Expectations about stock returns

Johannes Wohlfart¹

¹University of Copenhagen, CEBI, and CESifo

17th March 2023

PhD Course on Subjective Beliefs, Attention and Economic Behavior

Subjective expectations about stock returns

- According to standard models in finance, the expected return on an asset is a key determinant of how much to invest in this asset.
- Households may not know the true expected return on an asset, so they have to rely on their **subjective beliefs**.
- This lecture: Focus on subjective expectations about stock returns and their role in households' decisions about how much to invest in stocks.
- Focus mostly on the aggregate stock market, but many of the themes coverde in this lecture extend to beliefs about the returns of individual stocks or of other assets.

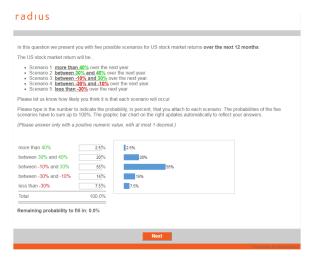
Goals of this lecture

- Get to know the measurement of households' stock return expectations as well as their properties and implications of these.
- Understand how beliefs could explain non-participation in the stock market.
- Understand the link between return expectations and the portfolio share invested in stocks.
- See how **economic theory** can help us interpret data.
- Get to know **recurring problems** in empirical work on subjective beliefs and ways to address them.

Outline of lecture

- 1 Measurement of stock return expectations
- Properties of households' stock return expectations
- 3 Stock return expectations and stock market participation
- 4 Stock return expectations and the risky portfolio share: Correlational evidence
- **5** Stock return expectations and investment behavior: Experimental evidence

Surveys


- To measure people's beliefs, we need to conduct surveys.
- Important considerations:
 - Is the wording understandable to laypeople?
 - Does the question capture the object of interest according to theoretical models?
 - Do we survey a **relevant sample** of respondents?
 - Can we link the survey data to administrative data on investment decisions?

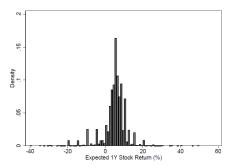
Eliciting stock return expectations: Point forecasts

Survey question on aggregate stock return expectations used in Giglio et al. (2021).

Eliciting stock return expectations: Subjective probability distributions

Survey question on aggregate stock return expectations used in Giglio et al. (2021).

Point forecasts vs subjective probability distributions


- Point forecasts require **less effort** from survey respondents and use up less survey time ...
- ... but it is unclear **which moment** of people's subjective distribution they capture (mean, median, mode, ...).
- Subjective probability distributions allow to construct measures
 of both the mean and the uncertainty around people's
 expectations.

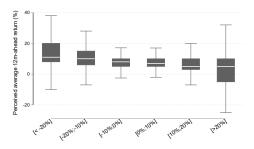
Outline of lecture

- Measurement of stock return expectations
- 2 Properties of households' stock return expectations
- 3 Stock return expectations and stock market participation
- 4 Stock return expectations and the risky portfolio share: Correlational evidence
- Stock return expectations and investment behavior: Experimental evidence

Property 1: Return expectations are heterogeneous

- Substantial disagreement in return expectations across households (Adam and Nagel, 2022; Malmendier and Nagel, 2011).
- About half of this disagreement reflects **persistent differences** across individuals (Giglio et al., 2021).

Aggregate stock return expectations among Vanguard clients (Giglio et al., 2021).


Property 1: Return expectations are heterogeneous

Implications:

- Disagreement could explain **heterogeneity in portfolio shares**.
- Disagreement about expected returns is potentially an important driver of trade in asset markets.
- Standard representative agent asset pricing models do not feature disagreement.
- **Heterogeneous agent models** featuring disagreement perform well in explaining stylized facts about asset prices (Barberis et al. (1998), Dumas et al. (2009), Banerjee and Kremer (2010), Barberis et al. (2015), . . .).
- Potential origins of disagreement: private information, public information + overconfidence, different forecasting rules (e.g., due to different subjective models), different experiences, . . .

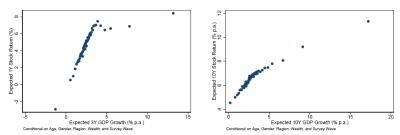
Property 2: Return expectations are influenced by recent return realizations

- Investors on average seem to extrapolate recent return realizations (Greenwood and Shleifer, 2014; Malmendier and Nagel, 2011; Vissing-Jorgensen, 2003).
- Recent evidence of pronounced heterogeneity in the perceived autocorrelation of returns (Laudenbach et al., 2022; Nagel and Xu, 2022).

