexpr vector& operator=(vector&& x) noexcept(allocator_traits::propagate_on_container_move_assignment::value || allocator_traits::is_always_equal::value); constexpr vector& operator=(initializer_list); template constexpr void assign(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); constexpr void assign(size_type n, const bool& t); constexpr void assign(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; constexpr size_type capacity() const noexcept; constexpr void resize(size_type sz, bool c = false); constexpr void reserve(size_type n); constexpr void shrink_to_fit(); // element access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; constexpr reference at(size_type n); constexpr const_reference at(size_type n) const; constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; // modifiers template constexpr reference emplace_back(Args&&... args); constexpr void push_back(const bool& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); constexpr void pop_back(); template constexpr iterator emplace(const_iterator position, Args&&... args); constexpr iterator insert(const_iterator position, const bool& x); constexpr iterator insert(const_iterator position, size_type n, const bool& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list il); constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(vector&) noexcept(allocator_traits::propagate_on_container_swap::value || allocator_traits::is_always_equal::value); constexpr void flip() noexcept; // flips all bits constexpr void clear() noexcept; }; } \end{codeblock}% \pnum Unless described below, all operations have the same requirements and semantics as the \tcode{vector} primary template, except that operations dealing with the \tcode{bool} value type map to bit values in the container storage and \tcode{allocator_traits::construct}\iref{allocator.traits.members} is not used to construct these values. \pnum There is no requirement that the data be stored as a contiguous allocation of \tcode{bool} values. A space-optimized representation of bits is recommended instead. \pnum \tcode{reference} is a class that simulates a reference to a single bit in the sequence. \indexlibraryctor{vector::reference}% \begin{itemdecl} constexpr reference::reference(const reference& x) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{*this} to refer to the same bit as \tcode{x}. \end{itemdescr} \indexlibrarydtor{vector::reference}% \begin{itemdecl} constexpr reference::~reference(); \end{itemdecl} \begin{itemdescr} \pnum \effects None. \end{itemdescr} \indexlibrarymember{operator=}{vector::reference}% \begin{itemdecl} constexpr reference& reference::operator=(bool x) noexcept; constexpr reference& reference::operator=(const reference& x) noexcept; constexpr const reference& reference::operator=(bool x) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Sets the bit referred to by \tcode{*this} when \tcode{bool(x)} is \tcode{true}, and clears it otherwise. \pnum \returns \tcode{*this}. \end{itemdescr} \indexlibrarymember{flip}{vector::reference}% \begin{itemdecl} constexpr void reference::flip() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{*this = !*this}. \end{itemdescr} \indexlibrarymember{swap}{vector::reference}% \begin{itemdecl} constexpr void swap(reference x, reference y) noexcept; constexpr void swap(reference x, bool& y) noexcept; constexpr void swap(bool& x, reference y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Exchanges the values denoted by \tcode{x} and \tcode{y} as if by: \begin{codeblock} bool b = x; x = y; y = b; \end{codeblock} \end{itemdescr} \indexlibrarymember{flip}{vector}% \begin{itemdecl} constexpr void flip() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Replaces each element in the container with its complement. \end{itemdescr} \begin{itemdecl} template struct hash>; \end{itemdecl} \begin{itemdescr} \pnum The specialization is enabled\iref{unord.hash}. \end{itemdescr} \indexlibrary{is-vector-bool-reference@\exposid{is-vector-bool-reference}}% \begin{itemdecl} template constexpr bool @\exposid{is-vector-bool-reference}@ = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum The expression \tcode{\exposid{is-vector-bool-reference}} is \tcode{true} if \tcode{T} denotes the type \tcode{vector::\linebreak{}reference} for some type \tcode{Alloc} and \tcode{vector} is not a program-defined specialization. \end{itemdescr} \rSec3[vector.bool.fmt]{Formatter specialization for \tcode{vector}} \indexlibraryglobal{formatter}% \begin{codeblock} namespace std { template requires @\exposid{is-vector-bool-reference}@ struct formatter { private: formatter @\exposid{underlying_}@; // \expos public: template constexpr typename ParseContext::iterator parse(ParseContext& ctx); template typename FormatContext::iterator format(const T& ref, FormatContext& ctx) const; }; } \end{codeblock} \indexlibrarymember{parse}{formatter}% \begin{itemdecl} template constexpr typename ParseContext::iterator parse(ParseContext& ctx); \end{itemdecl} \begin{itemdescr} \pnum Equivalent to: \tcode{return \exposid{underlying_}.parse(ctx);} \end{itemdescr} \indexlibrarymember{format}{formatter}% \begin{itemdecl} template typename FormatContext::iterator format(const T& ref, FormatContext& ctx) const; \end{itemdecl} \begin{itemdescr} \pnum Equivalent to: \tcode{return \exposid{underlying_}.format(ref, ctx);} \end{itemdescr} \rSec2[inplace.vector.syn]{Header \tcode{} synopsis} \indexheader{inplace_vector}% \begin{codeblock} // mostly freestanding #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{inplace.vector}, class template \tcode{inplace_vector} template class inplace_vector; // partially freestanding // \ref{inplace.vector.erasure}, erasure template constexpr typename inplace_vector::size_type erase(inplace_vector& c, const U& value); template constexpr typename inplace_vector::size_type erase_if(inplace_vector& c, Predicate pred); } \end{codeblock} \rSec2[inplace.vector]{Class template \tcode{inplace_vector}} \rSec3[inplace.vector.overview]{Overview} \pnum \indexlibraryglobal{inplace_vector}% An \tcode{inplace_vector} is a contiguous container. Its capacity is fixed and its elements are stored within the \tcode{inplace_vector} object itself. \pnum An \tcode{inplace_vector} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of a contiguous container, and of a sequence container, including most of the optional sequence container requirements\iref{sequence.reqmts}. The exceptions are the \tcode{push_front}, \tcode{prepend_range}, \tcode{pop_front}, and \tcode{emplace_front} member functions, which are not provided. Descriptions are provided here only for operations on \tcode{inplace_vector} that are not described in one of these tables or for operations where there is additional semantic information. \pnum For any \tcode{N}, \tcode{inplace_vector::iterator} and \tcode{inplace_vector::const_iterator} meet the constexpr iterator requirements. \pnum Any member function of \tcode{inplace_vector} that would cause the size to exceed \tcode{N} throws an exception of type \tcode{bad_alloc}. \pnum Let \tcode{IV} denote a specialization of \tcode{inplace_vector}. If \tcode{N} is zero, then \tcode{IV} is trivially copyable and empty, and \tcode{std::is_trivially_default_constructible_v} is \tcode{true}. Otherwise: \begin{itemize} \item If \tcode{is_trivially_copy_constructible_v} is \tcode{true}, then \tcode{IV} has a trivial copy constructor. \item If \tcode{is_trivially_move_constructible_v} is \tcode{true}, then \tcode{IV} has a trivial move constructor. \item If \tcode{is_trivially_destructible_v} is \tcode{true}, then: \begin{itemize} \item \tcode{IV} has a trivial destructor. \item If \begin{codeblock} is_trivially_copy_constructible_v && is_trivially_copy_assignable_v \end{codeblock} is \tcode{true}, then \tcode{IV} has a trivial copy assignment operator. \item If \begin{codeblock} is_trivially_move_constructible_v && is_trivially_move_assignable_v \end{codeblock} is \tcode{true}, then \tcode{IV} has a trivial move assignment operator. \end{itemize} \end{itemize} \begin{codeblock} namespace std { template class inplace_vector { public: // types: using value_type = T; using pointer = T*; using const_pointer = const T*; using reference = value_type&; using const_reference = const value_type&; using size_type = size_t; using difference_type = ptrdiff_t; using iterator = @\impdefx{type of \tcode{inplace_vector::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{inplace_vector::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // \ref{inplace.vector.cons}, construct/copy/destroy constexpr inplace_vector() noexcept; constexpr explicit inplace_vector(size_type n); // freestanding-deleted constexpr inplace_vector(size_type n, const T& value); // freestanding-deleted template constexpr inplace_vector(InputIterator first, InputIterator last); // freestanding-deleted template<@\exposconcept{container-compatible-range}@ R> constexpr inplace_vector(from_range_t, R&& rg); // freestanding-deleted constexpr inplace_vector(const inplace_vector&); constexpr inplace_vector(inplace_vector&&) noexcept(N == 0 || is_nothrow_move_constructible_v); constexpr inplace_vector(initializer_list il); // freestanding-deleted constexpr ~inplace_vector(); constexpr inplace_vector& operator=(const inplace_vector& other); constexpr inplace_vector& operator=(inplace_vector&& other) noexcept(N == 0 || (is_nothrow_move_assignable_v && is_nothrow_move_constructible_v)); constexpr inplace_vector& operator=(initializer_list); // freestanding-deleted template constexpr void assign(InputIterator first, InputIterator last); // freestanding-deleted template<@\exposconcept{container-compatible-range}@ R> constexpr void assign_range(R&& rg); // freestanding-deleted constexpr void assign(size_type n, const T& u); // freestanding-deleted constexpr void assign(initializer_list il); // freestanding-deleted // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // \ref{inplace.vector.capacity}, capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; static constexpr size_type max_size() noexcept; static constexpr size_type capacity() noexcept; constexpr void resize(size_type sz); // freestanding-deleted constexpr void resize(size_type sz, const T& c); // freestanding-deleted static constexpr void reserve(size_type n); // freestanding-deleted static constexpr void shrink_to_fit() noexcept; // element access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; constexpr reference at(size_type n); // freestanding-deleted constexpr const_reference at(size_type n) const; // freestanding-deleted constexpr reference front(); constexpr const_reference front() const; constexpr reference back(); constexpr const_reference back() const; // \ref{inplace.vector.data}, data access constexpr T* data() noexcept; constexpr const T* data() const noexcept; // \ref{inplace.vector.modifiers}, modifiers template constexpr reference emplace_back(Args&&... args); // freestanding-deleted constexpr reference push_back(const T& x); // freestanding-deleted constexpr reference push_back(T&& x); // freestanding-deleted template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); // freestanding-deleted constexpr void pop_back(); template constexpr pointer try_emplace_back(Args&&... args); constexpr pointer try_push_back(const T& x); constexpr pointer try_push_back(T&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr ranges::borrowed_iterator_t try_append_range(R&& rg); template constexpr reference unchecked_emplace_back(Args&&... args); constexpr reference unchecked_push_back(const T& x); constexpr reference unchecked_push_back(T&& x); template constexpr iterator emplace(const_iterator position, Args&&... args); // freestanding-deleted constexpr iterator insert(const_iterator position, const T& x); // freestanding-deleted constexpr iterator insert(const_iterator position, T&& x); // freestanding-deleted constexpr iterator insert(const_iterator position, size_type n, // freestanding-deleted const T& x); template constexpr iterator insert(const_iterator position, // freestanding-deleted InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); // freestanding-deleted constexpr iterator insert(const_iterator position, // freestanding-deleted initializer_list il); constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(inplace_vector& x) noexcept(N == 0 || (is_nothrow_swappable_v && is_nothrow_move_constructible_v)); constexpr void clear() noexcept; friend constexpr bool operator==(const inplace_vector& x, const inplace_vector& y); friend constexpr @\exposid{synth-three-way-result}@ operator<=>(const inplace_vector& x, const inplace_vector& y); friend constexpr void swap(inplace_vector& x, inplace_vector& y) noexcept(N == 0 || (is_nothrow_swappable_v && is_nothrow_move_constructible_v)) { x.swap(y); } }; } \end{codeblock} \rSec3[inplace.vector.cons]{Constructors} \indexlibraryctor{inplace_vector} \begin{itemdecl} constexpr explicit inplace_vector(size_type n); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{inplace_vector}. \pnum \effects Constructs an \tcode{inplace_vector} with \tcode{n} default-inserted elements. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{inplace_vector} \begin{itemdecl} constexpr inplace_vector(size_type n, const T& value); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{inplace_vector}. \pnum \effects Constructs an \tcode{inplace_vector} with \tcode{n} copies of \tcode{value}. \pnum \complexity Linear in \tcode{n}. \end{itemdescr} \indexlibraryctor{inplace_vector} \begin{itemdecl} template constexpr inplace_vector(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an \tcode{inplace_vector} equal to the range \range{first}{last}. \pnum \complexity Linear in \tcode{distance(first, last)}. \end{itemdescr} \indexlibraryctor{inplace_vector} \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr inplace_vector(from_range_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \mandates If \tcode{ranges::size(rg)} is a constant expression, then $\tcode{ranges::size(rg)} \le \tcode{N}$. \pnum \effects Constructs an \tcode{inplace_vector} with the elements of the range \tcode{rg}. \pnum \complexity Linear in \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[inplace.vector.capacity]{Capacity} \indexlibrarymember{capacity}{inplace_vector}% \indexlibrarymember{max_size}{inplace_vector}% \begin{itemdecl} static constexpr size_type capacity() noexcept; static constexpr size_type max_size() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{N}. \end{itemdescr} \indexlibrarymember{resize}{inplace_vector}% \begin{itemdecl} constexpr void resize(size_type sz); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{DefaultInsertable} into \tcode{inplace_vector}. \pnum \effects %FIXME: Should "is \tcode{true}" be appended here? If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} default-inserted elements to the sequence. \pnum \remarks If an exception is thrown, there are no effects on \tcode{*this}. \end{itemdescr} \indexlibrarymember{resize}{inplace_vector}% \begin{itemdecl} constexpr void resize(size_type sz, const T& c); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{T} is \oldconcept{CopyInsertable} into \tcode{inplace_vector}. \pnum \effects %FIXME: Should "is \tcode{true}" be appended here? If \tcode{sz < size()}, erases the last \tcode{size() - sz} elements from the sequence. Otherwise, appends \tcode{sz - size()} copies of \tcode{c} to the sequence. \pnum \remarks If an exception is thrown, there are no effects on \tcode{*this}. \end{itemdescr} \indexlibrarymember{reserve}{inplace_vector}% \begin{itemdecl} static constexpr void reserve(size_type n); \end{itemdecl} \begin{itemdescr} \pnum \effects None. \pnum \throws \tcode{bad_alloc} if \tcode{n > capacity()} is \tcode{true}. \end{itemdescr} \indexlibrarymember{shrink_to_fit}{inplace_vector}% \begin{itemdecl} static constexpr void shrink_to_fit() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects None. \end{itemdescr} \rSec3[inplace.vector.data]{Data} \indexlibrarymember{data}{inplace_vector}% \begin{itemdecl} constexpr T* data() noexcept; constexpr const T* data() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns A pointer such that \range{data()}{data() + size()} is a valid range. For a non-empty \tcode{inplace_vector}, \tcode{data() == addressof(front())} is \tcode{true}. \pnum \complexity Constant time. \end{itemdescr} \rSec3[inplace.vector.modifiers]{Modifiers} \indexlibrarymember{insert}{inplace_vector}% \indexlibrarymember{insert_range}{inplace_vector}% \indexlibrarymember{emplace}{inplace_vector}% \indexlibrarymember{append_range}{inplace_vector}% \begin{itemdecl} constexpr iterator insert(const_iterator position, const T& x); constexpr iterator insert(const_iterator position, T&& x); constexpr iterator insert(const_iterator position, size_type n, const T& x); template constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr iterator insert_range(const_iterator position, R&& rg); constexpr iterator insert(const_iterator position, initializer_list il); template constexpr iterator emplace(const_iterator position, Args&&... args); template<@\exposconcept{container-compatible-range}@ R> constexpr void append_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum Let $n$ be the value of \tcode{size()} before this call for the \tcode{append_range} overload, and \tcode{distance(begin, position)} otherwise. \pnum \complexity Linear in the number of elements inserted plus the distance to the end of the vector. \pnum \remarks If an exception is thrown other than by the copy constructor, move constructor, assignment operator, or move assignment operator of \tcode{T} or by any \tcode{InputIterator} operation, there are no effects. Otherwise, if an exception is thrown, then $\tcode{size()} \ge n$ and elements in the range \tcode{begin() + \range{0}{$n$}} are not modified. \end{itemdescr} \indexlibrarymember{push_back}{inplace_vector}% \indexlibrarymember{emplace_back}{inplace_vector}% \begin{itemdecl} constexpr reference push_back(const T& x); constexpr reference push_back(T&& x); template constexpr reference emplace_back(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{back()}. \pnum \throws \tcode{bad_alloc} or any exception thrown by the initialization of the inserted element. \pnum \complexity Constant. \pnum \remarks If an exception is thrown, there are no effects on \tcode{*this}. \end{itemdescr} \indexlibrarymember{try_emplace_back}{inplace_vector}% \indexlibrarymember{try_push_back}{inplace_vector}% \begin{itemdecl} template constexpr pointer try_emplace_back(Args&&... args); constexpr pointer try_push_back(const T& x); constexpr pointer try_push_back(T&& x); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{vals} denote a pack: \begin{itemize} \item \tcode{std::forward(args)...} for the first overload, \item \tcode{x} for the second overload, \item \tcode{std::move(x)} for the third overload. \end{itemize} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{inplace_vector} from \tcode{vals...}. \pnum \effects If \tcode{size() < capacity()} is \tcode{true}, appends an object of type \tcode{T} direct-non-list-initialized with \tcode{vals...}. Otherwise, there are no effects. \pnum \returns \keyword{nullptr} if \tcode{size() == capacity()} is \tcode{true}, otherwise \tcode{addressof(back())}. \pnum \throws Nothing unless an exception is thrown by the initialization of the inserted element. \pnum \complexity Constant. \pnum \remarks If an exception is thrown, there are no effects on \tcode{*this}. \end{itemdescr} \indexlibrarymember{try_append_range}{inplace_vector}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr ranges::borrowed_iterator_t try_append_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{inplace_vector} from\\\tcode{*ranges::begin(rg)}. \pnum \effects Appends copies of initial elements in \tcode{rg} before \tcode{end()}, until all elements are inserted or \tcode{size() == capacity()} is \tcode{true}. Each iterator in the range \tcode{rg} is dereferenced at most once. \pnum \returns The first iterator in the range \countedrange{ranges::begin(rg)}{n} that was not inserted into \tcode{*this}, where \tcode{n} is the number of elements in \tcode{rg}. \pnum \complexity Linear in the number of elements inserted. \pnum \remarks Let $n$ be the value of \tcode{size()} prior to this call. If an exception is thrown after the insertion of $k$ elements, then \tcode{size()} equals $n + k$, elements in the range \tcode{begin() + \range{0}{$n$}} are not modified, and elements in the range \tcode{begin() + \range{$n$}{$n + k$}} correspond to the inserted elements. \end{itemdescr} \indexlibrarymember{unchecked_emplace_back}{inplace_vector}% \begin{itemdecl} template constexpr reference unchecked_emplace_back(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{size() < capacity()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return *try_emplace_back(std::forward(args)...);} \end{itemdescr} \indexlibrarymember{unchecked_push_back}{inplace_vector}% \begin{itemdecl} constexpr reference unchecked_push_back(const T& x); constexpr reference unchecked_push_back(T&& x); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{size() < capacity()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return *try_push_back(std::forward(x));} \end{itemdescr} \indexlibrarymember{erase}{inplace_vector}% \indexlibrarymember{pop_back}{inplace_vector}% \begin{itemdecl} constexpr iterator erase(const_iterator position); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void pop_back(); \end{itemdecl} \begin{itemdescr} \pnum \effects Invalidates iterators and references at or after the point of the erase. \pnum \throws Nothing unless an exception is thrown by the assignment operator or move assignment operator of \tcode{T}. \pnum \complexity The destructor of \tcode{T} is called the number of times equal to the number of the elements erased, but the assignment operator of \tcode{T} is called the number of times equal to the number of elements after the erased elements. \end{itemdescr} \rSec3[inplace.vector.erasure]{Erasure} \indexlibrarymember{erase}{inplace_vector}% \begin{itemdecl} template constexpr size_t erase(inplace_vector& c, const U& value); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove(c.begin(), c.end(), value); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \indexlibrarymember{erase_if}{inplace_vector}% \begin{itemdecl} template constexpr size_t erase_if(inplace_vector& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto it = remove_if(c.begin(), c.end(), pred); auto r = distance(it, c.end()); c.erase(it, c.end()); return r; \end{codeblock} \end{itemdescr} \rSec1[associative]{Associative containers} \rSec2[associative.general]{General} \pnum The header \libheaderrefx{map}{associative.map.syn} defines the class templates \tcode{map} and \tcode{multimap}; the header \libheaderrefx{set}{associative.set.syn} defines the class templates \tcode{set} and \tcode{multiset}. \pnum The following exposition-only alias templates may appear in deduction guides for associative containers: \begin{codeblock} template using @\placeholder{iter-value-type}@ = iterator_traits::value_type; // \expos template using @\placeholder{iter-key-type}@ = remove_const_t< tuple_element_t<0, @\exposid{iter-value-type}@>>; // \expos template using @\placeholder{iter-mapped-type}@ = tuple_element_t<1, @\exposid{iter-value-type}@>; // \expos template using @\placeholder{iter-to-alloc-type}@ = pair< const tuple_element_t<0, @\exposid{iter-value-type}@>, tuple_element_t<1, @\exposid{iter-value-type}@>>; // \expos template using @\exposid{range-key-type}@ = remove_const_t::first_type>; // \expos template using @\exposid{range-mapped-type}@ = ranges::range_value_t::second_type; // \expos template using @\exposid{range-to-alloc-type}@ = pair::first_type, typename ranges::range_value_t::second_type>; // \expos \end{codeblock} \rSec2[associative.map.syn]{Header \tcode{} synopsis} \indexheader{map}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{map}, class template \tcode{map} template, class Allocator = allocator>> class map; template constexpr bool operator==(const map& x, const map& y); template constexpr @\exposid{synth-three-way-result}@> operator<=>(const map& x, const map& y); template constexpr void swap(map& x, map& y) noexcept(noexcept(x.swap(y))); // \ref{map.erasure}, erasure for \tcode{map} template constexpr typename map::size_type erase_if(map& c, Predicate pred); // \ref{multimap}, class template \tcode{multimap} template, class Allocator = allocator>> class multimap; template constexpr bool operator==(const multimap& x, const multimap& y); template constexpr @\exposid{synth-three-way-result}@> operator<=>(const multimap& x, const multimap& y); template constexpr void swap(multimap& x, multimap& y) noexcept(noexcept(x.swap(y))); // \ref{multimap.erasure}, erasure for \tcode{multimap} template constexpr typename multimap::size_type erase_if(multimap& c, Predicate pred); namespace pmr { template> using map = std::map>>; template> using multimap = std::multimap>>; } } \end{codeblock} \rSec2[map]{Class template \tcode{map}} \rSec3[map.overview]{Overview} \indexlibraryglobal{map}% \pnum A \tcode{map} is an associative container that supports unique keys (i.e., contains at most one of each key value) and provides for fast retrieval of values of another type \tcode{T} based on the keys. The \tcode{map} class supports bidirectional iterators. \pnum A \tcode{map} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an associative container\iref{associative.reqmts}. A \tcode{map} also provides most operations described in~\ref{associative.reqmts} for unique keys. This means that a \tcode{map} supports the \tcode{a_uniq} operations in~\ref{associative.reqmts} but not the \tcode{a_eq} operations. For a \tcode{map} the \tcode{key_type} is \tcode{Key} and the \tcode{value_type} is \tcode{pair}. Descriptions are provided here only for operations on \tcode{map} that are not described in one of those tables or for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibrarymember{comp}{map::value_compare}% \indexlibrarymember{operator()}{map::value_compare}% \begin{codeblock} namespace std { template, class Allocator = allocator>> class map { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using key_compare = Compare; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{map::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{map::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{map::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{map::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using node_type = @\unspec@; using insert_return_type = @\placeholdernc{insert-return-type}@; class value_compare { protected: Compare comp; constexpr value_compare(Compare c) : comp(c) {} public: constexpr bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); } }; // \ref{map.cons}, construct/copy/destroy constexpr map() : map(Compare()) { } constexpr explicit map(const Compare& comp, const Allocator& = Allocator()); template constexpr map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); constexpr map(const map& x); constexpr map(map&& x); constexpr explicit map(const Allocator&); constexpr map(const map&, const type_identity_t&); constexpr map(map&&, const type_identity_t&); constexpr map(initializer_list, const Compare& = Compare(), const Allocator& = Allocator()); template constexpr map(InputIterator first, InputIterator last, const Allocator& a) : map(first, last, Compare(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr map(from_range_t, R&& rg, const Allocator& a) : map(from_range, std::forward(rg), Compare(), a) { } constexpr map(initializer_list il, const Allocator& a) : map(il, Compare(), a) { } constexpr ~map(); constexpr map& operator=(const map& x); constexpr map& operator=(map&& x) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v); constexpr map& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{map.access}, element access constexpr mapped_type& operator[](const key_type& x); constexpr mapped_type& operator[](key_type&& x); template constexpr mapped_type& operator[](K&& x); constexpr mapped_type& at(const key_type& x); constexpr const mapped_type& at(const key_type& x) const; template constexpr mapped_type& at(const K& x); template constexpr const mapped_type& at(const K& x) const; // \ref{map.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& x); constexpr pair insert(value_type&& x); template constexpr pair insert(P&& x); constexpr iterator insert(const_iterator position, const value_type& x); constexpr iterator insert(const_iterator position, value_type&& x); template constexpr iterator insert(const_iterator position, P&&); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(map&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(map& source); template constexpr void merge(map&& source); template constexpr void merge(multimap& source); template constexpr void merge(multimap&& source); // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // map operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; }; template>, class Allocator = allocator<@\placeholder{iter-to-alloc-type}@>> map(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator()) -> map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Compare, Allocator>; template, class Allocator = allocator<@\exposid{range-to-alloc-type}@>> map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Compare, Allocator>; template, class Allocator = allocator>> map(initializer_list>, Compare = Compare(), Allocator = Allocator()) -> map; template map(InputIterator, InputIterator, Allocator) -> map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, less<@\placeholder{iter-key-type}@>, Allocator>; template map(from_range_t, R&&, Allocator) -> map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, less<@\exposid{range-key-type}@>, Allocator>; template map(initializer_list>, Allocator) -> map, Allocator>; } \end{codeblock} \rSec3[map.cons]{Constructors, copy, and assignment}% \indexlibrarymember{map}{operator==}% \indexlibrarymember{map}{operator<} \indexlibraryctor{map}% \begin{itemdecl} constexpr explicit map(const Compare& comp, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{map} using the specified comparison object and allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{map}% \begin{itemdecl} template constexpr map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{map} using the specified comparison object and allocator, and inserts elements from the range \range{first}{last}. \pnum \complexity Linear in $N$ if the range \range{first}{last} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{last - first}. \end{itemdescr} \indexlibraryctor{map}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{map} using the specified comparison object and allocator, and inserts elements from the range \tcode{rg}. \pnum \complexity Linear in $N$ if \tcode{rg} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[map.access]{Element access} \indexlibrary{\idxcode{operator[]}!\idxcode{map}}% \begin{itemdecl} constexpr mapped_type& operator[](const key_type& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(x).first->second;} \end{itemdescr} \indexlibrary{\idxcode{operator[]}!\idxcode{map}}% \begin{itemdecl} constexpr mapped_type& operator[](key_type&& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(std::move(x)).first->second;} \end{itemdescr} \indexlibrary{\idxcode{operator[]}!\idxcode{map}}% \begin{itemdecl} template constexpr mapped_type& operator[](K&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \pnum \effects Equivalent to: \tcode{return try_emplace(std::forward(x)).first->second;} \end{itemdescr} \indexlibrarymember{at}{map}% \begin{itemdecl} constexpr mapped_type& at(const key_type& x); constexpr const mapped_type& at(const key_type& x) const; \end{itemdecl} \begin{itemdescr} \pnum \returns A reference to the \tcode{mapped_type} corresponding to \tcode{x} in \tcode{*this}. \pnum \throws An exception object of type \tcode{out_of_range} if no such element is present. \pnum \complexity Logarithmic. \end{itemdescr} \indexlibrarymember{at}{map}% \begin{itemdecl} template constexpr mapped_type& at(const K& x); template constexpr const mapped_type& at(const K& x) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \pnum \expects The expression \tcode{find(x)} is well-formed and has well-defined behavior. \pnum \returns A reference to \tcode{find(x)->second}. \pnum \throws An exception object of type \tcode{out_of_range} if \tcode{find(x) == end()} is \tcode{true}. \pnum \complexity Logarithmic. \end{itemdescr} \rSec3[map.modifiers]{Modifiers} \indexlibrarymember{insert}{map}% \begin{itemdecl} template constexpr pair insert(P&& x); template constexpr iterator insert(const_iterator position, P&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects The first form is equivalent to \tcode{return emplace(std::forward

(x))}. The second form is equivalent to \tcode{return emplace_hint(position, std::forward

(x))}. \end{itemdescr} \indexlibrarymember{try_emplace}{map}% \begin{itemdecl} template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{piecewise_construct}, \tcode{for\-ward_as_tuple(k)}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{piecewise_construct}, \tcode{forward_as_tuple(k)}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{try_emplace}{map}% \begin{itemdecl} template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{piecewise_construct}, \tcode{for\-ward_as_tuple(std::move(k))}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{piecewise_construct}, \tcode{forward_as_tuple(std::move(k))}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{try_emplace}{map}% \begin{itemdecl} template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. For the first overload, \tcode{is_convertible_v} and \tcode{is_convertible_v} are both \tcode{false}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{piecewise_construct, forward_as_tuple(std::forward(k)), forward_as_tuple(std::forward(args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise, let \tcode{r} be \tcode{equal_range(k)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{piecewise_construct, forward_as_tuple(std::forward(k)), forward_as_tuple(std::forward(args)...)}.\linebreak If \tcode{equal_range(u.first) == r} is \tcode{false}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{map}% \begin{itemdecl} template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{k}, \tcode{std::forward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::for\-ward(obj)} to \tcode{e.second}. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{k}, \tcode{std::forward(obj)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{map}% \begin{itemdecl} template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{std::move(k)}, \tcode{std::for\-ward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::for\-ward(obj)} to \tcode{e.second}. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{std::\brk{}move(k)}, \tcode{std::forward(obj)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{map}% \begin{itemdecl} template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{map} from \tcode{std::forward(k), std::\newline forward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::forward\newline (obj)} to \tcode{e.second}. Otherwise, let \tcode{r} be \tcode{equal_range(k)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{std::forward(k), std::forward(obj)}. If \tcode{equal_range(u.first) == r} is \tcode{false}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \rSec3[map.erasure]{Erasure} \indexlibrarymember{erase_if}{map}% \begin{itemdecl} template typename map::size_type constexpr erase_if(map& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec2[multimap]{Class template \tcode{multimap}} \rSec3[multimap.overview]{Overview} \pnum \indexlibraryglobal{multimap}% A \tcode{multimap} is an associative container that supports equivalent keys (i.e., possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type \tcode{T} based on the keys. The \tcode{multimap} class supports bidirectional iterators. \pnum A \tcode{multimap} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an associative container\iref{associative.reqmts}. A \tcode{multimap} also provides most operations described in~\ref{associative.reqmts} for equal keys. This means that a \tcode{multimap} supports the \tcode{a_eq} operations in~\ref{associative.reqmts} but not the \tcode{a_uniq} operations. For a \tcode{multimap} the \tcode{key_type} is \tcode{Key} and the \tcode{value_type} is \tcode{pair}. Descriptions are provided here only for operations on \tcode{multimap} that are not described in one of those tables or for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibrarymember{comp}{multimap::value_compare}% \indexlibrarymember{operator()}{multimap::value_compare}% \begin{codeblock} namespace std { template, class Allocator = allocator>> class multimap { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using key_compare = Compare; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{multimap::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{multimap::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{multimap::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{multimap::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using node_type = @\unspec@; class value_compare { protected: Compare comp; constexpr value_compare(Compare c) : comp(c) { } public: constexpr bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); } }; // \ref{multimap.cons}, construct/copy/destroy constexpr multimap() : multimap(Compare()) { } constexpr explicit multimap(const Compare& comp, const Allocator& = Allocator()); template constexpr multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr multimap(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); constexpr multimap(const multimap& x); constexpr multimap(multimap&& x); constexpr explicit multimap(const Allocator&); constexpr multimap(const multimap&, const type_identity_t&); constexpr multimap(multimap&&, const type_identity_t&); constexpr multimap(initializer_list, const Compare& = Compare(), const Allocator& = Allocator()); template constexpr multimap(InputIterator first, InputIterator last, const Allocator& a) : multimap(first, last, Compare(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr multimap(from_range_t, R&& rg, const Allocator& a) : multimap(from_range, std::forward(rg), Compare(), a) { } constexpr multimap(initializer_list il, const Allocator& a) : multimap(il, Compare(), a) { } constexpr ~multimap(); constexpr multimap& operator=(const multimap& x); constexpr multimap& operator=(multimap&& x) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v); constexpr multimap& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{multimap.modifiers}, modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& x); constexpr iterator insert(value_type&& x); template constexpr iterator insert(P&& x); constexpr iterator insert(const_iterator position, const value_type& x); constexpr iterator insert(const_iterator position, value_type&& x); template constexpr iterator insert(const_iterator position, P&& x); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(multimap&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(multimap& source); template constexpr void merge(multimap&& source); template constexpr void merge(map& source); template constexpr void merge(map&& source); // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // map operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; }; template>, class Allocator = allocator<@\placeholder{iter-to-alloc-type}@>> multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator()) -> multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Compare, Allocator>; template>, class Allocator = allocator<@\exposid{range-to-alloc-type}@>> multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Compare, Allocator>; template, class Allocator = allocator>> multimap(initializer_list>, Compare = Compare(), Allocator = Allocator()) -> multimap; template multimap(InputIterator, InputIterator, Allocator) -> multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, less<@\placeholder{iter-key-type}@>, Allocator>; template multimap(from_range_t, R&&, Allocator) -> multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, less<@\exposid{range-key-type}@>, Allocator>; template multimap(initializer_list>, Allocator) -> multimap, Allocator>; } \end{codeblock}% \indexlibrarymember{multimap}{operator==}% \indexlibrarymember{multimap}{operator<} \rSec3[multimap.cons]{Constructors} \indexlibraryctor{multimap}% \begin{itemdecl} constexpr explicit multimap(const Compare& comp, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multimap} using the specified comparison object and allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{multimap}% \begin{itemdecl} template constexpr multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multimap} using the specified comparison object and allocator, and inserts elements from the range \range{first}{last}. \pnum \complexity Linear in $N$ if the range \range{first}{last} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{last - first}. \end{itemdescr} \indexlibraryctor{multimap}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr multimap(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multimap} using the specified comparison object and allocator, and inserts elements from the range \tcode{rg}. \pnum \complexity Linear in $N$ if \tcode{rg} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[multimap.modifiers]{Modifiers} \indexlibrarymember{insert}{multimap}% \begin{itemdecl} template constexpr iterator insert(P&& x); template constexpr iterator insert(const_iterator position, P&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects The first form is equivalent to \tcode{return emplace(std::forward

(x))}. The second form is equivalent to \tcode{return emplace_hint(position, std::forward

