{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# p21: Eigenvalues of Mathieu operator"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"%config InlineBackend.figure_format='svg'\n",
"from numpy import pi,arange,sin,cos,zeros,diag,sort,real\n",
"from scipy.linalg import toeplitz\n",
"from numpy.linalg import eig\n",
"from itertools import cycle\n",
"from matplotlib.pyplot import figure,plot,xlabel,ylabel"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"N = 42; h = 2.0*pi/N; x = h*arange(1,N+1)\n",
"col = zeros(N)\n",
"col[0] = -pi**2/(3.0*h**2) - 1.0/6.0\n",
"col[1:] = -0.5*(-1.0)**arange(1,N)/sin(0.5*h*arange(1,N))**2\n",
"D2 = toeplitz(col)\n",
"\n",
"ne = 11 # number of eigenvalues to plot\n",
"qq = arange(0.0, 15.0, 0.2)\n",
"data= zeros((len(qq),ne))\n",
"i = 0\n",
"for q in qq:\n",
" evals,evecs = eig(-D2 + 2.0*q*diag(cos(2.0*x)))\n",
" e = real(sort(evals))\n",
" data[i,:] = e[0:ne]\n",
" i = i + 1\n",
" \n",
"figure(figsize=(5,10))\n",
"lines=cycle([\"-\",\"--\"])\n",
"for i in range(ne):\n",
" plot(qq,data[:,i],next(lines))\n",
"xlabel(\"q\")\n",
"ylabel(\"$\\\\lambda$\");"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}