Stock market return over previous 12m (bin)

Notes: Beliefs about the historical autocorrelation of returns among German retail investors (Laudenbach et al., 2022).

Property 2: Return expectations are influenced by recent return realizations


Implications:

- Empirically, autocorrelation of returns close to zero, at least for the aggregate stock market (Nagel and Xu, 2022).
- Extrapolation of returns can lead to investment mistakes and may have implications for equilibrium prices.
- Heterogeneity in perceived autocorrelation implies different forecasting rules, supporting models such as Barberis et al. (2015).
- See Barberis (2018) for a discussion of potential origins of extrapolation or beliefs in mean reversion: representativeness heuristic, law of small numbers, mis-specified mental models, memory and experiences, . . .

Property 3: Return expectations are pro-cyclical

- Return expectations tend to be highest during economic booms, contrary to theory and actual returns (Amromin and Sharpe, 2014).
- Return expectations are **positively correlated** with expected GDP growth, within and across individuals (Giglio et al., 2021).

Expectations about Stocks vs. GDP

Notes: Return and GDP growth expectations among Vanguard clients (Giglio et al., 2021).

Property 3: Return expectations are pro-cyclical

Implications:

- In finance language: expected return = discount rate; expected GDP growth ≈ expected cash flow growth / dividend growth.
- Campbell and Shiller (1988) decomposition:

$$pd_t \approx E_{i,t} \sum_{j=0}^{\infty} \rho^j \Delta d_{t+1+j} - E_{i,t} \sum_{j=0}^{\infty} \rho^j r_{t+1+j}$$
 (1)

- Time series: variation in expected future dividend growth can be offset by variation in discount rates.
- Calibrations matching only one side overstate the importance of beliefs.

Outline of lecture

- 1 Measurement of stock return expectations
- 2 Properties of households' stock return expectations
- 3 Stock return expectations and stock market participation
- 4 Stock return expectations and the risky portfolio share: Correlational evidence
- Stock return expectations and investment behavior: Experimental evidence

Limited stock market participation

- One important empirical finding in the household finance literature is wide-spread **non-participation** in the stock market (Haliassos and Bertaut, 1995).
- Participation rate lower than 50 percent in most countries (Gomes et al., 2021).
- Pessimistic beliefs about stock returns may explain why some households do not own stocks.

Pessimism in stock return expectations

 Dominitz and Manski (2007) find about two-thirds of respondents to the US Health and Retirement Survey reporting no more than a 50-50 chance of earning a positive nominal return holding stocks:

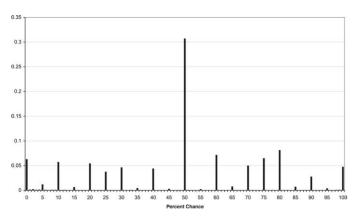


FIGURE 1. Percent chance of a positive nominal return, frequency distribution.

Can pessimistic beliefs explain non-participation?

• Several studies document that the likelihood of holding stocks increases in people's return expectations (Arrondel et al., 2022; Dominitz and Manski, 2007; Drerup et al., 2017).

TABLE 2. Probability of holding stocks or stock mutual funds conditional on percent chance of positive nominal return, gender, and marital status.

	Married or living with a partner				NOT married or living with a partner			
Percent chance of positive nominal return	Male		Female		Male		Female	
	Point estimate	Standard error	Point estimate	Standard error	Point estimate	Standard error	Point estimate	Standard error
0	0.16	(0.02)	0.25	(0.03)	0.08	(0.03)	0.08	(0.02)
1-10	0.27	(0.03)	0.31	(0.02)	0.16	(0.04)	0.20	(0.02)
11-20	0.30	(0.03)	0.34	(0.03)	0.16	(0.05)	0.14	(0.03)
21-30	0.29	(0.03)	0.35	(0.02)	0.19	(0.05)	0.23	(0.03)
31-40	0.33	(0.04)	0.37	(0.03)	0.16	(0.05)	0.18	(0.03)
41-49	0.22	(0.14)	0.18	(0.12)	0.50	(0.25)	0.33	(0.14)
50	0.37	(0.01)	0.40	(0.01)	0.25	(0.02)	0.25	(0.02)
51-59	0.50	(0.14)	0.63	(0.17)	0.20	(0.18)	0.20	(0.18)
60-69	0.48	(0.03)	0.50	(0.03)	0.30	(0.06)	0.31	(0.03)
70-79	0.48	(0.02)	0.50	(0.02)	0.38	(0.04)	0.41	(0.03)
80-89	0.52	(0.02)	0.52	(0.03)	0.42	(0.05)	0.30	(0.04)
90-99	0.48	(0.03)	0.49	(0.05)	0.24	(0.07)	0.43	(0.07)
100	0.43	(0.03)	0.45	(0.04)	0.25	(0.05)	0.23	(0.04)
All	0.40	(0.01)	0.40	(0.01)	0.25	(0.01)	0.24	(0.01)

Correlation between perceived chance of positive return and participation in Dominitz and Manski (2007).