(x))}. \end{itemdescr} \rSec3[multimap.erasure]{Erasure} \indexlibrarymember{erase_if}{multimap}% \begin{itemdecl} template typename multimap::size_type constexpr erase_if(multimap& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec2[associative.set.syn]{Header \tcode{} synopsis}% \indexheader{set}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{set}, class template \tcode{set} template, class Allocator = allocator> class set; template constexpr bool operator==(const set& x, const set& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const set& x, const set& y); template constexpr void swap(set& x, set& y) noexcept(noexcept(x.swap(y))); // \ref{set.erasure}, erasure for \tcode{set} template constexpr typename set::size_type erase_if(set& c, Predicate pred); // \ref{multiset}, class template \tcode{multiset} template, class Allocator = allocator> class multiset; template constexpr bool operator==(const multiset& x, const multiset& y); template constexpr @\exposid{synth-three-way-result}@ operator<=>(const multiset& x, const multiset& y); template constexpr void swap(multiset& x, multiset& y) noexcept(noexcept(x.swap(y))); // \ref{multiset.erasure}, erasure for \tcode{multiset} template constexpr typename multiset::size_type erase_if(multiset& c, Predicate pred); namespace pmr { template> using set = std::set>; template> using multiset = std::multiset>; } } \end{codeblock} \rSec2[set]{Class template \tcode{set}} \rSec3[set.overview]{Overview} \pnum \indexlibraryglobal{set}% A \tcode{set} is an associative container that supports unique keys (i.e., contains at most one of each key value) and provides for fast retrieval of the keys themselves. The \tcode{set} class supports bidirectional iterators. \pnum A \tcode{set} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an associative container\iref{associative.reqmts}. A \tcode{set} also provides most operations described in~\ref{associative.reqmts} for unique keys. This means that a \tcode{set} supports the \tcode{a_uniq} operations in~\ref{associative.reqmts} but not the \tcode{a_eq} operations. For a \tcode{set} both the \tcode{key_type} and \tcode{value_type} are \tcode{Key}. Descriptions are provided here only for operations on \tcode{set} that are not described in one of these tables and for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \begin{codeblock} namespace std { template, class Allocator = allocator> class set { public: // types using key_type = Key; using key_compare = Compare; using value_type = Key; using value_compare = Compare; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{set::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{set::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{set::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{set::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using node_type = @\unspec@; using insert_return_type = @\placeholdernc{insert-return-type}@; // \ref{set.cons}, construct/copy/destroy constexpr set() : set(Compare()) { } constexpr explicit set(const Compare& comp, const Allocator& = Allocator()); template constexpr set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); constexpr set(const set& x); constexpr set(set&& x); constexpr explicit set(const Allocator&); constexpr set(const set&, const type_identity_t&); constexpr set(set&&, const type_identity_t&); constexpr set(initializer_list, const Compare& = Compare(), const Allocator& = Allocator()); template constexpr set(InputIterator first, InputIterator last, const Allocator& a) : set(first, last, Compare(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr set(from_range_t, R&& rg, const Allocator& a) : set(from_range, std::forward(rg), Compare(), a) { } constexpr set(initializer_list il, const Allocator& a) : set(il, Compare(), a) { } constexpr ~set(); constexpr set& operator=(const set& x); constexpr set& operator=(set&& x) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v); constexpr set& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{set.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& x); constexpr pair insert(value_type&& x); template constexpr pair insert(K&& x); constexpr iterator insert(const_iterator position, const value_type& x); constexpr iterator insert(const_iterator position, value_type&& x); template constexpr iterator insert(const_iterator position, K&& x); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(set&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(set& source); template constexpr void merge(set&& source); template constexpr void merge(multiset& source); template constexpr void merge(multiset&& source); // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // set operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; }; template>, class Allocator = allocator<@\placeholder{iter-value-type}@>> set(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator()) -> set<@\placeholder{iter-value-type}@, Compare, Allocator>; template>, class Allocator = allocator>> set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> set, Compare, Allocator>; template, class Allocator = allocator> set(initializer_list, Compare = Compare(), Allocator = Allocator()) -> set; template set(InputIterator, InputIterator, Allocator) -> set<@\placeholder{iter-value-type}@, less<@\placeholder{iter-value-type}@>, Allocator>; template set(from_range_t, R&&, Allocator) -> set, less>, Allocator>; template set(initializer_list, Allocator) -> set, Allocator>; } \end{codeblock}% \indexlibrarymember{set}{operator==}% \indexlibrarymember{set}{operator<} \rSec3[set.cons]{Constructors, copy, and assignment} \indexlibraryctor{set}% \begin{itemdecl} constexpr explicit set(const Compare& comp, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{set} using the specified comparison object and allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{set}% \begin{itemdecl} template constexpr set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{set} using the specified comparison object and allocator, and inserts elements from the range \range{first}{last}. \pnum \complexity Linear in $N$ if the range \range{first}{last} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{last - first}. \end{itemdescr} \indexlibraryctor{set}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{set} using the specified comparison object and allocator, and inserts elements from the range \tcode{rg}. \pnum \complexity Linear in $N$ if \tcode{rg} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[set.erasure]{Erasure} \indexlibrarymember{erase_if}{set}% \begin{itemdecl} template constexpr typename set::size_type erase_if(set& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec3[set.modifiers]{Modifiers} \indexlibrarymember{insert}{set}% \begin{itemdecl} template constexpr pair insert(K&& x); template constexpr iterator insert(const_iterator hint, K&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. For the second overload, \tcode{is_convertible_v} and \tcode{is_convertible_v} are both \tcode{false}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{set} from \tcode{std::forward(x)}. \pnum \effects If the set already contains an element that is equivalent to \tcode{x}, there is no effect. Otherwise, let \tcode{r} be \tcode{equal_range(x)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{std::forward(x)}. If \tcode{equal_range(u) == r} is \tcode{false}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the set element that is equivalent to \tcode{x}. \pnum \complexity Logarithmic. \end{itemdescr} \rSec2[multiset]{Class template \tcode{multiset}} \rSec3[multiset.overview]{Overview} \pnum \indexlibraryglobal{multiset}% A \tcode{multiset} is an associative container that supports equivalent keys (i.e., possibly contains multiple copies of the same key value) and provides for fast retrieval of the keys themselves. The \tcode{multiset} class supports bidirectional iterators. \pnum A \tcode{multiset} meets all of the requirements of a container\iref{container.reqmts}, of a reversible container\iref{container.rev.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an associative container\iref{associative.reqmts}. \tcode{multiset} also provides most operations described in~\ref{associative.reqmts} for duplicate keys. This means that a \tcode{multiset} supports the \tcode{a_eq} operations in~\ref{associative.reqmts} but not the \tcode{a_uniq} operations. For a \tcode{multiset} both the \tcode{key_type} and \tcode{value_type} are \tcode{Key}. Descriptions are provided here only for operations on \tcode{multiset} that are not described in one of these tables and for operations where there is additional semantic information. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \begin{codeblock} namespace std { template, class Allocator = allocator> class multiset { public: // types using key_type = Key; using key_compare = Compare; using value_type = Key; using value_compare = Compare; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{multiset::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{multiset::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{multiset::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{multiset::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using node_type = @\unspec@; // \ref{multiset.cons}, construct/copy/destroy constexpr multiset() : multiset(Compare()) { } constexpr explicit multiset(const Compare& comp, const Allocator& = Allocator()); template constexpr multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); template<@\exposconcept{container-compatible-range}@ R> constexpr multiset(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); constexpr multiset(const multiset& x); constexpr multiset(multiset&& x); constexpr explicit multiset(const Allocator&); constexpr multiset(const multiset&, const type_identity_t&); constexpr multiset(multiset&&, const type_identity_t&); constexpr multiset(initializer_list, const Compare& = Compare(), const Allocator& = Allocator()); template constexpr multiset(InputIterator first, InputIterator last, const Allocator& a) : multiset(first, last, Compare(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr multiset(from_range_t, R&& rg, const Allocator& a) : multiset(from_range, std::forward(rg), Compare(), a) { } constexpr multiset(initializer_list il, const Allocator& a) : multiset(il, Compare(), a) { } constexpr ~multiset(); constexpr multiset& operator=(const multiset& x); constexpr multiset& operator=(multiset&& x) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v); constexpr multiset& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& x); constexpr iterator insert(value_type&& x); constexpr iterator insert(const_iterator position, const value_type& x); constexpr iterator insert(const_iterator position, value_type&& x); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(multiset&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(multiset& source); template constexpr void merge(multiset&& source); template constexpr void merge(set& source); template constexpr void merge(set&& source); // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // set operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; }; template>, class Allocator = allocator<@\placeholder{iter-value-type}@>> multiset(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator()) -> multiset<@\placeholder{iter-value-type}@, Compare, Allocator>; template>, class Allocator = allocator>> multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> multiset, Compare, Allocator>; template, class Allocator = allocator> multiset(initializer_list, Compare = Compare(), Allocator = Allocator()) -> multiset; template multiset(InputIterator, InputIterator, Allocator) -> multiset<@\placeholder{iter-value-type}@, less<@\placeholder{iter-value-type}@>, Allocator>; template multiset(from_range_t, R&&, Allocator) -> multiset, less>, Allocator>; template multiset(initializer_list, Allocator) -> multiset, Allocator>; } \end{codeblock}% \indexlibrarymember{multiset}{operator==}% \indexlibrarymember{multiset}{operator<} \rSec3[multiset.cons]{Constructors} \indexlibraryctor{multiset}% \begin{itemdecl} constexpr explicit multiset(const Compare& comp, const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multiset} using the specified comparison object and allocator. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{multiset}% \begin{itemdecl} template constexpr multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multiset} using the specified comparison object and allocator, and inserts elements from the range \range{first}{last}. \pnum \complexity Linear in $N$ if the range \range{first}{last} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{last - first}. \end{itemdescr} \indexlibraryctor{multiset}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr multiset(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{multiset} using the specified comparison object and allocator, and inserts elements from the range \tcode{rg}. \pnum \complexity Linear in $N$ if \tcode{rg} is already sorted with respect to \tcode{comp} and otherwise $N \log N$, where $N$ is \tcode{ranges::distance(rg)}. \end{itemdescr} \rSec3[multiset.erasure]{Erasure} \indexlibrarymember{erase_if}{multiset}% \begin{itemdecl} template constexpr typename multiset::size_type erase_if(multiset& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec1[unord]{Unordered associative containers} \rSec2[unord.general]{General} \pnum The header \libheaderrefx{unordered_map}{unord.map.syn} defines the class templates \tcode{unordered_map} and \tcode{unordered_multimap}; the header \libheaderrefx{unordered_set}{unord.set.syn} defines the class templates \tcode{unordered_set} and \tcode{unordered_multiset}. \pnum The exposition-only alias templates \exposid{iter-value-type}, \exposid{iter-key-type}, \exposid{iter-mapped-type}, \exposid{iter-to\--alloc-type}, \exposid{range-key-type}, \exposid{range-mapped-type}, and \exposid{range-to-alloc-type} defined in \ref{associative.general} may appear in deduction guides for unordered containers. \rSec2[unord.map.syn]{Header \tcode{} synopsis} \indexheader{unordered_map}% \indexlibraryglobal{unordered_map}% \indexlibraryglobal{unordered_multimap}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{unord.map}, class template \tcode{unordered_map} template, class Pred = equal_to, class Alloc = allocator>> class unordered_map; // \ref{unord.multimap}, class template \tcode{unordered_multimap} template, class Pred = equal_to, class Alloc = allocator>> class unordered_multimap; template constexpr bool operator==(const unordered_map& a, const unordered_map& b); template constexpr bool operator==(const unordered_multimap& a, const unordered_multimap& b); template constexpr void swap(unordered_map& x, unordered_map& y) noexcept(noexcept(x.swap(y))); template constexpr void swap(unordered_multimap& x, unordered_multimap& y) noexcept(noexcept(x.swap(y))); // \ref{unord.map.erasure}, erasure for \tcode{unordered_map} template constexpr typename unordered_map::size_type erase_if(unordered_map& c, Predicate pred); // \ref{unord.multimap.erasure}, erasure for \tcode{unordered_multimap} template constexpr typename unordered_multimap::size_type erase_if(unordered_multimap& c, Predicate pred); namespace pmr { template, class Pred = equal_to> using unordered_map = std::unordered_map>>; template, class Pred = equal_to> using unordered_multimap = std::unordered_multimap>>; } } \end{codeblock} \rSec2[unord.map]{Class template \tcode{unordered_map}}% \indexlibraryglobal{unordered_map} \rSec3[unord.map.overview]{Overview} \pnum \indextext{\idxcode{unordered_map}!unique keys}% \indextext{unordered associative containers!unique keys}% An \tcode{unordered_map} is an unordered associative container that supports unique keys (an \tcode{unordered_map} contains at most one of each key value) and that associates values of another type \tcode{mapped_type} with the keys. The \tcode{unordered_map} class supports forward iterators. \pnum An \tcode{unordered_map} meets all of the requirements of a container\iref{container.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an unordered associative container\iref{unord.req}. It provides the operations described in the preceding requirements table for unique keys; that is, an \tcode{unordered_map} supports the \tcode{a_uniq} operations in that table, not the \tcode{a_eq} operations. For an \tcode{unordered_map} the \tcode{key_type} is \tcode{Key}, the \tcode{mapped_type} is \tcode{T}, and the \tcode{value_type} is \tcode{pair}. \pnum Subclause~\ref{unord.map} only describes operations on \tcode{unordered_map} that are not described in one of the requirement tables, or for which there is additional semantic information. \pnum The types \tcode{iterator}, \tcode{const_iterator}, \tcode{local_iterator}, and \tcode{const_local_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibraryglobal{unordered_map}% \begin{codeblock} namespace std { template, class Pred = equal_to, class Allocator = allocator>> class unordered_map { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{unordered_map::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{unordered_map::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{unordered_map::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{unordered_map::const_iterator}}@; // see \ref{container.requirements} using local_iterator = @\impdefx{type of \tcode{unordered_map::local_iterator}}@; // see \ref{container.requirements} using const_local_iterator = @\impdefx{type of \tcode{unordered_map::const_local_iterator}}@; // see \ref{container.requirements} using node_type = @\unspec@; using insert_return_type = @\placeholdernc{insert-return-type}@; // \ref{unord.map.cnstr}, construct/copy/destroy constexpr unordered_map(); constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template constexpr unordered_map(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_map(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(const unordered_map&); constexpr unordered_map(unordered_map&&); constexpr explicit unordered_map(const Allocator&); constexpr unordered_map(const unordered_map&, const type_identity_t&); constexpr unordered_map(unordered_map&&, const type_identity_t&); constexpr unordered_map(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(size_type n, const allocator_type& a) : unordered_map(n, hasher(), key_equal(), a) { } constexpr unordered_map(size_type n, const hasher& hf, const allocator_type& a) : unordered_map(n, hf, key_equal(), a) { } template constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_map(f, l, n, hasher(), key_equal(), a) { } template constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_map(f, l, n, hf, key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a) : unordered_map(from_range, std::forward(rg), n, hasher(), key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a) : unordered_map(from_range, std::forward(rg), n, hf, key_equal(), a) { } constexpr unordered_map(initializer_list il, size_type n, const allocator_type& a) : unordered_map(il, n, hasher(), key_equal(), a) { } constexpr unordered_map(initializer_list il, size_type n, const hasher& hf, const allocator_type& a) : unordered_map(il, n, hf, key_equal(), a) { } constexpr ~unordered_map(); constexpr unordered_map& operator=(const unordered_map&); constexpr unordered_map& operator=(unordered_map&&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_map& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{unord.map.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& obj); constexpr pair insert(value_type&& obj); template constexpr pair insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, P&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_map&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(unordered_map& source); template constexpr void merge(unordered_map&& source); template constexpr void merge(unordered_multimap& source); template constexpr void merge(unordered_multimap&& source); // observers constexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operations constexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; template constexpr iterator find(const K& k); template constexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; template constexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; template constexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; template constexpr pair equal_range(const K& k); template constexpr pair equal_range(const K& k) const; // \ref{unord.map.elem}, element access constexpr mapped_type& operator[](const key_type& k); constexpr mapped_type& operator[](key_type&& k); template constexpr mapped_type& operator[](K&& k); constexpr mapped_type& at(const key_type& k); constexpr const mapped_type& at(const key_type& k) const; template constexpr mapped_type& at(const K& k); template constexpr const mapped_type& at(const K& k) const; // bucket interface constexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policy constexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<@\placeholder{iter-key-type}@>, class Allocator = allocator<@\placeholder{iter-to-alloc-type}@>> unordered_map(InputIterator, InputIterator, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Hash, Pred, Allocator>; template>, class Pred = equal_to<@\exposid{range-key-type}@>, class Allocator = allocator<@\exposid{range-to-alloc-type}@>> unordered_map(from_range_t, R&&, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator>> unordered_map(initializer_list>, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_map; template unordered_map(InputIterator, InputIterator, typename @\seebelow@::size_type, Allocator) -> unordered_map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, hash<@\placeholder{iter-key-type}@>, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_map(InputIterator, InputIterator, Allocator) -> unordered_map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, hash<@\placeholder{iter-key-type}@>, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_map(InputIterator, InputIterator, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_map<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Hash, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_map(from_range_t, R&&, typename @\seebelow@::size_type, Allocator) -> unordered_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, hash<@\exposid{range-key-type}@>, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_map(from_range_t, R&&, Allocator) -> unordered_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, hash<@\exposid{range-key-type}@>, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_map(from_range_t, R&&, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Hash, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_map(initializer_list>, typename @\seebelow@::size_type, Allocator) -> unordered_map, equal_to, Allocator>; template unordered_map(initializer_list>, Allocator) -> unordered_map, equal_to, Allocator>; template unordered_map(initializer_list>, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_map, Allocator>; } \end{codeblock} \pnum A \tcode{size_type} parameter type in an \tcode{unordered_map} deduction guide refers to the \tcode{size_type} member type of the type deduced by the deduction guide. \rSec3[unord.map.cnstr]{Constructors} \indexlibraryctor{unordered_map}% \begin{itemdecl} constexpr unordered_map() : unordered_map(size_type(@\seebelow@)) { } constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_map} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. For the default constructor, the number of buckets is \impldef{default number of buckets in \tcode{unordered_map}}. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{unordered_map}% \begin{itemdecl} template constexpr unordered_map(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_map(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_map} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. If \tcode{n} is not provided, the number of buckets is \impldef{default number of buckets in \tcode{unordered_map}}. Then inserts elements from the range \range{f}{l}, \tcode{rg}, or \tcode{il}, respectively. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Average case linear, worst case quadratic. \end{itemdescr} \rSec3[unord.map.elem]{Element access} \indexlibrarymember{unordered_map}{operator[]}% \indextext{\idxcode{unordered_map}!element access}% \begin{itemdecl} constexpr mapped_type& operator[](const key_type& k); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(k).first->second;} \end{itemdescr} \indexlibrarymember{unordered_map}{operator[]}% \indextext{\idxcode{unordered_map}!element access}% \begin{itemdecl} constexpr mapped_type& operator[](key_type&& k); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(std::move(k)).first->second;} \end{itemdescr} \indexlibrarymember{unordered_map}{operator[]}% \indextext{\idxcode{unordered_map}!element access}% \begin{itemdecl} template constexpr mapped_type& operator[](K&& k); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id}s \tcode{Hash::is_transparent} and \tcode{Pred::is_transparent} are valid and denote types. \pnum \effects Equivalent to: \tcode{return try_emplace(std::forward(k)).first->second;} \end{itemdescr} \indexlibrarymember{unordered_map}{at}% \indextext{\idxcode{unordered_map}!element access}% \begin{itemdecl} constexpr mapped_type& at(const key_type& k); constexpr const mapped_type& at(const key_type& k) const; \end{itemdecl} \begin{itemdescr} \pnum \returns A reference to \tcode{x.second}, where \tcode{x} is the (unique) element whose key is equivalent to \tcode{k}. \pnum \throws An exception object of type \tcode{out_of_range} if no such element is present. \end{itemdescr} \indexlibrarymember{unordered_map}{at}% \indextext{\idxcode{unordered_map}!element access}% \begin{itemdecl} template constexpr mapped_type& at(const K& k); template constexpr const mapped_type& at(const K& k) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id}s \tcode{Hash::is_transparent} and \tcode{Pred::is_transparent} are valid and denote types. \pnum \expects The expression \tcode{find(k)} is well-formed and has well-defined behavior. \pnum \returns A reference to \tcode{find(k)->second}. \pnum \throws An exception object of type \tcode{out_of_range} if \tcode{find(k) == end()} is \tcode{true}. \end{itemdescr} \rSec3[unord.map.modifiers]{Modifiers} \indexlibrarymember{unordered_map}{insert}% \begin{itemdecl} template constexpr pair insert(P&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return emplace(std::forward

(obj));} \end{itemdescr} \indexlibrarymember{unordered_map}{insert}% \begin{itemdecl} template constexpr iterator insert(const_iterator hint, P&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return emplace_hint(hint, std::forward

(obj));} \end{itemdescr} \indexlibrarymember{try_emplace}{unordered_map}% \begin{itemdecl} template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_map} from \tcode{piecewise_con\-struct}, \tcode{forward_as_tuple(k)}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{piecewise_construct}, \tcode{forward_as_tuple(k)}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{try_emplace}{unordered_map}% \begin{itemdecl} template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_map} from \tcode{piecewise_con\-struct}, \tcode{forward_as_tuple(std::move(k))}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{piecewise_construct}, \tcode{forward_as_tuple(std::move(k))}, \tcode{forward_as_tuple(std::forward(args)...)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{try_emplace}{unordered_map}% \begin{itemdecl} template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id}s \tcode{Hash::is_transparent} and \tcode{Pred::is_transparent} are valid and denote types. For the first overload, \tcode{is_convertible_v} and \tcode{is_convertible_v} are both \tcode{false}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_map} from \tcode{piecewise_construct, forward_as_tuple(std::forward(k)), forward_as_tuple(std::forward\newline (args)...)}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, there is no effect. Otherwise, let \tcode{h} be \tcode{hash_function()(k)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{piecewise_construct, forward_as_tuple(std::forward(k)), forward_as_tuple(std::forward(args)...)}.\newline If \tcode{hash_function()(u.first) != h || contains(u.first)} is \tcode{true}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{unordered_map}% \begin{itemdecl} template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_map} from \tcode{k}, \tcode{std::for\-ward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::for\-ward(obj)} to \tcode{e.second}. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{k}, \tcode{std::forward(obj)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{unordered_map}% \begin{itemdecl} template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{Emplace\-Constructible} into \tcode{unordered_map} from \tcode{std::move(k)}, \tcode{std::\brk{}forward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::for\-ward(obj)} to \tcode{e.second}. Otherwise inserts an object of type \tcode{value_type} constructed with \tcode{std::\brk{}move(k)}, \tcode{std::forward(obj)}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{unordered_map}% \begin{itemdecl} template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id}s \tcode{Hash::is_transparent} and \tcode{Pred::is_transparent} are valid and denote types. \pnum \mandates \tcode{is_assignable_v} is \tcode{true}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_map} from \tcode{std::forward\newline (k), std::forward(obj)}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::forward\newline (obj)} to \tcode{e.second}. Otherwise, let \tcode{h} be \tcode{hash_function()(k)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{std::forward(k), std::forward(obj)}. If \tcode{hash_function()(u.first) != h || contains(u.first)} is \tcode{true}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \rSec3[unord.map.erasure]{Erasure} \indexlibrarymember{erase_if}{unordered_map}% \begin{itemdecl} template constexpr typename unordered_map::size_type erase_if(unordered_map& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec2[unord.multimap]{Class template \tcode{unordered_multimap}}% \indexlibraryglobal{unordered_multimap} \rSec3[unord.multimap.overview]{Overview} \pnum \indextext{\idxcode{unordered_multimap}!equivalent keys}% \indextext{unordered associative containers!equivalent keys}% An \tcode{unordered_multimap} is an unordered associative container that supports equivalent keys (an instance of \tcode{unordered_multimap} may contain multiple copies of each key value) and that associates values of another type \tcode{mapped_type} with the keys. The \tcode{unordered_multimap} class supports forward iterators. \pnum An \tcode{unordered_multimap} meets all of the requirements of a container\iref{container.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an unordered associative container\iref{unord.req}. It provides the operations described in the preceding requirements table for equivalent keys; that is, an \tcode{unordered_multimap} supports the \tcode{a_eq} operations in that table, not the \tcode{a_uniq} operations. For an \tcode{unordered_multimap} the \tcode{key_type} is \tcode{Key}, the \tcode{mapped_type} is \tcode{T}, and the \tcode{value_type} is \tcode{pair}. \pnum Subclause~\ref{unord.multimap} only describes operations on \tcode{unordered_multimap} that are not described in one of the requirement tables, or for which there is additional semantic information. \pnum The types \tcode{iterator}, \tcode{const_iterator}, \tcode{local_iterator}, and \tcode{const_local_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibraryglobal{unordered_multimap}% \begin{codeblock} namespace std { template, class Pred = equal_to, class Allocator = allocator>> class unordered_multimap { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{unordered_multimap::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{unordered_multimap::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{unordered_multimap::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{unordered_multimap::const_iterator}}@; // see \ref{container.requirements} using local_iterator = @\impdefx{type of \tcode{unordered_multimap::local_iterator}}@; // see \ref{container.requirements} using const_local_iterator = @\impdefx{type of \tcode{unordered_multimap::const_local_it\-erator}}@; // see \ref{container.requirements} using node_type = @\unspec@; // \ref{unord.multimap.cnstr}, construct/copy/destroy constexpr unordered_multimap(); constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(const unordered_multimap&); constexpr unordered_multimap(unordered_multimap&&); constexpr explicit unordered_multimap(const Allocator&); constexpr unordered_multimap(const unordered_multimap&, const type_identity_t&); constexpr unordered_multimap(unordered_multimap&&, const type_identity_t&); constexpr unordered_multimap(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(size_type n, const allocator_type& a) : unordered_multimap(n, hasher(), key_equal(), a) { } constexpr unordered_multimap(size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(n, hf, key_equal(), a) { } template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_multimap(f, l, n, hasher(), key_equal(), a) { } template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(f, l, n, hf, key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a) : unordered_multimap(from_range, std::forward(rg), n, hasher(), key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(from_range, std::forward(rg), n, hf, key_equal(), a) { } constexpr unordered_multimap(initializer_list il, size_type n, const allocator_type& a) : unordered_multimap(il, n, hasher(), key_equal(), a) { } constexpr unordered_multimap(initializer_list il, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(il, n, hf, key_equal(), a) { } constexpr ~unordered_multimap(); constexpr unordered_multimap& operator=(const unordered_multimap&); constexpr unordered_multimap& operator=(unordered_multimap&&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_multimap& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{unord.multimap.modifiers}, modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& obj); constexpr iterator insert(value_type&& obj); template constexpr iterator insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, P&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_multimap&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(unordered_multimap& source); template constexpr void merge(unordered_multimap&& source); template constexpr void merge(unordered_map& source); template constexpr void merge(unordered_map&& source); // observers constexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operations constexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; template constexpr iterator find(const K& k); template constexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; template constexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; template constexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; template constexpr pair equal_range(const K& k); template constexpr pair equal_range(const K& k) const; // bucket interface constexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policy constexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<@\placeholder{iter-key-type}@>, class Allocator = allocator<@\placeholder{iter-to-alloc-type}@>> unordered_multimap(InputIterator, InputIterator, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Hash, Pred, Allocator>; template>, class Pred = equal_to<@\exposid{range-key-type}@>, class Allocator = allocator<@\exposid{range-to-alloc-type}@>> unordered_multimap(from_range_t, R&&, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator>> unordered_multimap(initializer_list>, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap; template unordered_multimap(InputIterator, InputIterator, typename @\seebelow@::size_type, Allocator) -> unordered_multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, hash<@\placeholder{iter-key-type}@>, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_multimap(InputIterator, InputIterator, Allocator) -> unordered_multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, hash<@\placeholder{iter-key-type}@>, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_multimap(InputIterator, InputIterator, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multimap<@\placeholder{iter-key-type}@, @\placeholder{iter-mapped-type}@, Hash, equal_to<@\placeholder{iter-key-type}@>, Allocator>; template unordered_multimap(from_range_t, R&&, typename @\seebelow@::size_type, Allocator) -> unordered_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, hash<@\exposid{range-key-type}@>, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_multimap(from_range_t, R&&, Allocator) -> unordered_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, hash<@\exposid{range-key-type}@>, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_multimap(from_range_t, R&&, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Hash, equal_to<@\exposid{range-key-type}@>, Allocator>; template unordered_multimap(initializer_list>, typename @\seebelow@::size_type, Allocator) -> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, Allocator) -> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multimap, Allocator>; } \end{codeblock} \pnum A \tcode{size_type} parameter type in an \tcode{unordered_multimap} deduction guide refers to the \tcode{size_type} member type of the type deduced by the deduction guide. \rSec3[unord.multimap.cnstr]{Constructors} \indexlibraryctor{unordered_multimap}% \begin{itemdecl} constexpr unordered_multimap() : unordered_multimap(size_type(@\seebelow@)) { } constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_multimap} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. For the default constructor, the number of buckets is \impldef{default number of buckets in \tcode{unordered_multimap}}. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{unordered_multimap}% \begin{itemdecl} template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_multimap} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. If \tcode{n} is not provided, the number of buckets is \impldef{default number of buckets in \tcode{unordered_multimap}}. Then inserts elements from the range \range{f}{l}, \tcode{rg}, or \tcode{il}, respectively. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Average case linear, worst case quadratic. \end{itemdescr} \rSec3[unord.multimap.modifiers]{Modifiers} \indexlibrarymember{unordered_multimap}{insert}% \begin{itemdecl} template constexpr iterator insert(P&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return emplace(std::forward

(obj));} \end{itemdescr} \indexlibrarymember{unordered_multimap}{insert}% \begin{itemdecl} template constexpr iterator insert(const_iterator hint, P&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return emplace_hint(hint, std::forward

(obj));} \end{itemdescr} \rSec3[unord.multimap.erasure]{Erasure} \indexlibrarymember{erase_if}{unordered_multimap}% \begin{itemdecl} template constexpr typename unordered_multimap::size_type erase_if(unordered_multimap& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec2[unord.set.syn]{Header \tcode{} synopsis} \indexheader{unordered_set}% \indexlibraryglobal{unordered_set}% \indexlibraryglobal{unordered_multiset}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{unord.set}, class template \tcode{unordered_set} template, class Pred = equal_to, class Alloc = allocator> class unordered_set; // \ref{unord.multiset}, class template \tcode{unordered_multiset} template, class Pred = equal_to, class Alloc = allocator> class unordered_multiset; template constexpr bool operator==(const unordered_set& a, const unordered_set& b); template constexpr bool operator==(const unordered_multiset& a, const unordered_multiset& b); template constexpr void swap(unordered_set& x, unordered_set& y) noexcept(noexcept(x.swap(y))); template constexpr void swap(unordered_multiset& x, unordered_multiset& y) noexcept(noexcept(x.swap(y))); // \ref{unord.set.erasure}, erasure for \tcode{unordered_set} template constexpr typename unordered_set::size_type erase_if(unordered_set& c, Predicate pred); // \ref{unord.multiset.erasure}, erasure for \tcode{unordered_multiset} template constexpr typename unordered_multiset::size_type erase_if(unordered_multiset& c, Predicate pred); namespace pmr { template, class Pred = equal_to> using unordered_set = std::unordered_set>; template, class Pred = equal_to> using unordered_multiset = std::unordered_multiset>; } } \end{codeblock} \rSec2[unord.set]{Class template \tcode{unordered_set}}% \indexlibraryglobal{unordered_set} \rSec3[unord.set.overview]{Overview} \pnum \indextext{\idxcode{unordered_set}!unique keys}% \indextext{unordered associative containers!unique keys}% An \tcode{unordered_set} is an unordered associative container that supports unique keys (an \tcode{unordered_set} contains at most one of each key value) and in which the elements' keys are the elements themselves. The \tcode{unordered_set} class supports forward iterators. \pnum An \tcode{unordered_set} meets all of the requirements of a container\iref{container.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an unordered associative container\iref{unord.req}. It provides the operations described in the preceding requirements table for unique keys; that is, an \tcode{unordered_set} supports the \tcode{a_uniq} operations in that table, not the \tcode{a_eq} operations. For an \tcode{unordered_set} the \tcode{key_type} and the \tcode{value_type} are both \tcode{Key}. The \tcode{iterator} and \tcode{const_iterator} types are both constant iterator types. It is unspecified whether they are the same type. \pnum Subclause~\ref{unord.set} only describes operations on \tcode{unordered_set} that are not described in one of the requirement tables, or for which there is additional semantic information. \pnum The types \tcode{iterator}, \tcode{const_iterator}, \tcode{local_iterator}, and \tcode{const_local_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibraryglobal{unordered_set}% \begin{codeblock} namespace std { template, class Pred = equal_to, class Allocator = allocator> class unordered_set { public: // types using key_type = Key; using value_type = Key; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{unordered_set::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{unordered_set::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{unordered_set::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{unordered_set::const_iterator}}@; // see \ref{container.requirements} using local_iterator = @\impdefx{type of \tcode{unordered_set::local_iterator}}@; // see \ref{container.requirements} using const_local_iterator = @\impdefx{type of \tcode{unordered_set::const_local_iterator}}@; // see \ref{container.requirements} using node_type = @\unspec@; using insert_return_type = @\placeholdernc{insert-return-type}@; // \ref{unord.set.cnstr}, construct/copy/destroy constexpr unordered_set(); constexpr explicit unordered_set(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template constexpr unordered_set(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_set(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(const unordered_set&); constexpr unordered_set(unordered_set&&); constexpr explicit unordered_set(const Allocator&); constexpr unordered_set(const unordered_set&, const type_identity_t&); constexpr unordered_set(unordered_set&&, const type_identity_t&); constexpr unordered_set(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(size_type n, const allocator_type& a) : unordered_set(n, hasher(), key_equal(), a) { } constexpr unordered_set(size_type n, const hasher& hf, const allocator_type& a) : unordered_set(n, hf, key_equal(), a) { } template constexpr unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_set(f, l, n, hasher(), key_equal(), a) { } template constexpr unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_set(f, l, n, hf, key_equal(), a) { } constexpr unordered_set(initializer_list il, size_type n, const allocator_type& a) : unordered_set(il, n, hasher(), key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_set(from_range_t, R&& rg, size_type n, const allocator_type& a) : unordered_set(from_range, std::forward(rg), n, hasher(), key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_set(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a) : unordered_set(from_range, std::forward(rg), n, hf, key_equal(), a) { } constexpr unordered_set(initializer_list il, size_type n, const hasher& hf, const allocator_type& a) : unordered_set(il, n, hf, key_equal(), a) { } constexpr ~unordered_set(); constexpr unordered_set& operator=(const unordered_set&); constexpr unordered_set& operator=(unordered_set&&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_set& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{unord.set.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& obj); constexpr pair insert(value_type&& obj); template constexpr pair insert(K&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, K&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_set&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(unordered_set& source); template constexpr void merge(unordered_set&& source); template constexpr void merge(unordered_multiset& source); template constexpr void merge(unordered_multiset&& source); // observers constexpr hasher hash_function() const; constexpr key_equal key_eq() const; // set operations constexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; template constexpr iterator find(const K& k); template constexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; template constexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; template constexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; template constexpr pair equal_range(const K& k); template constexpr pair equal_range(const K& k) const; // bucket interface constexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policy constexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<@\placeholder{iter-value-type}@>, class Allocator = allocator<@\placeholder{iter-value-type}@>> unordered_set(InputIterator, InputIterator, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_set<@\placeholder{iter-value-type}@, Hash, Pred, Allocator>; template>, class Pred = equal_to>, class Allocator = allocator>> unordered_set(from_range_t, R&&, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_set, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator> unordered_set(initializer_list, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_set; template unordered_set(InputIterator, InputIterator, typename @\seebelow@::size_type, Allocator) -> unordered_set<@\placeholder{iter-value-type}@, hash<@\placeholder{iter-value-type}@>, equal_to<@\placeholder{iter-value-type}@>, Allocator>; template unordered_set(InputIterator, InputIterator, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_set<@\placeholder{iter-value-type}@, Hash, equal_to<@\placeholder{iter-value-type}@>, Allocator>; template unordered_set(from_range_t, R&&, typename @\seebelow@::size_type, Allocator) -> unordered_set, hash>, equal_to>, Allocator>; template unordered_set(from_range_t, R&&, Allocator) -> unordered_set, hash>, equal_to>, Allocator>; template unordered_set(from_range_t, R&&, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_set, Hash, equal_to>, Allocator>; template unordered_set(initializer_list, typename @\seebelow@::size_type, Allocator) -> unordered_set, equal_to, Allocator>; template unordered_set(initializer_list, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_set, Allocator>; } \end{codeblock} \pnum A \tcode{size_type} parameter type in an \tcode{unordered_set} deduction guide refers to the \tcode{size_type} member type of the type deduced by the deduction guide. \rSec3[unord.set.cnstr]{Constructors} \indexlibraryctor{unordered_set}% \begin{itemdecl} constexpr unordered_set() : unordered_set(size_type(@\seebelow@)) { } constexpr explicit unordered_set(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_set} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. For the default constructor, the number of buckets is \impldef{default number of buckets in \tcode{unordered_set}}. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{unordered_set}% \begin{itemdecl} template constexpr unordered_set(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_set} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. If \tcode{n} is not provided, the number of buckets is \impldef{default number of buckets in \tcode{unordered_set}}. Then inserts elements from the range \range{f}{l}, \tcode{rg}, or \tcode{il}, respectively. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Average case linear, worst case quadratic. \end{itemdescr} \rSec3[unord.set.erasure]{Erasure} \indexlibrarymember{erase_if}{unordered_set}% \begin{itemdecl} template constexpr typename unordered_set::size_type erase_if(unordered_set& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec3[unord.set.modifiers]{Modifiers} \indexlibrarymember{insert}{unordered_set}% \begin{itemdecl} template constexpr pair insert(K&& obj); template constexpr iterator insert(const_iterator hint, K&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id}s \tcode{Hash::is_transparent} and \tcode{Pred::is_transparent} are valid and denote types. For the second overload, \tcode{is_convertible_v} and \tcode{is_convertible_v} are both \tcode{false}. \pnum \expects \tcode{value_type} is \oldconcept{EmplaceConstructible} into \tcode{unordered_set} from \tcode{std::forward\newline (obj)}. \pnum \effects If the set already contains an element that is equivalent to \tcode{obj}, there is no effect. Otherwise, let \tcode{h} be \tcode{hash_function()(obj)}. Constructs an object \tcode{u} of type \tcode{value_type} with \tcode{std::forward(obj)}. If \tcode{hash_function()(u) != h || contains(u)} is \tcode{true}, the behavior is undefined. Inserts \tcode{u} into \tcode{*this}. \pnum \returns For the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the set element that is equivalent to \tcode{obj}. \pnum \complexity Average case constant, worst case linear. \end{itemdescr} \rSec2[unord.multiset]{Class template \tcode{unordered_multiset}}% \indexlibraryglobal{unordered_multiset} \rSec3[unord.multiset.overview]{Overview} \pnum \indextext{\idxcode{unordered_multiset}!equivalent keys}% \indextext{unordered associative containers!equivalent keys}% An \tcode{unordered_multiset} is an unordered associative container that supports equivalent keys (an instance of \tcode{unordered_multiset} may contain multiple copies of the same key value) and in which each element's key is the element itself. The \tcode{unordered_multiset} class supports forward iterators. \pnum An \tcode{unordered_multiset} meets all of the requirements of a container\iref{container.reqmts}, of an allocator-aware container\iref{container.alloc.reqmts}, and of an unordered associative container\iref{unord.req}. It provides the operations described in the preceding requirements table for equivalent keys; that is, an \tcode{unordered_multiset} supports the \tcode{a_eq} operations in that table, not the \tcode{a_uniq} operations. For an \tcode{unordered_multiset} the \tcode{key_type} and the \tcode{value_type} are both \tcode{Key}. The \tcode{iterator} and \tcode{const_iterator} types are both constant iterator types. It is unspecified whether they are the same type. \pnum Subclause~\ref{unord.multiset} only describes operations on \tcode{unordered_multiset} that are not described in one of the requirement tables, or for which there is additional semantic information. \pnum The types \tcode{iterator}, \tcode{const_iterator}, \tcode{local_iterator}, and \tcode{const_local_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \indexlibraryglobal{unordered_multiset}% \begin{codeblock} namespace std { template, class Pred = equal_to, class Allocator = allocator> class unordered_multiset { public: // types using key_type = Key; using value_type = Key; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = allocator_traits::pointer; using const_pointer = allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = @\impdefx{type of \tcode{unordered_multiset::size_type}}@; // see \ref{container.requirements} using difference_type = @\impdefx{type of \tcode{unordered_multiset::difference_type}}@; // see \ref{container.requirements} using iterator = @\impdefx{type of \tcode{unordered_multiset::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{unordered_multiset::const_iterator}}@; // see \ref{container.requirements} using local_iterator = @\impdefx{type of \tcode{unordered_multiset::local_iterator}}@; // see \ref{container.requirements} using const_local_iterator = @\impdefx{type of \tcode{unordered_multiset::const_local_it\-erator}}@; // see \ref{container.requirements} using node_type = @\unspec@; // \ref{unord.multiset.cnstr}, construct/copy/destroy constexpr unordered_multiset(); constexpr explicit unordered_multiset(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template constexpr unordered_multiset(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(const unordered_multiset&); constexpr unordered_multiset(unordered_multiset&&); constexpr explicit unordered_multiset(const Allocator&); constexpr unordered_multiset(const unordered_multiset&, const type_identity_t&); constexpr unordered_multiset(unordered_multiset&&, const type_identity_t&); constexpr unordered_multiset(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(size_type n, const allocator_type& a) : unordered_multiset(n, hasher(), key_equal(), a) { } constexpr unordered_multiset(size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(n, hf, key_equal(), a) { } template constexpr unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_multiset(f, l, n, hasher(), key_equal(), a) { } template constexpr unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(f, l, n, hf, key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n, const allocator_type& a) : unordered_multiset(from_range, std::forward(rg), n, hasher(), key_equal(), a) { } template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(from_range, std::forward(rg), n, hf, key_equal(), a) { } constexpr unordered_multiset(initializer_list il, size_type n, const allocator_type& a) : unordered_multiset(il, n, hasher(), key_equal(), a) { } constexpr unordered_multiset(initializer_list il, size_type n, const hasher& hf, const allocator_type& a) : unordered_multiset(il, n, hf, key_equal(), a) { } constexpr ~unordered_multiset(); constexpr unordered_multiset& operator=(const unordered_multiset&); constexpr unordered_multiset& operator=(unordered_multiset&&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_multiset& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& obj); constexpr iterator insert(value_type&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_multiset&) noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; template constexpr void merge(unordered_multiset& source); template constexpr void merge(unordered_multiset&& source); template constexpr void merge(unordered_set& source); template constexpr void merge(unordered_set&& source); // observers constexpr hasher hash_function() const; constexpr key_equal key_eq() const; // set operations constexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; template constexpr iterator find(const K& k); template constexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; template constexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; template constexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; template constexpr pair equal_range(const K& k); template constexpr pair equal_range(const K& k) const; // bucket interface constexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policy constexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<@\placeholder{iter-value-type}@>, class Allocator = allocator<@\placeholder{iter-value-type}@>> unordered_multiset(InputIterator, InputIterator, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multiset<@\placeholder{iter-value-type}@, Hash, Pred, Allocator>; template>, class Pred = equal_to>, class Allocator = allocator>> unordered_multiset(from_range_t, R&&, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multiset, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator> unordered_multiset(initializer_list, typename @\seebelow@::size_type = @\seebelow@, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multiset; template unordered_multiset(InputIterator, InputIterator, typename @\seebelow@::size_type, Allocator) -> unordered_multiset<@\placeholder{iter-value-type}@, hash<@\placeholder{iter-value-type}@>, equal_to<@\placeholder{iter-value-type}@>, Allocator>; template unordered_multiset(InputIterator, InputIterator, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multiset<@\placeholder{iter-value-type}@, Hash, equal_to<@\placeholder{iter-value-type}@>, Allocator>; template unordered_multiset(from_range_t, R&&, typename @\seebelow@::size_type, Allocator) -> unordered_multiset, hash>, equal_to>, Allocator>; template unordered_multiset(from_range_t, R&&, Allocator) -> unordered_multiset, hash>, equal_to>, Allocator>; template unordered_multiset(from_range_t, R&&, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multiset, Hash, equal_to>, Allocator>; template unordered_multiset(initializer_list, typename @\seebelow@::size_type, Allocator) -> unordered_multiset, equal_to, Allocator>; template unordered_multiset(initializer_list, typename @\seebelow@::size_type, Hash, Allocator) -> unordered_multiset, Allocator>; } \end{codeblock} \pnum A \tcode{size_type} parameter type in an \tcode{unordered_multiset} deduction guide refers to the \tcode{size_type} member type of the type deduced by the deduction guide. \rSec3[unord.multiset.cnstr]{Constructors} \indexlibraryctor{unordered_multiset}% \begin{itemdecl} constexpr unordered_multiset() : unordered_multiset(size_type(@\seebelow@)) { } constexpr explicit unordered_multiset(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_multiset} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. For the default constructor, the number of buckets is \impldef{default number of buckets in \tcode{unordered_multiset}}. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Constant. \end{itemdescr} \indexlibraryctor{unordered_multiset}% \begin{itemdecl} template constexpr unordered_multiset(InputIterator f, InputIterator l, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<@\exposconcept{container-compatible-range}@ R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(initializer_list il, size_type n = @\seebelow@, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); \end{itemdecl} \begin{itemdescr} \pnum \effects Constructs an empty \tcode{unordered_multiset} using the specified hash function, key equality predicate, and allocator, and using at least \tcode{n} buckets. If \tcode{n} is not provided, the number of buckets is \impldef{default number of buckets in \tcode{unordered_multiset}}. Then inserts elements from the range \range{f}{l}, \tcode{rg}, or \tcode{il}, respectively. \tcode{max_load_factor()} returns \tcode{1.0}. \pnum \complexity Average case linear, worst case quadratic. \end{itemdescr} \rSec3[unord.multiset.erasure]{Erasure} \indexlibrarymember{erase_if}{unordered_multiset}% \begin{itemdecl} template constexpr typename unordered_multiset::size_type erase_if(unordered_multiset& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size(); \end{codeblock} \end{itemdescr} \rSec1[container.adaptors]{Container adaptors} \rSec2[container.adaptors.general]{General} \pnum The headers \libheaderref{queue}, \libheaderref{stack}, \libheaderrefx{flat_map}{flat.map.syn}, and \libheaderrefx{flat_set}{flat.set.syn} define the container adaptors \tcode{queue} and \tcode{priority_queue}, \tcode{stack}, \tcode{flat_map} and \tcode{flat_multimap}, and \tcode{flat_set} and \tcode{flat_multiset}, respectively. \pnum Each container adaptor takes one or more template parameters named \tcode{Container}, \tcode{KeyContainer}, or \tcode{MappedContainer} that denote the types of containers that the container adaptor adapts. Each container adaptor has at least one constructor that takes a reference argument to one or more such template parameters. For each constructor reference argument to a container \tcode{C}, the constructor copies the container into the container adaptor. If \tcode{C} takes an allocator, then a compatible allocator may be passed in to the adaptor's constructor. Otherwise, normal copy or move construction is used for the container argument. For the container adaptors that take a single container template parameter \tcode{Container}, the first template parameter \tcode{T} of the container adaptor shall denote the same type as \tcode{Container::value_type}. \pnum For container adaptors, no \tcode{swap} function throws an exception unless that exception is thrown by the swap of the adaptor's \tcode{Container}, \tcode{KeyContainer}, \tcode{MappedContainer}, or \tcode{Compare} object (if any). \pnum A constructor template of a container adaptor shall not participate in overload resolution if it has an \tcode{InputIterator} template parameter and a type that does not qualify as an input iterator is deduced for that parameter. \pnum For container adaptors that have them, the \tcode{insert}, \tcode{emplace}, and \tcode{erase} members affect the validity of iterators, references, and pointers to the adaptor's container(s) in the same way that the containers' respective \tcode{insert}, \tcode{emplace}, and \tcode{erase} members do. \begin{example} A call to \tcode{flat_map::insert} can invalidate all iterators to the \tcode{flat_map}. \end{example} \pnum A deduction guide for a container adaptor shall not participate in overload resolution if any of the following are true: \begin{itemize} \item It has an \tcode{InputIterator} template parameter and a type that does not qualify as an input iterator is deduced for that parameter. \item It has a \tcode{Compare} template parameter and a type that qualifies as an allocator is deduced for that parameter. \item It has a \tcode{Container}, \tcode{KeyContainer}, or \tcode{MappedContainer} template parameter and a type that qualifies as an allocator is deduced for that parameter. \item It has no \tcode{Container}, \tcode{KeyContainer}, or \tcode{MappedContainer} template parameter, and it has an \tcode{Allocator} template parameter, and a type that does not qualify as an allocator is deduced for that parameter. \item It has both \tcode{Container} and \tcode{Allocator} template parameters, and \tcode{uses_allocator_v} is \tcode{false}. \item It has both \tcode{KeyContainer} and \tcode{Allocator} template parameters, and \tcode{uses_allocator_v} is \tcode{false}. \item It has both \tcode{KeyContainer} and \tcode{Compare} template parameters, and \begin{codeblock} is_invocable_v \end{codeblock} is not a valid expression or is \tcode{false}. \item It has both \tcode{MappedContainer} and \tcode{Allocator} template parameters, and \tcode{uses_allocator_v} is \tcode{false}. \end{itemize} \pnum The exposition-only alias template \exposid{iter-value-type} defined in \ref{sequences.general} and the exposition-only alias templates \exposid{iter-key-type}, \exposid{iter-mapped-type}, \exposid{range-key-type}, and \exposid{range-mapped-type} defined in \ref{associative.general} may appear in deduction guides for container adaptors. \pnum The following exposition-only alias template may appear in deduction guides for container adaptors: \begin{codeblock} template using @\exposid{alloc-rebind}@ = allocator_traits::template rebind_alloc; // \expos \end{codeblock} \rSec2[queue.syn]{Header \tcode{} synopsis} \indexheader{queue} \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{queue}, class template \tcode{queue} template> class queue; template constexpr bool operator==(const queue& x, const queue& y); template constexpr bool operator!=(const queue& x, const queue& y); template constexpr bool operator< (const queue& x, const queue& y); template constexpr bool operator> (const queue& x, const queue& y); template constexpr bool operator<=(const queue& x, const queue& y); template constexpr bool operator>=(const queue& x, const queue& y); template constexpr compare_three_way_result_t operator<=>(const queue& x, const queue& y); template constexpr void swap(queue& x, queue& y) noexcept(noexcept(x.swap(y))); template struct uses_allocator, Alloc>; // \ref{container.adaptors.format}, formatter specialization for \tcode{queue} template Container> struct formatter, charT>; template constexpr bool enable_nonlocking_formatter_optimization> = false; // \ref{priority.queue}, class template \tcode{priority_queue} template, class Compare = less> class priority_queue; template constexpr void swap(priority_queue& x, priority_queue& y) noexcept(noexcept(x.swap(y))); template struct uses_allocator, Alloc>; // \ref{container.adaptors.format}, formatter specialization for \tcode{priority_queue} template Container, class Compare> struct formatter, charT>; template constexpr bool enable_nonlocking_formatter_optimization> = false; } \end{codeblock} \rSec2[queue]{Class template \tcode{queue}} \rSec3[queue.defn]{Definition} \pnum \indexlibraryglobal{queue}% Any sequence container supporting operations \tcode{front()}, \tcode{back()}, \tcode{push_back()} and \tcode{pop_front()} can be used to instantiate \tcode{queue}. In particular, \tcode{list}\iref{list} and \tcode{deque}\iref{deque} can be used. \begin{codeblock} namespace std { template> class queue { public: using value_type = Container::value_type; using reference = Container::reference; using const_reference = Container::const_reference; using size_type = Container::size_type; using container_type = Container; protected: Container c; public: constexpr queue() : queue(Container()) {} constexpr explicit queue(const Container&); constexpr explicit queue(Container&&); template constexpr queue(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr queue(from_range_t, R&& rg); template constexpr explicit queue(const Alloc&); template constexpr queue(const Container&, const Alloc&); template constexpr queue(Container&&, const Alloc&); template constexpr queue(const queue&, const Alloc&); template constexpr queue(queue&&, const Alloc&); template constexpr queue(InputIterator first, InputIterator last, const Alloc&); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr queue(from_range_t, R&& rg, const Alloc&); constexpr bool empty() const { return c.empty(); } constexpr size_type size() const { return c.size(); } constexpr reference front() { return c.front(); } constexpr const_reference front() const { return c.front(); } constexpr reference back() { return c.back(); } constexpr const_reference back() const { return c.back(); } constexpr void push(const value_type& x) { c.push_back(x); } constexpr void push(value_type&& x) { c.push_back(std::move(x)); } template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); template constexpr decltype(auto) emplace(Args&&... args) { return c.emplace_back(std::forward(args)...); } constexpr void pop() { c.pop_front(); } constexpr void swap(queue& q) noexcept(is_nothrow_swappable_v) { using std::swap; swap(c, q.c); } }; template queue(Container) -> queue; template queue(InputIterator, InputIterator) -> queue<@\exposid{iter-value-type}@>; template queue(from_range_t, R&&) -> queue>; template queue(Container, Allocator) -> queue; template queue(InputIterator, InputIterator, Allocator) -> queue<@\exposid{iter-value-type}@, deque<@\exposid{iter-value-type}@, Allocator>>; template queue(from_range_t, R&&, Allocator) -> queue, deque, Allocator>>; template struct uses_allocator, Alloc> : uses_allocator::type { }; } \end{codeblock} \rSec3[queue.cons]{Constructors} \indexlibraryctor{queue}% \begin{itemdecl} constexpr explicit queue(const Container& cont); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont}. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} constexpr explicit queue(Container&& cont); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)}. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument and \tcode{last} as the second argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr queue(from_range_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{ranges::to(std::forward(rg))}. \end{itemdescr} \rSec3[queue.cons.alloc]{Constructors with allocators} \pnum If \tcode{uses_allocator_v} is \tcode{false} the constructors in this subclause shall not participate in overload resolution. \indexlibraryctor{queue}% \begin{itemdecl} template constexpr explicit queue(const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{a}. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(const container_type& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(container_type&& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(const queue& q, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{q.c} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(queue&& q, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(q.c)} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template constexpr queue(InputIterator first, InputIterator last, const Alloc& alloc); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument, \tcode{last} as the second argument, and \tcode{alloc} as the third argument. \end{itemdescr} \indexlibraryctor{queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr queue(from_range_t, R&& rg, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{ranges::to(std::forward(rg), a)}. \end{itemdescr} \rSec3[queue.mod]{Modifiers} \indexlibrarymember{push_range}{queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{c.append_range(std::forward(rg))} if that is a valid expression, otherwise \tcode{ranges::copy(rg, back_inserter(c))}. \end{itemdescr} \rSec3[queue.ops]{Operators} \indexlibrarymember{operator==}{queue}% \begin{itemdecl} template constexpr bool operator==(const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c == y.c}. \end{itemdescr} \indexlibrary{\idxcode{operator"!=}!\idxcode{queue}}% \begin{itemdecl} template constexpr bool operator!=(const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c != y.c}. \end{itemdescr} \indexlibrarymember{operator<}{queue}% \begin{itemdecl} template constexpr bool operator< (const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c < y.c}. \end{itemdescr} \indexlibrarymember{operator>}{queue}% \begin{itemdecl} template constexpr bool operator> (const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c > y.c}. \end{itemdescr} \indexlibrarymember{operator<=}{queue}% \begin{itemdecl} template constexpr bool operator<=(const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c <= y.c}. \end{itemdescr} \indexlibrarymember{operator>=}{queue}% \begin{itemdecl} template constexpr bool operator>=(const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c >= y.c}. \end{itemdescr} \indexlibrarymember{operator<=>}{queue}% \begin{itemdecl} template constexpr compare_three_way_result_t operator<=>(const queue& x, const queue& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c <=> y.c}. \end{itemdescr} \rSec3[queue.special]{Specialized algorithms} \indexlibrarymember{swap}{queue}% \begin{itemdecl} template constexpr void swap(queue& x, queue& y) noexcept(noexcept(x.swap(y))); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_swappable_v} is \tcode{true}. \pnum \effects As if by \tcode{x.swap(y)}. \end{itemdescr} \rSec2[priority.queue]{Class template \tcode{priority_queue}} \rSec3[priqueue.overview]{Overview} \pnum \indexlibraryglobal{priority_queue}% Any sequence container with random access iterator and supporting operations \tcode{front()}, \tcode{push_back()} and \tcode{pop_back()} can be used to instantiate \tcode{priority_queue}. In particular, \tcode{vector}\iref{vector} and \tcode{deque}\iref{deque} can be used. Instantiating \tcode{priority_queue} also involves supplying a function or function object for making priority comparisons; the library assumes that the function or function object defines a strict weak ordering\iref{alg.sorting}. \begin{codeblock} namespace std { template, class Compare = less> class priority_queue { public: using value_type = Container::value_type; using reference = Container::reference; using const_reference = Container::const_reference; using size_type = Container::size_type; using container_type = Container; using value_compare = Compare; protected: Container c; Compare comp; public: constexpr priority_queue() : priority_queue(Compare()) {} constexpr explicit priority_queue(const Compare& x) : priority_queue(x, Container()) {} constexpr priority_queue(const Compare& x, const Container&); constexpr priority_queue(const Compare& x, Container&&); template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare()); template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x, const Container&); template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x, Container&&); template<@\exposconcept{container-compatible-range}@ R> constexpr priority_queue(from_range_t, R&& rg, const Compare& x = Compare()); template constexpr explicit priority_queue(const Alloc&); template constexpr priority_queue(const Compare&, const Alloc&); template constexpr priority_queue(const Compare&, const Container&, const Alloc&); template constexpr priority_queue(const Compare&, Container&&, const Alloc&); template constexpr priority_queue(const priority_queue&, const Alloc&); template constexpr priority_queue(priority_queue&&, const Alloc&); template constexpr priority_queue(InputIterator, InputIterator, const Alloc&); template constexpr priority_queue(InputIterator, InputIterator, const Compare&, const Alloc&); template constexpr priority_queue(InputIterator, InputIterator, const Compare&, const Container&, const Alloc&); template constexpr priority_queue(InputIterator, InputIterator, const Compare&, Container&&, const Alloc&); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr priority_queue(from_range_t, R&& rg, const Compare&, const Alloc&); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr priority_queue(from_range_t, R&& rg, const Alloc&); constexpr bool empty() const { return c.empty(); } constexpr size_type size() const { return c.size(); } constexpr const_reference top() const { return c.front(); } constexpr void push(const value_type& x); constexpr void push(value_type&& x); template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); template constexpr void emplace(Args&&... args); constexpr void pop(); constexpr void swap(priority_queue& q) noexcept(is_nothrow_swappable_v && is_nothrow_swappable_v) { using std::swap; swap(c, q.c); swap(comp, q.comp); } }; template priority_queue(Compare, Container) -> priority_queue; template>, class Container = vector<@\exposid{iter-value-type}@>> priority_queue(InputIterator, InputIterator, Compare = Compare(), Container = Container()) -> priority_queue<@\exposid{iter-value-type}@, Container, Compare>; template>> priority_queue(from_range_t, R&&, Compare = Compare()) -> priority_queue, vector>, Compare>; template priority_queue(Compare, Container, Allocator) -> priority_queue; template priority_queue(InputIterator, InputIterator, Allocator) -> priority_queue<@\exposid{iter-value-type}@, vector<@\exposid{iter-value-type}@, Allocator>, less<@\exposid{iter-value-type}@>>; template priority_queue(InputIterator, InputIterator, Compare, Allocator) -> priority_queue<@\exposid{iter-value-type}@, vector<@\exposid{iter-value-type}@, Allocator>, Compare>; template priority_queue(InputIterator, InputIterator, Compare, Container, Allocator) -> priority_queue; template priority_queue(from_range_t, R&&, Compare, Allocator) -> priority_queue, vector, Allocator>, Compare>; template priority_queue(from_range_t, R&&, Allocator) -> priority_queue, vector, Allocator>>; // no equality is provided template struct uses_allocator, Alloc> : uses_allocator::type { }; } \end{codeblock} \rSec3[priqueue.cons]{Constructors} \indexlibraryctor{priority_queue}% \begin{itemdecl} constexpr priority_queue(const Compare& x, const Container& y); constexpr priority_queue(const Compare& x, Container&& y); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{x} defines a strict weak ordering\iref{alg.sorting}. \pnum \effects Initializes \tcode{comp} with \tcode{x} and \tcode{c} with \tcode{y} (copy constructing or move constructing as appropriate); calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{x} defines a strict weak ordering\iref{alg.sorting}. \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument and \tcode{last} as the second argument, and initializes \tcode{comp} with \tcode{x}; then calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x, const Container& y); template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& x, Container&& y); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{x} defines a strict weak ordering\iref{alg.sorting}. \pnum \effects Initializes \tcode{comp} with \tcode{x} and \tcode{c} with \tcode{y} (copy constructing or move constructing as appropriate); calls \tcode{c.insert(c.end(), first, last)}; and finally calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr priority_queue(from_range_t, R&& rg, const Compare& x = Compare()); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{x} defines a strict weak ordering\iref{alg.sorting}. \pnum \effects Initializes \tcode{comp} with \tcode{x} and \tcode{c} with \tcode{ranges::to(std::forward(rg))} and finally calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \rSec3[priqueue.cons.alloc]{Constructors with allocators} \pnum If \tcode{uses_allocator_v} is \tcode{false} the constructors in this subclause shall not participate in overload resolution. \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr explicit priority_queue(const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{a} and value-initializes \tcode{comp}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(const Compare& compare, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{a} and initializes \tcode{comp} with \tcode{compare}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(const Compare& compare, const Container& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{compare}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(const Compare& compare, Container&& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{compare}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(const priority_queue& q, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{q.c} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{q.comp}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(priority_queue&& q, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(q.c)} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{std::move(q.comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument, \tcode{last} as the second argument, and \tcode{a} as the third argument, and value-initializes \tcode{comp}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& compare, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument, \tcode{last} as the second argument, and \tcode{a} as the third argument, and initializes \tcode{comp} with \tcode{compare}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& compare, const Container& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{compare}; calls \tcode{c.insert(c.end(), first, last)}; and finally calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template constexpr priority_queue(InputIterator first, InputIterator last, const Compare& compare, Container&& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)} as the first argument and \tcode{a} as the second argument, and initializes \tcode{comp} with \tcode{compare}; calls \tcode{c.insert(c.end(), first, last)}; and finally calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr priority_queue(from_range_t, R&& rg, const Compare& compare, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{comp} with \tcode{compare} and \tcode{c} with \tcode{ranges::to(std::forward(rg), a)}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \indexlibraryctor{priority_queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr priority_queue(from_range_t, R&& rg, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{ranges::to(std::forward(rg), a)} and value-initializes \tcode{comp}; calls \tcode{make_heap(c.begin(), c.end(), comp)}. \end{itemdescr} \rSec3[priqueue.members]{Members} \indexlibrarymember{push}{priority_queue}% \begin{itemdecl} constexpr void push(const value_type& x); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by: \begin{codeblock} c.push_back(x); push_heap(c.begin(), c.end(), comp); \end{codeblock} \end{itemdescr} \indexlibrarymember{push}{priority_queue}% \begin{itemdecl} constexpr void push(value_type&& x); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by: \begin{codeblock} c.push_back(std::move(x)); push_heap(c.begin(), c.end(), comp); \end{codeblock} \end{itemdescr} \indexlibrarymember{push_range}{priority_queue}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Inserts all elements of \tcode{rg} in \tcode{c} via \tcode{c.append_range(std::forward(rg))} if that is a valid expression, or \tcode{ranges::copy(rg, back_inserter(c))} otherwise. Then restores the heap property as if by \tcode{make_heap(c.begin(), c.end(), comp)}. \pnum \ensures \tcode{is_heap(c.begin(), c.end(), comp)} is \tcode{true}. \end{itemdescr} \indexlibrarymember{emplace}{priority_queue}% \begin{itemdecl} template constexpr void emplace(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by: \begin{codeblock} c.emplace_back(std::forward(args)...); push_heap(c.begin(), c.end(), comp); \end{codeblock} \end{itemdescr} \indexlibrarymember{pop}{priority_queue}% \begin{itemdecl} constexpr void pop(); \end{itemdecl} \begin{itemdescr} \pnum \effects As if by: \begin{codeblock} pop_heap(c.begin(), c.end(), comp); c.pop_back(); \end{codeblock} \end{itemdescr} \rSec3[priqueue.special]{Specialized algorithms} \indexlibrarymember{swap}{priority_queue}% \begin{itemdecl} template constexpr void swap(priority_queue& x, priority_queue& y) noexcept(noexcept(x.swap(y))); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_swappable_v} is \tcode{true} and \tcode{is_swappable_v} is \tcode{true}. \pnum \effects As if by \tcode{x.swap(y)}. \end{itemdescr} \rSec2[stack.syn]{Header \tcode{} synopsis} \indexheader{stack}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{stack}, class template \tcode{stack} template> class stack; template constexpr bool operator==(const stack& x, const stack& y); template constexpr bool operator!=(const stack& x, const stack& y); template constexpr bool operator< (const stack& x, const stack& y); template constexpr bool operator> (const stack& x, const stack& y); template constexpr bool operator<=(const stack& x, const stack& y); template constexpr bool operator>=(const stack& x, const stack& y); template constexpr compare_three_way_result_t operator<=>(const stack& x, const stack& y); template constexpr void swap(stack& x, stack& y) noexcept(noexcept(x.swap(y))); template struct uses_allocator, Alloc>; // \ref{container.adaptors.format}, formatter specialization for \tcode{stack} template Container> struct formatter, charT>; template constexpr bool enable_nonlocking_formatter_optimization> = false; } \end{codeblock} \rSec2[stack]{Class template \tcode{stack}} \rSec3[stack.general]{General} \pnum \indexlibraryglobal{stack}% Any sequence container supporting operations \tcode{back()}, \tcode{push_back()} and \tcode{pop_back()} can be used to instantiate \tcode{stack}. In particular, \tcode{vector}\iref{vector}, \tcode{list}\iref{list} and \tcode{deque}\iref{deque} can be used. \rSec3[stack.defn]{Definition} \begin{codeblock} namespace std { template> class stack { public: using value_type = Container::value_type; using reference = Container::reference; using const_reference = Container::const_reference; using size_type = Container::size_type; using container_type = Container; protected: Container c; public: constexpr stack() : stack(Container()) {} constexpr explicit stack(const Container&); constexpr explicit stack(Container&&); template constexpr stack(InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr stack(from_range_t, R&& rg); template constexpr explicit stack(const Alloc&); template constexpr stack(const Container&, const Alloc&); template constexpr stack(Container&&, const Alloc&); template constexpr stack(const stack&, const Alloc&); template constexpr stack(stack&&, const Alloc&); template constexpr stack(InputIterator first, InputIterator last, const Alloc&); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr stack(from_range_t, R&& rg, const Alloc&); constexpr bool empty() const { return c.empty(); } constexpr size_type size() const { return c.size(); } constexpr reference top() { return c.back(); } constexpr const_reference top() const { return c.back(); } constexpr void push(const value_type& x) { c.push_back(x); } constexpr void push(value_type&& x) { c.push_back(std::move(x)); } template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); template constexpr decltype(auto) emplace(Args&&... args) { return c.emplace_back(std::forward(args)...); } constexpr void pop() { c.pop_back(); } constexpr void swap(stack& s) noexcept(is_nothrow_swappable_v) { using std::swap; swap(c, s.c); } }; template stack(Container) -> stack; template stack(InputIterator, InputIterator) -> stack<@\exposid{iter-value-type}@>; template stack(from_range_t, R&&) -> stack>; template stack(Container, Allocator) -> stack; template stack(InputIterator, InputIterator, Allocator) -> stack<@\exposid{iter-value-type}@, deque<@\exposid{iter-value-type}@, Allocator>>; template stack(from_range_t, R&&, Allocator) -> stack, deque, Allocator>>; template struct uses_allocator, Alloc> : uses_allocator::type { }; } \end{codeblock} \rSec3[stack.cons]{Constructors} \indexlibraryctor{stack}% \begin{itemdecl} constexpr explicit stack(const Container& cont); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont}. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} constexpr explicit stack(Container&& cont); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)}. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument and \tcode{last} as the second argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr stack(from_range_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{ranges::to(std::forward(rg))}. \end{itemdescr} \rSec3[stack.cons.alloc]{Constructors with allocators} \pnum If \tcode{uses_allocator_v} is \tcode{false} the constructors in this subclause shall not participate in overload resolution. \indexlibraryctor{stack}% \begin{itemdecl} template constexpr explicit stack(const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{a}. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(const container_type& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{cont} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(container_type&& cont, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(cont)} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(const stack& s, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{s.c} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(stack&& s, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{std::move(s.c)} as the first argument and \tcode{a} as the second argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template constexpr stack(InputIterator first, InputIterator last, const Alloc& alloc); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{first} as the first argument, \tcode{last} as the second argument, and \tcode{alloc} as the third argument. \end{itemdescr} \indexlibraryctor{stack}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr stack(from_range_t, R&& rg, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{c} with \tcode{ranges::to(std::forward(rg), a)}. \end{itemdescr} \rSec3[stack.mod]{Modifiers} \indexlibrarymember{push_range}{stack}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void push_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{c.append_range(std::forward(rg))} if that is a valid expression, otherwise \tcode{ranges::copy(rg, back_inserter(c))}. \end{itemdescr} \rSec3[stack.ops]{Operators} \indexlibrarymember{operator==}{stack}% \begin{itemdecl} template constexpr bool operator==(const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c == y.c}. \end{itemdescr} \indexlibrary{\idxcode{operator"!=}!\idxcode{stack}}% \begin{itemdecl} template constexpr bool operator!=(const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c != y.c}. \end{itemdescr} \indexlibrarymember{operator<}{stack}% \begin{itemdecl} template constexpr bool operator< (const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c < y.c}. \end{itemdescr} \indexlibrarymember{operator>}{stack}% \begin{itemdecl} template constexpr bool operator> (const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c > y.c}. \end{itemdescr} \indexlibrarymember{operator<=}{stack}% \begin{itemdecl} template constexpr bool operator<=(const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c <= y.c}. \end{itemdescr} \indexlibrarymember{operator>=}{stack}% \begin{itemdecl} template constexpr bool operator>=(const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c >= y.c}. \end{itemdescr} \indexlibrarymember{operator<=>}{stack}% \begin{itemdecl} template constexpr compare_three_way_result_t operator<=>(const stack& x, const stack& y); \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{x.c <=> y.c}. \end{itemdescr} \rSec3[stack.special]{Specialized algorithms} \indexlibrarymember{swap}{stack}% \begin{itemdecl} template constexpr void swap(stack& x, stack& y) noexcept(noexcept(x.swap(y))); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_swappable_v} is \tcode{true}. \pnum \effects As if by \tcode{x.swap(y)}. \end{itemdescr} \rSec2[flat.map.syn]{Header \tcode{} synopsis} \indexheader{flat_map}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{flat.map}, class template \tcode{flat_map} template, class KeyContainer = vector, class MappedContainer = vector> class flat_map; struct sorted_unique_t { explicit sorted_unique_t() = default; }; inline constexpr sorted_unique_t sorted_unique{}; template struct uses_allocator, Allocator>; // \ref{flat.map.erasure}, erasure for \tcode{flat_map} template constexpr typename flat_map::size_type erase_if(flat_map& c, Predicate pred); // \ref{flat.multimap}, class template \tcode{flat_multimap} template, class KeyContainer = vector, class MappedContainer = vector> class flat_multimap; struct sorted_equivalent_t { explicit sorted_equivalent_t() = default; }; inline constexpr sorted_equivalent_t sorted_equivalent{}; template struct uses_allocator, Allocator>; // \ref{flat.multimap.erasure}, erasure for \tcode{flat_multimap} template constexpr typename flat_multimap::size_type erase_if(flat_multimap& c, Predicate pred); } \end{codeblock} \rSec2[flat.map]{Class template \tcode{flat_map}} \rSec3[flat.map.overview]{Overview} \pnum \indexlibraryglobal{flat_map}% A \tcode{flat_map} is a container adaptor that provides an associative container interface that supports unique keys (i.e., contains at most one of each key value) and provides for fast retrieval of values of another type \tcode{T} based on the keys. \tcode{flat_map} supports iterators that meet the \oldconcept{InputIterator} requirements and model the \libconcept{random_access_iterator} concept\iref{iterator.concept.random.access}. \pnum A \tcode{flat_map} meets all of the requirements of a container\iref{container.reqmts} and of a reversible container\iref{container.rev.reqmts}, plus the optional container requirements\iref{container.opt.reqmts}. \tcode{flat_map} meets the requirements of an associative container\iref{associative.reqmts}, except that: \begin{itemize} \item it does not meet the requirements related to node handles\iref{container.node}, \item it does not meet the requirements related to iterator invalidation, and \item the time complexity of the operations that insert or erase a single element from the map is linear, including the ones that take an insertion position iterator. \end{itemize} \begin{note} A \tcode{flat_map} does not meet the additional requirements of an allocator-aware container\iref{container.alloc.reqmts}. \end{note} \pnum A \tcode{flat_map} also provides most operations described in \ref{associative.reqmts} for unique keys. This means that a \tcode{flat_map} supports the \tcode{a_uniq} operations in \ref{associative.reqmts} but not the \tcode{a_eq} operations. For a \tcode{flat_map} the \tcode{key_type} is \tcode{Key} and the \tcode{value_type} is \tcode{pair}. \pnum Descriptions are provided here only for operations on \tcode{flat_map} that are not described in one of those sets of requirements or for operations where there is additional semantic information. \pnum A \tcode{flat_map} maintains the following invariants: \begin{itemize} \item it contains the same number of keys and values; \item the keys are sorted with respect to the comparison object; and \item the value at offset \tcode{off} within the value container is the value associated with the key at offset \tcode{off} within the key container. \end{itemize} \pnum If any member function in \ref{flat.map.defn} exits via an exception the invariants of the object argument are restored. For the move constructor and move assignment operator, the invariants of both arguments are restored. \begin{note} This can result in the \tcode{flat_map} being emptied. \end{note} \pnum Any type \tcode{C} that meets the sequence container requirements\iref{sequence.reqmts} can be used to instantiate \tcode{flat_map}, as long as \tcode{C::iterator} meets the \oldconcept{RandomAccessIterator} requirements and invocations of member functions \tcode{C::size} and \tcode{C::max_size} do not exit via an exception. In particular, \tcode{vector}\iref{vector} and \tcode{deque}\iref{deque} can be used. \begin{note} \tcode{vector} is not a sequence container. \end{note} \pnum The program is ill-formed if \tcode{Key} is not the same type as \tcode{KeyContainer::value_type} or \tcode{T} is not the same type as \tcode{MappedContainer::value_type}. \pnum The effect of calling a constructor that takes both \tcode{key_container_type} and \tcode{mapped_container_type} arguments with containers of different sizes is undefined. \pnum The effect of calling a member function that takes a \tcode{sorted_unique_t} argument with a container, containers, or range that is not sorted with respect to \tcode{key_comp()}, or that contains equal elements, is undefined. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \rSec3[flat.map.defn]{Definition} \begin{codeblock} namespace std { template, class KeyContainer = vector, class MappedContainer = vector> class flat_map { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using key_compare = Compare; using reference = pair; using const_reference = pair; using size_type = size_t; using difference_type = ptrdiff_t; using iterator = @\impdefx{type of \tcode{flat_map::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{flat_map::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using key_container_type = KeyContainer; using mapped_container_type = MappedContainer; class value_compare { private: key_compare @\exposid{comp}@; // \expos constexpr value_compare(key_compare c) : @\exposid{comp}@(c) { } // \expos public: constexpr bool operator()(const_reference x, const_reference y) const { return @\exposid{comp}@(x.first, y.first); } }; struct containers { key_container_type keys; mapped_container_type values; }; // \ref{flat.map.cons}, constructors constexpr flat_map() : flat_map(key_compare()) { } constexpr flat_map(const flat_map&); constexpr flat_map(flat_map&&); constexpr flat_map& operator=(const flat_map&); constexpr flat_map& operator=(flat_map&&); constexpr explicit flat_map(const key_compare& comp) : @\exposid{c}@(), @\exposid{compare}@(comp) { } constexpr flat_map(key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); constexpr flat_map(sorted_unique_t, key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); template constexpr flat_map(InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(first, last); } template constexpr flat_map(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(sorted_unique, first, last); } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_map(from_range_t, R&& rg) : flat_map(from_range, std::forward(rg), key_compare()) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_map(from_range_t, R&& rg, const key_compare& comp) : flat_map(comp) { insert_range(std::forward(rg)); } constexpr flat_map(initializer_list il, const key_compare& comp = key_compare()) : flat_map(il.begin(), il.end(), comp) { } constexpr flat_map(sorted_unique_t, initializer_list il, const key_compare& comp = key_compare()) : flat_map(sorted_unique, il.begin(), il.end(), comp) { } // \ref{flat.map.cons.alloc}, constructors with allocators template constexpr explicit flat_map(const Alloc& a); template constexpr flat_map(const key_compare& comp, const Alloc& a); template constexpr flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); template constexpr flat_map(sorted_unique_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_map(sorted_unique_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); template constexpr flat_map(const flat_map&, const Alloc& a); template constexpr flat_map(flat_map&&, const Alloc& a); template constexpr flat_map(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_map(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_map(sorted_unique_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_map(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_map(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_map(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_map(initializer_list il, const Alloc& a); template constexpr flat_map(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_map(sorted_unique_t, initializer_list il, const Alloc& a); template constexpr flat_map(sorted_unique_t, initializer_list il, const key_compare& comp, const Alloc& a); constexpr flat_map& operator=(initializer_list); // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // \ref{flat.map.capacity}, capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{flat.map.access}, element access constexpr mapped_type& operator[](const key_type& x); constexpr mapped_type& operator[](key_type&& x); template constexpr mapped_type& operator[](K&& x); constexpr mapped_type& at(const key_type& x); constexpr const mapped_type& at(const key_type& x) const; template constexpr mapped_type& at(const K& x); template constexpr const mapped_type& at(const K& x) const; // \ref{flat.map.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& x) { return emplace(x); } constexpr pair insert(value_type&& x) { return emplace(std::move(x)); } constexpr iterator insert(const_iterator position, const value_type& x) { return emplace_hint(position, x); } constexpr iterator insert(const_iterator position, value_type&& x) { return emplace_hint(position, std::move(x)); } template constexpr pair insert(P&& x); template constexpr iterator insert(const_iterator position, P&&); template constexpr void insert(InputIterator first, InputIterator last); template constexpr void insert(sorted_unique_t, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_unique_t, R&& rg); constexpr void insert(initializer_list il) { insert(il.begin(), il.end()); } constexpr void insert(sorted_unique_t, initializer_list il) { insert(sorted_unique, il.begin(), il.end()); } constexpr containers extract() &&; constexpr void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont); template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(flat_map& y) noexcept(@\seebelow@); constexpr void clear() noexcept; // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; constexpr const key_container_type& keys() const noexcept { return @\exposid{c}@.keys; } constexpr const mapped_container_type& values() const noexcept { return @\exposid{c}@.values; } // map operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; friend constexpr bool operator==(const flat_map& x, const flat_map& y); friend constexpr @\exposid{synth-three-way-result}@ operator<=>(const flat_map& x, const flat_map& y); friend constexpr void swap(flat_map& x, flat_map& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } private: containers @\exposid{c}@; // \expos key_compare @\exposid{compare}@; // \expos struct @\exposid{key-equiv}@ { // \expos constexpr @\exposid{key-equiv}@(key_compare c) : comp(c) { } constexpr bool operator()(const_reference x, const_reference y) const { return !comp(x.first, y.first) && !comp(y.first, x.first); } key_compare comp; }; }; template> flat_map(KeyContainer, MappedContainer, Compare = Compare()) -> flat_map; template flat_map(KeyContainer, MappedContainer, Allocator) -> flat_map, KeyContainer, MappedContainer>; template flat_map(KeyContainer, MappedContainer, Compare, Allocator) -> flat_map; template> flat_map(sorted_unique_t, KeyContainer, MappedContainer, Compare = Compare()) -> flat_map; template flat_map(sorted_unique_t, KeyContainer, MappedContainer, Allocator) -> flat_map, KeyContainer, MappedContainer>; template flat_map(sorted_unique_t, KeyContainer, MappedContainer, Compare, Allocator) -> flat_map; template>> flat_map(InputIterator, InputIterator, Compare = Compare()) -> flat_map<@\exposid{iter-key-type}@, @\exposid{iter-mapped-type}@, Compare>; template>> flat_map(sorted_unique_t, InputIterator, InputIterator, Compare = Compare()) -> flat_map<@\exposid{iter-key-type}@, @\exposid{iter-mapped-type}@, Compare>; template>, class Allocator = allocator> flat_map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> flat_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Compare, vector<@\exposid{range-key-type}@, @\exposid{alloc-rebind}@>>, vector<@\exposid{range-mapped-type}@, @\exposid{alloc-rebind}@>>>; template flat_map(from_range_t, R&&, Allocator) -> flat_map<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, less<@\exposid{range-key-type}@>, vector<@\exposid{range-key-type}@, @\exposid{alloc-rebind}@>>, vector<@\exposid{range-mapped-type}@, @\exposid{alloc-rebind}@>>>; template> flat_map(initializer_list>, Compare = Compare()) -> flat_map; template> flat_map(sorted_unique_t, initializer_list>, Compare = Compare()) -> flat_map; template struct uses_allocator, Allocator> : bool_constant && uses_allocator_v> { }; } \end{codeblock} \pnum The member type \tcode{containers} has the data members and special members specified above. It has no base classes or members other than those specified. \rSec3[flat.map.cons]{Constructors} \indexlibraryctor{flat_map}% \begin{itemdecl} constexpr flat_map(key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{\exposid{c}.keys} with \tcode{std::move(key_cont)}, \tcode{\exposid{c}.values} with \tcode{std::move(mapped_cont)}, and \exposid{compare} with \tcode{comp}; sorts the range \range{begin()}{end()} with respect to \tcode{value_comp()}; and finally erases the duplicate elements as if by: \begin{codeblock} auto zv = views::zip(@\exposid{c}@.keys, @\exposid{c}@.values); auto it = ranges::unique(zv, @\exposid{key-equiv}@(@\exposid{compare}@)).begin(); auto dist = distance(zv.begin(), it); @\exposid{c}@.keys.erase(@\exposid{c}@.keys.begin() + dist, @\exposid{c}@.keys.end()); @\exposid{c}@.values.erase(@\exposid{c}@.values.begin() + dist, @\exposid{c}@.values.end()); \end{codeblock} \pnum \complexity Linear in $N$ if the container arguments are already sorted with respect to \tcode{value_comp()} and otherwise $N \log N$, where $N$ is the value of \tcode{key_cont.size()} before this call. \end{itemdescr} \indexlibraryctor{flat_map}% \begin{itemdecl} constexpr flat_map(sorted_unique_t, key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{\exposid{c}.keys} with \tcode{std::move(key_cont)}, \tcode{\exposid{c}.values} with \tcode{std::move(mapped_cont)}, and \exposid{compare} with \tcode{comp}. \pnum \complexity Constant. \end{itemdescr} \rSec3[flat.map.cons.alloc]{Constructors with allocators} \pnum The constructors in this subclause shall not participate in overload resolution unless \tcode{uses_allocator_v} is \tcode{true} and \tcode{uses_allocator_v} is \tcode{true}. \indexlibraryctor{flat_map}% \begin{itemdecl} template constexpr flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_map(key_cont, mapped_cont)} and \tcode{flat_map(key_cont, mapped_cont, comp)}, respectively, except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.values} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Same as \tcode{flat_map(key_cont, mapped_cont)} and \tcode{flat_map(key_cont, mapped_cont, comp)}, respectively. \end{itemdescr} \indexlibraryctor{flat_map}% \begin{itemdecl} template constexpr flat_map(sorted_unique_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_map(sorted_unique_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_map(sorted_unique, key_cont, mapped_cont)} and \tcode{flat_map(sorted_unique, key_cont, \linebreak{}mapped_cont, comp)}, respectively, except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.values} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Linear. \end{itemdescr} \indexlibraryctor{flat_map}% \begin{itemdecl} template constexpr explicit flat_map(const Alloc& a); template constexpr flat_map(const key_compare& comp, const Alloc& a); template constexpr flat_map(const flat_map&, const Alloc& a); template constexpr flat_map(flat_map&&, const Alloc& a); template constexpr flat_map(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_map(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_map(sorted_unique_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_map(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_map(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_map(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_map(initializer_list il, const Alloc& a); template constexpr flat_map(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_map(sorted_unique_t, initializer_list il, const Alloc& a); template constexpr flat_map(sorted_unique_t, initializer_list il, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to the corresponding non-allocator constructors except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.values} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \end{itemdescr} \rSec3[flat.map.capacity]{Capacity} \indexlibrarymember{size}{flat_map}% \begin{itemdecl} constexpr size_type size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{\exposid{c}.keys.size()}. \end{itemdescr} \indexlibrarymember{max_size}{flat_map}% \begin{itemdecl} constexpr size_type max_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{min(\exposid{c}.keys.max_size(), \exposid{c}.values.max_size())}. \end{itemdescr} \rSec3[flat.map.access]{Access} \indexlibrarymember{operator[]}{flat_map}% \begin{itemdecl} constexpr mapped_type& operator[](const key_type& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(x).first->second;} \end{itemdescr} \indexlibrarymember{operator[]}{flat_map}% \begin{itemdecl} constexpr mapped_type& operator[](key_type&& x); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return try_emplace(std::move(x)).first->second;} \end{itemdescr} \indexlibrarymember{operator[]}{flat_map}% \begin{itemdecl} template constexpr mapped_type& operator[](K&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \pnum \effects Equivalent to: \tcode{return try_emplace(std::forward(x)).first->second;} \end{itemdescr} \indexlibrarymember{at}{flat_map}% \begin{itemdecl} constexpr mapped_type& at(const key_type& x); constexpr const mapped_type& at(const key_type& x) const; \end{itemdecl} \begin{itemdescr} \pnum \returns A reference to the \tcode{mapped_type} corresponding to \tcode{x} in \tcode{*this}. \pnum \throws An exception object of type \tcode{out_of_range} if no such element is present. \pnum \complexity Logarithmic. \end{itemdescr} \indexlibrarymember{at}{flat_map}% \begin{itemdecl} template constexpr mapped_type& at(const K& x); template constexpr const mapped_type& at(const K& x) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \pnum \expects The expression \tcode{find(x)} is well-formed and has well-defined behavior. \pnum \returns A reference to the \tcode{mapped_type} corresponding to \tcode{x} in \tcode{*this}. \pnum \throws An exception object of type \tcode{out_of_range} if no such element is present. \pnum \complexity Logarithmic. \end{itemdescr} \rSec3[flat.map.modifiers]{Modifiers} \indexlibrarymember{emplace}{flat_map}% \begin{itemdecl} template constexpr pair emplace(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v, Args...>} is \tcode{true}. \pnum \effects Initializes an object \tcode{t} of type \tcode{pair} with \tcode{std::forward(\linebreak args)...}; if the map already contains an element whose key is equivalent to \tcode{t.first}, \tcode{*this} is unchanged. Otherwise, equivalent to: \begin{codeblock} auto key_it = ranges::upper_bound(@\exposid{c}@.keys, t.first, @\exposid{compare}@); auto value_it = @\exposid{c}@.values.begin() + distance(@\exposid{c}@.keys.begin(), key_it); @\exposid{c}@.keys.insert(key_it, std::move(t.first)); @\exposid{c}@.values.insert(value_it, std::move(t.second)); \end{codeblock} \pnum \returns The \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place, and the iterator component of the pair points to the element with key equivalent to \tcode{t.first}. \end{itemdescr} \indexlibrarymember{insert}{flat_map}% \begin{itemdecl} template constexpr pair insert(P&& x); template constexpr iterator insert(const_iterator position, P&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v, P>} is \tcode{true}. \pnum \effects The first form is equivalent to \tcode{return emplace(std::forward

(x));}. The second form is equivalent to \tcode{return emplace_hint(position, std::forward

(x));}. \end{itemdescr} \indexlibrarymember{insert}{flat_map}% \begin{itemdecl} template constexpr void insert(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} for (; first != last; ++first) { value_type value = *first; @\exposid{c}@.keys.insert(@\exposid{c}@.keys.end(), std::move(value.first)); @\exposid{c}@.values.insert(@\exposid{c}@.values.end(), std::move(value.second)); } \end{codeblock} Then, sorts the range of newly inserted elements with respect to \tcode{value_comp()}; merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases the duplicate elements as if by: \begin{codeblock} auto zv = views::zip(@\exposid{c}@.keys, @\exposid{c}@.values); auto it = ranges::unique(zv, @\exposid{key-equiv}@(@\exposid{compare}@)).begin(); auto dist = distance(zv.begin(), it); @\exposid{c}@.keys.erase(@\exposid{c}@.keys.begin() + dist, @\exposid{c}@.keys.end()); @\exposid{c}@.values.erase(@\exposid{c}@.values.begin() + dist, @\exposid{c}@.values.end()); \end{codeblock} \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{distance(first, last)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert}{flat_map}% \begin{itemdecl} template constexpr void insert(sorted_unique_t, InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert(first, last)}. \pnum \complexity Linear in $N$, where $N$ is \tcode{size()} after the operation. \end{itemdescr} \indexlibrarymember{insert_range}{flat_map}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} ranges::for_each(rg, [&](value_type e) { @\exposid{c}@.keys.insert(@\exposid{c}@.keys.end(), std::move(e.first)); @\exposid{c}@.values.insert(@\exposid{c}@.values.end(), std::move(e.second)); }); \end{codeblock} Then, sorts the range of newly inserted elements with respect to \tcode{value_comp()}; merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases the duplicate elements as if by: \begin{codeblock} auto zv = views::zip(@\exposid{c}@.keys, @\exposid{c}@.values); auto it = ranges::unique(zv, @\exposid{key-equiv}@(@\exposid{compare}@)).begin(); auto dist = distance(zv.begin(), it); @\exposid{c}@.keys.erase(@\exposid{c}@.keys.begin() + dist, @\exposid{c}@.keys.end()); @\exposid{c}@.values.erase(@\exposid{c}@.values.begin() + dist, @\exposid{c}@.values.end()); \end{codeblock} \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{ranges::distance(rg)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert_range}{flat_map}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_unique_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert_range(rg)}. \pnum \complexity Linear in $N$, where $N$ is \tcode{size()} after the operation. \end{itemdescr} \indexlibrarymember{try_emplace}{flat_map}% \begin{itemdecl} template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, \tcode{*this} and \tcode{args...} are unchanged. Otherwise equivalent to: \begin{codeblock} auto key_it = ranges::upper_bound(@\exposid{c}@.keys, k, @\exposid{compare}@); auto value_it = @\exposid{c}@.values.begin() + distance(@\exposid{c}@.keys.begin(), key_it); @\exposid{c}@.keys.insert(key_it, std::forward(k)); @\exposid{c}@.values.emplace(value_it, std::forward(args)...); \end{codeblock} \pnum \returns In the first two overloads, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} for the first two overloads, and the same as \tcode{emplace_hint} for the last two overloads. \end{itemdescr} \indexlibrarymember{try_emplace}{flat_map}% \begin{itemdecl} template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \item \tcode{is_constructible_v} is \tcode{true}. \item \tcode{is_constructible_v} is \tcode{true}. \item For the first overload, \tcode{is_convertible_v} and \tcode{is_convertible_v} are both \tcode{false}. \end{itemize} \pnum \expects The conversion from \tcode{k} into \tcode{key_type} constructs an object \tcode{u}, for which \tcode{find(k) == find(u)} is \tcode{true}. \pnum \effects If the map already contains an element whose key is equivalent to \tcode{k}, \tcode{*this} and \tcode{args...} are unchanged. Otherwise equivalent to: \begin{codeblock} auto key_it = upper_bound(@\exposid{c}@.keys.begin(), @\exposid{c}@.keys.end(), k, @\exposid{compare}@); auto value_it = @\exposid{c}@.values.begin() + distance(@\exposid{c}@.keys.begin(), key_it); @\exposid{c}@.keys.emplace(key_it, std::forward(k)); @\exposid{c}@.values.emplace(value_it, std::forward(args)...); \end{codeblock} \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{insert_or_assign}{flat_map}% \begin{itemdecl} template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_assignable_v} is \tcode{true} and \tcode{is_constructible_v} is \tcode{true}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::forward<\linebreak M>(obj)} to \tcode{e.second}. Otherwise, equivalent to \begin{codeblock} try_emplace(std::forward(k), std::forward(obj)) \end{codeblock} for the first two overloads or \begin{codeblock} try_emplace(hint, std::forward(k), std::forward(obj)) \end{codeblock} for the last two overloads. \pnum \returns In the first two overloads, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} for the first two overloads and the same as \tcode{emplace_hint} for the last two overloads. \end{itemdescr} \indexlibrarymember{insert_or_assign}{flat_map}% \begin{itemdecl} template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \item \tcode{is_constructible_v} is \tcode{true}. \item \tcode{is_assignable_v} is \tcode{true}. \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects The conversion from \tcode{k} into \tcode{key_type} constructs an object \tcode{u}, for which \tcode{find(k) == find(u)} is \tcode{true}. \pnum \effects If the map already contains an element \tcode{e} whose key is equivalent to \tcode{k}, assigns \tcode{std::forward<\linebreak M>(obj)} to \tcode{e.second}. Otherwise, equivalent to \begin{codeblock} try_emplace(std::forward(k), std::forward(obj)) \end{codeblock} for the first overload or \begin{codeblock} try_emplace(hint, std::forward(k), std::forward(obj)) \end{codeblock} for the second overload. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the map element whose key is equivalent to \tcode{k}. \pnum \complexity The same as \tcode{emplace} and \tcode{emplace_hint}, respectively. \end{itemdescr} \indexlibrarymember{swap}{flat_map}% \begin{itemdecl} constexpr void swap(flat_map& y) noexcept(is_nothrow_swappable_v && is_nothrow_swappable_v && is_nothrow_swappable_v); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} ranges::swap(@\exposid{compare}@, y.@\exposid{compare}@); ranges::swap(@\exposid{c}@.keys, y.@\exposid{c}@.keys); ranges::swap(@\exposid{c}@.values, y.@\exposid{c}@.values); \end{codeblock} \end{itemdescr} \indexlibrarymember{extract}{flat_map}% \begin{itemdecl} constexpr containers extract() &&; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{*this} is emptied, even if the function exits via an exception. \pnum \returns \tcode{std::move(\exposid{c})}. \end{itemdescr} \indexlibrarymember{replace}{flat_map}% \begin{itemdecl} constexpr void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{key_cont.size() == mapped_cont.size()} is \tcode{true}, the elements of \tcode{key_cont} are sorted with respect to \exposid{compare}, and \tcode{key_cont} contains no equal elements. \pnum \effects Equivalent to: \begin{codeblock} @\exposid{c}@.keys = std::move(key_cont); @\exposid{c}@.values = std::move(mapped_cont); \end{codeblock} \end{itemdescr} \rSec3[flat.map.erasure]{Erasure} \indexlibrarymember{erase_if}{flat_map}% \begin{itemdecl} template constexpr typename flat_map::size_type erase_if(flat_map& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{Key} and \tcode{T} meet the \oldconcept{MoveAssignable} requirements. \pnum \effects Let $E$ be \tcode{bool(pred(pair(e)))}. Erases all elements \tcode{e} in \tcode{c} for which $E$ holds. \pnum \returns The number of elements erased. \pnum \complexity Exactly \tcode{c.size()} applications of the predicate. \pnum \remarks Stable\iref{algorithm.stable}. If an invocation of \tcode{erase_if} exits via an exception, \tcode{c} is in a valid but unspecified state\iref{defns.valid}. \begin{note} \tcode{c} still meets its invariants, but can be empty. \end{note} \end{itemdescr} \rSec2[flat.multimap]{Class template \tcode{flat_multimap}} \rSec3[flat.multimap.overview]{Overview} \pnum \indexlibraryglobal{flat_multimap}% A \tcode{flat_multimap} is a container adaptor that provides an associative container interface that supports equivalent keys (i.e., possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type \tcode{T} based on the keys. \tcode{flat_multimap} supports iterators that meet the \oldconcept{InputIterator} requirements and model the \libconcept{random_access_iterator} concept\iref{iterator.concept.random.access}. \pnum A \tcode{flat_multimap} meets all of the requirements for a container\iref{container.reqmts} and for a reversible container\iref{container.rev.reqmts}, plus the optional container requirements\iref{container.opt.reqmts}. \tcode{flat_multimap} meets the requirements of an associative container\iref{associative.reqmts}, except that: \begin{itemize} \item it does not meet the requirements related to node handles\iref{container.node}, \item it does not meet the requirements related to iterator invalidation, and \item the time complexity of the operations that insert or erase a single element from the map is linear, including the ones that take an insertion position iterator. \end{itemize} \begin{note} A \tcode{flat_multimap} does not meet the additional requirements of an allocator-aware container\iref{container.alloc.reqmts}. \end{note} \pnum A \tcode{flat_multimap} also provides most operations described in \ref{associative.reqmts} for equal keys. This means that a \tcode{flat_multimap} supports the \tcode{a_eq} operations in \ref{associative.reqmts} but not the \tcode{a_uniq} operations. For a \tcode{flat_multimap} the \tcode{key_type} is \tcode{Key} and the \tcode{value_type} is \tcode{pair}. \pnum Except as otherwise noted, operations on \tcode{flat_multimap} are equivalent to those of \tcode{flat_map}, except that \tcode{flat_multimap} operations do not remove or replace elements with equal keys. \begin{example} \tcode{flat_multimap} constructors and emplace do not erase non-unique elements after sorting them. \end{example} \pnum A \tcode{flat_multimap} maintains the following invariants: \begin{itemize} \item it contains the same number of keys and values; \item the keys are sorted with respect to the comparison object; and \item the value at offset \tcode{off} within the value container is the value associated with the key at offset \tcode{off} within the key container. \end{itemize} \pnum If any member function in \ref{flat.multimap.defn} exits via an exception, the invariants of the object argument are restored. For the move constructor and move assignment operator, the invariants of both arguments are restored. \begin{note} This can result in the \tcode{flat_multimap} being emptied. \end{note} \pnum Any type \tcode{C} that meets the sequence container requirements\iref{sequence.reqmts} can be used to instantiate \tcode{flat_multimap}, as long as \tcode{C::iterator} meets the \oldconcept{RandomAccessIterator} requirements and invocations of member functions \tcode{C::size} and \tcode{C::max_size} do not exit via an exception. In particular, \tcode{vector}\iref{vector} and \tcode{deque}\iref{deque} can be used. \begin{note} \tcode{vector} is not a sequence container. \end{note} \pnum The program is ill-formed if \tcode{Key} is not the same type as \tcode{KeyContainer::value_type} or \tcode{T} is not the same type as \tcode{MappedContainer::value_type}. \pnum The effect of calling a constructor that takes both \tcode{key_container_type} and \tcode{mapped_container_type} arguments with containers of different sizes is undefined. \pnum The effect of calling a member function that takes a \tcode{sorted_equivalent_t} argument with a container, containers, or range that are not sorted with respect to \tcode{key_comp()} is undefined. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \rSec3[flat.multimap.defn]{Definition} \begin{codeblock} namespace std { template, class KeyContainer = vector, class MappedContainer = vector> class flat_multimap { public: // types using key_type = Key; using mapped_type = T; using value_type = pair; using key_compare = Compare; using reference = pair; using const_reference = pair; using size_type = size_t; using difference_type = ptrdiff_t; using iterator = @\impdefx{type of \tcode{flat_multimap::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{flat_multimap::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using key_container_type = KeyContainer; using mapped_container_type = MappedContainer; class value_compare { private: key_compare @\exposid{comp}@; // \expos constexpr value_compare(key_compare c) : @\exposid{comp}@(c) { } // \expos public: constexpr bool operator()(const_reference x, const_reference y) const { return @\exposid{comp}@(x.first, y.first); } }; struct containers { key_container_type keys; mapped_container_type values; }; // \ref{flat.multimap.cons}, constructors constexpr flat_multimap() : flat_multimap(key_compare()) { } constexpr flat_multimap(const flat_multimap&); constexpr flat_multimap(flat_multimap&&); constexpr flat_multimap& operator=(const flat_multimap&); constexpr flat_multimap& operator=(flat_multimap&&); constexpr explicit flat_multimap(const key_compare& comp) : @\exposid{c}@(), @\exposid{compare}@(comp) { } constexpr flat_multimap(key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); constexpr flat_multimap(sorted_equivalent_t, key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); template constexpr flat_multimap(InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(first, last); } template constexpr flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(sorted_equivalent, first, last); } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_multimap(from_range_t, R&& rg) : flat_multimap(from_range, std::forward(rg), key_compare()) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_multimap(from_range_t, R&& rg, const key_compare& comp) : flat_multimap(comp) { insert_range(std::forward(rg)); } constexpr flat_multimap(initializer_list il, const key_compare& comp = key_compare()) : flat_multimap(il.begin(), il.end(), comp) { } constexpr flat_multimap(sorted_equivalent_t, initializer_list il, const key_compare& comp = key_compare()) : flat_multimap(sorted_equivalent, il.begin(), il.end(), comp) { } // \ref{flat.multimap.cons.alloc}, constructors with allocators template constexpr explicit flat_multimap(const Alloc& a); template constexpr flat_multimap(const key_compare& comp, const Alloc& a); template constexpr flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(const flat_multimap&, const Alloc& a); template constexpr flat_multimap(flat_multimap&&, const Alloc& a); template constexpr flat_multimap(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multimap(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multimap(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multimap(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(initializer_list il, const Alloc& a); template constexpr flat_multimap(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, initializer_list il, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, initializer_list il, const key_compare& comp, const Alloc& a); flat_multimap& operator=(initializer_list); // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& x) { return emplace(x); } constexpr iterator insert(value_type&& x) { return emplace(std::move(x)); } constexpr iterator insert(const_iterator position, const value_type& x) { return emplace_hint(position, x); } constexpr iterator insert(const_iterator position, value_type&& x) { return emplace_hint(position, std::move(x)); } template constexpr iterator insert(P&& x); template constexpr iterator insert(const_iterator position, P&&); template constexpr void insert(InputIterator first, InputIterator last); template constexpr void insert(sorted_equivalent_t, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_equivalent_t, R&& rg); constexpr void insert(initializer_list il) { insert(il.begin(), il.end()); } constexpr void insert(sorted_equivalent_t, initializer_list il) { insert(sorted_equivalent, il.begin(), il.end()); } constexpr containers extract() &&; constexpr void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(flat_multimap&) noexcept(is_nothrow_swappable_v && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; constexpr const key_container_type& keys() const noexcept { return @\exposid{c}@.keys; } constexpr const mapped_container_type& values() const noexcept { return @\exposid{c}@.values; } // map operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; friend constexpr bool operator==(const flat_multimap& x, const flat_multimap& y); friend constexpr @\exposid{synth-three-way-result}@ operator<=>(const flat_multimap& x, const flat_multimap& y); friend constexpr void swap(flat_multimap& x, flat_multimap& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } private: containers @\exposid{c}@; // \expos key_compare @\exposid{compare}@; // \expos }; template> flat_multimap(KeyContainer, MappedContainer, Compare = Compare()) -> flat_multimap; template flat_multimap(KeyContainer, MappedContainer, Allocator) -> flat_multimap, KeyContainer, MappedContainer>; template flat_multimap(KeyContainer, MappedContainer, Compare, Allocator) -> flat_multimap; template> flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Compare = Compare()) -> flat_multimap; template flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Allocator) -> flat_multimap, KeyContainer, MappedContainer>; template flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Compare, Allocator) -> flat_multimap; template>> flat_multimap(InputIterator, InputIterator, Compare = Compare()) -> flat_multimap<@\exposid{iter-key-type}@, @\exposid{iter-mapped-type}@, Compare>; template>> flat_multimap(sorted_equivalent_t, InputIterator, InputIterator, Compare = Compare()) -> flat_multimap<@\exposid{iter-key-type}@, @\exposid{iter-mapped-type}@, Compare>; template>, class Allocator = allocator> flat_multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> flat_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, Compare, vector<@\exposid{range-key-type}@, @\exposid{alloc-rebind}@>>, vector<@\exposid{range-mapped-type}@, @\exposid{alloc-rebind}@>>>; template flat_multimap(from_range_t, R&&, Allocator) -> flat_multimap<@\exposid{range-key-type}@, @\exposid{range-mapped-type}@, less<@\exposid{range-key-type}@>, vector<@\exposid{range-key-type}@, @\exposid{alloc-rebind}@>>, vector<@\exposid{range-mapped-type}@, @\exposid{alloc-rebind}@>>>; template> flat_multimap(initializer_list>, Compare = Compare()) -> flat_multimap; template> flat_multimap(sorted_equivalent_t, initializer_list>, Compare = Compare()) -> flat_multimap; template struct uses_allocator, Allocator> : bool_constant && uses_allocator_v> { }; } \end{codeblock} \pnum The member type \tcode{containers} has the data members and special members specified above. It has no base classes or members other than those specified. \rSec3[flat.multimap.cons]{Constructors} \indexlibraryctor{flat_multimap}% \begin{itemdecl} constexpr flat_multimap(key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{\exposid{c}.keys} with \tcode{std::move(key_cont)}, \tcode{\exposid{c}.values} with \tcode{std::move(mapped_cont)}, and \exposid{compare} with \tcode{comp}; sorts the range \range{begin()}{end()} with respect to \tcode{value_comp()}. \pnum \complexity Linear in $N$ if the container arguments are already sorted with respect to \tcode{value_comp()} and otherwise $N \log N$, where $N$ is the value of \tcode{key_cont.size()} before this call. \end{itemdescr} \indexlibraryctor{flat_multimap}% \begin{itemdecl} constexpr flat_multimap(sorted_equivalent_t, key_container_type key_cont, mapped_container_type mapped_cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \tcode{\exposid{c}.keys} with \tcode{std::move(key_cont)}, \tcode{\exposid{c}.values} with \tcode{std::move(mapped_cont)}, and \exposid{compare} with \tcode{comp}. \pnum \complexity Constant. \end{itemdescr} \rSec3[flat.multimap.cons.alloc]{Constructors with allocators} \pnum The constructors in this subclause shall not participate in overload resolution unless \tcode{uses_allocator_v} is \tcode{true} and \tcode{uses_allocator_v} is \tcode{true}. \indexlibraryctor{flat_multimap}% \begin{itemdecl} template constexpr flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_multimap(key_cont, mapped_cont)} and \tcode{flat_multimap(key_cont, \linebreak{}mapped_cont, comp)}, respectively, except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.values} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Same as \tcode{flat_multimap(key_cont, mapped_cont)} and \tcode{flat_multimap(key_cont, \linebreak{}mapped_cont, comp)}, respectively. \end{itemdescr} \indexlibraryctor{flat_multimap}% \begin{itemdecl} template constexpr flat_multimap(sorted_equivalent_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, const key_container_type& key_cont, const mapped_container_type& mapped_cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_multimap(sorted_equivalent, key_cont, mapped_cont)} and \tcode{flat_multimap(sorted_equivalent, key_cont, mapped_cont, comp)}, respectively, except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.val\-ues} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Linear. \end{itemdescr} \indexlibraryctor{flat_multimap}% \begin{itemdecl} template constexpr explicit flat_multimap(const Alloc& a); template constexpr flat_multimap(const key_compare& comp, const Alloc& a); template constexpr flat_multimap(const flat_multimap&, const Alloc& a); template constexpr flat_multimap(flat_multimap&&, const Alloc& a); template constexpr flat_multimap(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multimap(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multimap(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multimap(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(initializer_list il, const Alloc& a); template constexpr flat_multimap(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, initializer_list il, const Alloc& a); template constexpr flat_multimap(sorted_equivalent_t, initializer_list il, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to the corresponding non-allocator constructors except that \tcode{\exposid{c}.keys} and \tcode{\exposid{c}.values} are constructed with uses-allocator construction\iref{allocator.uses.construction}. \end{itemdescr} \rSec3[flat.multimap.erasure]{Erasure} \indexlibrarymember{erase_if}{flat_multimap}% \begin{itemdecl} template constexpr typename flat_multimap::size_type erase_if(flat_multimap& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{Key} and \tcode{T} meet the \oldconcept{MoveAssignable} requirements. \pnum \effects Let $E$ be \tcode{bool(pred(pair(e)))}. Erases all elements \tcode{e} in \tcode{c} for which $E$ holds. \pnum \returns The number of elements erased. \pnum \complexity Exactly \tcode{c.size()} applications of the predicate. \pnum \remarks Stable\iref{algorithm.stable}. If an invocation of \tcode{erase_if} exits via an exception, \tcode{c} is in a valid but unspecified state\iref{defns.valid}. \begin{note} \tcode{c} still meets its invariants, but can be empty. \end{note} \end{itemdescr} \rSec2[flat.set.syn]{Header \tcode{} synopsis}% \indexheader{flat_set}% \begin{codeblock} #include // see \ref{compare.syn} #include // see \ref{initializer.list.syn} namespace std { // \ref{flat.set}, class template \tcode{flat_set} template, class KeyContainer = vector> class flat_set; struct sorted_unique_t { explicit sorted_unique_t() = default; }; inline constexpr sorted_unique_t sorted_unique{}; template struct uses_allocator, Allocator>; // \ref{flat.set.erasure}, erasure for \tcode{flat_set} template constexpr typename flat_set::size_type erase_if(flat_set& c, Predicate pred); // \ref{flat.multiset}, class template \tcode{flat_multiset} template, class KeyContainer = vector> class flat_multiset; struct sorted_equivalent_t { explicit sorted_equivalent_t() = default; }; inline constexpr sorted_equivalent_t sorted_equivalent{}; template struct uses_allocator, Allocator>; // \ref{flat.multiset.erasure}, erasure for \tcode{flat_multiset} template constexpr typename flat_multiset::size_type erase_if(flat_multiset& c, Predicate pred); } \end{codeblock} \rSec2[flat.set]{Class template \tcode{flat_set}} \rSec3[flat.set.overview]{Overview} \pnum \indexlibraryglobal{flat_set}% A \tcode{flat_set} is a container adaptor that provides an associative container interface that supports unique keys (i.e., contains at most one of each key value) and provides for fast retrieval of the keys themselves. \tcode{flat_set} supports iterators that model the \libconcept{random_access_iterator} concept\iref{iterator.concept.random.access}. \pnum A \tcode{flat_set} meets all of the requirements for a container\iref{container.reqmts} and for a reversible container\iref{container.rev.reqmts}, plus the optional container requirements\iref{container.opt.reqmts}. \tcode{flat_set} meets the requirements of an associative container\iref{associative.reqmts}, except that: \begin{itemize} \item it does not meet the requirements related to node handles\iref{container.node.overview}, \item it does not meet the requirements related to iterator invalidation, and \item the time complexity of the operations that insert or erase a single element from the set is linear, including the ones that take an insertion position iterator. \end{itemize} \begin{note} A \tcode{flat_set} does not meet the additional requirements of an allocator-aware container, as described in \ref{container.alloc.reqmts}. \end{note} \pnum A \tcode{flat_set} also provides most operations described in \ref{associative.reqmts} for unique keys. This means that a \tcode{flat_set} supports the \tcode{a_uniq} operations in \ref{associative.reqmts} but not the \tcode{a_eq} operations. For a \tcode{flat_set}, both the \tcode{key_type} and \tcode{value_type} are \tcode{Key}. \pnum Descriptions are provided here only for operations on \tcode{flat_set} that are not described in one of those sets of requirements or for operations where there is additional semantic information. \pnum A \tcode{flat_set} maintains the invariant that the keys are sorted with respect to the comparison object. \pnum If any member function in \ref{flat.set.defn} exits via an exception, the invariant of the object argument is restored. For the move constructor and move assignment operator, the invariants of both arguments are restored. \begin{note} This can result in the \tcode{flat_set}'s being emptied. \end{note} \pnum Any sequence container\iref{sequence.reqmts} supporting \oldconcept{RandomAccessIterator} can be used to instantiate \tcode{flat_set}. In particular, \tcode{vector}\iref{vector} and \tcode{deque}\iref{deque} can be used. \begin{note} \tcode{vector} is not a sequence container. \end{note} \pnum The program is ill-formed if \tcode{Key} is not the same type as \tcode{KeyContainer::value_type}. \pnum The effect of calling a member function that takes a \tcode{sorted_unique_t} argument with a range that is not sorted with respect to \tcode{key_comp()}, or that contains equal elements, is undefined. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \rSec3[flat.set.defn]{Definition} \begin{codeblock} namespace std { template, class KeyContainer = vector> class @\libglobal{flat_set}@ { public: // types using key_type = Key; using value_type = Key; using key_compare = Compare; using value_compare = Compare; using reference = value_type&; using const_reference = const value_type&; using size_type = KeyContainer::size_type; using difference_type = KeyContainer::difference_type; using iterator = @\impdefx{type of \tcode{flat_set::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{flat_set::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using container_type = KeyContainer; // \ref{flat.set.cons}, constructors constexpr flat_set() : flat_set(key_compare()) { } constexpr flat_set(const flat_set&); constexpr flat_set(flat_set&&); constexpr flat_set& operator=(const flat_set&); constexpr flat_set& operator=(flat_set&&); constexpr explicit flat_set(const key_compare& comp) : @\exposid{c}@(), @\exposid{compare}@(comp) { } constexpr explicit flat_set(container_type cont, const key_compare& comp = key_compare()); constexpr flat_set(sorted_unique_t, container_type cont, const key_compare& comp = key_compare()) : @\exposid{c}@(std::move(cont)), @\exposid{compare}@(comp) { } template constexpr flat_set(InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(first, last); } template constexpr flat_set(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(first, last), @\exposid{compare}@(comp) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_set(from_range_t, R&& rg) : flat_set(from_range, std::forward(rg), key_compare()) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_set(from_range_t, R&& rg, const key_compare& comp) : flat_set(comp) { insert_range(std::forward(rg)); } constexpr flat_set(initializer_list il, const key_compare& comp = key_compare()) : flat_set(il.begin(), il.end(), comp) { } constexpr flat_set(sorted_unique_t, initializer_list il, const key_compare& comp = key_compare()) : flat_set(sorted_unique, il.begin(), il.end(), comp) { } // \ref{flat.set.cons.alloc}, constructors with allocators template constexpr explicit flat_set(const Alloc& a); template constexpr flat_set(const key_compare& comp, const Alloc& a); template constexpr flat_set(const container_type& cont, const Alloc& a); template constexpr flat_set(const container_type& cont, const key_compare& comp, const Alloc& a); template constexpr flat_set(sorted_unique_t, const container_type& cont, const Alloc& a); template constexpr flat_set(sorted_unique_t, const container_type& cont, const key_compare& comp, const Alloc& a); template constexpr flat_set(const flat_set&, const Alloc& a); template constexpr flat_set(flat_set&&, const Alloc& a); template constexpr flat_set(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_set(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_set(sorted_unique_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_set(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_set(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_set(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_set(initializer_list il, const Alloc& a); template constexpr flat_set(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_set(sorted_unique_t, initializer_list il, const Alloc& a); template constexpr flat_set(sorted_unique_t, initializer_list il, const key_compare& comp, const Alloc& a); constexpr flat_set& operator=(initializer_list); // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{flat.set.modifiers}, modifiers template constexpr pair emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& x) { return emplace(x); } constexpr pair insert(value_type&& x) { return emplace(std::move(x)); } template constexpr pair insert(K&& x); constexpr iterator insert(const_iterator position, const value_type& x) { return emplace_hint(position, x); } constexpr iterator insert(const_iterator position, value_type&& x) { return emplace_hint(position, std::move(x)); } template constexpr iterator insert(const_iterator hint, K&& x); template constexpr void insert(InputIterator first, InputIterator last); template constexpr void insert(sorted_unique_t, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_unique_t, R&& rg); constexpr void insert(initializer_list il) { insert(il.begin(), il.end()); } constexpr void insert(sorted_unique_t, initializer_list il) { insert(sorted_unique, il.begin(), il.end()); } constexpr container_type extract() &&; constexpr void replace(container_type&&); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(flat_set& y) noexcept(@\seebelow@); constexpr void clear() noexcept; // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // set operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; friend constexpr bool operator==(const flat_set& x, const flat_set& y); friend constexpr @\exposid{synth-three-way-result}@ operator<=>(const flat_set& x, const flat_set& y); friend constexpr void swap(flat_set& x, flat_set& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } private: container_type @\exposidnc{c}@; // \expos key_compare @\exposidnc{compare}@; // \expos }; template> flat_set(KeyContainer, Compare = Compare()) -> flat_set; template flat_set(KeyContainer, Allocator) -> flat_set, KeyContainer>; template flat_set(KeyContainer, Compare, Allocator) -> flat_set; template> flat_set(sorted_unique_t, KeyContainer, Compare = Compare()) -> flat_set; template flat_set(sorted_unique_t, KeyContainer, Allocator) -> flat_set, KeyContainer>; template flat_set(sorted_unique_t, KeyContainer, Compare, Allocator) -> flat_set; template>> flat_set(InputIterator, InputIterator, Compare = Compare()) -> flat_set<@\placeholder{iter-value-type}@, Compare>; template>> flat_set(sorted_unique_t, InputIterator, InputIterator, Compare = Compare()) -> flat_set<@\placeholder{iter-value-type}@, Compare>; template>, class Allocator = allocator>> flat_set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> flat_set, Compare, vector, @\exposid{alloc-rebind}@>>>; template flat_set(from_range_t, R&&, Allocator) -> flat_set, less>, vector, @\exposid{alloc-rebind}@>>>; template> flat_set(initializer_list, Compare = Compare()) -> flat_set; template> flat_set(sorted_unique_t, initializer_list, Compare = Compare()) -> flat_set; template struct uses_allocator, Allocator> : bool_constant> { }; } \end{codeblock} \rSec3[flat.set.cons]{Constructors} \indexlibraryctor{flat_set}% \begin{itemdecl} constexpr explicit flat_set(container_type cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \exposid{c} with \tcode{std::move(cont)} and \exposid{compare} with \tcode{comp}, sorts the range \range{begin()}{end()} with respect to \exposid{compare}, and finally erases all but the first element from each group of consecutive equivalent elements. \pnum \complexity Linear in $N$ if \tcode{cont} is already sorted with respect to \exposid{compare} and otherwise $N \log N$, where $N$ is the value of \tcode{cont.size()} before this call. \end{itemdescr} \rSec3[flat.set.cons.alloc]{Constructors with allocators} \pnum The constructors in this subclause shall not participate in overload resolution unless \tcode{uses_allocator_v} is \tcode{true}. \indexlibraryctor{flat_set}% \begin{itemdecl} template constexpr flat_set(const container_type& cont, const Alloc& a); template constexpr flat_set(const container_type& cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_set(cont)} and \tcode{flat_set(cont, comp)}, respectively, except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Same as \tcode{flat_set(cont)} and \tcode{flat_set(cont, comp)}, respectively. \end{itemdescr} \indexlibraryctor{flat_set}% \begin{itemdecl} template constexpr flat_set(sorted_unique_t, const container_type& cont, const Alloc& a); template constexpr flat_set(sorted_unique_t, const container_type& cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_set(sorted_unique, cont)} and \tcode{flat_set(sorted_unique, cont,\linebreak comp)}, respectively, except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Linear. \end{itemdescr} \indexlibraryctor{flat_set}% \begin{itemdecl} template constexpr explicit flat_set(const Alloc& a); template constexpr flat_set(const key_compare& comp, const Alloc& a); template constexpr flat_set(const flat_set&, const Alloc& a); template constexpr flat_set(flat_set&&, const Alloc& a); template constexpr flat_set(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_set(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_set(sorted_unique_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_set(sorted_unique_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_set(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_set(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_set(initializer_list il, const Alloc& a); template constexpr flat_set(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_set(sorted_unique_t, initializer_list il, const Alloc& a); template constexpr flat_set(sorted_unique_t, initializer_list il, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to the corresponding non-allocator constructors except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \end{itemdescr} \rSec3[flat.set.modifiers]{Modifiers} \indexlibrarymember{insert}{flat_set}% \begin{itemdecl} template constexpr pair insert(K&& x); template constexpr iterator insert(const_iterator hint, K&& x); \end{itemdecl} \begin{itemdescr} \pnum \constraints The \grammarterm{qualified-id} \tcode{Compare::is_transparent} is valid and denotes a type. \tcode{is_constructi\-ble_v} is \tcode{true}. \pnum \expects The conversion from \tcode{x} into \tcode{value_type} constructs an object \tcode{u}, for which \tcode{find(x) == find(u)} is \tcode{true}. \pnum \effects If the set already contains an element equivalent to \tcode{x}, \tcode{*this} and \tcode{x} are unchanged. Otherwise, inserts a new element as if by \tcode{emplace(std::forward(x))}. \pnum \returns In the first overload, the \tcode{bool} component of the returned pair is \tcode{true} if and only if the insertion took place. The returned iterator points to the element whose key is equivalent to \tcode{x}. \end{itemdescr} \indexlibrarymember{insert}{flat_set}% \begin{itemdecl} template constexpr void insert(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} @\exposid{c}@.insert(@\exposid{c}@.end(), first, last); \end{codeblock} Then, sorts the range of newly inserted elements with respect to \exposid{compare}; merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases all but the first element from each group of consecutive equivalent elements. \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{distance(first, last)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert}{flat_set}% \begin{itemdecl} template constexpr void insert(sorted_unique_t, InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert(first, last)}. \pnum \complexity Linear. \end{itemdescr} \indexlibrarymember{insert_range}{flat_set}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} ranges::for_each(rg, [&](auto&& e) { @\exposid{c}@.insert(@\exposid{c}@.end(), std::forward(e)); }); \end{codeblock} Then, sorts the range of newly inserted elements with respect to \exposid{compare}; merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases all but the first element from each group of consecutive equivalent elements. \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{ranges::distance(rg)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert_range}{flat_set}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_unique_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert_range(rg)}. \pnum \complexity Linear in $N$, where $N$ is \tcode{size()} after the operation. \end{itemdescr} \indexlibrarymember{swap}{flat_set}% \begin{itemdecl} constexpr void swap(flat_set& y) noexcept(is_nothrow_swappable_v && is_nothrow_swappable_v); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} ranges::swap(@\exposid{compare}@, y.@\exposid{compare}@); ranges::swap(@\exposid{c}@, y.@\exposid{c}@); \end{codeblock} \end{itemdescr} \indexlibrarymember{extract}{flat_set}% \begin{itemdecl} constexpr container_type extract() &&; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{*this} is emptied, even if the function exits via an exception. \pnum \returns \tcode{std::move(\exposid{c})}. \end{itemdescr} \indexlibrarymember{replace}{flat_set}% \begin{itemdecl} constexpr void replace(container_type&& cont); \end{itemdecl} \begin{itemdescr} \pnum \expects The elements of \tcode{cont} are sorted with respect to \exposid{compare}, and \tcode{cont} contains no equal elements. \pnum \effects Equivalent to: \tcode{\exposid{c} = std::move(cont);} \end{itemdescr} \rSec3[flat.set.erasure]{Erasure} \indexlibrarymember{erase_if}{flat_set}% \begin{itemdecl} template constexpr typename flat_set::size_type erase_if(flat_set& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{Key} meets the \oldconcept{MoveAssignable} requirements. \pnum \effects Let $E$ be \tcode{bool(pred(as_const(e)))}. Erases all elements \tcode{e} in \tcode{c} for which $E$ holds. \pnum \returns The number of elements erased. \pnum \complexity Exactly \tcode{c.size()} applications of the predicate. \pnum \remarks Stable\iref{algorithm.stable}. If an invocation of \tcode{erase_if} exits via an exception, \tcode{c} is in a valid but unspecified state\iref{defns.valid}. \begin{note} \tcode{c} still meets its invariants, but can be empty. \end{note} \end{itemdescr} \rSec2[flat.multiset]{Class template \tcode{flat_multiset}} \rSec3[flat.multiset.overview]{Overview} \pnum \indexlibraryglobal{flat_multiset}% A \tcode{flat_multiset} is a container adaptor that provides an associative container interface that supports equivalent keys (i.e., possibly containing multiple copies of the same key value) and provides for fast retrieval of the keys themselves. \tcode{flat_multiset} supports iterators that model the \libconcept{random_access_iterator} concept\iref{iterator.concept.random.access}. \pnum A \tcode{flat_multiset} meets all of the requirements for a container\iref{container.reqmts} and for a reversible container\iref{container.rev.reqmts}, plus the optional container requirements\iref{container.opt.reqmts}. \tcode{flat_multiset} meets the requirements of an associative container\iref{associative.reqmts}, except that: \begin{itemize} \item it does not meet the requirements related to node handles\iref{container.node.overview}, \item it does not meet the requirements related to iterator invalidation, and \item the time complexity of the operations that insert or erase a single element from the set is linear, including the ones that take an insertion position iterator. \end{itemize} \begin{note} A \tcode{flat_multiset} does not meet the additional requirements of an allocator-aware container, as described in \ref{container.alloc.reqmts}. \end{note} \pnum A \tcode{flat_multiset} also provides most operations described in \ref{associative.reqmts} for equal keys. This means that a \tcode{flat_multiset} supports the \tcode{a_eq} operations in \ref{associative.reqmts} but not the \tcode{a_uniq} operations. For a \tcode{flat_multiset}, both the \tcode{key_type} and \tcode{value_type} are \tcode{Key}. \pnum Descriptions are provided here only for operations on \tcode{flat_multiset} that are not described in one of the general sections or for operations where there is additional semantic information. \pnum A \tcode{flat_multiset} maintains the invariant that the keys are sorted with respect to the comparison object. \pnum If any member function in \ref{flat.multiset.defn} exits via an exception, the invariant of the object argument is restored. For the move constructor and move assignment operator, the invariants of both arguments are restored. \begin{note} This can result in the \tcode{flat_multiset}'s being emptied. \end{note} \pnum Any sequence container\iref{sequence.reqmts} supporting \oldconcept{RandomAccessIterator} can be used to instantiate \tcode{flat_multiset}. In particular, \tcode{vector}\iref{vector} and \tcode{deque}\iref{deque} can be used. \begin{note} \tcode{vector} is not a sequence container. \end{note} \pnum The program is ill-formed if \tcode{Key} is not the same type as \tcode{KeyContainer::value_type}. \pnum The effect of calling a member function that takes a \tcode{sorted_equivalent_t} argument with a range that is not sorted with respect to \tcode{key_comp()} is undefined. \pnum The types \tcode{iterator} and \tcode{const_iterator} meet the constexpr iterator requirements\iref{iterator.requirements.general}. \rSec3[flat.multiset.defn]{Definition} \begin{codeblock} namespace std { template, class KeyContainer = vector> class flat_multiset { public: // types using key_type = Key; using value_type = Key; using key_compare = Compare; using value_compare = Compare; using reference = value_type&; using const_reference = const value_type&; using size_type = KeyContainer::size_type; using difference_type = KeyContainer::difference_type; using iterator = @\impdefx{type of \tcode{flat_multiset::iterator}}@; // see \ref{container.requirements} using const_iterator = @\impdefx{type of \tcode{flat_multiset::const_iterator}}@; // see \ref{container.requirements} using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using container_type = KeyContainer; // \ref{flat.multiset.cons}, constructors constexpr flat_multiset() : flat_multiset(key_compare()) { } constexpr flat_multiset(const flat_multiset&); constexpr flat_multiset(flat_multiset&&); constexpr flat_multiset& operator=(const flat_multiset&); constexpr flat_multiset& operator=(flat_multiset&&); constexpr explicit flat_multiset(const key_compare& comp) : @\exposid{c}@(), @\exposid{compare}@(comp) { } constexpr explicit flat_multiset(container_type cont, const key_compare& comp = key_compare()); constexpr flat_multiset(sorted_equivalent_t, container_type cont, const key_compare& comp = key_compare()) : @\exposid{c}@(std::move(cont)), @\exposid{compare}@(comp) { } template constexpr flat_multiset(InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(), @\exposid{compare}@(comp) { insert(first, last); } template constexpr flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp = key_compare()) : @\exposid{c}@(first, last), @\exposid{compare}@(comp) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_multiset(from_range_t, R&& rg) : flat_multiset(from_range, std::forward(rg), key_compare()) { } template<@\exposconcept{container-compatible-range}@ R> constexpr flat_multiset(from_range_t, R&& rg, const key_compare& comp) : flat_multiset(comp) { insert_range(std::forward(rg)); } constexpr flat_multiset(initializer_list il, const key_compare& comp = key_compare()) : flat_multiset(il.begin(), il.end(), comp) { } constexpr flat_multiset(sorted_equivalent_t, initializer_list il, const key_compare& comp = key_compare()) : flat_multiset(sorted_equivalent, il.begin(), il.end(), comp) { } // \ref{flat.multiset.cons.alloc}, constructors with allocators template constexpr explicit flat_multiset(const Alloc& a); template constexpr flat_multiset(const key_compare& comp, const Alloc& a); template constexpr flat_multiset(const container_type& cont, const Alloc& a); template constexpr flat_multiset(const container_type& cont, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, const container_type& cont, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, const container_type& cont, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(const flat_multiset&, const Alloc& a); template constexpr flat_multiset(flat_multiset&&, const Alloc& a); template constexpr flat_multiset(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multiset(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multiset(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multiset(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(initializer_list il, const Alloc& a); template constexpr flat_multiset(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, initializer_list il, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, initializer_list il, const key_compare& comp, const Alloc& a); constexpr flat_multiset& operator=(initializer_list); // iterators constexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr reverse_iterator rbegin() noexcept; constexpr const_reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() noexcept; constexpr const_reverse_iterator rend() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept; constexpr const_reverse_iterator crend() const noexcept; // capacity constexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // \ref{flat.multiset.modifiers}, modifiers template constexpr iterator emplace(Args&&... args); template constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& x) { return emplace(x); } constexpr iterator insert(value_type&& x) { return emplace(std::move(x)); } constexpr iterator insert(const_iterator position, const value_type& x) { return emplace_hint(position, x); } constexpr iterator insert(const_iterator position, value_type&& x) { return emplace_hint(position, std::move(x)); } template constexpr void insert(InputIterator first, InputIterator last); template constexpr void insert(sorted_equivalent_t, InputIterator first, InputIterator last); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_equivalent_t, R&& rg); constexpr void insert(initializer_list il) { insert(il.begin(), il.end()); } constexpr void insert(sorted_equivalent_t, initializer_list il) { insert(sorted_equivalent, il.begin(), il.end()); } constexpr container_type extract() &&; constexpr void replace(container_type&&); constexpr iterator erase(iterator position) requires (!@\libconcept{same_as}@); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& x); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(flat_multiset& y) noexcept(@\seebelow@); constexpr void clear() noexcept; // observers constexpr key_compare key_comp() const; constexpr value_compare value_comp() const; // set operations constexpr iterator find(const key_type& x); constexpr const_iterator find(const key_type& x) const; template constexpr iterator find(const K& x); template constexpr const_iterator find(const K& x) const; constexpr size_type count(const key_type& x) const; template constexpr size_type count(const K& x) const; constexpr bool contains(const key_type& x) const; template constexpr bool contains(const K& x) const; constexpr iterator lower_bound(const key_type& x); constexpr const_iterator lower_bound(const key_type& x) const; template constexpr iterator lower_bound(const K& x); template constexpr const_iterator lower_bound(const K& x) const; constexpr iterator upper_bound(const key_type& x); constexpr const_iterator upper_bound(const key_type& x) const; template constexpr iterator upper_bound(const K& x); template constexpr const_iterator upper_bound(const K& x) const; constexpr pair equal_range(const key_type& x); constexpr pair equal_range(const key_type& x) const; template constexpr pair equal_range(const K& x); template constexpr pair equal_range(const K& x) const; friend constexpr bool operator==(const flat_multiset& x, const flat_multiset& y); friend constexpr @\exposid{synth-three-way-result}@ operator<=>(const flat_multiset& x, const flat_multiset& y); friend constexpr void swap(flat_multiset& x, flat_multiset& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } private: container_type @\exposidnc{c}@; // \expos key_compare @\exposidnc{compare}@; // \expos }; template> flat_multiset(KeyContainer, Compare = Compare()) -> flat_multiset; template flat_multiset(KeyContainer, Allocator) -> flat_multiset, KeyContainer>; template flat_multiset(KeyContainer, Compare, Allocator) -> flat_multiset; template> flat_multiset(sorted_equivalent_t, KeyContainer, Compare = Compare()) -> flat_multiset; template flat_multiset(sorted_equivalent_t, KeyContainer, Allocator) -> flat_multiset, KeyContainer>; template flat_multiset(sorted_equivalent_t, KeyContainer, Compare, Allocator) -> flat_multiset; template>> flat_multiset(InputIterator, InputIterator, Compare = Compare()) -> flat_multiset<@\placeholder{iter-value-type}@, Compare>; template>> flat_multiset(sorted_equivalent_t, InputIterator, InputIterator, Compare = Compare()) -> flat_multiset<@\placeholder{iter-value-type}@, Compare>; template>, class Allocator = allocator>> flat_multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator()) -> flat_multiset, Compare, vector, @\exposid{alloc-rebind}@>>>; template flat_multiset(from_range_t, R&&, Allocator) -> flat_multiset, less>, vector, @\exposid{alloc-rebind}@>>>; template> flat_multiset(initializer_list, Compare = Compare()) -> flat_multiset; template> flat_multiset(sorted_equivalent_t, initializer_list, Compare = Compare()) -> flat_multiset; template struct uses_allocator, Allocator> : bool_constant> { }; } \end{codeblock} \rSec3[flat.multiset.cons]{Constructors} \indexlibraryctor{flat_multiset}% \begin{itemdecl} constexpr explicit flat_multiset(container_type cont, const key_compare& comp = key_compare()); \end{itemdecl} \begin{itemdescr} \pnum \effects Initializes \exposid{c} with \tcode{std::move(cont)} and \exposid{compare} with \tcode{comp}, and sorts the range \range{begin()}{end()} with respect to \exposid{compare}. \pnum \complexity Linear in $N$ if \tcode{cont} is already sorted with respect to \exposid{compare} and otherwise $N \log N$, where $N$ is the value of \tcode{cont.size()} before this call. \end{itemdescr} \rSec3[flat.multiset.cons.alloc]{Constructors with allocators} \pnum The constructors in this subclause shall not participate in overload resolution unless \tcode{uses_allocator_v} is \tcode{true}. \indexlibraryctor{flat_multiset}% \begin{itemdecl} template constexpr flat_multiset(const container_type& cont, const Alloc& a); template constexpr flat_multiset(const container_type& cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_multiset(cont)} and \tcode{flat_multiset(cont, comp)}, respectively, except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Same as \tcode{flat_multiset(cont)} and \tcode{flat_multiset(cont, comp)}, respectively. \end{itemdescr} \indexlibraryctor{flat_multiset}% \begin{itemdecl} template constexpr flat_multiset(sorted_equivalent_t, const container_type& cont, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, const container_type& cont, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{flat_multiset(sorted_equivalent, cont)} and \tcode{flat_multiset(sorted_equivalent, cont, comp)}, respectively, except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \pnum \complexity Linear. \end{itemdescr} \indexlibraryctor{flat_multiset}% \begin{itemdecl} template constexpr explicit flat_multiset(const Alloc& a); template constexpr flat_multiset(const key_compare& comp, const Alloc& a); template constexpr flat_multiset(const flat_multiset&, const Alloc& a); template constexpr flat_multiset(flat_multiset&&, const Alloc& a); template constexpr flat_multiset(InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multiset(InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const key_compare& comp, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multiset(from_range_t, R&& rg, const Alloc& a); template<@\exposconcept{container-compatible-range}@ R, class Alloc> constexpr flat_multiset(from_range_t, R&& rg, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(initializer_list il, const Alloc& a); template constexpr flat_multiset(initializer_list il, const key_compare& comp, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, initializer_list il, const Alloc& a); template constexpr flat_multiset(sorted_equivalent_t, initializer_list il, const key_compare& comp, const Alloc& a); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to the corresponding non-allocator constructors except that \exposid{c} is constructed with uses-allocator construction\iref{allocator.uses.construction}. \end{itemdescr} \rSec3[flat.multiset.modifiers]{Modifiers} \indexlibrarymember{emplace}{flat_multiset}% \begin{itemdecl} template constexpr iterator emplace(Args&&... args); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \effects First, initializes an object \tcode{t} of type \tcode{value_type} with \tcode{std::forward(args)...}, then inserts \tcode{t} as if by: \begin{codeblock} auto it = ranges::upper_bound(@\exposid{c}@, t, @\exposid{compare}@); @\exposid{c}@.insert(it, std::move(t)); \end{codeblock} \pnum \returns An iterator that points to the inserted element. \end{itemdescr} \indexlibrarymember{insert}{flat_multiset}% \begin{itemdecl} template constexpr void insert(InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} @\exposid{c}@.insert(@\exposid{c}@.end(), first, last); \end{codeblock} Then, sorts the range of newly inserted elements with respect to \exposid{compare}, and merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range. \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{distance(first, last)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert}{flat_multiset}% \begin{itemdecl} template constexpr void insert(sorted_equivalent_t, InputIterator first, InputIterator last); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert(first, last)}. \pnum \complexity Linear in $N$, where $N$ is \tcode{size()} after the operation. \end{itemdescr} \indexlibrarymember{insert_range}{flat_multiset}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Adds elements to \exposid{c} as if by: \begin{codeblock} ranges::for_each(rg, [&](auto&& e) { @\exposid{c}@.insert(@\exposid{c}@.end(), std::forward(e)); }); \end{codeblock} Then, sorts the range of newly inserted elements with respect to \exposid{compare}, and merges the resulting sorted range and the sorted range of pre-existing elements into a single sorted range. \pnum \complexity $N$ + $M \log M$, where $N$ is \tcode{size()} before the operation and $M$ is \tcode{ranges::distance(rg)}. \pnum \remarks Since this operation performs an in-place merge, it may allocate memory. \end{itemdescr} \indexlibrarymember{insert_range}{flat_multiset}% \begin{itemdecl} template<@\exposconcept{container-compatible-range}@ R> constexpr void insert_range(sorted_equivalent_t, R&& rg); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to \tcode{insert_range(rg)}. \pnum \complexity Linear in $N$, where $N$ is \tcode{size()} after the operation. \end{itemdescr} \indexlibrarymember{swap}{flat_multiset}% \begin{itemdecl} constexpr void swap(flat_multiset& y) noexcept(is_nothrow_swappable_v && is_nothrow_swappable_v); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} ranges::swap(@\exposid{compare}@, y.@\exposid{compare}@); ranges::swap(@\exposid{c}@, y.@\exposid{c}@); \end{codeblock} \end{itemdescr} \indexlibrarymember{extract}{flat_multiset}% \begin{itemdecl} constexpr container_type extract() &&; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{*this} is emptied, even if the function exits via an exception. \pnum \returns \tcode{std::move(\exposid{c})}. \end{itemdescr} \indexlibrarymember{replace}{flat_multiset}% \begin{itemdecl} constexpr void replace(container_type&& cont); \end{itemdecl} \begin{itemdescr} \pnum \expects The elements of \tcode{cont} are sorted with respect to \exposid{compare}. \pnum \effects Equivalent to: \tcode{\exposid{c} = std::move(cont);} \end{itemdescr} \rSec3[flat.multiset.erasure]{Erasure} \indexlibrarymember{erase_if}{flat_multiset}% \begin{itemdecl} template constexpr typename flat_multiset::size_type erase_if(flat_multiset& c, Predicate pred); \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{Key} meets the \oldconcept{MoveAssignable} requirements. \pnum \effects Let $E$ be \tcode{bool(pred(as_const(e)))}. Erases all elements \tcode{e} in \tcode{c} for which $E$ holds. \pnum \returns The number of elements erased. \pnum \complexity Exactly \tcode{c.size()} applications of the predicate. \pnum \remarks Stable\iref{algorithm.stable}. If an invocation of \tcode{erase_if} exits via an exception, \tcode{c} is in a valid but unspecified state\iref{defns.valid}. \begin{note} \tcode{c} still meets its invariants, but can be empty. \end{note} \end{itemdescr} \rSec2[container.adaptors.format]{Container adaptors formatting} \pnum For each of \tcode{queue}, \tcode{priority_queue}, and \tcode{stack}, the library provides the following formatter specialization where \tcode{\placeholder{adaptor-type}} is the name of the template: \indexlibraryglobal{formatter}% \begin{codeblock} namespace std { template Container, class... U> struct formatter<@\placeholder{adaptor-type}@, charT> { private: using @\exposid{maybe-const-container}@ = // \expos @\exposid{fmt-maybe-const}@; using @\exposid{maybe-const-adaptor}@ = // \expos @\exposid{maybe-const}@, // see \ref{ranges.syn} @\placeholder{adaptor-type}@>; formatter, charT> @\exposid{underlying_}@; // \expos public: template constexpr typename ParseContext::iterator parse(ParseContext& ctx); template typename FormatContext::iterator format(@\exposid{maybe-const-adaptor}@& r, FormatContext& ctx) const; }; } \end{codeblock} \indexlibrarymember{parse}{formatter}% \begin{itemdecl} template constexpr typename ParseContext::iterator parse(ParseContext& ctx); \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return \exposid{underlying_}.parse(ctx);} \end{itemdescr} \indexlibrarymember{format}{formatter}% \begin{itemdecl} template typename FormatContext::iterator format(@\exposid{maybe-const-adaptor}@& r, FormatContext& ctx) const; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return \exposid{underlying_}.format(r.c, ctx);} \end{itemdescr} \rSec1[views]{Views} \rSec2[views.general]{General} \pnum The header \libheaderref{span} defines the view \tcode{span}. The header \libheaderref{mdspan} defines the class template \tcode{mdspan} and other facilities for interacting with these multidimensional views. \pnum In addition to being available via inclusion of the \libheaderref{span} header, \tcode{dynamic_extent} is available when the header \libheaderref{mdspan} is included. \rSec2[views.contiguous]{Contiguous access} \rSec3[span.syn]{Header \tcode{} synopsis}% \indexheader{span}% \begin{codeblock} #include // see \ref{initializer.list.syn} // mostly freestanding namespace std { // constants inline constexpr size_t @\libglobal{dynamic_extent}@ = numeric_limits::max(); template concept @\defexposconcept{integral-constant-like}@ = // \expos is_integral_v> && !is_same_v> && @\libconcept{convertible_to}@ && @\libconcept{equality_comparable_with}@ && bool_constant::value && bool_constant(T()) == T::value>::value; template constexpr size_t @\defexposconcept{maybe-static-ext}@ = dynamic_extent; // \expos template<@\exposconcept{integral-constant-like}@ T> constexpr size_t @\exposconcept{maybe-static-ext}@ = {T::value}; // \ref{views.span}, class template \tcode{span} template class span; // partially freestanding template constexpr bool ranges::@\libspec{enable_view}{span}@> = true; template constexpr bool ranges::@\libspec{enable_borrowed_range}{span}@> = true; // \ref{span.objectrep}, views of object representation template span as_bytes(span s) noexcept; template span as_writable_bytes(span s) noexcept; } \end{codeblock} \rSec3[views.span]{Class template \tcode{span}} \rSec4[span.overview]{Overview} \pnum \indexlibraryglobal{span}% A \tcode{span} is a view over a contiguous sequence of objects, the storage of which is owned by some other object. \pnum All member functions of \tcode{span} have constant time complexity. \indexlibraryglobal{span}% \begin{codeblock} namespace std { template class span { public: // constants and types using element_type = ElementType; using value_type = remove_cv_t; using size_type = size_t; using difference_type = ptrdiff_t; using pointer = element_type*; using const_pointer = const element_type*; using reference = element_type&; using const_reference = const element_type&; using iterator = @\impdefx{type of \tcode{span::iterator}}@; // see \ref{span.iterators} using const_iterator = std::const_iterator; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::const_iterator; static constexpr size_type extent = Extent; // \ref{span.cons}, constructors, copy, and assignment constexpr span() noexcept; template constexpr explicit(extent != dynamic_extent) span(It first, size_type count); template constexpr explicit(extent != dynamic_extent) span(It first, End last); template constexpr span(type_identity_t (&arr)[N]) noexcept; template constexpr span(array& arr) noexcept; template constexpr span(const array& arr) noexcept; template constexpr explicit(extent != dynamic_extent) span(R&& r); constexpr explicit(extent != dynamic_extent) span(std::initializer_list il); constexpr span(const span& other) noexcept = default; template constexpr explicit(@\seebelow@) span(const span& s) noexcept; constexpr span& operator=(const span& other) noexcept = default; // \ref{span.sub}, subviews template constexpr span first() const; template constexpr span last() const; template constexpr span subspan() const; constexpr span first(size_type count) const; constexpr span last(size_type count) const; constexpr span subspan( size_type offset, size_type count = dynamic_extent) const; // \ref{span.obs}, observers constexpr size_type size() const noexcept; constexpr size_type size_bytes() const noexcept; constexpr bool empty() const noexcept; // \ref{span.elem}, element access constexpr reference operator[](size_type idx) const; constexpr reference at(size_type idx) const; // freestanding-deleted constexpr reference front() const; constexpr reference back() const; constexpr pointer data() const noexcept; // \ref{span.iterators}, iterator support constexpr iterator begin() const noexcept; constexpr iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept { return begin(); } constexpr const_iterator cend() const noexcept { return end(); } constexpr reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); } constexpr const_reverse_iterator crend() const noexcept { return rend(); } private: pointer @\exposid{data_}@; // \expos size_type @\exposid{size_}@; // \expos }; template span(It, EndOrSize) -> span>, @\exposconcept{maybe-static-ext}@>; template span(T (&)[N]) -> span; template span(array&) -> span; template span(const array&) -> span; template span(R&&) -> span>>; } \end{codeblock} \pnum \tcode{span} is a trivially copyable type\iref{term.trivially.copyable.type}. \pnum \tcode{ElementType} is required to be a complete object type that is not an abstract class type. \pnum For a \tcode{span} \tcode{s}, any operation that invalidates a pointer in the range \range{s.data()}{s.data() + s.size()} invalidates pointers, iterators, and references to elements of \tcode{s}. \rSec4[span.cons]{Constructors, copy, and assignment} \indexlibraryctor{span}% \begin{itemdecl} constexpr span() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{Extent == dynamic_extent || Extent == 0} is \tcode{true}. \pnum \ensures %FIXME: Should "is \tcode{true}" be appended here? \tcode{size() == 0 \&\& data() == nullptr}. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} template constexpr explicit(extent != dynamic_extent) span(It first, size_type count); \end{itemdecl} \begin{itemdescr} \pnum \constraints Let \tcode{U} be \tcode{remove_reference_t>}. \begin{itemize} \item \tcode{It} satisfies \libconcept{contiguous_iterator}. \item \tcode{is_convertible_v} is \tcode{true}. \begin{note} The intent is to allow only qualification conversions of the iterator reference type to \tcode{element_type}. \end{note} \end{itemize} \pnum \expects \begin{itemize} \item \range{first}{first + count} is a valid range. \item \tcode{It} models \libconcept{contiguous_iterator}. \end{itemize} \pnum \hardexpects If \tcode{extent} is not equal to \tcode{dynamic_extent}, then \tcode{count == extent} is \tcode{true}. \pnum \effects Initializes \exposid{data_} with \tcode{to_address(first)} and \exposid{size_} with \tcode{count}. \pnum \throws Nothing. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} template constexpr explicit(extent != dynamic_extent) span(It first, End last); \end{itemdecl} \begin{itemdescr} \pnum \constraints Let \tcode{U} be \tcode{remove_reference_t>}. \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}. \begin{note} The intent is to allow only qualification conversions of the iterator reference type to \tcode{element_type}. \end{note} \item \tcode{It} satisfies \libconcept{contiguous_iterator}. \item \tcode{End} satisfies \tcode{\libconcept{sized_sentinel_for}}. \item \tcode{is_convertible_v} is \tcode{false}. \end{itemize} \pnum \expects \begin{itemize} \item \range{first}{last} is a valid range. \item \tcode{It} models \libconcept{contiguous_iterator}. \item \tcode{End} models \tcode{\libconcept{sized_sentinel_for}}. \end{itemize} \pnum \hardexpects If \tcode{extent} is not equal to \tcode{dynamic_extent}, then \tcode{(last - first) == extent} is \tcode{true}. \pnum \effects Initializes \exposid{data_} with \tcode{to_address(first)} and \exposid{size_} with \tcode{last - first}. \pnum \throws When and what \tcode{last - first} throws. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} template constexpr span(type_identity_t (&arr)[N]) noexcept; template constexpr span(array& arr) noexcept; template constexpr span(const array& arr) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints Let \tcode{U} be \tcode{remove_pointer_t}. \begin{itemize} \item \tcode{extent == dynamic_extent || N == extent} is \tcode{true}, and \item \tcode{is_convertible_v} is \tcode{true}. \begin{note} The intent is to allow only qualification conversions of the array element type to \tcode{element_type}. \end{note} \end{itemize} \pnum \effects Constructs a \tcode{span} that is a view over the supplied array. \begin{note} \tcode{type_identity_t} affects class template argument deduction. \end{note} \pnum \ensures \tcode{size() == N \&\& data() == std::data(arr)} is \tcode{true}. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} template constexpr explicit(extent != dynamic_extent) span(R&& r); \end{itemdecl} \begin{itemdescr} \pnum \constraints Let \tcode{U} be \tcode{remove_reference_t>}. \begin{itemize} \item \tcode{R} satisfies \tcode{ranges::\libconcept{contiguous_range}} and \tcode{ranges::\libconcept{sized_range}}. \item Either \tcode{R} satisfies \tcode{ranges::\libconcept{borrowed_range}} or \tcode{is_const_v} is \tcode{true}. \item \tcode{remove_cvref_t} is not a specialization of \tcode{span}. \item \tcode{remove_cvref_t} is not a specialization of \tcode{array}. \item \tcode{is_array_v>} is \tcode{false}. \item \tcode{is_convertible_v} is \tcode{true}. \begin{note} The intent is to allow only qualification conversions of the range reference type to \tcode{element_type}. \end{note} \end{itemize} \pnum \expects \begin{itemize} \item \tcode{R} models \tcode{ranges::\libconcept{contiguous_range}} and \tcode{ranges::\libconcept{sized_range}}. \item If \tcode{is_const_v} is \tcode{false}, \tcode{R} models \tcode{ranges::\libconcept{borrowed_range}}. \end{itemize} \pnum \hardexpects If \tcode{extent} is not equal to \tcode{dynamic_extent}, then \tcode{ranges::size(r) == extent} is \tcode{true}. \pnum \effects Initializes \exposid{data_} with \tcode{ranges::data(r)} and \exposid{size_} with \tcode{ranges::size(r)}. \pnum \throws What and when \tcode{ranges::data(r)} and \tcode{ranges::size(r)} throw. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} constexpr explicit(extent != dynamic_extent) span(std::initializer_list il); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_const_v} is \tcode{true}. \pnum \hardexpects If \tcode{extent} is not equal to \tcode{dynamic_extent}, then \tcode{il.size() == extent} is \tcode{true}. \pnum \effects Initializes \exposid{data_} with \tcode{il.data()} and \exposid{size_} with \tcode{il.size()}. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} constexpr span(const span& other) noexcept = default; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{other.size() == size() \&\& other.data() == data()}. \end{itemdescr} \indexlibraryctor{span}% \begin{itemdecl} template constexpr explicit(@\seebelow@) span(const span& s) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{extent == dynamic_extent} \tcode{||} \tcode{OtherExtent == dynamic_extent} \tcode{||} \tcode{extent == OtherExtent} is \tcode{true}, and \item \tcode{is_convertible_v} is \tcode{true}. \begin{note} The intent is to allow only qualification conversions of the \tcode{OtherElementType} to \tcode{element_type}. \end{note} \end{itemize} \pnum \hardexpects If \tcode{extent} is not equal to \tcode{dynamic_extent}, then \tcode{s.size() == extent} is \tcode{true}. \pnum \effects Constructs a \tcode{span} that is a view over the range \range{s.data()}{s.data() + s.size()}. \pnum \ensures \tcode{size() == s.size() \&\& data() == s.data()}. \pnum \remarks The expression inside \keyword{explicit} is equivalent to: \begin{codeblock} extent != dynamic_extent && OtherExtent == dynamic_extent \end{codeblock} \end{itemdescr} \indexlibrarymember{operator=}{span}% \begin{itemdecl} constexpr span& operator=(const span& other) noexcept = default; \end{itemdecl} \begin{itemdescr} \pnum \ensures \tcode{size() == other.size() \&\& data() == other.data()}. \end{itemdescr} \rSec4[span.deduct]{Deduction guides} \indexlibrary{\idxcode{span}!deduction guide}% \begin{itemdecl} template span(It, EndOrSize) -> span>, @\exposconcept{maybe-static-ext}@>; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{It} satisfies \libconcept{contiguous_iterator}. \end{itemdescr} \indexlibrary{\idxcode{span}!deduction guide}% \begin{itemdecl} template span(R&&) -> span>>; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{R} satisfies \tcode{ranges::\libconcept{contiguous_range}}. \end{itemdescr} \rSec4[span.sub]{Subviews} \indexlibrarymember{span}{first}% \begin{itemdecl} template constexpr span first() const; \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{Count <= Extent} is \tcode{true}. \pnum \hardexpects \tcode{Count <= size()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return R(data(), Count);} where \tcode{R} is the return type. \end{itemdescr} \indexlibrarymember{span}{last}% \begin{itemdecl} template constexpr span last() const; \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{Count <= Extent} is \tcode{true}. \pnum \hardexpects \tcode{Count <= size()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return R(data() + (size() - Count), Count);} where \tcode{R} is the return type. \end{itemdescr} \indexlibrarymember{span}{subspan}% \begin{itemdecl} template constexpr span subspan() const; \end{itemdecl} \begin{itemdescr} \pnum \mandates \begin{codeblock} Offset <= Extent && (Count == dynamic_extent || Count <= Extent - Offset) \end{codeblock} is \tcode{true}. \pnum \hardexpects \begin{codeblock} Offset <= size() && (Count == dynamic_extent || Count <= size() - Offset) \end{codeblock} is \tcode{true}. \pnum \effects Equivalent to: \begin{codeblock} return span( data() + Offset, Count != dynamic_extent ? Count : size() - Offset); \end{codeblock} \pnum \remarks The second template argument of the returned \tcode{span} type is: \begin{codeblock} Count != dynamic_extent ? Count : (Extent != dynamic_extent ? Extent - Offset : dynamic_extent) \end{codeblock} \end{itemdescr} \indexlibrarymember{span}{first}% \begin{itemdecl} constexpr span first(size_type count) const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \tcode{count <= size()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return R(data(), count);} where \tcode{R} is the return type. \end{itemdescr} \indexlibrarymember{span}{last}% \begin{itemdecl} constexpr span last(size_type count) const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \tcode{count <= size()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return R(data() + (size() - count), count);} where \tcode{R} is the return type. \end{itemdescr} \indexlibrarymember{span}{subspan}% \begin{itemdecl} constexpr span subspan( size_type offset, size_type count = dynamic_extent) const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \begin{codeblock} offset <= size() && (count == dynamic_extent || count <= size() - offset) \end{codeblock} is \tcode{true}. \pnum \effects Equivalent to: \begin{codeblock} return R(data() + offset, count == dynamic_extent ? size() - offset : count); \end{codeblock} where \tcode{R} is the return type. \end{itemdescr} \rSec4[span.obs]{Observers} \indexlibrarymember{span}{size}% \begin{itemdecl} constexpr size_type size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return \exposid{size_};} \end{itemdescr} \indexlibrarymember{span}{size_bytes}% \begin{itemdecl} constexpr size_type size_bytes() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return size() * sizeof(element_type);} \end{itemdescr} \indexlibrarymember{span}{empty}% \begin{itemdecl} constexpr bool empty() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return size() == 0;} \end{itemdescr} \rSec4[span.elem]{Element access} \indexlibrary{\idxcode{operator[]}!\idxcode{span}}% \begin{itemdecl} constexpr reference operator[](size_type idx) const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \tcode{idx < size()} is \tcode{true}. \pnum \returns \tcode{*(data() + idx)}. \pnum \throws Nothing. \end{itemdescr} \indexlibrarymember{span}{at}% \begin{itemdecl} constexpr reference at(size_type idx) const; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{*(data() + idx)}. \pnum \throws \tcode{out_of_range} if \tcode{idx >= size()} is \tcode{true}. \end{itemdescr} \indexlibrarymember{span}{front}% \begin{itemdecl} constexpr reference front() const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \tcode{empty()} is \tcode{false}. \pnum \returns \tcode{*data()}. \pnum \throws Nothing. \end{itemdescr} \indexlibrarymember{span}{back}% \begin{itemdecl} constexpr reference back() const; \end{itemdecl} \begin{itemdescr} \pnum \hardexpects \tcode{empty()} is \tcode{false}. \pnum \returns \tcode{*(data() + (size() - 1))}. \pnum \throws Nothing. \end{itemdescr} \indexlibrarymember{span}{data}% \begin{itemdecl} constexpr pointer data() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \exposid{data_}. \end{itemdescr} \rSec4[span.iterators]{Iterator support} \indexlibrarymember{iterator}{span}% \begin{itemdecl} using iterator = @\impdefx{type of \tcode{span::iterator}}@; \end{itemdecl} \begin{itemdescr} \pnum The type models \libconcept{contiguous_iterator}\iref{iterator.concept.contiguous}, meets the \oldconcept{RandomAccessIterator} requirements\iref{random.access.iterators}, and meets the requirements for constexpr iterators\iref{iterator.requirements.general}, whose value type is \tcode{value_type} and whose reference type is \tcode{reference}. \pnum All requirements on container iterators\iref{container.reqmts} apply to \tcode{span::iterator} as well. \end{itemdescr} \indexlibrarymember{span}{begin}% \begin{itemdecl} constexpr iterator begin() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns An iterator referring to the first element in the span. If \tcode{empty()} is \tcode{true}, then it returns the same value as \tcode{end()}. \end{itemdescr} \indexlibrarymember{span}{end}% \begin{itemdecl} constexpr iterator end() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns An iterator which is the past-the-end value. \end{itemdescr} \indexlibrarymember{span}{rbegin}% \begin{itemdecl} constexpr reverse_iterator rbegin() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return reverse_iterator(end());} \end{itemdescr} \indexlibrarymember{span}{rend}% \begin{itemdecl} constexpr reverse_iterator rend() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return reverse_iterator(begin());} \end{itemdescr} \rSec3[span.objectrep]{Views of object representation} \indexlibraryglobal{as_bytes}% \begin{itemdecl} template span as_bytes(span s) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_volatile_v} is \tcode{false}. \pnum \effects Equivalent to: \tcode{return R\{reinterpret_cast(s.data()), s.size_bytes()\};} where \tcode{R} is the return type. \end{itemdescr} \indexlibraryglobal{as_writable_bytes}% \begin{itemdecl} template span as_writable_bytes(span s) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_const_v} is \tcode{false} and \tcode{is_volatile_v} is \tcode{false}. \pnum \effects Equivalent to: \tcode{return R\{reinterpret_cast(s.data()), s.size_bytes()\};} where \tcode{R} is the return type. \end{itemdescr} \rSec2[views.multidim]{Multidimensional access} \rSec3[mdspan.overview]{Overview} \pnum A \defnadj{multidimensional}{index space} is a Cartesian product of integer intervals. Each interval can be represented by a half-open range $[L_i, U_i)$, where $L_i$ and $U_i$ are the lower and upper bounds of the $i^\text{th}$ dimension. The \defn{rank} of a multidimensional index space is the number of intervals it represents. The \defn{size of a multidimensional index space} is the product of $U_i - L_i$ for each dimension $i$ if its rank is greater than 0, and 1 otherwise. \pnum An integer $r$ is a \defn{rank index} of an index space $S$ if $r$ is in the range $[0, \text{rank of $S$})$. \pnum A pack of integers \tcode{idx} is a \defnadj{multidimensional}{index} in a multidimensional index space $S$ (or representation thereof) if both of the following are true: \begin{itemize} \item \tcode{sizeof...(idx)} is equal to the rank of $S$, and \item for every rank index $i$ of $S$, the $i^\text{th}$ value of \tcode{idx} is an integer in the interval $[L_i, U_i)$ of $S$. \end{itemize} \rSec3[mdspan.syn]{Header \tcode{} synopsis} \indexheader{mdspan}% \begin{codeblock} // mostly freestanding namespace std { // \ref{mdspan.extents}, class template \tcode{extents} template class extents; // \ref{mdspan.extents.dextents}, alias template \tcode{dextents} template using dextents = @\seebelow@; // \ref{mdspan.extents.dims}, alias template \tcode{dims} template using dims = @\seebelow@; // \ref{mdspan.layout}, layout mapping struct layout_left; struct layout_right; struct layout_stride; template struct layout_left_padded; template struct layout_right_padded; // \ref{mdspan.accessor.default}, class template \tcode{default_accessor} template class default_accessor; // \ref{mdspan.accessor.aligned}, class template \tcode{aligned_accessor} template class aligned_accessor; // \ref{mdspan.mdspan}, class template \tcode{mdspan} template> class mdspan; // partially freestanding // \ref{mdspan.sub}, \tcode{submdspan} creation template struct strided_slice; template struct submdspan_mapping_result; struct full_extent_t { explicit full_extent_t() = default; }; inline constexpr full_extent_t full_extent{}; template constexpr auto submdspan_extents(const extents&, SliceSpecifiers...); // \ref{mdspan.sub.canonical}, \tcode{submdspan} slice canonicalization template constexpr auto submdspan_canonicalize_slices(const extents& src, Slices... slices); // \ref{mdspan.sub.sub}, \tcode{submdspan} function template template constexpr auto submdspan( const mdspan& src, SliceSpecifiers... slices) -> @\seebelow@; template concept @\defexposconcept{index-pair-like}@ = // \expos @\exposconcept{pair-like}@ && @\libconcept{convertible_to}@, IndexType> && @\libconcept{convertible_to}@, IndexType>; } \end{codeblock} \rSec3[mdspan.extents]{Class template \tcode{extents}} \rSec4[mdspan.extents.overview]{Overview} The class template \tcode{extents} represents a multidimensional index space of rank equal to \tcode{sizeof...(Extents)}. In~\ref{views}, \tcode{extents} is used synonymously with multidimensional index space. \begin{codeblock} namespace std { template class @\libglobal{extents}@ { public: using index_type = IndexType; using size_type = make_unsigned_t; using rank_type = size_t; // \ref{mdspan.extents.obs}, observers of the multidimensional index space static constexpr rank_type rank() noexcept { return sizeof...(Extents); } static constexpr rank_type rank_dynamic() noexcept { return @\exposid{dynamic-index}@(rank()); } static constexpr size_t static_extent(rank_type) noexcept; constexpr index_type extent(rank_type) const noexcept; // \ref{mdspan.extents.cons}, constructors constexpr extents() noexcept = default; template constexpr explicit(@\seebelow@) extents(const extents&) noexcept; template constexpr explicit extents(OtherIndexTypes...) noexcept; template constexpr explicit(N != rank_dynamic()) extents(span) noexcept; template constexpr explicit(N != rank_dynamic()) extents(const array&) noexcept; // \ref{mdspan.extents.cmp}, comparison operators template friend constexpr bool operator==(const extents&, const extents&) noexcept; // \ref{mdspan.extents.expo}, exposition-only helpers constexpr size_t @\exposid{fwd-prod-of-extents}@(rank_type) const noexcept; // \expos constexpr size_t @\exposid{rev-prod-of-extents}@(rank_type) const noexcept; // \expos template static constexpr auto @\exposid{index-cast}@(OtherIndexType&&) noexcept; // \expos private: static constexpr rank_type @\exposid{dynamic-index}@(rank_type) noexcept; // \expos static constexpr rank_type @\exposid{dynamic-index-inv}@(rank_type) noexcept; // \expos array @\exposid{dynamic-extents}@{}; // \expos }; template explicit extents(Integrals...) -> @\seebelow@; } \end{codeblock} \pnum \mandates \begin{itemize} \item \tcode{IndexType} is a signed or unsigned integer type, and \item each element of \tcode{Extents} is either equal to \tcode{dynamic_extent}, or is representable as a value of type \tcode{IndexType}. \end{itemize} \pnum Each specialization of \tcode{extents} models \libconcept{regular} and is trivially copyable. \pnum Let $E_r$ be the $r^\text{th}$ element of \tcode{Extents}. $E_r$ is a \defnadj{dynamic}{extent} if it is equal to \tcode{dynamic_extent}, otherwise $E_r$ is a \defnadj{static}{extent}. Let $D_r$ be the value of \tcode{\exposid{dynamic-extents}[\exposid{dynamic-index}($r$)]} if $E_r$ is a dynamic extent, otherwise $E_r$. \pnum The $r^\text{th}$ interval of the multidimensional index space represented by an \tcode{extents} object is $[0, D_r)$. \rSec4[mdspan.extents.expo]{Exposition-only helpers} \begin{itemdecl} static constexpr rank_type @\exposid{dynamic-index}@(rank_type i) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i <= rank()} is \tcode{true}. \pnum \returns The number of $E_r$ with $r < \tcode{i}$ for which $E_r$ is a dynamic extent. \end{itemdescr} \begin{itemdecl} static constexpr rank_type @\exposid{dynamic-index-inv}@(rank_type i) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i < rank_dynamic()} is \tcode{true}. \pnum \returns The minimum value of $r$ such that \tcode{\exposid{dynamic-index}($r$ + 1) == i + 1} is \tcode{true}. \end{itemdescr} \begin{itemdecl} constexpr size_t @\exposid{fwd-prod-of-extents}@(rank_type i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i <= rank()} is \tcode{true}. \pnum \returns If \tcode{i > 0} is \tcode{true}, the product of \tcode{extent($k$)} for all $k$ in the range $[0, \tcode{i})$, otherwise \tcode{1}. \end{itemdescr} \begin{itemdecl} constexpr size_t @\exposid{rev-prod-of-extents}@(rank_type i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i < rank()} is \tcode{true}. \pnum \returns If \tcode{i + 1 < rank()} is \tcode{true}, the product of \tcode{extent($k$)} for all $k$ in the range $[\tcode{i + 1}, \tcode{rank()})$, otherwise \tcode{1}. \end{itemdescr} \begin{itemdecl} template static constexpr auto @\exposid{index-cast}@(OtherIndexType&& i) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects \begin{itemize} \item If \tcode{remove_cvref_t} is an integral type other than \tcode{bool}, then equivalent to \tcode{return i;}, \item otherwise, equivalent to \tcode{return static_cast(i);}. \end{itemize} \begin{note} This function will always return an integral type other than \tcode{bool}. Since this function's call sites are constrained on convertibility of \tcode{OtherIndexType} to \tcode{index_type}, integer-class types can use the \tcode{static_cast} branch without loss of precision. \end{note} \end{itemdescr} \rSec4[mdspan.extents.cons]{Constructors} \indexlibraryctor{extents}% \begin{itemdecl} template constexpr explicit(@\seebelow@) extents(const extents& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(OtherExtents) == rank()} is \tcode{true}. \item \tcode{((OtherExtents == dynamic_extent || Extents == dynamic_extent || OtherExtents ==\newline Extents) \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item \tcode{other.extent($r$)} equals $E_r$ for each $r$ for which $E_r$ is a static extent, and \item either \begin{itemize} \item \tcode{sizeof...(OtherExtents)} is zero, or \item \tcode{other.extent($r$)} is representable as a value of type \tcode{index_type} for every rank index $r$ of \tcode{other}. \end{itemize} \end{itemize} \pnum \ensures \tcode{*this == other} is \tcode{true}. \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} (((Extents != dynamic_extent) && (OtherExtents == dynamic_extent)) || ... ) || (numeric_limits::max() < numeric_limits::max()) \end{codeblock} \end{itemdescr} \indexlibraryctor{extents}% \begin{itemdecl} template constexpr explicit extents(OtherIndexTypes... exts) noexcept; \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{N} be \tcode{sizeof...(OtherIndexTypes)}, and let \tcode{exts_arr} be \tcode{array\{static_cast<\\index_type>(std::move(exts))...\}}. \pnum \constraints \begin{itemize} \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}, and \item \tcode{N == rank_dynamic() || N == rank()} is \tcode{true}. \begin{note} One can construct \tcode{extents} from just dynamic extents, which are all the values getting stored, or from all the extents with a precondition. \end{note} \end{itemize} \pnum \expects \begin{itemize} \item If \tcode{N != rank_dynamic()} is \tcode{true}, \tcode{exts_arr[$r$]} equals $E_r$ for each $r$ for which $E_r$ is a static extent, and \item either \begin{itemize} \item \tcode{sizeof...(exts) == 0} is \tcode{true}, or \item each element of \tcode{exts} is representable as a nonnegative value of type \tcode{index_type}. \end{itemize} \end{itemize} \pnum \ensures \tcode{*this == extents(exts_arr)} is \tcode{true}. \end{itemdescr} \indexlibraryctor{extents}% \begin{itemdecl} template constexpr explicit(N != rank_dynamic()) extents(span exts) noexcept; template constexpr explicit(N != rank_dynamic()) extents(const array& exts) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}, \item \tcode{is_nothrow_constructible_v} is \tcode{true}, and \item \tcode{N == rank_dynamic() || N == rank()} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item If \tcode{N != rank_dynamic()} is \tcode{true}, \tcode{exts[$r$]} equals $E_r$ for each $r$ for which $E_r$ is a static extent, and \item either \begin{itemize} \item \tcode{N} is zero, or \item \tcode{exts[$r$]} is representable as a nonnegative value of type \tcode{index_type} for every rank index $r$. \end{itemize} \end{itemize} \pnum \effects \begin{itemize} \item If \tcode{N} equals \tcode{rank_dynamic()}, for all $d$ in the range $[0, \tcode{rank_dynamic()})$, direct-non-list-initializes \tcode{\exposidnc{dynamic-extents}[$d$]} with \tcode{as_const(exts[$d$])}. \item Otherwise, for all $d$ in the range $[0, \tcode{rank_dynamic()})$, direct-non-list-initializes \exposidnc{dynamic-ex\-tents}\tcode{[$d$]} with \tcode{as_const(exts[\exposidnc{dynamic-index-inv}($d$)])}. \end{itemize} \end{itemdescr} \indexlibraryctor{extents}% \begin{itemdecl} template explicit extents(Integrals...) -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{(is_convertible_v \&\& ...)} is \tcode{true}. \pnum \remarks The deduced type is \tcode{extents...>}. \end{itemdescr} \rSec4[mdspan.extents.obs]{Observers of the multidimensional index space} \indexlibrarymember{static_extent}{extents}% \begin{itemdecl} static constexpr size_t static_extent(rank_type i) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i < rank()} is \tcode{true}. \pnum \returns $E_\tcode{i}$. \end{itemdescr} \indexlibrarymember{extent}{extents}% \begin{itemdecl} constexpr index_type extent(rank_type i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{i < rank()} is \tcode{true}. \pnum \returns $D_\tcode{i}$. \end{itemdescr} \rSec4[mdspan.extents.cmp]{Comparison operators} \indexlibrarymember{operator==}{extents}% \begin{itemdecl} template friend constexpr bool operator==(const extents& lhs, const extents& rhs) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{true} if \tcode{lhs.rank()} equals \tcode{rhs.rank()} and if \tcode{lhs.extent(r)} equals \tcode{rhs.extent(r)} for every rank index \tcode{r} of \tcode{rhs}, otherwise \tcode{false}. \end{itemdescr} \rSec4[mdspan.extents.dextents]{Alias template \tcode{dextents}} \indexlibraryglobal{dextents}% \begin{itemdecl} template using dextents = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \result A type \tcode{E} that is a specialization of \tcode{extents} such that \tcode{E::rank() == Rank \&\& E::rank() == E::rank_dynamic()} is \tcode{true}, and \tcode{E::index_type} denotes \tcode{IndexType}. \end{itemdescr} \rSec4[mdspan.extents.dims]{Alias template \tcode{dims}} \indexlibraryglobal{dims}% \begin{itemdecl} template using dims = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \result A type \tcode{E} that is a specialization of \tcode{extents} such that \tcode{E::rank() == Rank \&\& E::rank() == E::rank_dynamic()} is \tcode{true}, and \tcode{E::index_type} denotes \tcode{IndexType}. \end{itemdescr} \rSec3[mdspan.layout]{Layout mapping} \rSec4[mdspan.layout.general]{General} \pnum In \ref{mdspan.layout.reqmts} and \ref{mdspan.layout.policy.reqmts}: \begin{itemize} \item \tcode{M} denotes a layout mapping class. \item \tcode{m} denotes a (possibly const) value of type \tcode{M}. \item \tcode{i} and \tcode{j} are packs of (possibly const) integers that are multidimensional indices in \tcode{m.extents()}\iref{mdspan.overview}. \begin{note} The type of each element of the packs can be a different integer type. \end{note} \item \tcode{r} is a (possibly const) rank index of \tcode{typename M::extents_type}. \item $\tcode{d}_r$ is a pack of (possibly const) integers for which \tcode{sizeof...($\tcode{d}_r$) == M::extents_type::rank()} is \tcode{true}, the $r^\text{th}$ element is equal to 1, and all other elements are equal to 0. \end{itemize} \pnum In \ref{mdspan.layout.reqmts} through \ref{mdspan.layout.stride}: \begin{itemize} \item Let \exposid{is-mapping-of} be the exposition-only variable template defined as follows: \begin{codeblock} template constexpr bool @\exposid{is-mapping-of}@ = // \expos is_same_v, Mapping>; \end{codeblock} \item Let \exposid{is-layout-left-padded-mapping-of} be the exposition-only variable template defined as follows: \begin{codeblock} template constexpr bool @\exposid{is-layout-left-padded-mapping-of}@ = @\seebelow@; // \expos \end{codeblock} where \tcode{\exposid{is-layout-left-padded-mapping-of}} is \tcode{true} if and only if \tcode{Mapping} denotes a specialization of \tcode{layout_left_padded::mapping} for some value \tcode{S} of type \tcode{size_t}. \item Let \exposid{is-layout-right-padded-mapping-of} be the exposition-only variable template defined as follows: \begin{codeblock} template constexpr bool @\exposid{is-layout-right-padded-mapping-of}@ = @\seebelow@; // \expos \end{codeblock} where \tcode{\exposid{is-layout-right-padded-mapping-of}} is \tcode{true} if and only if \tcode{Mapping} denotes a specialization of \tcode{layout_right_padded::mapping} for some value \tcode{S} of type \tcode{size_t}. \item For nonnegative integers $x$ and $y$, let $\exposid{LEAST-MULTIPLE-AT-LEAST}(x, y)$ denote \begin{itemize} \item $y$ if $x$ is zero, \item otherwise, the least multiple of $x$ that is greater than or equal to $y$. \end{itemize} \end{itemize} \rSec4[mdspan.layout.reqmts]{Requirements} \pnum A type \tcode{M} meets the \defn{layout mapping} requirements if \begin{itemize} \item \tcode{M} models \libconcept{copyable} and \libconcept{equality_comparable}, \item \tcode{is_nothrow_move_constructible_v} is \tcode{true}, \item \tcode{is_nothrow_move_assignable_v} is \tcode{true}, \item \tcode{is_nothrow_swappable_v} is \tcode{true}, and \item the following types and expressions are well-formed and have the specified semantics. \end{itemize} \begin{itemdecl} typename M::extents_type \end{itemdecl} \begin{itemdescr} \pnum \result A type that is a specialization of \tcode{extents}. \end{itemdescr} \begin{itemdecl} typename M::index_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{typename M::extents_type::index_type}. \end{itemdescr} \begin{itemdecl} typename M::rank_type \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{typename M::extents_type::rank_type}. \end{itemdescr} \begin{itemdecl} typename M::layout_type \end{itemdecl} \begin{itemdescr} \pnum \result A type \tcode{MP} that meets the layout mapping policy requirements\iref{mdspan.layout.policy.reqmts} and for which \tcode{\exposid{is-mapping-of}} is \tcode{true}. \end{itemdescr} \begin{itemdecl} m.extents() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{const typename M::extents_type\&} \end{itemdescr} \begin{itemdecl} m(i...) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{typename M::index_type} \pnum \returns A nonnegative integer less than \tcode{numeric_limits::max()} and less than or equal to \tcode{numeric_limits::max()}. \end{itemdescr} \begin{itemdecl} m(i...) == m(static_cast(i)...) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \returns \tcode{true} \end{itemdescr} \begin{itemdecl} m.required_span_size() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{typename M::index_type} \pnum \returns If the size of the multidimensional index space \tcode{m.extents()} is 0, then \tcode{0}, else \tcode{1} plus the maximum value of \tcode{m(i...)} for all \tcode{i}. \end{itemdescr} \begin{itemdecl} m.is_unique() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \returns \tcode{true} only if for every \tcode{i} and \tcode{j} where \tcode{(i != j || ...)} is \tcode{true}, \tcode{m(i...) != m(j...)} is \tcode{true}. \begin{note} A mapping can return \tcode{false} even if the condition is met. For certain layouts, it is possibly not feasible to determine efficiently whether the layout is unique. \end{note} \end{itemdescr} \begin{itemdecl} m.is_exhaustive() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \returns \tcode{true} only if for all $k$ in the range $[0, \tcode{m.required_span_size()})$ there exists an \tcode{i} such that \tcode{m(i...)} equals $k$. \begin{note} A mapping can return \tcode{false} even if the condition is met. For certain layouts, it is possibly not feasible to determine efficiently whether the layout is exhaustive. \end{note} \end{itemdescr} \begin{itemdecl} m.is_strided() \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{bool} \pnum \returns \tcode{true} only if for every rank index $r$ of \tcode{m.extents()} there exists an integer $s_r$ such that, for all \tcode{i} where $(\tcode{i}+d_r)$ is a multidimensional index in \tcode{m.extents()}\iref{mdspan.overview}, \tcode{m((i + $d_r$)...) - m(i...)} equals $s_r$. \begin{note} This implies that for a strided layout $m(i_0, \dotsc, i_k) = m(0, \dotsc, 0) + i_0 \times s_0 + \dotsb + i_k \times s_k$. \end{note} \begin{note} A mapping can return \tcode{false} even if the condition is met. For certain layouts, it is possibly not feasible to determine efficiently whether the layout is strided. \end{note} \end{itemdescr} \begin{itemdecl} m.stride(r) \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{m.is_strided()} is \tcode{true}. \pnum \result \tcode{typename M::index_type} \pnum \returns $s_r$ as defined in \tcode{m.is_strided()} above. \pnum \begin{note} It is not required for \tcode{m.stride(r)} to be well-formed if \tcode{m.extents().rank()} is zero, even if \tcode{m.is_always_strided()} is \tcode{true}. \end{note} \end{itemdescr} \begin{itemdecl} M::is_always_unique() \end{itemdecl} \begin{itemdescr} \pnum \result A constant expression\iref{expr.const} of type \tcode{bool}. \pnum \returns \tcode{true} only if \tcode{m.is_unique()} is \tcode{true} for all possible objects \tcode{m} of type \tcode{M}. \begin{note} A mapping can return \tcode{false} even if the above condition is met. For certain layout mappings, it is possibly not feasible to determine whether every instance is unique. \end{note} \end{itemdescr} \begin{itemdecl} M::is_always_exhaustive() \end{itemdecl} \begin{itemdescr} \pnum \result A constant expression\iref{expr.const} of type \tcode{bool}. \pnum \returns \tcode{true} only if \tcode{m.is_exhaustive()} is \tcode{true} for all possible objects \tcode{m} of type \tcode{M}. \begin{note} A mapping can return \tcode{false} even if the above condition is met. For certain layout mappings, it is possibly not feasible to determine whether every instance is exhaustive. \end{note} \end{itemdescr} \begin{itemdecl} M::is_always_strided() \end{itemdecl} \begin{itemdescr} \pnum \result A constant expression\iref{expr.const} of type \tcode{bool}. \pnum \returns \tcode{true} only if \tcode{m.is_strided()} is \tcode{true} for all possible objects \tcode{m} of type \tcode{M}. \begin{note} A mapping can return \tcode{false} even if the above condition is met. For certain layout mappings, it is possibly not feasible to determine whether every instance is strided. \end{note} \end{itemdescr} \rSec4[mdspan.layout.policy.reqmts]{Layout mapping policy requirements} \pnum A type \tcode{MP} meets the \defn{layout mapping policy} requirements if for a type \tcode{E} that is a specialization of \tcode{extents}, \tcode{MP::mapping} is valid and denotes a type \tcode{X} that meets the layout mapping requirements\iref{mdspan.layout.reqmts}, and for which the \grammarterm{qualified-id} \tcode{X::layout_type} is valid and denotes the type \tcode{MP} and the \grammarterm{qualified-id} \tcode{X::extents_type} denotes \tcode{E}. \rSec4[mdspan.layout.policy.overview]{Layout mapping policies} \begin{codeblock} namespace std { struct layout_left { template class mapping; }; struct layout_right { template class mapping; }; struct layout_stride { template class mapping; }; template struct layout_left_padded { template class mapping; }; template struct layout_right_padded { template class mapping; }; } \end{codeblock} \pnum Each of \tcode{layout_left}, \tcode{layout_right}, and \tcode{layout_stride}, as well as each specialization of \tcode{layout_left_padded} and \tcode{layout_right_padded}, meets the layout mapping policy requirements and is a trivially copyable type. Furthermore, \tcode{is_trivially_default_constructible_v} is \tcode{true} for any such type \tcode{T}. \rSec4[mdspan.layout.left]{Class template \tcode{layout_left::mapping}} \rSec5[mdspan.layout.left.overview]{Overview} \pnum \tcode{layout_left} provides a layout mapping where the leftmost extent has stride 1, and strides increase left-to-right as the product of extents. \begin{codeblock} namespace std { template class layout_left::mapping { public: using extents_type = Extents; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using layout_type = layout_left; // \ref{mdspan.layout.left.cons}, constructors constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const mapping&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const layout_right::mapping&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const LayoutLeftPaddedMapping&) noexcept; template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping&); constexpr mapping& operator=(const mapping&) noexcept = default; // \ref{mdspan.layout.left.obs}, observers constexpr const extents_type& extents() const noexcept { return @\exposid{extents_}@; } constexpr index_type required_span_size() const noexcept; template constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template friend constexpr bool operator==(const mapping&, const mapping&) noexcept; private: extents_type @\exposid{extents_}@{}; // \expos // \ref{mdspan.sub.map}, \tcode{submdspan} mapping specialization template constexpr auto @\exposid{submdspan-mapping-impl}@(SliceSpecifiers...) const // \expos -> @\seebelow@; template friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.@\exposid{submdspan-mapping-impl}@(slices...); } }; } \end{codeblock} \pnum If \tcode{Extents} is not a specialization of \tcode{extents}, then the program is ill-formed. \pnum \tcode{layout_left::mapping} is a trivially copyable type that models \libconcept{regular} for each \tcode{E}. \pnum \mandates If \tcode{Extents::rank_dynamic() == 0} is \tcode{true}, then the size of the multidimensional index space \tcode{Extents()} is representable as a value of type \tcode{typename Extents::index_type}. \rSec5[mdspan.layout.left.cons]{Constructors} \indexlibraryctor{layout_left::mapping}% \begin{itemdecl} constexpr mapping(const extents_type& e) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects The size of the multidimensional index space \tcode{e} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{e}. \end{itemdescr} \indexlibraryctor{layout_left::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const mapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_left::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const layout_right::mapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{extents_type::rank() <= 1} is \tcode{true}, and \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_left::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const LayoutLeftPaddedMapping&) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-left-padded-mapping-of}} is \tcode{true}. \item \tcode{is_constructible_v}\newline is \tcode{true}. \end{itemize} \pnum \mandates If \begin{itemize} \item \tcode{Extents::rank()} is greater than one, \item \tcode{Extents::static_extent(0)} does not equal \tcode{dynamic_extent}, and \item \tcode{LayoutLeftPaddedMapping::\exposid{static-padding-stride}} does not equal \tcode{dynamic_extent}, \end{itemize} then \tcode{Extents::static_extent(0)} equals \tcode{LayoutLeftPaddedMapping::\exposid{static-padding-stride}}. \pnum \expects \begin{itemize} \item If \tcode{extents_type::rank() > 1} is \tcode{true}, then \tcode{other.stride(1)} equals \tcode{other.extents().ex\-tent(0)}. \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects Direct-non-list-initializes \tcode{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_left::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \begin{itemize} \item If \tcode{extents_type::rank() > 0} is \tcode{true}, then for all $r$ in the range $[0, \tcode{extents_type::rank()})$, \tcode{other.stride($r$)} equals \tcode{other.extents().\exposid{fwd-prod-of-extents}($r$)}, and \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !(extents_type::rank() == 0 && is_convertible_v) \end{codeblock} \end{itemdescr} \rSec5[mdspan.layout.left.obs]{Observers} \indexlibrarymember{required_span_size}{layout_left::mapping}% \begin{itemdecl} constexpr index_type required_span_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{extents().\exposid{fwd-prod-of-extents}(extents_type::rank())}. \end{itemdescr} \indexlibrarymember{operator()}{layout_left::mapping}% \begin{itemdecl} template constexpr index_type operator()(Indices... i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(Indices) == extents_type::rank()} is \tcode{true}, \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, and \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \tcode{extents_type::\exposid{index-cast}(i)} is a multidimensional index in \exposid{extents_}\iref{mdspan.overview}. \pnum \effects Let \tcode{P} be a parameter pack such that \begin{codeblock} is_same_v, index_sequence> \end{codeblock} is \tcode{true}. Equivalent to: \begin{codeblock} return ((static_cast(i) * stride(P)) + ... + 0); \end{codeblock} \end{itemdescr} \indexlibrarymember{stride}{layout_left::mapping}% \begin{itemdecl} constexpr index_type stride(rank_type i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{extents_type::rank() > 0} is \tcode{true}. \pnum \expects \tcode{i < extents_type::rank()} is \tcode{true}. \pnum \returns \tcode{extents().\exposid{fwd-prod-of-extents}(i)}. \end{itemdescr} \indexlibrarymember{operator==}{layout_left::mapping}% \begin{itemdecl} template friend constexpr bool operator==(const mapping& x, const mapping& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{extents_type::rank() == OtherExtents::rank()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return x.extents() == y.extents();} \end{itemdescr} \rSec4[mdspan.layout.right]{Class template \tcode{layout_right::mapping}} \rSec5[mdspan.layout.right.overview]{Overview} \pnum \tcode{layout_right} provides a layout mapping where the rightmost extent is stride 1, and strides increase right-to-left as the product of extents. \begin{codeblock} namespace std { template class layout_right::mapping { public: using extents_type = Extents; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using layout_type = layout_right; // \ref{mdspan.layout.right.cons}, constructors constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const mapping&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const layout_left::mapping&) noexcept; template constexpr explicit(!is_convertible_v) mapping(const LayoutRightPaddedMapping&) noexcept; template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // \ref{mdspan.layout.right.obs}, observers constexpr const extents_type& extents() const noexcept { return @\exposid{extents_}@; } constexpr index_type required_span_size() const noexcept; template constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template friend constexpr bool operator==(const mapping&, const mapping&) noexcept; private: extents_type @\exposid{extents_}@{}; // \expos // \ref{mdspan.sub.map}, \tcode{submdspan} mapping specialization template constexpr auto @\exposid{submdspan-mapping-impl}@(SliceSpecifiers...) const // \expos -> @\seebelow@; template friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.@\exposid{submdspan-mapping-impl}@(slices...); } }; } \end{codeblock} \pnum If \tcode{Extents} is not a specialization of \tcode{extents}, then the program is ill-formed. \pnum \tcode{layout_right::mapping} is a trivially copyable type that models \libconcept{regular} for each \tcode{E}. \pnum \mandates If \tcode{Extents::rank_dynamic() == 0} is \tcode{true}, then the size of the multidimensional index space \tcode{Extents()} is representable as a value of type \tcode{typename Extents::index_type}. \rSec5[mdspan.layout.right.cons]{Constructors} \indexlibraryctor{layout_right::mapping}% \begin{itemdecl} constexpr mapping(const extents_type& e) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects The size of the multidimensional index space \tcode{e} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{e}. \end{itemdescr} \indexlibraryctor{layout_right::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const mapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_right::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const layout_left::mapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{extents_type::rank() <= 1} is \tcode{true}, and \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_right::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const LayoutRightPaddedMapping&) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-right-padded-mapping-of}} is \tcode{true}. \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \mandates If \begin{itemize} \item \tcode{Extents::rank()} is greater than one, \item \tcode{Extents::static_extent(Extents::rank() - 1)} does not equal \tcode{dynamic_extent}, and \item \tcode{LayoutRightPaddedMapping::\exposid{static-padding-stride}} does not equal \tcode{dynamic_extent}, \end{itemize} then \tcode{Extents::static_extent(Extents::rank() - 1)} equals \tcode{LayoutRightPaddedMapping::\exposid{sta\-tic-padding-stride}}. \pnum \expects \begin{itemize} \item If \tcode{extents_type::rank() > 1} is \tcode{true}, then \tcode{other.stride(extents_type::rank() - 2)}\newline equals \tcode{other.extents().extent(extents_type::rank() - 1)}. \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects Direct-non-list-initializes \tcode{extents_} with \tcode{other.extents()}. \end{itemdescr} \indexlibraryctor{layout_right::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \begin{itemize} \item If \tcode{extents_type::rank() > 0} is \tcode{true}, then for all $r$ in the range $[0, \tcode{extents_type::rank()})$, \tcode{other.stride($r$)} equals \tcode{other.extents().\exposid{rev-prod-of-extents}($r$)}. \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !(extents_type::rank() == 0 && is_convertible_v) \end{codeblock} \end{itemdescr} \rSec5[mdspan.layout.right.obs]{Observers} \indexlibrarymember{required_span_size}{layout_right::mapping}% \begin{itemdecl} constexpr index_type required_span_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{extents().\exposid{fwd-prod-of-extents}(extents_type::rank())}. \end{itemdescr} \indexlibrarymember{operator()}{layout_right::mapping}% \begin{itemdecl} template constexpr index_type operator()(Indices... i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(Indices) == extents_type::rank()} is \tcode{true}, \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, and \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \tcode{extents_type::\exposid{index-cast}(i)} is a multidimensional index in \exposid{extents_}\iref{mdspan.overview}. \pnum \effects Let \tcode{P} be a parameter pack such that \begin{codeblock} is_same_v, index_sequence> \end{codeblock} is \tcode{true}. Equivalent to: \begin{codeblock} return ((static_cast(i) * stride(P)) + ... + 0); \end{codeblock} \end{itemdescr} \indexlibrarymember{stride}{layout_right::mapping}% \begin{itemdecl} constexpr index_type stride(rank_type i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{extents_type::rank() > 0} is \tcode{true}. \pnum \expects \tcode{i < extents_type::rank()} is \tcode{true}. \pnum \returns \tcode{extents().\exposid{rev-prod-of-extents}(i)}. \end{itemdescr} \indexlibrarymember{operator==}{layout_right::mapping}% \begin{itemdecl} template friend constexpr bool operator==(const mapping& x, const mapping& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{extents_type::rank() == OtherExtents::rank()} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return x.extents() == y.extents();} \end{itemdescr} \rSec4[mdspan.layout.stride]{Class template \tcode{layout_stride::mapping}} \rSec5[mdspan.layout.stride.overview]{Overview} \pnum \tcode{layout_stride} provides a layout mapping where the strides are user-defined. \begin{codeblock} namespace std { template class layout_stride::mapping { public: using extents_type = Extents; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using layout_type = layout_stride; private: static constexpr rank_type @\exposid{rank_}@ = extents_type::rank(); // \expos public: // \ref{mdspan.layout.stride.cons}, constructors constexpr mapping() noexcept; constexpr mapping(const mapping&) noexcept = default; template constexpr mapping(const extents_type&, span) noexcept; template constexpr mapping(const extents_type&, const array&) noexcept; template constexpr explicit(@\seebelow@) mapping(const StridedLayoutMapping&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // \ref{mdspan.layout.stride.obs}, observers constexpr const extents_type& extents() const noexcept { return @\exposid{extents_}@; } constexpr array strides() const noexcept { return @\exposid{strides_}@; } constexpr index_type required_span_size() const noexcept; template constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept; static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept; static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type i) const noexcept { return @\exposid{strides_}@[i]; } template friend constexpr bool operator==(const mapping&, const OtherMapping&) noexcept; private: extents_type @\exposid{extents_}@{}; // \expos array @\exposid{strides_}@{}; // \expos // \ref{mdspan.sub.map}, \tcode{submdspan} mapping specialization template constexpr auto @\exposid{submdspan-mapping-impl}@(SliceSpecifiers...) const // \expos -> @\seebelow@; template friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.@\exposid{submdspan-mapping-impl}@(slices...); } }; } \end{codeblock} \pnum If \tcode{Extents} is not a specialization of \tcode{extents}, then the program is ill-formed. \pnum \tcode{layout_stride::mapping} is a trivially copyable type that models \libconcept{regular} for each \tcode{E}. \pnum \mandates If \tcode{Extents::rank_dynamic() == 0} is \tcode{true}, then the size of the multidimensional index space \tcode{Extents()} is representable as a value of type \tcode{typename Extents::index_type}. \rSec5[mdspan.layout.stride.expo]{Exposition-only helpers} \pnum Let \tcode{\exposid{REQUIRED-SPAN-SIZE}(e, strides)} be: \begin{itemize} \item \tcode{1}, if \tcode{e.rank() == 0} is \tcode{true}, \item otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, \item otherwise \tcode{1} plus the sum of products of \tcode{(e.extent($r$) - 1)} and \begin{codeblock} extents_type::@\exposid{index-cast}@(strides[@$r$@]) \end{codeblock} for all $r$ in the range $[0, \tcode{e.rank()})$. \end{itemize} \pnum Let \tcode{\exposid{OFFSET}(m)} be: \begin{itemize} \item \tcode{m()}, if \tcode{e.rank() == 0} is \tcode{true}, \item otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, \item otherwise \tcode{m(z...)} for a pack of integers \tcode{z} that is a multidimensional index in \tcode{m.extents()} and each element of \tcode{z} equals 0. \end{itemize} \pnum Let \exposid{is-extents} be the exposition-only variable template defined as follows: \begin{codeblock} template constexpr bool @\exposid{is-extents}@ = false; // \expos template constexpr bool @\exposid{is-extents}@> = true; // \expos \end{codeblock} \pnum Let \exposconcept{layout-mapping-alike} be the exposition-only concept defined as follows: \begin{codeblock} template concept @\defexposconcept{layout-mapping-alike}@ = requires { // \expos requires @\exposid{is-extents}@; { M::is_always_strided() } -> @\libconcept{same_as}@; { M::is_always_exhaustive() } -> @\libconcept{same_as}@; { M::is_always_unique() } -> @\libconcept{same_as}@; bool_constant::value; bool_constant::value; bool_constant::value; }; \end{codeblock} \begin{note} This concept checks that the functions \tcode{M::is_always_strided()}, \tcode{M::is_always_exhaustive()}, and \tcode{M::is_always_unique()} exist, are constant expressions, and have a return type of \tcode{bool}. \end{note} \rSec5[mdspan.layout.stride.cons]{Constructors} \indexlibraryctor{layout_stride::mapping}% \begin{itemdecl} constexpr mapping() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{layout_right::mapping().required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{extents_type()}, and for all $d$ in the range \range{0}{\exposid{rank_}}, direct-non-list-initializes \tcode{\exposid{strides_}[$d$]} with \tcode{layout_right::mapping().stride($d$)}. \end{itemdescr} \indexlibraryctor{layout_stride::mapping}% \begin{itemdecl} template constexpr mapping(const extents_type& e, span s) noexcept; template constexpr mapping(const extents_type& e, const array& s) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}, and \item \tcode{is_nothrow_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item The result of converting \tcode{s[$i$]} to \tcode{index_type} is greater than \tcode{0} for all $i$ in the range $[0, \exposid{rank_})$. \item \tcode{\exposid{REQUIRED-SPAN-SIZE}(e, s)} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}. \item If \exposid{rank_} is greater than 0, then there exists a permutation $P$ of the integers in the range $[0, \exposid{rank_})$, such that \tcode{s[$p_i$] >= s[$p_{i-1}$] * e.extent(p$_{i-1}$)} is \tcode{true} for all $i$ in the range $[1, \exposid{rank_})$, where $p_i$ is the $i^\text{th}$ element of $P$. \begin{note} For \tcode{layout_stride}, this condition is necessary and sufficient for \tcode{is_unique()} to be \tcode{true}. \end{note} \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{e}, and for all $d$ in the range $[0, \exposid{rank_})$, direct-non-list-initializes \tcode{strides_[$d$]} with \tcode{as_const(s[$d$])}. \end{itemdescr} \indexlibraryctor{layout_stride::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const StridedLayoutMapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposconcept{layout-mapping-alike}} is satisfied. \item \tcode{is_constructible_v} is\\\tcode{true}. \item \tcode{StridedLayoutMapping::is_always_unique()} is \tcode{true}. \item \tcode{StridedLayoutMapping::is_always_strided()} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item \tcode{StridedLayoutMapping} meets the layout mapping requirements\iref{mdspan.layout.reqmts}, \item \tcode{other.stride($r$) > 0} is \tcode{true} for every rank index $r$ of \tcode{extents()}, \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}\iref{basic.fundamental}, and \item \tcode{\exposid{OFFSET}(other) == 0} is \tcode{true}. \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}, and for all $d$ in the range $[0, \exposid{rank_})$, direct-non-list-initializes \tcode{\exposid{strides_}[$d$]} with \tcode{other.stride($d$)}. \pnum Remarks: The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !(is_convertible_v && (@\exposid{is-mapping-of}@ || @\exposid{is-mapping-of}@ || @\exposid{is-layout-left-padded-mapping-of}@ || @\exposid{is-layout-right-padded-mapping-of}@ || @\exposid{is-mapping-of}@)) \end{codeblock} \end{itemdescr} \rSec5[mdspan.layout.stride.obs]{Observers} \indexlibrarymember{required_span_size}{layout_stride::mapping}% \begin{itemdecl} constexpr index_type required_span_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{\exposid{REQUIRED-SPAN-SIZE}(extents(), \exposid{strides_})}. \end{itemdescr} \indexlibrarymember{operator()}{layout_stride::mapping}% \begin{itemdecl} template constexpr index_type operator()(Indices... i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(Indices) == \exposid{rank_}} is \tcode{true}, \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, and \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \tcode{extents_type::\exposid{index-cast}(i)} is a multidimensional index in \exposid{extents_}\iref{mdspan.overview}. \pnum \effects Let \tcode{P} be a parameter pack such that \begin{codeblock} is_same_v, index_sequence> \end{codeblock} is \tcode{true}. Equivalent to: \begin{codeblock} return ((static_cast(i) * stride(P)) + ... + 0); \end{codeblock} \end{itemdescr} \indexlibrarymember{is_always_exhaustive}{layout_stride::mapping}% \begin{itemdecl} static constexpr bool is_always_exhaustive() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{true} if \exposid{rank_} is 0 or if there is a rank index \tcode{r} of \tcode{extents()} such that \tcode{extents_type::sta\-tic_extent(r)} is 0, otherwise \tcode{false}. \end{itemdescr} \indexlibrarymember{is_exhaustive}{layout_stride::mapping}% \begin{itemdecl} constexpr bool is_exhaustive() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{true} if \exposid{rank_} or the size of the multidimensional index space \tcode{m.extents()} is 0. \item Otherwise, \tcode{true} if there is a permutation $P$ of the integers in the range $[0, \exposid{rank_})$ such that \tcode{stride($p_0$)} equals 1, and \tcode{stride($p_i$)} equals \tcode{stride($ p_{i-1}$) * extents().extent($p_{i-1}$)} for $i$ in the range $[1, \exposid{rank_})$, where $p_i$ is the $i^\text{th}$ element of $P$. \item Otherwise, \tcode{false}. \end{itemize} \end{itemdescr} \indexlibrarymember{operator==}{layout_stride::mapping}% \begin{itemdecl} template friend constexpr bool operator==(const mapping& x, const OtherMapping& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposconcept{layout-mapping-alike}} is satisfied. \item \tcode{\exposid{rank_} == OtherMapping::extents_type::rank()} is \tcode{true}. \item \tcode{OtherMapping::is_always_strided()} is \tcode{true}. \end{itemize} \pnum \expects \tcode{OtherMapping} meets the layout mapping requirements\iref{mdspan.layout.policy.reqmts}. \pnum \returns \tcode{true} if \tcode{x.extents() == y.extents()} is \tcode{true}, \tcode{\exposid{OFFSET}(y) == 0} is \tcode{true}, and each of \tcode{x.stride($r$) == y.stride($r$)} is \tcode{true} for $r$ in the range $[0, \tcode{x.extents().rank()})$. Otherwise, \tcode{false}. \end{itemdescr} \rSec4[mdspan.layout.leftpad]{Class template \tcode{layout_left_padded::mapping}} \rSec5[mdspan.layout.leftpad.overview]{Overview} \pnum \tcode{layout_left_padded} provides a layout mapping that behaves like \tcode{layout_left::mapping}, except that the padding stride \tcode{stride(1)} can be greater than or equal to \tcode{extent(0)}. \begin{codeblock} namespace std { template template class layout_left_padded::mapping { public: static constexpr size_t padding_value = PaddingValue; using extents_type = Extents; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using layout_type = layout_left_padded; private: static constexpr size_t @\exposid{rank_}@ = extents_type::rank(); // \expos static constexpr size_t @\exposid{first-static-extent}@ = // \expos extents_type::static_extent(0); // \ref{mdspan.layout.leftpad.expo}, exposition-only members static constexpr size_t @\exposid{static-padding-stride}@ = @\seebelow@; // \expos public: // \ref{mdspan.layout.leftpad.cons}, constructors constexpr mapping() noexcept : mapping(extents_type{}) {} constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&); template constexpr mapping(const extents_type&, OtherIndexType); template constexpr explicit(!is_convertible_v) mapping(const layout_left::mapping&); template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping&); template constexpr explicit(@\seebelow@) mapping(const LayoutLeftPaddedMapping&); template constexpr explicit(@\seebelow@) mapping(const LayoutRightPaddedMapping&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // \ref{mdspan.layout.leftpad.obs}, observers constexpr const extents_type& extents() const noexcept { return @\exposid{extents_}@; } constexpr array strides() const noexcept; constexpr index_type required_span_size() const noexcept; template constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept; static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept; static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template friend constexpr bool operator==(const mapping&, const LayoutLeftPaddedMapping&) noexcept; private: // \ref{mdspan.layout.leftpad.expo}, exposition-only members index_type @\exposid{stride-1}@ = @\exposid{static-padding-stride}@; // \expos extents_type @\exposid{extents_}@{}; // \expos // \ref{mdspan.sub.map}, submdspan mapping specialization template constexpr auto @\exposid{submdspan-mapping-impl}@(SliceSpecifiers...) const // \expos -> @\seebelow@; template friend constexpr auto submdspan_mapping(const mapping& src, SliceSpecifiers... slices) { return src.@\exposid{submdspan-mapping-impl}@(slices...); } }; } \end{codeblock} \pnum If \tcode{Extents} is not a specialization of \tcode{extents}, then the program is ill-formed. \pnum \tcode{layout_left_padded::mapping} is a trivially copyable type that models \libconcept{regular} for each \tcode{E}. \pnum Throughout \ref{mdspan.layout.leftpad}, let \tcode{P_rank} be the following size \exposid{rank_} parameter pack of \tcode{size_}t values: \begin{itemize} \item the empty parameter pack, if \exposid{rank_} equals zero; \item \tcode otherwise, \tcode{0zu}, if \exposid{rank_} equals one; \item otherwise, the parameter pack \tcode{0zu}, \tcode{1zu}, \ldots, \tcode{\exposid{rank_}- 1}. \end{itemize} \pnum \mandates \begin{itemize} \item If \tcode{rank_dynamic() == 0} is \tcode{true}, then the size of the multidimensional index space \tcode{Extents()} is representable as a value of type \tcode{index_type}. \item If \tcode{padding_value} is not equal to \tcode{dynamic_extent}, then \tcode{padding_value} is representable as a value of type \tcode{index_type}. \item If \begin{itemize} \item \exposid{rank_} is greater than one, \item \tcode{padding_value} does not equal \tcode{dynamic_extent}, and \item \exposid{first-static-extent} does not equal \tcode{dynamic_extent}, \end{itemize} then \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, \exposid{first-static-extent})} is representable as a val\-ue of type \tcode{size_t}, and is representable as a value of type \tcode{index_type}. \item If \begin{itemize} \item \exposid{rank_} is greater than one, \item \tcode{padding_value} does not equal \tcode{dynamic_extent}, and \item \tcode{extents_type::static_extent($k$)} does not equal \tcode{dynamic_extent} for all $k$ in the range \range{0}{extents_type::rank()}, \end{itemize} then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.static_extent(0))} and all values \tcode{ext.static_extent($k$)} with $k$ in the range of \range{1}{\exposid{rank_}} is representable as a value of type \tcode{size_t}, and is representable as a value of type \tcode{index_type}. \end{itemize} \rSec5[mdspan.layout.leftpad.expo]{Exposition-only members} \begin{itemdecl} static constexpr size_t @\exposid{static-padding-stride}@ = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum The value is \begin{itemize} \item \tcode{0}, if \exposid{rank_} equals zero or one; \item otherwise, \tcode{dynamic_extent}, if \tcode{padding_value} or \exposid{first-static-extent} equals \tcode{dynamic_extent}; \item otherwise, the \tcode{size_t} value which is \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, \exposid{first-sta\-tic-extent})}. \end{itemize} \end{itemdescr} \begin{itemdecl} index_type @\exposid{stride-1}@ = @\exposid{static-padding-stride}@; \end{itemdecl} \begin{itemdescr} \pnum \recommended Implementations should not store this value if \exposid{static-padding-stride} is not \tcode{dynamic_extent}. \begin{note} Using \tcode{extents} instead of \tcode{index_type} as the type of \exposid{stride-1} would achieve this. \end{note} \end{itemdescr} \rSec5[mdspan.layout.leftpad.cons]{Constructors} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} constexpr mapping(const extents_type& ext); \end{itemdecl} \begin{itemdescr} \pnum \expects \begin{itemize} \item The size of the multidimensional index space \tcode{ext} is representable as a value of type \tcode{index_type}. \item If \exposid{rank_} is greater than one and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{\exposid{LEAST-MUL\-TIPLE-AT-LEAST}(padding_value, ext.extent(0))} is representable as a value of type \exposid{index_type}. \item If \exposid{rank_} is greater than one and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.extent(0))} and all values \tcode{ext.extent($k$)} with $k$ in the range of \range{1}{\exposid{rank_}} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{ext}; and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-1} \begin{itemize} \item with \tcode{ext.extent(0)} if padding_value is \tcode{dynamic_extent}, \item otherwise with \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.extent(0))}. \end{itemize} \end{itemize} \end{itemdescr} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} template constexpr mapping(const extents_type& ext, OtherIndexType pad); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}. \item \tcode{is_nothrow_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item \tcode{pad} is representable as a value of type \tcode{index_type}. \item \tcode{extents_type::\exposid{index-cast}(pad)} is greater than zero. \item If \exposid{rank_} is greater than one, then \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(0))} is representable as a value of type \tcode{index_type.} \item If \exposid{rank_} is greater than one, then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(\linebreak 0))} and all values \tcode{ext.extent($k$)} with $k$ in the range of \range{1}{\exposid{rank_}} is representable as a value of type \tcode{index_type}. \item If \tcode{padding_value} is not equal to \tcode{dynamic_extent}, \tcode{padding_value} equals \tcode{extents_type::\exposid{in\-dex-cast}(pad)}. \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{ext}, and if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-1} with \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(0))}. \end{itemdescr} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const layout_left::mapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \mandates If \tcode{OtherExtents::rank()} is greater than \tcode{1}, then \begin{codeblock} (@\exposid{static-padding-stride}@ == dynamic_extent) || (OtherExtents::static_extent(0) == dynamic_extent) || (@\exposid{static-padding-stride}@ == OtherExtents::static_extent(0)) \end{codeblock} is \tcode{true}. \pnum \expects \begin{itemize} \item If \tcode{extents_type::rank() > 1} is \tcode{true} and \tcode{padding_value} == \tcode{dynamic_extent} is \tcode{false}, then \tcode{other.stride(1)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extents().extent(0))) \end{codeblock} and \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects Equivalent to \tcode{mapping(other.extents())}. \end{itemdescr} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \begin{itemize} \item If \exposid{rank_} is greater than \tcode{1} and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{other.\linebreak stride(1)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extents().extent(0))) \end{codeblock} \item If \exposid{rank_} is greater than 0, then \tcode{other.stride(0)} equals 1. \item If \exposid{rank_} is greater than 2, then for all $r$ in the range \range{2}{\exposid{rank_}}, \tcode{other.stride(r)} equals \begin{codeblock} (other.extents().@\exposid{fwd-prod-of-extents}@(r) / other.extents().extent(0)) * other.stride(1) \end{codeblock} \item \tcode{other.required_span_size()} is representable as a value of type \exposid{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()} and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-1} with \tcode{other.stride(1)}. \end{itemize} \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !(rank_ == 0 && is_convertible_v) \end{codeblock} \end{itemdescr} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const LayoutLeftPaddedMapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-left-padded-mapping-of}} is \tcode{true}. \item \tcode{is_constructible_v} \newline is \tcode{true}. \end{itemize} \pnum \mandates If \exposid{rank_} is greater than 1, then \begin{codeblock} padding_value == dynamic_extent || LayoutLeftPaddedMapping::padding_value == dynamic_extent || padding_value == LayoutLeftPaddedMapping::padding_value \end{codeblock} is \tcode{true}. \pnum \expects \begin{itemize} \item If \exposid{rank_} is greater than 1 and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{other.\linebreak stride(1)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extent(0))) \end{codeblock} \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()} and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-1} with \tcode{other.stride(1)}. \end{itemize} \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !is_convertible_v || rank_> 1 && (padding_value != dynamic_extent || LayoutLeftPaddedMapping::padding_value == dynamic_extent) \end{codeblock} \end{itemdescr} \indexlibraryctor{layout_left_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const LayoutRightPaddedMapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-right-padded-mapping-of}} is \tcode{true} or\newline \tcode{\exposid{is-mapping-of}} is \tcode{true}. \item \exposid{rank_} equals zero or one. \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !is_convertible_v \end{codeblock} \begin{note} Neither the input mapping nor the mapping to be constructed uses the padding stride in the rank-0 or rank-1 case, so the padding stride does not affect either the constraints or the preconditions. \end{note} \end{itemdescr} \rSec5[mdspan.layout.leftpad.obs]{Observers} \begin{itemdecl} constexpr array strides() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{array(\{stride(P_rank)...\})}. \end{itemdescr} \begin{itemdecl} constexpr index_type required_span_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{0} if the multidimensional index space \exposid{extents_} is empty, \item otherwise, \tcode{(*this)(\exposid{extents_}.extent(P_rank) - index_type(1)...) + 1}. \end{itemize} \end{itemdescr} \begin{itemdecl} template constexpr size_t operator()(Indices... idxs) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(Indices) == \exposid{rank_}} is \tcode{true}. \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}. \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \tcode{extents_type::\exposid{index-cast}(idxs)} is a multidimensional index in \tcode{extents()}\iref{mdspan.overview}. \pnum \returns \tcode{((static_cast(idxs) * stride(P_rank)) + ... + 0)}. \end{itemdescr} \begin{itemdecl} static constexpr bool is_always_exhaustive() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item If \exposid{rank_} equals zero or one, then \tcode{true}; \item otherwise, if neither \exposid{static-padding-stride} nor \exposid{first-static-extent} equal \tcode{dynamic_extent}, then \tcode{\exposid{static-padding-stride} == \exposid{first-static-extent}}; \item otherwise, \tcode{false}. \end{itemize} \end{itemdescr} \begin{itemdecl} constexpr bool is_exhaustive() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{true} if \exposid{rank_} equals zero or one; otherwise, \tcode{extents_.extent(0) == stride(1)}. \end{itemdescr} \begin{itemdecl} constexpr index_type stride(rank_type r) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{r} is smaller than \exposid{rank_}. \pnum \returns \begin{itemize} \item If \tcode{r} equals zero: 1; \item otherwise, if \tcode{r} equals one: \exposid{stride-1}; \item otherwise, the product of \exposid{stride-1} and all values \tcode{extents_.extent($k$)} with $k$ in the range \range{1}{r}. \end{itemize} \end{itemdescr} \begin{itemdecl} template friend constexpr bool operator==(const mapping& x, const LayoutLeftPaddedMapping& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-left-padded-mapping-of}} is \tcode{true}. \item \tcode{LayoutLeftPaddedMapping::extents_type::rank() == rank_} is \tcode{true}. \end{itemize} \pnum \returns \tcode{true} if \tcode{x.extents() == y.extents()} is \tcode{true} and \tcode{\exposid{rank_} < 2 || x.stride(1) == y.\newline stride(1)} is \tcode{true}. Otherwise, \tcode{false}. \end{itemdescr} \rSec4[mdspan.layout.rightpad]{Class template \tcode{layout_right_padded::mapping}} \rSec5[mdspan.layout.rightpad.overview]{Overview} \pnum \tcode{layout_right_padded} provides a layout mapping that behaves like \tcode{layout_right::mapping}, except that the padding stride \tcode{stride(extents_type::rank() - 2)} can be greater than or equal to \tcode{extents_type::ex\-tent(extents_type::rank() - 1)}. \begin{codeblock} namespace std { template template class layout_right_padded::mapping { public: static constexpr size_t padding_value = PaddingValue; using extents_type = Extents; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using layout_type = layout_right_padded; private: static constexpr size_t @\exposid{rank_}@ = extents_type::rank(); // \expos static constexpr size_t @\exposid{last-static-extent}@ = // \expos extents_type::static_extent(@\exposid{rank_}@ - 1); // \ref{mdspan.layout.rightpad.expo}, exposition-only members static constexpr size_t @\exposid{static-padding-stride}@ = @\seebelow@; // \expos public: // \ref{mdspan.layout.rightpad.cons}, constructors constexpr mapping() noexcept : mapping(extents_type{}) {} constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&); template constexpr mapping(const extents_type&, OtherIndexType); template constexpr explicit(!is_convertible_v) mapping(const layout_right::mapping&); template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping&); template constexpr explicit(@\seebelow@) mapping(const LayoutRightPaddedMapping&); template constexpr explicit(@\seebelow@) mapping(const LayoutLeftPaddedMapping&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // \ref{mdspan.layout.rightpad.obs}, observers constexpr const extents_type& extents() const noexcept { return extents_; } constexpr array strides() const noexcept; constexpr index_type required_span_size() const noexcept; template constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept; static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept; static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template friend constexpr bool operator==(const mapping&, const LayoutRightPaddedMapping&) noexcept; private: // \ref{mdspan.layout.rightpad.expo}, exposition-only members index_type @\exposid{stride-rm2}@ = @\exposid{static-padding-stride}@; // \expos extents_type @\exposid{extents_}@{}; // \expos // \ref{mdspan.sub.map}, submdspan mapping specialization template constexpr auto @\exposid{submdspan-mapping-impl}@(SliceSpecifiers...) const // \expos -> @\seebelow@; template friend constexpr auto submdspan_mapping(const mapping& src, SliceSpecifiers... slices) { return src.@\exposid{submdspan-mapping-impl}@(slices...); } }; } \end{codeblock} \pnum If \tcode{Extents} is not a specialization of \tcode{extents}, then the program is ill-formed. \pnum \tcode{layout_right_padded::mapping} is a trivially copyable type that models \libconcept{regular} for each \tcode{E}. \pnum Throughout \ref{mdspan.layout.rightpad}, let \tcode{P_rank} be the following size \exposid{rank_} parameter pack of \tcode{size_}t values: \begin{itemize} \item the empty parameter pack, if \exposid{rank_} equals zero; \item \tcode otherwise, \tcode{0zu}, if \exposid{rank_} equals one; \item otherwise, the parameter pack \tcode{0zu}, \tcode{1zu}, \ldots, \tcode{\exposid{rank_}- 1}. \end{itemize} \pnum \mandates \begin{itemize} \item If \tcode{rank_dynamic() == 0} is \tcode{true}, then the size of the multidimensional index space \tcode{Extents()} is representable as a value of type \tcode{index_type}. \item If \tcode{padding_value} is not equal to \tcode{dynamic_extent}, then \tcode{padding_value} is representable as a value of type \tcode{index_type}. \item If \begin{itemize} \item \exposid{rank_} is greater than one, \item \tcode{padding_value} does not equal \tcode{dynamic_extent}, and \item \exposid{last-static-extent} does not equal \tcode{dynamic_extent}, \end{itemize} then \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, \exposid{last-static-extent})} is representable as a value of type \tcode{size_t}, and is representable as a value of type \tcode{index_type}. \item If \begin{itemize} \item \exposid{rank_} is greater than one, \item \tcode{padding_value} does not equal \tcode{dynamic_extent}, and \item \tcode{extents_type::static_extent($k$)} does not equal \tcode{dynamic_extent} for all $k$ in the range \range{0}{\exposid{rank_}}, \end{itemize} then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.static_extent(\exposid{rank_} - 1))} and all values \tcode{ext.static_extent($k$)} with $k$ in the range of \range{0}{\exposid{rank_} - 1} is representable as a value of type \tcode{size_t}, and is representable as a value of type \tcode{index_type}. \end{itemize} \rSec5[mdspan.layout.rightpad.expo]{Exposition-only members} \begin{itemdecl} static constexpr size_t @\exposid{static-padding-stride}@ = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum The value is \begin{itemize} \item \tcode{0}, if \exposid{rank_} equals zero or one; \item otherwise, \tcode{dynamic_extent}, if \tcode{padding_value} or \exposid{last-static-extent} equals \tcode{dynamic_extent}; \item otherwise, the \tcode{size_t} value which is \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, \exposid{last-sta\-tic-extent})}. \end{itemize} \end{itemdescr} \begin{itemdecl} index_type @\exposid{stride-rm2}@ = @\exposid{static-padding-stride}@; \end{itemdecl} \begin{itemdescr} \pnum \recommended Implementations should not store this value if \exposid{static-padding-stride} is not \tcode{dynamic_extent}. \begin{note} Using \tcode{extents} instead of \tcode{index_type} as the type of \exposid{stride-\linebreak rm2} would achieve this. \end{note} \end{itemdescr} \rSec5[mdspan.layout.rightpad.cons]{Constructors} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} constexpr mapping(const extents_type& ext); \end{itemdecl} \begin{itemdescr} \pnum \expects \begin{itemize} \item The size of the multidimensional index space \tcode{ext} is representable as a value of type \tcode{index_type}. \item If \exposid{rank_} is greater than one and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{\exposid{LEAST-MUL\-TIPLE-AT-LEAST}(padding_value, ext.extent(\exposid{rank_} - 1))} is representable as a value of type \exposid{index_type}. \item If \exposid{rank_} is greater than one and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.extent(\exposid{rank_} - 1))} and all values \tcode{ext.extent($k$)} with $k$ in the range of \range{0}{\exposid{rank_} - 1} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{ext}; and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-rm2} \begin{itemize} \item with \tcode{ext.extent(\exposid{rank_} - 1)} if \tcode{padding_value} is \tcode{dynamic_extent}, \item otherwise with \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(padding_value, ext.extent(\exposid{rank_} - 1))}. \end{itemize} \end{itemize} \end{itemdescr} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} template constexpr mapping(const extents_type& ext, OtherIndexType pad); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}. \item \tcode{is_nothrow_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects \begin{itemize} \item \tcode{pad} is representable as a value of type \tcode{index_type}. \item \tcode{extents_type::\exposid{index-cast}(pad)} is greater than zero. \item If \exposid{rank_} is greater than one, then \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(\exposid{rank_} - 1))} is representable as a value of type \tcode{index_type}. \item If \exposid{rank_} is greater than one, then the product of \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(\exposid{\linebreak rank_} - 1))} and all values \tcode{ext.extent($k$)} with $k$ in the range of \range{0}{\exposid{rank_} - 1} is representable as a value of type \tcode{index_type}. \item If \tcode{padding_value} is not equal to \tcode{dynamic_extent}, \tcode{padding_value} equals \tcode{extents_type::\linebreak \exposid{index-cast}(pad)}. \end{itemize} \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{ext}, and if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-rm2} with \tcode{\exposid{LEAST-MULTIPLE-AT-LEAST}(pad, ext.extent(\exposid{rank_} - 1))}. \end{itemdescr} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} template constexpr explicit(!is_convertible_v) mapping(const layout_right::mapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \mandates If \tcode{OtherExtents::rank()} is greater than 1, then \begin{codeblock} (@\exposid{static-padding-stride}@ == dynamic_extent) || (OtherExtents::static_extent(@\exposid{rank_}@ - 1) == dynamic_extent) || (@\exposid{static-padding-stride}@ == OtherExtents::static_extent(@\exposid{rank_}@ - 1)) \end{codeblock} is \tcode{true}. \pnum \expects \begin{itemize} \item If \tcode{\exposid{rank_} > 1} is \tcode{true} and \tcode{padding_value == dynamic_extent} is \tcode{false}, then \tcode{other.stride(\newline \exposid{rank_} - 2)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extents().extent(rank_ - 1))) \end{codeblock} and \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects Equivalent to \tcode{mapping(other.extents())}. \end{itemdescr} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const layout_stride::mapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_constructible_v} is \tcode{true}. \pnum \expects \begin{itemize} \item If \exposid{rank_} is greater than 1 and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{other.\linebreak stride(\exposid{rank_} - 2)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extents().extent(@\exposid{rank_}@ - 1))) \end{codeblock} \item If \exposid{rank_} is greater than 0, then other.stride(\exposid{rank_} - 1) equals 1. \item If \exposid{rank_} is greater than 2, then for all $r$ in the range \range{0}{\exposid{rank_} - 2}, \tcode{other.stride($r$)} equals \begin{codeblock} (other.extents().@\exposid{rev-prod-of-extents}@(r) / other.extents().extent(@\exposid{rank_}@ - 1)) * other.stride(@\exposid{rank_}@ - 2) \end{codeblock} \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}; and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-rm2} with \tcode{other.stride(\exposid{rank_} - 2)}. \end{itemize} \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !(rank_ == 0 && is_convertible_v) \end{codeblock} \end{itemdescr} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const LayoutRightPaddedMapping& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-right-padded-mapping-of}} is \tcode{true}. \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \mandates If \exposid{rank_} is greater than 1, then \begin{codeblock} padding_value == dynamic_extent || LayoutRightPaddedMapping::padding_value == dynamic_extent || padding_value == LayoutRightPaddedMapping::padding_value \end{codeblock} is \tcode{true}. \pnum \expects \begin{itemize} \item If \exposid{rank_} is greater than 1 and \tcode{padding_value} does not equal \tcode{dynamic_extent}, then \tcode{other.\linebreak stride(\exposid{rank_} - 2)} equals \begin{codeblock} @\exposid{LEAST-MULTIPLE-AT-LEAST}@(padding_value, extents_type::@\exposid{index-cast}@(other.extent(@\exposid{rank_}@ - 1))) \end{codeblock} \item \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \end{itemize} \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}; and \item if \exposid{rank_} is greater than one, direct-non-list-initializes \exposid{stride-rm2} with \tcode{other.stride(rank_ - 2)}. \end{itemize} \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !is_convertible_v || @\exposid{rank_}@ > 1 && (padding_value != dynamic_extent || LayoutRightPaddedMapping::padding_value == dynamic_extent) \end{codeblock} \end{itemdescr} \indexlibraryctor{layout_right_padded::mapping}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mapping(const LayoutLeftPaddedMapping& other) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-left-padded-mapping-of}} is \tcode{true} or\newline \tcode{\exposid{is-mapping-of}} is \tcode{true}. \item \exposid{rank_} equals zero or one. \item \tcode{is_constructible_v}\newline is \tcode{true}. \end{itemize} \pnum \expects \tcode{other.required_span_size()} is representable as a value of type \tcode{index_type}. \pnum \effects Direct-non-list-initializes \exposid{extents_} with \tcode{other.extents()}. \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !is_convertible_v \end{codeblock} \begin{note} Neither the input mapping nor the mapping to be constructed uses the padding stride in the rank-0 or rank-1 case, so the padding stride affects neither the constraints nor the preconditions. \end{note} \end{itemdescr} \rSec5[mdspan.layout.rightpad.obs]{Observers} \indexlibrarymember{layout_right_padded::mapping}{strides}% \begin{itemdecl} constexpr array strides() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{array({stride(P_rank)...})}. \end{itemdescr} \indexlibrarymember{layout_right_padded::mapping}{required_span_size}% \begin{itemdecl} constexpr index_type required_span_size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{0} if the multidimensional index space \exposid{extents_} is empty, otherwise \tcode{(*this)(\exposid{extents_}.extent(P_rank) - index_type(1)...) + 1}. \end{itemdescr} \indexlibrarymember{layout_right_padded::mapping}{operator()}% \begin{itemdecl} template constexpr size_t operator()(Indices... idxs) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(Indices) == \exposid{rank_}} is \tcode{true}. \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}. \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}. \end{itemize} \pnum \expects \tcode{extents_type::\exposid{index-cast}(idxs)} is a multidimensional index in \tcode{extents()}\iref{mdspan.overview}. \pnum \returns \tcode{((static_cast(idxs) * stride(P_rank)) + ... + 0)}. \end{itemdescr} \indexlibrarymember{layout_right_padded::mapping}{is_always_exhaustive}% \begin{itemdecl} static constexpr bool is_always_exhaustive() noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item If \exposid{rank_} equals zero or one, then \tcode{true}; \item otherwise, if neither \exposid{static-padding-stride} nor \exposid{last-static-extent} equal \tcode{dynamic_extent}, then \tcode{\exposid{static-padding-stride} == \exposid{last-static-extent}}; \item otherwise, \tcode{false}. \end{itemize} \end{itemdescr} \indexlibrarymember{layout_right_padded::mapping}{is_exhaustive}% \begin{itemdecl} constexpr bool is_exhaustive() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{true} if \exposid{rank_} equals zero or one; otherwise, \begin{codeblock} @\exposid{extents_}@.extent(@\exposid{rank_}@ - 1) == stride(@\exposid{rank_}@ - 2) \end{codeblock} \end{itemdescr} \begin{itemdecl} constexpr index_type stride(rank_type r) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \tcode{r} is smaller than \exposid{rank_}. \pnum \returns \begin{itemize} \item If \tcode{r} equals \tcode{\exposid{rank_} - 1}: \tcode{1}; \item otherwise, if \tcode{r} equals \tcode{\exposid{rank_} - 2}: \exposid{stride-rm2}; \item otherwise, the product of \exposid{stride-rm2} and all values \tcode{extents_.extent($k$)} with $k$ in the range of \range{r + 1}{\exposid{rank_} - 1}. \end{itemize} \end{itemdescr} \indexlibrarymember{layout_right_padded::mapping}{operator==}% \begin{itemdecl} template friend constexpr bool operator==(const mapping& x, const LayoutRightPaddedMapping& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{\exposid{is-layout-right-padded-mapping-of}} is \tcode{true}. \item \tcode{LayoutRightPaddedMapping::extents_type::rank() == \exposid{rank_}} is \tcode{true}. \end{itemize} \pnum \returns \tcode{true} if \tcode{x.extents() == y.extents()} is \tcode{true} and \tcode{\exposid{rank_} < 2 || x.stride(\exposid{rank_} - 2) == y.stride(\exposid{rank_} - 2)} is \tcode{true}. Otherwise, \tcode{false}. \end{itemdescr} \rSec3[mdspan.accessor]{Accessor policy} \rSec4[mdspan.accessor.general]{General} \pnum An \defn{accessor policy} defines types and operations by which a reference to a single object is created from an abstract data handle to a number of such objects and an index. \pnum A range of indices $[0, N)$ is an \defnadj{accessible}{range} of a given data handle and an accessor if, for each $i$ in the range, the accessor policy's \tcode{access} function produces a valid reference to an object. \pnum In \ref{mdspan.accessor.reqmts}, \begin{itemize} \item \tcode{A} denotes an accessor policy. \item \tcode{a} denotes a value of type \tcode{A} or \tcode{const A}. \item \tcode{p} denotes a value of type \tcode{A::data_handle_type} or \tcode{const A::data_handle_type}. \begin{note} The type \tcode{A::data_handle_type} need not be dereferenceable. \end{note} \item \tcode{n}, \tcode{i}, and \tcode{j} each denote values of type \tcode{size_t}. \end{itemize} \rSec4[mdspan.accessor.reqmts]{Requirements} \pnum A type \tcode{A} meets the accessor policy requirements if \begin{itemize} \item \tcode{A} models \libconcept{copyable}, \item \tcode{is_nothrow_move_constructible_v} is \tcode{true}, \item \tcode{is_nothrow_move_assignable_v} is \tcode{true}, \item \tcode{is_nothrow_swappable_v} is \tcode{true}, and \item the following types and expressions are well-formed and have the specified semantics. \end{itemize} \begin{itemdecl} typename A::element_type \end{itemdecl} \begin{itemdescr} \pnum \result A complete object type that is not an abstract class type. \end{itemdescr} \begin{itemdecl} typename A::data_handle_type \end{itemdecl} \begin{itemdescr} \pnum \result A type that models \libconcept{copyable}, and for which \tcode{is_nothrow_move_constructible_v} is \tcode{true}, \tcode{is_nothrow_move_assignable_v} is \tcode{true}, and \tcode{is_nothrow_swappable_v} is \tcode{true}. \begin{note} The type of \tcode{data_handle_type} need not be \tcode{element_type*}. \end{note} \end{itemdescr} \begin{itemdecl} typename A::reference \end{itemdecl} \begin{itemdescr} \pnum \result A type that models \tcode{\libconcept{common_reference_with}}. \begin{note} The type of \tcode{reference} need not be \tcode{element_type\&}. \end{note} \end{itemdescr} \begin{itemdecl} typename A::offset_policy \end{itemdecl} \begin{itemdescr} \pnum \result A type \tcode{OP} such that: \begin{itemize} \item \tcode{OP} meets the accessor policy requirements, \item \tcode{\libconcept{constructible_from}} is modeled, and \item \tcode{is_same_v} is \tcode{true}. \end{itemize} \end{itemdescr} \begin{itemdecl} a.access(p, i) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{A::reference} \pnum \remarks The expression is equality preserving. \pnum \begin{note} Concrete accessor policies can impose preconditions for their \tcode{access} function. However, they might not. For example, an accessor where \tcode{p} is \tcode{span} and \tcode{access(p, i)} returns \tcode{p[i \% p.size()]} does not need to impose a precondition on \tcode{i}. \end{note} \end{itemdescr} \begin{itemdecl} a.offset(p, i) \end{itemdecl} \begin{itemdescr} \pnum \result \tcode{A::offset_policy::data_handle_type} \pnum \returns \tcode{q} such that for \tcode{b} being \tcode{A::offset_policy(a)}, and any integer \tcode{n} for which $[0, \tcode{n})$ is an accessible range of \tcode{p} and \tcode{a}: \begin{itemize} \item $[0, \tcode{n} - \tcode{i})$ is an accessible range of \tcode{q} and \tcode{b}; and \item \tcode{b.access(q, j)} provides access to the same element as \tcode{a.access(p, i + j)}, for every \tcode{j} in the range $[0, \tcode{n} - \tcode{i})$. \end{itemize} \pnum \remarks The expression is equality-preserving. \end{itemdescr} \rSec4[mdspan.accessor.default]{Class template \tcode{default_accessor}} \rSec5[mdspan.accessor.default.overview]{Overview} \begin{codeblock} namespace std { template struct default_accessor { using offset_policy = default_accessor; using element_type = ElementType; using reference = ElementType&; using data_handle_type = ElementType*; constexpr default_accessor() noexcept = default; template constexpr default_accessor(default_accessor) noexcept; constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept; }; } \end{codeblock} \pnum \tcode{default_accessor} meets the accessor policy requirements. \pnum \tcode{ElementType} is required to be a complete object type that is neither an abstract class type nor an array type. \pnum Each specialization of \tcode{default_accessor} is a trivially copyable type that models \libconcept{semiregular}. \pnum $[0, n)$ is an accessible range for an object \tcode{p} of type \tcode{data_handle_type} and an object of type \tcode{default_accessor} if and only if \range{p}{p + $n$} is a valid range. \rSec5[mdspan.accessor.default.members]{Members} \indexlibraryctor{default_accessor}% \begin{itemdecl} template constexpr default_accessor(default_accessor) noexcept {} \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_convertible_v} is \tcode{true}. \end{itemdescr} \indexlibrarymember{access}{default_accessor}% \begin{itemdecl} constexpr reference access(data_handle_type p, size_t i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return p[i];} \end{itemdescr} \indexlibrarymember{offset}{default_accessor}% \begin{itemdecl} constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \tcode{return p + i;} \end{itemdescr} \rSec4[mdspan.accessor.aligned]{Class template \tcode{aligned_accessor}} \rSec5[mdspan.accessor.aligned.overview]{Overview} \begin{codeblock} namespace std { template struct @\libglobal{aligned_accessor}@ { using offset_policy = default_accessor; using element_type = ElementType; using reference = ElementType&; using data_handle_type = ElementType*; static constexpr size_t byte_alignment = ByteAlignment; constexpr aligned_accessor() noexcept = default; template constexpr aligned_accessor( aligned_accessor) noexcept; template constexpr explicit aligned_accessor(default_accessor) noexcept; template constexpr operator default_accessor() const noexcept; constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr typename offset_policy::data_handle_type offset( data_handle_type p, size_t i) const noexcept; }; } \end{codeblock} \pnum \mandates \begin{itemize} \item \tcode{byte_alignment} is a power of two, and \item \tcode{byte_alignment >= alignof(ElementType)} is \tcode{true}. \end{itemize} \pnum \tcode{aligned_accessor} meets the accessor policy requirements. \pnum \tcode{ElementType} is required to be a complete object type that is neither an abstract class type nor an array type. \pnum Each specialization of \tcode{aligned_accessor} is a trivially copyable type that models \libconcept{semiregular}. \pnum \range{0}{$n$} is an accessible range for an object \tcode{p} of type \tcode{data_handle_type} and an object of type \tcode{aligned_accessor} if and only if \begin{itemize} \item \range{p}{p + $n$} is a valid range, and, \item if $n$ is greater than zero, then \tcode{is_sufficiently_aligned(p)} is \tcode{true}. \end{itemize} \pnum \begin{example} The following function \tcode{compute} uses \tcode{is_sufficiently_aligned} to check whether a given \tcode{mdspan} with \tcode{default_accessor} has a data handle with sufficient alignment to be used with \tcode{aligned_accessor}. If so, the function dispatches to a function \tcode{compute_using_fourfold_overalignment} that requires fourfold over-alignment of arrays, but can therefore use hardware-specific instructions, such as four-wide SIMD (Single Instruction Multiple Data) instructions. Otherwise, \tcode{compute} dispatches to a possibly less optimized function \tcode{compute_without_requiring_overalignment} that has no over-alignment requirement. \begin{codeblock} void compute_using_fourfold_overalignment( mdspan, layout_right, aligned_accessor> x); void compute_without_requiring_overalignment( mdspan, layout_right> x); void compute(mdspan> x) { constexpr auto byte_alignment = 4 * sizeof(float); auto accessor = aligned_accessor{}; auto x_handle = x.data_handle(); if (is_sufficiently_aligned(x_handle)) { compute_using_fourfold_overalignment(mdspan{x_handle, x.mapping(), accessor}); } else { compute_without_requiring_overalignment(x); } } \end{codeblock} \end{example} \rSec5[mdspan.accessor.aligned.members]{Members} \indexlibraryctor{aligned_accessor}% \begin{itemdecl} template constexpr aligned_accessor(aligned_accessor) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}. \item \tcode{OtherByteAlignment >= byte_alignment} is \tcode{true}. \end{itemize} \pnum \effects None. \end{itemdescr} \indexlibraryctor{aligned_accessor}% \begin{itemdecl} template constexpr explicit aligned_accessor(default_accessor) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_convertible_v} is \tcode{true}. \pnum \effects None. \end{itemdescr} \indexlibrarymember{access}{aligned_accessor}% \begin{itemdecl} constexpr reference access(data_handle_type p, size_t i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \range{0}{i + 1} is an accessible range for \tcode{p} and \tcode{*this}. \pnum \effects Equivalent to: \tcode{return assume_aligned(p)[i];} \end{itemdescr} \indexlibrarymember{operator default_accessor}{aligned_accessor}% \begin{itemdecl} template constexpr operator default_accessor() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_convertible_v} is \tcode{true}. \pnum \effects Equivalent to: \tcode{return \{\};} \end{itemdescr} \indexlibrarymember{offset}{aligned_accessor}% \begin{itemdecl} constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects \range{0}{i + 1} is an accessible range for \tcode{p} and \tcode{*this}. \pnum \effects Equivalent to: \tcode{return assume_aligned(p) + i;} \end{itemdescr} \rSec3[mdspan.mdspan]{Class template \tcode{mdspan}} \rSec4[mdspan.mdspan.overview]{Overview} \pnum \tcode{mdspan} is a view of a multidimensional array of elements. \begin{codeblock} namespace std { template> class mdspan { public: using extents_type = Extents; using layout_type = LayoutPolicy; using accessor_type = AccessorPolicy; using mapping_type = layout_type::template mapping; using element_type = ElementType; using value_type = remove_cv_t; using index_type = extents_type::index_type; using size_type = extents_type::size_type; using rank_type = extents_type::rank_type; using data_handle_type = accessor_type::data_handle_type; using reference = accessor_type::reference; static constexpr rank_type rank() noexcept { return extents_type::rank(); } static constexpr rank_type rank_dynamic() noexcept { return extents_type::rank_dynamic(); } static constexpr size_t static_extent(rank_type r) noexcept { return extents_type::static_extent(r); } constexpr index_type extent(rank_type r) const noexcept { return extents().extent(r); } // \ref{mdspan.mdspan.cons}, constructors constexpr mdspan(); constexpr mdspan(const mdspan& rhs) = default; constexpr mdspan(mdspan&& rhs) = default; template constexpr explicit mdspan(data_handle_type ptr, OtherIndexTypes... exts); template constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span exts); template constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array& exts); constexpr mdspan(data_handle_type p, const extents_type& ext); constexpr mdspan(data_handle_type p, const mapping_type& m); constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a); template constexpr explicit(@\seebelow@) mdspan(const mdspan& other); constexpr mdspan& operator=(const mdspan& rhs) = default; constexpr mdspan& operator=(mdspan&& rhs) = default; // \ref{mdspan.mdspan.members}, members template constexpr reference operator[](OtherIndexTypes... indices) const; template constexpr reference operator[](span indices) const; template constexpr reference operator[](const array& indices) const; template constexpr reference at(OtherIndexTypes... indices) const; // freestanding-deleted template constexpr reference at(span indices) const; // freestanding-deleted template constexpr reference at(const array& indices) const; // freestanding-deleted constexpr size_type size() const noexcept; constexpr bool empty() const noexcept; friend constexpr void swap(mdspan& x, mdspan& y) noexcept; constexpr const extents_type& extents() const noexcept { return @\exposid{map_}@.extents(); } constexpr const data_handle_type& data_handle() const noexcept { return @\exposid{ptr_}@; } constexpr const mapping_type& mapping() const noexcept { return @\exposid{map_}@; } constexpr const accessor_type& accessor() const noexcept { return @\exposid{acc_}@; } static constexpr bool is_always_unique() { return mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() { return mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() { return mapping_type::is_always_strided(); } constexpr bool is_unique() const { return @\exposid{map_}@.is_unique(); } constexpr bool is_exhaustive() const { return @\exposid{map_}@.is_exhaustive(); } constexpr bool is_strided() const { return @\exposid{map_}@.is_strided(); } constexpr index_type stride(rank_type r) const { return @\exposid{map_}@.stride(r); } private: accessor_type @\exposid{acc_}@; // \expos mapping_type @\exposid{map_}@; // \expos data_handle_type @\exposid{ptr_}@; // \expos }; template requires (is_array_v && rank_v == 1) mdspan(CArray&) -> mdspan, extents>>; template requires (is_pointer_v>) mdspan(Pointer&&) -> mdspan>, extents>; template requires ((is_convertible_v && ...) && sizeof...