Outline of lecture

- Measurement of stock return expectations
- Properties of households' stock return expectations
- 3 Stock return expectations and stock market participation
- 4 Stock return expectations and the risky portfolio share: Correlational evidence
- **5** Stock return expectations and investment behavior: Experimental evidence

Extensive vs intensive margin of stock investment

- We have seen that beliefs might matter for the decision of whether to participate in the stock market (the extensive margin).
- But how do beliefs affect the decision of how much to invest in stocks among people who already participate (the intensive margin)?
- The next few slides follow closely Giglio et al. (2021).

A simple model of portfolio choice

- Merton (1969) studies an investor with power utility allocating an investment between a risk-free and a risky asset.
- Optimal equity share given by:

Equity share_{i,t} =
$$\frac{1}{\gamma_i} \frac{\mathbb{E}_i[R_t] - R_t^f}{\text{var}_i[R_t]}$$

where

- γ_i is investor i's coefficient of relative risk aversion.
- $\mathbb{E}_i[R_t]$ is investor i's subjective return expectations.
- $\operatorname{var}_{i}[R_{t}]$ is investor i's perceived riskiness of stocks.
- R_t^f is the rate of return on the risk-free asset.

Predicted elasticity of the equity share to beliefs I

- Imagine we have a **cross-sectional dataset** of portfolios and subjective beliefs.
- Imagine we run a regression of the following type:

Equity share_{*i,t*} =
$$\beta_0 + \beta_1 \mathbb{E}_i[R_t] + \beta_2 \mathbf{X}_{i,t} + \varepsilon_{i,t}$$

• What coefficient estimate β_1 should we expect to see according the Merton (1969) model?

Predicted elasticity of the equity share to beliefs II

•
$$\beta_1 = \frac{1}{\gamma_i \operatorname{var}_i[R_t]}$$

- Assumptions:
 - Common perceived riskiness of stocks corresponding to a standard deviation of returns of 20 pp per year (in line with historical standard deviation).
 - Common coefficient of relative risk aversion ranging between 3 and 10 (in line with experimental literature).
- β_1 should range **between 2.5 and 8.3**.

Estimates from Giglio et al. (2021)

- Giglio, Maggiori, Stroebel and Utkus (2021) match survey responses of wealthy Vanguard clients with administrative data on their retirement accounts.
- They regress the equity share in an investor's portfolio on his/her subjective return expectations.
- They obtain estimates of β around 0.7, substantially **below** the model predictions (2.5 to 8.3).
- Similar results obtained in other studies (Ameriks et al., 2020; Amromin and Sharpe, 2014; Kézdi and Willis, 2011; Vissing-Jorgensen, 2003).

Explanation I: The data are wrong!

- Why are portfolios so insensitive to beliefs?
- One explanation is **measurement error in subjective beliefs**.
- May bias coefficient estimates towards zero (attenuation bias).
- Giglio et al. (2021) address this using ORIV methods (Gillen et al., 2019):
 - Idea: Instrument one noisy measure with another noisy measure.
 - This fully accounts for measurement error if errors in the two variables are uncorrelated.
 - Here: point forecast and mean of subjective probability distribution as measures of subjective return expectation.
- Estimate of β_1 increases to **about 1.2**, but still far **below the theory predictions**.

Explanation II: The theory is wrong!

- The Merton (1969) model makes a range of **simplifying assumptions**:
 - No capital gains taxes.
 - Full **attention** to portfolios.
 - Immediate adjustments of portfolios to changes in beliefs.
 - Full **confidence** in beliefs.
- Giglio et al. (2021) repeat their estimations on a sample of "idealized" investors that face tax exemptions, that are attentive to their portfolio and that are confident in their beliefs.
- They find an elasticity of portfolios to beliefs of around $\beta_1 = 3.6$ in this sample, within the range of theory predictions.

Taking stock

- Portfolio choices are less sensitive to return expectations than predicted by theory.
- This partially reflects **measurement error** in subjective beliefs.
- But mostly this seems to be due to **frictions** such as inattention or lack of confidence.

Outline of lecture

- 1 Measurement of stock return expectations
- 2 Properties of households' stock return expectations
- 3 Stock return expectations and stock market participation
- 4 Stock return expectations and the risky portfolio share: Correlational evidence
- **5** Stock return expectations and investment behavior: Experimental evidence

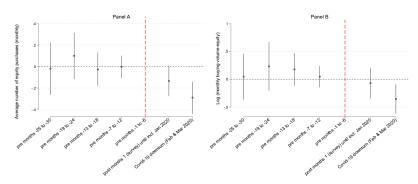
Potential issues with correlational evidence

- Omitted variables:
 - General optimism or pessimism.
 - Cognitive abilities.
 - Familiarity with the stock market.
 - ...
- Reverse causality:
 - If I hold more stocks, I may want to believe in a high expected return.
- We can overcome these problems by conducting **experiments** that generate **exogenous variation** in stock return expectations, e.g., through randomized provision of information.

Causal evidence from information provision experiments I

- Beutel and Weber (2022):
 - **General population** surveys in Germany.
 - Provide respondents randomly with different pieces of information (earnings forecasts, recent returns, ...) shifting their return expectations.
 - Changes in return expectations cause changes in hypothetical investment decisions of a similar magnitude as in Giglio et al. (2021).

Causal evidence from information provision experiments II


- Laudenbach, Weber, Weber and Wohlfart (2022):
 - Surveys of German **retail investors** at an online bank.
 - Measure beliefs about the autocorrelation of annual returns, documenting beliefs in mean reversion before the intervention.
 - Inform random half of respondents of the close-to-zero historical autocorrelation.
 - Examine trading responses measured in merged administrative account data from the bank.

Laudenbach et al. (2022): Treatment effects on perceived autocorrelation

	buy	ense to after return	Positive return more likely after high return		
	(1)	(2)	(3)	(4)	
Treatment	-0.054 (0.044)		-0.147***		
$\begin{array}{l} \text{Treatment} \times \\ \text{Extrapolator (diff.} \geq 4) \text{ (a)} \end{array}$	(0.044)	0.021 (0.114)	(0.045)	-0.375*** (0.115)	
$\begin{array}{l} \text{Treatment} \times \\ \text{Neutral (-4} \leq \text{diff.} < 4) \end{array}$		0.075 (0.080)		-0.084 (0.081)	
$\begin{array}{l} \text{Treatment} \times \\ \text{Mean-reverter (diff.} < \text{-4) (b)} \end{array}$		-0.155*** (0.060)		-0.114* (0.062)	
Extrapolator (diff. \geq 4)	-0.018 (0.071)	0.008 (0.098)	0.143** (0.072)	0.288*** (0.102)	
Mean-reverter (diff. < -4)	0.046 (0.051)	0.160** (0.070)	-0.127** (0.053)	-0.113 (0.072)	
p-value (a=b)		0.174		0.047	
Observations R-squared	1,961 0.08	1,961 0.08	1,961 0.04	1,961 0.04	

Notes: All outcome measures are z-scored using the mean and the standard deviation in the sample. Robust standard errors are in parentheses. * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Laudenbach et al. (2022): Treatment effects on trading adjustments to Covid-19 crash

Notes: This figure displays treatment effects on different measures of the buying behavior of respondents believing in mean reversion before the intervention. The period spanning the 6 months preceding the survey is omitted. All specifications control for month-year as well as individual fixed effects, non-interacted dummies for event periods, and lagged log financial wealth held at the broker. 95-% confidence bands are obtained using standard errors that are two-way clustered by investor and trading-month.

Recap and important take-aways

- Households' stock return expectations are ...
 - ...heterogeneous.
 - ...dependent on recent realized returns.
 - ...pro-cyclical.
- Pessimistic return expectations offer an explanation for non-participation of large parts of the population.
- The empirical elasticity of portfolio shares to return expectations is smaller than predicted by benchmark models.
 - Likely due to frictions such as inattention or lack of confidence.
- Experimental evidence points to a causal role of beliefs in shaping investment decisions.