(Integrals) > 0) explicit mdspan(ElementType*, Integrals...) -> mdspan...>>; template mdspan(ElementType*, span) -> mdspan>; template mdspan(ElementType*, const array&) -> mdspan>; template mdspan(ElementType*, const extents&) -> mdspan>; template mdspan(ElementType*, const MappingType&) -> mdspan; template mdspan(const typename AccessorType::data_handle_type&, const MappingType&, const AccessorType&) -> mdspan; } \end{codeblock} \pnum \mandates \begin{itemize} \item \tcode{ElementType} is a complete object type that is neither an abstract class type nor an array type, \item \tcode{Extents} is a specialization of \tcode{extents}, and \item \tcode{is_same_v} is \tcode{true}. \end{itemize} \pnum \tcode{LayoutPolicy} shall meet the layout mapping policy requirements\iref{mdspan.layout.policy.reqmts}, and \tcode{AccessorPolicy} shall meet the accessor policy requirements\iref{mdspan.accessor.reqmts}. \pnum Each specialization \tcode{MDS} of \tcode{mdspan} models \libconcept{copyable} and \begin{itemize} \item \tcode{is_nothrow_move_constructible_v} is \tcode{true}, \item \tcode{is_nothrow_move_assignable_v} is \tcode{true}, and \item \tcode{is_nothrow_swappable_v} is \tcode{true}. \end{itemize} \pnum A specialization of \tcode{mdspan} is a trivially copyable type if its \tcode{accessor_type}, \tcode{mapping_type}, and \tcode{data_handle_type} are trivially copyable types. \rSec4[mdspan.mdspan.cons]{Constructors} \indexlibraryctor{mdspan}% \begin{itemdecl} constexpr mdspan(); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{rank_dynamic() > 0} is \tcode{true}. \item \tcode{is_default_constructible_v} is \tcode{true}. \item \tcode{is_default_constructible_v} is \tcode{true}. \item \tcode{is_default_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects $[0, \tcode{\exposid{map_}.required_span_size()})$ is an accessible range of \exposid{ptr_} and \exposid{acc_} for the values of \exposid{map_} and \exposid{acc_} after the invocation of this constructor. \pnum \effects Value-initializes \exposid{ptr_}, \exposid{map_}, and \exposid{acc_}. \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} template constexpr explicit mdspan(data_handle_type p, OtherIndexTypes... exts); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{N} be \tcode{sizeof...(OtherIndexTypes)}. \pnum \constraints \begin{itemize} \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, \item \tcode{(is_nothrow_constructible \&\& ...)} is \tcode{true}, \item \tcode{N == rank() || N == rank_dynamic()} is \tcode{true}, \item \tcode{is_constructible_v} is \tcode{true}, and \item \tcode{is_default_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects $[0, \tcode{\exposid{map_}.required_span_size()})$ is an accessible range of \tcode{p} and \exposid{acc_} for the values of \exposid{map_} and \exposid{acc_} after the invocation of this constructor. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{std::move(p)}, \item direct-non-list-initializes \exposid{map_} with \tcode{extents_type(static_cast(std::move(exts\brk{}))...)}, and \item value-initializes \exposid{acc_}. \end{itemize} \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} template constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span exts); template constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array& exts); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}, \item \tcode{is_nothrow_constructible_v} is \tcode{true}, \item \tcode{N == rank() || N == rank_dynamic()} is \tcode{true}, \item \tcode{is_constructible_v} is \tcode{true}, and \item \tcode{is_default_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects $[0, \tcode{\exposid{map_}.required_span_size()})$ is an accessible range of \tcode{p} and \exposid{acc_} for the values of \exposid{map_} and \exposid{acc_} after the invocation of this constructor. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{std::move(p)}, \item direct-non-list-initializes \exposid{map_} with \tcode{extents_type(exts)}, and \item value-initializes \exposid{acc_}. \end{itemize} \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} constexpr mdspan(data_handle_type p, const extents_type& ext); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_constructible_v} is \tcode{true}, and \item \tcode{is_default_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects $[0, \tcode{\exposid{map_}.required_span_size()})$ is an accessible range of \tcode{p} and \exposid{acc_} for the values of \exposid{map_} and \exposid{acc_} after the invocation of this constructor. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{std::move(p)}, \item direct-non-list-initializes \exposid{map_} with \tcode{ext}, and \item value-initializes \exposid{acc_}. \end{itemize} \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} constexpr mdspan(data_handle_type p, const mapping_type& m); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{is_default_constructible_v} is \tcode{true}. \pnum \expects $[0, \tcode{m.required_span_size()})$ is an accessible range of \tcode{p} and \exposid{acc_} for the value of \exposid{acc_} after the invocation of this constructor. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{std::move(p)}, \item direct-non-list-initializes \exposid{map_} with \tcode{m}, and \item value-initializes \exposid{acc_}. \end{itemize} \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a); \end{itemdecl} \begin{itemdescr} \pnum \expects $[0, \tcode{m.required_span_size()})$ is an accessible range of \tcode{p} and \tcode{a}. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{std::move(p)}, \item direct-non-list-initializes \exposid{map_} with \tcode{m}, and \item direct-non-list-initializes \exposid{acc_} with \tcode{a}. \end{itemize} \end{itemdescr} \indexlibraryctor{mdspan}% \begin{itemdecl} template constexpr explicit(@\seebelow@) mdspan(const mdspan& other); \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_constructible_v\&>} is \tcode{true}, and \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \mandates \begin{itemize} \item \tcode{is_constructible_v} is\newline \tcode{true}, and \item \tcode{is_constructible_v} is \tcode{true}. \end{itemize} \pnum \expects $[0, \tcode{\exposid{map_}.required_span_size()})$ is an accessible range of \exposid{ptr_} and \exposid{acc_} for values of \exposid{ptr_}, \exposid{map_}, and \exposid{acc_} after the invocation of this constructor. \pnum \hardexpects For each rank index \tcode{r} of \tcode{extents_type}, \tcode{static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r)} is \tcode{true}. \pnum \effects \begin{itemize} \item Direct-non-list-initializes \exposid{ptr_} with \tcode{other.\exposid{ptr_}}, \item direct-non-list-initializes \exposid{map_} with \tcode{other.\exposid{map_}}, and \item direct-non-list-initializes \exposid{acc_} with \tcode{other.\exposid{acc_}}. \end{itemize} \pnum \remarks The expression inside \tcode{explicit} is equivalent to: \begin{codeblock} !is_convertible_v&, mapping_type> || !is_convertible_v \end{codeblock} \end{itemdescr} \rSec4[mdspan.mdspan.members]{Members} \indexlibrarymember{operator[]}{mdspan}% \begin{itemdecl} template constexpr reference operator[](OtherIndexTypes... indices) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}, and \item \tcode{sizeof...(OtherIndexTypes) == rank()} is \tcode{true}. \end{itemize} \pnum Let \tcode{I} be \tcode{extents_type::\exposid{index-cast}(std::move(indices))}. \pnum \hardexpects \tcode{I} is a multidimensional index in \tcode{extents()}. \begin{note} This implies that \tcode{\exposid{map_}(I) < \exposid{map_}.required_span_size()} is \tcode{true}. \end{note} \pnum \effects Equivalent to: \begin{codeblock} return @\exposid{acc_}@.access(@\exposid{ptr_}@, @\exposid{map_}@(static_cast(std::move(indices))...)); \end{codeblock} \end{itemdescr} \indexlibrarymember{operator[]}{mdspan}% \begin{itemdecl} template constexpr reference operator[](span indices) const; template constexpr reference operator[](const array& indices) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}, and \item \tcode{is_nothrow_constructible_v} is \tcode{true}. \end{itemize} \pnum \effects Let \tcode{P} be a parameter pack such that \begin{codeblock} is_same_v, index_sequence> \end{codeblock} is \tcode{true}. Equivalent to: \begin{codeblock} return operator[](extents_type::@\exposid{index-cast}@(as_const(indices[P]))...); \end{codeblock} \end{itemdescr} \indexlibrarymember{at}{mdspan}% \begin{itemdecl} template constexpr reference at(OtherIndexTypes... indices) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}, \item \tcode{(is_nothrow_constructible_v \&\& ...)} is \tcode{true}, and \item \tcode{sizeof...(OtherIndexTypes) == rank()} is \tcode{true}. \end{itemize} \pnum Let \tcode{I} be \tcode{extents_type::\exposid{index-cast}(std::move(indices))}. \pnum \returns \tcode{(*this)[I...]}. \pnum \throws \tcode{out_of_range} if \tcode{I} is not a multidimensional index in \tcode{extents()}. \end{itemdescr} \indexlibrarymember{at}{mdspan}% \begin{itemdecl} template constexpr reference at(span indices) const; template constexpr reference at(const array& indices) const; \end{itemdecl} \begin{itemdescr} \pnum \constraints \begin{itemize} \item \tcode{is_convertible_v} is \tcode{true}, and \item \tcode{is_nothrow_constructible_v} is \tcode{true}. \end{itemize} \pnum \effects Let \tcode{P} be a parameter pack such that \begin{codeblock} is_same_v, index_sequence> \end{codeblock} is \tcode{true}. Equivalent to: \begin{codeblock} return at(extents_type::@\exposid{index-cast}@(as_const(indices[P]))...); \end{codeblock} \end{itemdescr} \indexlibrarymember{size}{mdspan}% \begin{itemdecl} constexpr size_type size() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \expects The size of the multidimensional index space \tcode{extents()} is representable as a value of type \tcode{size_type}\iref{basic.fundamental}. \pnum \returns \tcode{extents().\exposid{fwd-prod-of-extents}(rank())}. \end{itemdescr} \indexlibrarymember{empty}{mdspan}% \begin{itemdecl} constexpr bool empty() const noexcept; \end{itemdecl} \begin{itemdescr} \pnum \returns \tcode{true} if the size of the multidimensional index space \tcode{extents()} is 0, otherwise \tcode{false}. \end{itemdescr} \indexlibrarymember{swap}{mdspan}% \begin{itemdecl} friend constexpr void swap(mdspan& x, mdspan& y) noexcept; \end{itemdecl} \begin{itemdescr} \pnum \effects Equivalent to: \begin{codeblock} swap(x.@\exposid{ptr_}@, y.@\exposid{ptr_}@); swap(x.@\exposid{map_}@, y.@\exposid{map_}@); swap(x.@\exposid{acc_}@, y.@\exposid{acc_}@); \end{codeblock} \end{itemdescr} \rSec3[mdspan.sub]{\tcode{submdspan}} \rSec4[mdspan.sub.overview]{Overview} \pnum The \tcode{submdspan} facilities create a new \tcode{mdspan} viewing a subset of elements of an existing input \tcode{mdspan}. The subset viewed by the created \tcode{mdspan} is determined by the \tcode{SliceSpecifier} arguments. \pnum Given a signed or unsigned integer type \tcode{IndexType}, a type $S$ is a \defnx{\tcode{submdspan} slice type for \tcode{IndexType}}{\tcode{submdspan}!slice type for \tcode{IndexType}} if at least one of the following holds: \begin{itemize} \item \tcode{is_convertible_v<$S$, full_extent_t>} is \tcode{true}; \item \tcode{is_convertible_v<$S$, IndexType>} is \tcode{true}; \item $S$ is a specialization of \tcode{strided_slice} and \tcode{is_convertible_v<$X$, IndexType>} is \tcode{true} for $X$ denoting \tcode{$S$::offset_type}, \tcode{$S$::extent_type}, and \tcode{$S$::stride_type}; or \item all of the following hold: \begin{itemize} \item the declaration \tcode{auto [...ls] = std::move(s);} is well-formed for some object \tcode{s} of type $S$, \item \tcode{sizeof...(ls)} is equal to 2, and \item \tcode{(is_convertible_v \&\& ...)} is \tcode{true}. \end{itemize} \end{itemize} \pnum Given a signed or unsigned integer type \tcode{IndexType}, a type $S$ is a \defnx{canonical \tcode{submdspan} index type for \tcode{IndexType}}{\tcode{submdspan}!canonical index type for \tcode{IndexType}} if $S$ is either \tcode{IndexType} or \tcode{constant_wrapper} for some value \tcode{v} of type \tcode{IndexType}, such that \tcode{v} is greater than or equal to zero. \pnum Given a signed or unsigned integer type \tcode{IndexType}, a type $S$ is a \defnx{canonical \tcode{submdspan} slice type for \tcode{IndexType}}{\tcode{submdspan}!canonical slice type for \tcode{IndexType}} if exactly one of the following is \tcode{true}: \begin{itemize} \item $S$ is \tcode{full_extent_t}; \item $S$ is a canonical \tcode{submdspan} index type for \tcode{IndexType}; or \item $S$ is a specialization of \tcode{strided_slice} where all of the following hold: \begin{itemize} \item \tcode{S::offset_type}, \tcode{S::extent_type}, and \tcode{S::stride_type} are all canonical \tcode{submdspan} index types for \tcode{IndexType}; and \item if \tcode{$S$::stride_type} and \tcode{$S$::extent_type} are both specializations of \tcode{constant_wrapper}, then \tcode{$S$::stride_type::value} is greater than zero. \end{itemize} \end{itemize} \pnum A type \tcode{S} is a \defnadj{collapsing}{slice type} if it is neither \tcode{full_extent_t} nor a specialization of \tcode{strided_slice}. \begin{note} Each collapsing slice type in \tcode{submdspan_mapping}'s parameter pack of slice specifier types reduces the rank of the result of \tcode{submdspan_mapping} by one. \end{note} \pnum A type \tcode{S} is a \defnadj{unit-stride}{slice type} if \begin{itemize} \item \tcode{S} is a specialization of \tcode{strided_slice} where \tcode{S::stride_type} is a specialization of \tcode{constant_wrapper} and \tcode{S::stride_type::value} is equal to 1, or \item \tcode{S} denotes \tcode{full_extent_t}. \end{itemize} \pnum Given an object \tcode{e} of type \tcode{E} that is a specialization of \tcode{extents}, and an object \tcode{s} of type \tcode{S} that is a canonical \tcode{submdspan} slice type for \tcode{E::index_type}, the \defnx{\tcode{submdspan} slice range of \tcode{s} for the $k^\text{th}$ extent of \tcode{e}}{\tcode{submdspan}!slice range of \tcode{s} for the $k^\text{th}$ extent of \tcode{e}} is: \begin{itemize} \item \range{$0$}{e.extent($k$)}, if \tcode{S} is \tcode{full_extent_t}; \item \range{E::index_type(s.offset)}{E::index_type(s.offset + s.extent)}, if \tcode{S} is a specialization of \tcode{stri\-ded_slice}; otherwise \item \range{\tcode{E::index_type(s)}}{$\tcode{E::index_type(s)} + 1$} \end{itemize} \pnum Given a type \tcode{E} that is a specialization of \tcode{extents}, a type \tcode{S} is a \defnx{valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{E}}{\tcode{submdspan}!valid slice type for the $k^\text{th}$ extent of \tcode{E}} if \tcode{S} is a canonical slice type for \tcode{E::index_type}, and for $x$ equal to \tcode{E::static_extent($k$)}, either $x$ is equal to \tcode{dynamic_extent}; or \begin{itemize} \item if \tcode{S} is a specialization of \tcode{strided_slice}: \begin{itemize} \item if \tcode{S::offset_type} is a specialization of \tcode{constant_wrapper}, then \tcode{S::offset_type::value} is less than or equal to $x$; \item if \tcode{S::offset_type} is a specialization of \tcode{constant_wrapper}, then \tcode{S::extent_type::value} is less than or equal to $x$; and \item if both \tcode{S::offset_type} and \tcode{S::extent_type} are specializations of \tcode{constant_wrapper}, then \tcode{S::offset_type::value + S::extent_type::value} is less than or equal to $x$; or \end{itemize} \item if $S$ is a specialization of \tcode{constant_wrapper}, then \tcode{S::value} is less than \tcode{x}. \end{itemize} \pnum Given an object \tcode{e} of type \tcode{E} that is a specialization of \tcode{extents} and an object \tcode{s} of type \tcode{S}, \tcode{s} is a \defnx{valid \tcode{submdspan} slice for the $k^\text{th}$ extent of \tcode{e}}{\tcode{submdspan}!valid slice for the $k^\text{th}$ extent of \tcode{e}} if \begin{itemize} \item \tcode{S} is a valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{E}; \item the $k^\text{th}$ interval of \tcode{e} contains the \tcode{submdspan} slice range of \tcode{s} for the $k^\text{th}$ extent of \tcode{e}; and \item if \tcode{S} is a specialization of \tcode{strided_slice}, then: \begin{itemize} \item \tcode{s.extent} is greater than or equal to zero, and \item either \tcode{s.extent} equals zero or \tcode{s.stride} is greater than zero. \end{itemize} \end{itemize} \rSec4[mdspan.sub.strided.slice]{\tcode{strided_slice}} \pnum \tcode{strided_slice} represents a set of \tcode{extent} regularly spaced integer indices. The indices start at \tcode{offset}, and increase by increments of \tcode{stride}. \indexlibraryglobal{strided_slice}% \begin{codeblock} namespace std { template struct strided_slice { using offset_type = OffsetType; using extent_type = ExtentType; using stride_type = StrideType; [[no_unique_address]] offset_type offset{}; [[no_unique_address]] extent_type extent{}; [[no_unique_address]] stride_type stride{}; }; } \end{codeblock} \pnum \tcode{strided_slice} has the data members and special members specified above. It has no base classes or members other than those specified. \pnum \mandates \tcode{OffsetType}, \tcode{ExtentType}, and \tcode{StrideType} are signed or unsigned integer types, or model \exposconcept{integral-constant-like}. \begin{note} \tcode{strided_slice\{.offset = 1, .extent = 10, .stride = 3\}} indicates the indices \tcode{1}, \tcode{4}, \tcode{7}, and \tcode{10}. Indices are selected from the half-open interval \range{1}{1 + 10}. \end{note} \rSec4[mdspan.sub.map.result]{\tcode{submdspan_mapping_result}} \pnum Specializations of \tcode{submdspan_mapping_result} are returned by overloads of \tcode{submdspan_mapping}. \indexlibraryglobal{submdspan_mapping_result}% \begin{codeblock} namespace std { template struct submdspan_mapping_result { [[no_unique_address]] LayoutMapping mapping = LayoutMapping(); size_t offset{}; }; } \end{codeblock} \pnum \tcode{submdspan_mapping_result} has the data members and special members specified above. It has no base classes or members other than those specified. \pnum \tcode{LayoutMapping} shall meet the layout mapping requirements\iref{mdspan.layout.policy.reqmts}. \rSec4[mdspan.sub.helpers]{Exposition-only helpers} \pnum \indexlibraryglobal{\tcode{\placeholder{MAP_RANK}}}% For a pack \tcode{p} and an integer $i$, let \tcode{\placeholder{MAP_RANK}(p, $i$)} be the number of elements \tcode{p...[$j$]} for $0 \le j < i$ whose types are not collapsing slice types. \begin{itemdecl} template concept @\defexposconcept{is-strided-slice}@ = @\seebelow;@ \end{itemdecl} \begin{itemdescr} \pnum The concept \tcode{\exposconcept{is-strided-slice}} is satisfied and modeled if and only if \tcode{T} is a specialization of \tcode{strided_slice}. \end{itemdescr} \indexlibraryglobal{\exposid{canonical-index}}% \begin{itemdecl} template constexpr auto @\exposid{canonical-index}@(S s); \end{itemdecl} \begin{itemdescr} \pnum \mandates If \tcode{S} models \exposconcept{integral-constant-like}, then \tcode{extents::\exposid{index-cast}(S::val\-ue)} is representable as a value of type \tcode{IndexType}. \pnum \expects \tcode{extents::\exposid{index-cast}(std::move(s))} is representable as a value of type \tcode{IndexType}. \pnum \effects Equivalent to: \begin{itemize} \item \tcode{return cw;} if \tcode{S} models \exposconcept{integral-constant-like}; \item \tcode{return IndexType(std::move(s));} otherwise. \end{itemize} \end{itemdescr} \indexlibraryglobal{\exposid{canonical-slice}} \begin{itemdecl} template constexpr auto @\exposid{canonical-slice}@(S s); \end{itemdecl} \begin{itemdescr} \pnum \mandates \tcode{S} is a \tcode{submdspan} slice type for \tcode{IndexType}. \pnum \effects Equivalent to: \begin{codeblock} if constexpr (is_convertible_v) { return static_cast(std::move(s)); } else if constexpr (is_convertible_v) { return @\exposid{canonical-index}@(std::move(s)); } else if constexpr (@\exposconcept{is-strided-slice}@) { auto c_extent = @\exposid{canonical-index}@(std::move(s.extent)); auto c_offset = @\exposid{canonical-index}@(std::move(s.offset)); if constexpr (is_same_v>) { return strided_slice{ .offset = c_offset, .extent = c_extent, .stride = cw }; } else { return strided_slice{ .offset = c_offset, .extent = c_extent, .stride = @\exposid{canonical-index}@(std::move(s.stride)) }; } } else { auto [s_first, s_last] = std::move(s); auto c_first = @\exposid{canonical-index}@(std::move(s_first)); auto c_last = @\exposid{canonical-index}@(std::move(s_last)); return strided_slice{ .offset = c_first, .extent = @\exposid{canonical-index}@(c_last - c_first), .stride = cw }; } \end{codeblock} \end{itemdescr} \rSec4[mdspan.sub.canonical]{\tcode{submdspan} slice canonicalization} \indexlibraryglobal{submdspan_canonicalize_slices}% \begin{itemdecl} template constexpr auto submdspan_canonicalize_slices(const extents& src, SliceSpecifiers... slices); \end{itemdecl} \begin{itemdescr} \pnum \constraints \tcode{sizeof...(SliceSpecifiers)} equals \tcode{sizeof...(Extents)}. \pnum \mandates For each rank index $k$ of \tcode{src}: \begin{itemize} \item \tcode{SliceSpecifiers...[k]} is a \tcode{submdspan} slice type for \tcode{IndexType}, and \item \tcode{decltype(\exposid{canonical-slice}(slices...[k]))} is a valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{extents}. \end{itemize} \pnum \expects For each rank index $k$ of \tcode{src}, \tcode{\exposid{canonical-slice}(slices...[k])} is a valid \tcode{submdspan} slice for the $k^\text{th}$ extent of \tcode{src}. \pnum \returns \tcode{make_tuple(\exposid{canonical-slice}(slices)...)}. \end{itemdescr} \rSec4[mdspan.sub.extents]{\tcode{submdspan_extents} function} \indexlibraryglobal{submdspan_extents}% \begin{itemdecl} template constexpr auto submdspan_extents(const extents& src, SliceSpecifiers... raw_slices); \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{slices} be the pack introduced by the following declaration: \begin{codeblock} auto [...slices] = submdspan_canonicalize_slices(src, raw_slices...); \end{codeblock} \pnum \constraints \tcode{sizeof...(SliceSpecifiers)} equals \tcode{sizeof...(Extents)}. \pnum \mandates For each rank index $k$ of \tcode{src}: \begin{itemize} \item \tcode{SliceSpecifiers...[$k$]} is a \tcode{submdspan} slice type for \tcode{IndexType}, and \item \tcode{decltype(slices...[$k$])} is a valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{extents<\brk{}Index\-Type, Extents...>}. \end{itemize} \pnum \expects For each rank index $k$ of \tcode{src}, \tcode{slices...[k]} is a valid \tcode{submdspan} slice for the $k^\text{th}$ extent of \tcode{src}. \pnum Let \tcode{SubExtents} be a specialization of \tcode{extents} such that: \begin{itemize} \item \tcode{SubExtents::rank()} equals \tcode{\placeholder{MAP_RANK}(slices, Extents::rank())}; and \item for each rank index $k$ of \tcode{Extents} such that the type of \tcode{slices...[$k$]} is not a collapsing slice type, \tcode{SubExt\-ents::static_extent(\placeholder{MAP_RANK}(slices, $k$))} equals the following, where $\Sigma_k$ denotes the type of \tcode{slices...[$k$]}: \begin{itemize} \item \tcode{Extents::static_extent($k$)} if $\Sigma_k$ denotes the \tcode{full_extent_t}; otherwise \item \tcode{0}, if $\Sigma_k$ is a specialization of \tcode{strided_slice} and \tcode{$\Sigma_k$::extent_type} denotes \tcode{constant_wrapper}; otherwise \item \tcode{1 + (($\Sigma_k$::extent_type::value - 1) / $\Sigma_k$::stride_type::value)}, if $\Sigma_k$ is a specialization of \tcode{strided_slice} whose \tcode{extent_type} and \tcode{stride_type} denote specializations of \tcode{constant_wrapper}; \item otherwise, \tcode{dynamic_extent}. \end{itemize} \end{itemize} \pnum \returns A value \tcode{ext} of type \tcode{SubExtents} such that for each rank index $k$ of \tcode{extents}, where the type of \tcode{slices...[$k$]} is not a collapsing slice type, \tcode{ext.extent(\placeholder{MAP_RANK}(slices, $k$))} equals the following, where $\sigma_k$ denotes \tcode{slices...[$k$]}: \begin{itemize} \item \tcode{$\sigma_k$.extent == 0 ? 0 : 1 + ($\sigma_k$.extent - 1) / $\sigma_k$.stride} if the type of $\sigma_k$ is a specialization of \tcode{strided_slice}, \item otherwise, $U - L$, where \range{$L$}{$U$} is the \tcode{submdspan} slice range of $\sigma_k$ for the $k^\text{th}$ extent of \tcode{src}. \end{itemize} \end{itemdescr} \rSec4[mdspan.sub.map]{Specializations of \tcode{submdspan_mapping}} \rSec5[mdspan.sub.map.sliceable]{Sliceable layout mapping requirements} \pnum Let: \begin{itemize} \item \tcode{M} denote a layout mapping class; \item \tcode{IT} denote \tcode{M::extent_type::index_type}; \item \tcode{m} denote a value of type (possibly const) \tcode{M}; \item \tcode{M_rank} be equal to \tcode{M::extent_type::rank()}; \item \tcode{valid_slices} denote a pack of (possibly const) objects for which \tcode{sizeof...(valid_slices) == M_rank} is \tcode{true} and, for each rank index $i$ of \tcode{m.extents()}, \tcode{valid_slices...[i]} is a valid \tcode{submdspan} slice for the $i^\text{th}$ extent of \tcode{m.extents()}; \item \tcode{invalid_slices} denote a pack of objects for which \tcode{sizeof...(invalid_slices) == M_rank} is \tcode{true} and there exists an integer $k$ such that the cv-unqualified type of \tcode{invalid_slices...[$k$]} is none of the following: \begin{itemize} \item \tcode{IT}, \item \tcode{full_extent_t}, \item a specialization of \tcode{constant_wrapper}, or \item a specialization of \tcode{strided_slice}. \end{itemize} \end{itemize} \pnum For the purpose of this section, the meaning of \tcode{submdspan_mapping} is established as if by performing argument-dependent lookup only\iref{basic.lookup.argdep}. \pnum A type \tcode{M} meets the \defn{sliceable layout mapping requirements} if \begin{itemize} \item \tcode{M} meets the layout mapping requirements\iref{mdspan.layout.policy.reqmts}, \item the expression \tcode{submdspan_mapping(m, invalid_slices...)} is ill-formed, and \item the following expression is well-formed and has the specified semantics: \begin{codeblock} submdspan_mapping(m, valid_slices...) \end{codeblock} \end{itemize} \begin{itemdescr} \pnum \result A type SMR that is a specialization of type submdspan_mapping_result for some type SM such that \begin{itemize} \item \tcode{SM} meets the layout mapping requirements\iref{mdspan.layout.policy.reqmts}, \item \tcode{SM::extents_type} is a specialization of \tcode{extents}, \item \tcode{SM::extents_type::rank()} equals \tcode{\placeholder{MAP_RANK}(valid_slices, M_rank)}, and \item \tcode{SM::extents_type::index_type} denotes \tcode{IT}. \end{itemize} \pnum \returns An object \tcode{smr} of type \tcode{SMR} such that \begin{itemize} \item \tcode{smr.mapping.extents() == submdspan_extents(m.extents(), valid_slices...)} is \tcode{true};\newline and \item for each integer pack \tcode{i} which is a multidimensional index in \tcode{smr.mapping.extents()},\newline \tcode{smr.mapping(i...) + smr.offset == m(j)} is \tcode{true}, where \tcode{j} is an integer pack such that \begin{itemize} \item \tcode{sizeof...(j)} is equal to \tcode{M_rank}; and \item for each rank index $\rho$ of \tcode{m.extents()}, \tcode{j...[$\rho$]} is equal to the sum of \begin{itemize} \item the lower bound of the \tcode{submdspan} slice range of \tcode{valid_slices...[$\rho$]} for extent $\rho$ of \tcode{m.extents()}, and \item zero if the type of \tcode{valid_slices...[$\rho$]} is a collapsing slice type, \tcode{i...[MAP_RANK(valid_slices,$\rho$)]} otherwise. \end{itemize} \end{itemize} \end{itemize} \end{itemdescr} \begin{itemdecl} template concept @\defexposconcept{sliceable-mapping}@ = @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{lm} be an object of type \tcode{LayoutMapping} and let \tcode{fe} denote a pack of objects of type \tcode{full_extent_t} for which \tcode{sizeof...(fe) == LayoutMapping::extents_type::rank()} is \tcode{true}. A type \tcode{LayoutMapping} satisfies \exposconcept{sliceable-mapping} if \begin{itemize} \item the expression \tcode{submdspan_mapping(m, fe...)} is well-formed when treated as an unevaluated operand, and \item the type of that expression is a specialization of \tcode{submdspan_mapping_result}. \end{itemize} \pnum A type \tcode{LayoutMapping} models \exposconcept{sliceable-mapping} if \tcode{LayoutMapping} meets the sliceable layout mapping requirements. \end{itemdescr} \rSec5[mdspan.sub.map.common]{Common} \pnum The following elements apply to all functions in \ref{mdspan.sub.map}. \pnum \constraints \tcode{sizeof...(SpliceSpecifiers)} equals \tcode{extents_type::rank()}. \pnum \mandates For each rank index $k$ of \tcode{extents()}, \tcode{SliceSpecifiers...[$k$]} is a valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{Extents}. \pnum \expects For each rank index $k$ of \tcode{extents()}, \tcode{slices...[$k$]} is a valid slice for the $k^\text{th}$ extent of \tcode{extents()}. \pnum Let \tcode{sub_ext} be the result of \tcode{submdspan_extents(extents(), slices...)} and let \tcode{SubExtents} be \tcode{decl\-type(sub_ext)}. \pnum Let \tcode{sub_strides} be an \tcode{array} such that for each rank index $k$ of \tcode{extents()} for which the type of \tcode{slices...[$k$]} is not a collapsing slice type, \tcode{sub_strides[\placeholder{MAP_RANK}(slices,$k$)]} equals: \begin{itemize} \item \tcode{stride(k) * s.stride} if the type of \tcode{s} is a specialization of \tcode{strided_slice} and \tcode{s.stride < s.ex\-tent} is \tcode{true}, where \tcode{s} is \tcode{slices...[$k$]}; \item otherwise, \tcode{stride($k$)}. \end{itemize} \pnum Let \tcode{ls} be a pack of values of \tcode{index_type}, where the $\rho^\text{th}$ element equals the lower bound of the \tcode{submdspan} slice range of \tcode{slices...[$\rho$]} for extent $\rho$ of \tcode{extents()}. \pnum If \tcode{ls...[$k$]} equals \tcode{extents().extent($k$)} for any rank index $k$ of \tcode{extents()}, then let \tcode{offset} be a value of type \tcode{size_t} equal to \tcode{required_span_size()}. Otherwise, let \tcode{offset} be a value of type \tcode{size_t} equal to \tcode{operator()(ls...)}. \rSec5[mdspan.sub.map.left]{\tcode{layout_left} specialization of \tcode{submdspan_mapping}} \indexlibrarymemberexpos{layout_left::mapping}{submdspan-mapping-impl}% \begin{itemdecl} template template constexpr auto layout_left::mapping::@\exposid{submdspan-mapping-impl}@( SliceSpecifiers... slices) const -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{submdspan_mapping_result\{*this, 0\}}, if \tcode{Extents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_left::mapping(sub_ext), offset\}},\newline if \tcode{SubEx\-tents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_left::mapping(sub_ext), offset\}}, if \begin{itemize} \item for each $k$ in the range \range{0}{SubExtents::rank() - 1}, \tcode{SpliceSpecifiers...[$k$]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \tcode{SubExtents::rank() - 1}, \tcode{SpliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} \begin{note} If the above conditions are true, all \tcode{SpliceSpecifiers...[$k$]} with $k$ larger than \tcode{SubExtents\brk{}::rank\brk{}() - 1} are convertible to \tcode{index_type}. \end{note} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_left_padded::mapping(sub_ext, stride(@$u$@ + 1)), offset} \end{codeblock} if for a value $u$ for which $u+1$ is the smallest value $p$ larger than zero for which \tcode{SliceSpecifiers...\brk{}[\brk{}p]} is a unit-stride slice type, the following conditions are met: \begin{itemize} \item \tcode{SliceSpecifiers...[0]} is a unit-stride slice type; and \item for each $k$ in the range \range{$u$ + 1}{$u$ + SubExtents::rank() - 1}, \tcode{SliceSpecifiers...[$k$]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \tcode{$u$ + SubExtents::rank() - 1}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} and where \tcode{S_static} is: \begin{itemize} \item \tcode{dynamic_extent}, if \tcode{static_extent($k$)} is \tcode{dynamic_extent} for any $k$ in the range \range{0}{$u$ + 1}, \item otherwise, the product of all values \tcode{static_extent($k$)} for $k$ in the range \range{0}{$u$ + 1}; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset} \end{codeblock} \end{itemize} \end{itemdescr} \rSec5[mdspan.sub.map.right]{\tcode{layout_right} specialization of \tcode{submdspan_mapping}} \indexlibrarymemberexpos{layout_right::mapping}{submdspan-mapping-impl}% \begin{itemdecl} template template constexpr auto layout_right::mapping::@\exposid{submdspan-mapping-impl}@( SliceSpecifiers... slices) const -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{submdspan_mapping_result\{*this, 0\}}, if \tcode{Extents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_right::mapping(sub_ext), offset\}},\newline if \tcode{Sub\-Extents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_right::mapping(sub_ext), offset\}}, if \begin{itemize} \item for each $k$ in the range \range{\exposid{rank_} - SubExtents::rank() + 1}{\exposid{rank_}},\newline \tcode{SliceSpecifiers...[$k$]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \exposid{rank_} - \tcode{SubExtents::rank()}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} \begin{note} If the above conditions are true, all \tcode{SliceSpecifiers...[$k$]} with\newline $k < \tcode{\exposid{rank_} - SubExtents::rank()}$ are convertible to \tcode{index_type}. \end{note} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_right_padded::mapping(sub_ext, stride(@\exposid{rank_}@ - @$u$@ - 2)), offset} \end{codeblock} if for a value $u$ for which $\exposid{rank_} - u - 2$ is the largest value $p$ smaller than \tcode{\exposid{rank_} - 1} for which \tcode{SliceSpecifiers...[p]} is a unit-stride slice type, the following conditions are met: \begin{itemize} \item for $k$ equal to \tcode{\exposid{rank_} - 1}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; and \item for each $k$ in the range \range{\exposid{rank_} - SubExtents::rank() - $u$ + 1}{\exposid{rank_} - $u$ - 1},\newline \tcode{SliceSpecifiers...[p]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \tcode{\exposid{rank_} - SubExtents::rank() - $u$}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} and where \tcode{S_static} is: \begin{itemize} \item \tcode{dynamic_extent}, if \tcode{static_extent($k$)} is \tcode{dynamic_extent} for any $k$ in the range \range{\exposid{rank_} - $u$ - 1}{\exposid{rank_}}, \item otherwise, the product of all values \tcode{static_extent($k$)} for $k$ in the range \range{\exposid{rank_} - $u$ - 1}{\exposid{rank_}}; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset} \end{codeblock} \end{itemize} \end{itemdescr} \rSec5[mdspan.sub.map.stride]{\tcode{layout_stride} specialization of \tcode{submdspan_mapping}} \indexlibrarymemberexpos{layout_stride::mapping}{submdspan-mapping-impl}% \begin{itemdecl} template template constexpr auto layout_stride::mapping::@\exposid{submdspan-mapping-impl}@( SliceSpecifiers... slices) const -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{submdspan_mapping_result\{*this, 0\}}, if \tcode{Extents::rank() == 0} is \tcode{true}; \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset} \end{codeblock} \end{itemize} \end{itemdescr} \rSec5[mdspan.sub.map.leftpad]{\tcode{layout_left_padded} specialization of \tcode{submdspan_mapping}} \indexlibrarymemberexpos{layout_left_padded::mapping}{submdspan-mapping-impl}% \begin{itemdecl} template template constexpr auto layout_left_padded::mapping::@\exposid{submdspan-mapping-impl}@( SliceSpecifiers... slices) const -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{submdspan_mapping_result\{*this, 0\}}, if \tcode{Extents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_left::mapping(sub_ext), offset\}}, if \tcode{\exposid{rank_} == 1} is \tcode{true} or \tcode{SubExtents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_left::mapping(sub_ext), offset\}}, if \begin{itemize} \item \tcode{SubExtents::rank() == 1} is \tcode{true} and \item \tcode{SliceSpecifiers...[0]} is a unit-stride slice type; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_left_padded::mapping(sub_ext, stride(@$u$@ + 1)), offset} \end{codeblock} if for a value $u$ for which \tcode{$u$ + 1} is the smallest value $p$ larger than zero for which \tcode{Slice\-Speci\-fiers\brk{}...[\brk{}$p$]} is a unit-stride slice type, the following conditions are met: \begin{itemize} \item \tcode{SliceSpecifiers...[0]} is a unit-stride slice type; and \item for each $k$ in the range \range{$u$ + 1}{$u$ + SubExtents::rank() - 1}, \tcode{SliceSpecifiers...[$k$]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \tcode{$u$ + SubExtents::rank() - 1}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} where \tcode{S_static} is: \begin{itemize} \item \tcode{dynamic_extent}, if \exposid{static-padding-stride} is \tcode{dynamic_extent} or \tcode{static_extent($k$)} is \tcode{dynamic_extent} for any $k$ in the range \range{1}{$u$ + 1}, \item otherwise, the product of \exposid{static-padding-stride} and all values \tcode{static_extent($k$)} for $k$ in the range \range{1}{$u$ + 1}; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset} \end{codeblock} \end{itemize} \end{itemdescr} \rSec5[mdspan.sub.map.rightpad]{\tcode{layout_right_padded} specialization of \tcode{submdspan_mapping}} \indexlibrarymemberexpos{layout_right_padded::mapping}{submdspan-mapping-impl}% \begin{itemdecl} template template constexpr auto layout_right_padded::mapping::@\exposid{submdspan-mapping-impl}@( SliceSpecifiers... slices) const -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum \returns \begin{itemize} \item \tcode{submdspan_mapping_result\{*this, 0\}}, if \tcode{\exposid{rank_} == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_right::mapping(sub_ext), offset\}},\newline if \tcode{\exposid{rank_} == 1} is \tcode{true} or \tcode{SubExtents::rank() == 0} is \tcode{true}; \item otherwise, \tcode{submdspan_mapping_result\{layout_right::mapping(sub_ext), offset\}}, if \begin{itemize} \item \tcode{SubExtents::rank() == 1} is \tcode{true} and \item for $k$ equal to \tcode{\exposid{rank_} - 1}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_right_padded::mapping(sub_ext, stride(@\exposid{rank_}@ - @$u$@ - 2)), offset} \end{codeblock} if for a value $u$ for which \tcode{\exposid{rank_} - $u$ - 2} is the largest value p smaller than \tcode{\exposid{rank_} - 1} for which \tcode{SliceSpecifiers...[$p$]} is a unit-stride slice type, the following conditions are met: \begin{itemize} \item for $k$ equal to \tcode{\exposid{rank_} - 1}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; and \item for each $k$ in the range \range{\exposid{rank_} - SubExtents::rank() - $u$ + 1}{\exposid{rank_} - $u$ - 1},\newline \tcode{SliceSpecifiers...[$k$]} denotes \tcode{full_extent_t}; and \item for $k$ equal to \tcode{\exposid{rank_} - SubExtents::rank() - $u$}, \tcode{SliceSpecifiers...[$k$]} is a unit-stride slice type; \end{itemize} and where \tcode{S_static} is: \begin{itemize} \item \tcode{dynamic_extent} if \exposid{static-padding-stride} is \tcode{dynamic_extent} or for any $k$ in the range \range{\exposid{rank_} - $u$ - 1}{\exposid{rank_} - 1} \tcode{static_extent($k$)} is \tcode{dynamic_extent}, \item otherwise, the product of \exposid{static-padding-stride} and all values \tcode{static_extent($k$)} with $k$ in the range \range{\exposid{rank_} - $u$ - 1}{\exposid{rank_} - 1}; \end{itemize} \item otherwise, \begin{codeblock} submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset} \end{codeblock} \end{itemize} \end{itemdescr} \rSec4[mdspan.sub.sub]{\tcode{submdspan} function template} \indexlibraryglobal{submdspan}% \begin{itemdecl} template constexpr auto submdspan( const mdspan& src, SliceSpecifiers... slices) -> @\seebelow@; \end{itemdecl} \begin{itemdescr} \pnum Let \tcode{index_type} be \tcode{typename Extents::index_type}. \pnum Let \tcode{slices} be the pack introduced by the following declaration: \begin{codeblock} auto [...slices] = submdspan_canonicalize_slices(src, raw_slices...); \end{codeblock} \pnum Let \tcode{sub_map_offset} be the result of \tcode{submdspan_mapping(src.mapping(), slices...)}. \begin{note} This invocation of \tcode{submdspan_mapping} selects a function call via overload resolution on a candidate set that includes the lookup set found by argument-dependent lookup\iref{basic.lookup.argdep}. \end{note} \pnum \constraints \begin{itemize} \item \tcode{sizeof...(slices)} equals \tcode{Extents::rank()}, and \item \tcode{LayoutPolicy::mapping} models \exposconcept{sliceable-mapping}. \end{itemize} \pnum \mandates For each rank index $k$ of \tcode{src}: \begin{itemize} \item \tcode{SliceSpecifiers...[$k$]} is a \tcode{submdspan} slice type for \tcode{index_type}, and \item \tcode{decltype(slices...[$k$])} is a valid \tcode{submdspan} slice type for the $k^\text{th}$ extent of \tcode{Extents}. \end{itemize} \pnum \expects For each rank index $k$ of \tcode{src.extents()}, \tcode{slices...[$k$]} is a valid \tcode{submdspan} slice for the $k^\text{th}$ extent of \tcode{src.extents()}. \pnum \effects Equivalent to: \begin{codeblock} auto sub_map_result = submdspan_mapping(src.mapping(), slices...); return mdspan(src.accessor().offset(src.data_handle(), sub_map_result.offset), sub_map_result.mapping, typename AccessorPolicy::offset_policy(src.accessor())); \end{codeblock} \end{itemdescr} \pnum \begin{example} Given a rank-3 \tcode{mdspan grid3d} representing a three-dimensional grid of regularly spaced points in a rectangular prism, the function \tcode{zero_surface} sets all elements on the surface of the 3-dimensional shape to zero. It does so by reusing a function \tcode{zero_2d} that takes a rank-2 \tcode{mdspan}. \begin{codeblock} // zero out all elements in an \tcode{mdspan} template void zero_2d(mdspan a) { static_assert(a.rank() == 2); for (int i = 0; i < a.extent(0); i++) for (int j = 0; j < a.extent(1); j++) a[i, j] = 0; } // zero out just the surface template void zero_surface(mdspan grid3d) { static_assert(grid3d.rank() == 3); zero_2d(submdspan(grid3d, 0, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, 0, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, 0)); zero_2d(submdspan(grid3d, grid3d.extent(0) - 1, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, grid3d.extent(1) - 1, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, grid3d.extent(2) - 1)); } \end{codeblock} \end{example}