- **Adam, Klaus and Stefan Nagel**, "Expectations Data in Asset Pricing," *Handbook of Economic Expectations*, 2022.
- Ameriks, John, Gábor Kézdi, Minjoon Lee, and Matthew D Shapiro, "Heterogeneity in Expectations, Risk Tolerance, and Household Stock Shares: The Attenuation Puzzle," *Journal of Business & Economic Statistics*, 2020, 38 (3), 633–646.
- **Amromin, Gene and Steven A Sharpe**, "From the Horse's Mouth: Economic Conditions and Investor Expectations of Risk and Return," *Management Science*, 2014, 60 (4), 845–866.
- Arrondel, Luc, Hector Calvo-Pardo, Chryssi Giannitsarou, Michael Haliassos et al., "Informative Social Interactions," *Journal of Economic Behavior and Organization*, 2022.
- **Banerjee, Snehal and Ilan Kremer**, "Disagreement and Learning: Dynamic Patterns of Trade," *Journal of Finance*, 2010, 65 (4), 1269–1302.
- **Barberis, Nicholas,** "Psychology-based models of asset prices and trading volume," in "Handbook of behavioral economics: applications and foundations 1," Vol. 1, Elsevier, 2018, pp. 79–175.
- _ , Andrei Shleifer, and Robert Vishny, "A model of investor sentiment," *Journal of financial economics*, 1998, 49 (3), 307–343.

- _ , Robin Greenwood, Lawrence Jin, and Andrei Shleifer, "X-CAPM: An Extrapolative Capital Asset Pricing Model," *Journal of Financial Economics*, 2015, 115 (1), 1–24.
- **Beutel, Johannes and Michael Weber**, "Beliefs and Portfolios: Causal Evidence," *Chicago Booth Research Paper*, 2022, (22-08).
- Campbell, John Y and Robert J Shiller, "Stock prices, earnings, and expected dividends," the Journal of Finance, 1988, 43 (3), 661–676.
- **Dominitz, Jeff and Charles F Manski**, "Expected Equity Returns and Portfolio Choice: Evidence from the Health and Retirement Study," *Journal of the European Economic Association*, 2007, 5 (2-3), 369–379.
- **Drerup, Tilman, Benjamin Enke, and Hans-Martin Von Gaudecker**, "The Precision of Subjective Data and the Explanatory Power of Economic Models," *Journal of Econometrics*, 2017, 200 (2), 378–389.
- Dumas, Bernard, Alexander Kurshev, and Raman Uppal, "Equilibrium Portfolio Strategies in the Presence of Sentiment Risk and Excess Volatility," *Journal of Finance*, 2009, 64 (2), 579–629.
- Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, "Five Facts about Beliefs and Portfolios," *American Economic Review*, 2021, 111 (5), 1481–1522.
- **Gillen, Ben, Erik Snowberg, and Leeat Yariv**, "Experimenting with Measurement Error: Techniques with Applications to the Caltech Cohort Study," *Journal of Political Economy*, 2019, 127 (4), 1826–1863.

- Gomes, Francisco, Michael Haliassos, and Tarun Ramadorai, "Household Finance," *Journal of Economic Literature*, 2021, 59 (3), 919–1000.
- **Greenwood, Robin and Andrei Shleifer**, "Expectations of Returns and Expected Returns," *The Review of Financial Studies*, 2014, 27 (3), 714–746.
- **Haliassos, Michael and Carol C Bertaut**, "Why Do so Few Hold Stocks?," *The Economic Journal*, 1995, 105 (432), 1110–1129.
- **Kézdi, Gábor and Robert J Willis,** "Household Stock Market Beliefs and Learning," *Working Paper*, 2011.
- Laudenbach, Christine, Annika Weber, Ruediger Weber, and Johannes Wohlfart, "Beliefs about the Stock Market and Investment Choices: Evidence from a Field Experiment," *Available at SSRN*, 2022.
- Malmendier, Ulrike and Stefan Nagel, "Depression Babies: Do Macroeconomic Experiences Affect Risk-taking?," *The Quarterly Journal of Economics*, 2011, 126 (1), 373–416.
- Merton, Robert C, "Lifetime Portfolio Selection under Uncertainty: The Continuous-time Case," *The Review of Economics and Statistics*, 1969, pp. 247–257.

- **Nagel, Stefan and Zhengyang Xu**, "Dynamics of subjective risk premia," *Working paper*, 2022.
- **Vissing-Jorgensen, Annette**, "Perspectives on Behavioral Finance: Does "Irrationality" Disappear with Wealth? Evidence from Expectations and Actions," *NBER Macroeconomics Annual*, 2003, 18, 139–194.