
Reproducible research
workflows for psychologists

Git & RStudio

Johannes Breuer & Frederik Aust

KU Leuven, 27.-28.04.2022

Interacting with Git
There are various tools that we can use for interacting
with Git . Besides command line interfaces (CLI), such as
git bash for Windows or the Terminal on MacOS, there
also are Graphical User Interfaces (GUI), such as GitHub
Desktop or GitKraken (for an overview of Git clients
with a GUI, see https://git-scm.com/downloads/guis).

https://gitforwindows.org/
https://desktop.github.com/
https://www.gitkraken.com/
https://git-scm.com/downloads/guis

A note on tool stacks
While we introduce you to di�erent tools for
reproducible research in this workshop and it is always
possible to "mix and match", it is usually advisable to try
to minimize the number of di�erent tools in your
work�ow.

VC in your favorite IDE
Lucky for us, the most popular Integrated Development
Interfaces (IDE) for R , RStudio, also o�ers functionalities

for using Git .1

[1] Another popular IDE that works nicely with R and Git is Visual Studio Code -

or VSCode for short - by Microsoft.

https://code.visualstudio.com/

All set?
If you have correctly set up Git , RStudio should be able
to detect it. The easiest way to check this is via the
RStudio options: Tools -> Global Options -> Git/SVN

Finding Git
If you have properly installed Git and RStudio cannot
detect your local Git executable, you need to tell it
where to �nd it via the Browse button in the menu
shown on the previous slide.

On macOS and Linux, a common path for the Git
installation is (something like) /usr/bin/git , while on
Windows it is (something like) C:/Program
Files/Git/bin/git.exe .

Note: You should restart RStudio after making changes
in this menu.

How to use Git in RStudio
There are essentially two options for using Git via
RStudio

1. Through the GUI

2. Via the Terminal

Other options for using Git with
R

While we won't cover those in any detail in this session, there are also R
packages for Git operations:

usethis can, e.g., be used to initialize a Git repository or for
managing credentials

·
gert is a simple Git client for R that can be used to perform
basic Git commands, such as staging, adding, and committing
�les, or creating, merging, and deleting branches

·

ghstudio is a novel in-development package that provides
"experimental tools to use git/github with RStudio, e.g see issues
and di�s in the viewer"

·

https://usethis.r-lib.org/
https://docs.ropensci.org/gert/
https://github.com/moodymudskipper/ghstudio

Are you legit to Git?
As a reminder, there are two protocols for securely
communicating with remote Git servers, such as
GitHub: HTTPS and SSH .

For our GitHub examples, we will use HTTPS with a
Personal Access Token (PAT). For the KU Leuven GitLab,
we will use SSH .

Creating a PAT
You should have created a PAT in preparation for this
course (via the GitHub web interface. If you have not yet
done so, you can also use a function from the usethis
package.

NB: Do not close the browser window/tab with the PAT
until you have stored it somewhere. You should treat the
PAT like a password.

Storing a PAT
Once you have created a PAT, the simplest way to store
it for use with R and RStudio is the gitcreds_set()
function from the gitcreds package.

Note: Of course, you can also (or additionally) store your
PAT in another (safe) place, such as your password
manager.

https://gitcreds.r-lib.org/

SSH
SSH stands for Secure Shell and is another option for
secure interaction with remote Git servers, such as
GitHub or GitLab instances. As for the PAT, you should
have set up SSH in preparation for the workshop. If you
have done so, the location of your RSA key should be
displayed in the RStudio Git menu (Tools -> Global
Options -> Git/SVN).

SSH

SSH
If you have not done so before, you �rst need to create
an RSA key via the Git menu in RStudio. After that, you
have to need to copy the public key into the key �eld in
the SSH Keys page on GitLab.

Git + RStudio = ❤

Now you should hopefully be all set to use Git as well
GitHub and GitLab via RStudio.

In order to get the best out of the combination of R , R
Markdown , RStudio, and Git , it is recommendable to
adopt a "project-oriented work�ow".

https://rstats.wtf/project-oriented-workflow.html

Excursus: RStudio projects
RStudio projects are associated with .Rproj �les that
contain some speci�c settings for the project. If you
double-click on a .Rproj �le, this opens a new instance
of RStudio with the working directory and �le browser
set to the location of that �le.

Note: The repository/folder for this workshop contains
an .Rproj �le, if you want to try this out.

Excursus: RStudio projects
Using RStudio projects can facilitate several things: the
organization of �les, the use of (relative) �le paths, but
also the integration of R and R Markdown with Git .

Explaining RStudio projects in detail would be too much
of a detour at this point, but if your interested in that,
you can check out the RStudio support site or the
respective chapter in What They Forgot to Teach You
About R.

https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://rstats.wtf/project-oriented-workflow.html#rstudio-projectsl

What comes first? 🐔 🥚
In your everyday work, you quite likely need di�erent
work�ows depending on the temporal order in which
things are created or set up: your local project/�les,
version control with Git , and the remote GitHub
repository.

In this session, we will focus on the New project, GitHub
�rst approach (which works the same for GitLab).

New project, GitHub �rst·
Existing project, GitHub �rst·
Existing project, GitHub last·

https://happygitwithr.com/new-github-first.html
https://happygitwithr.com/existing-github-first.html
https://happygitwithr.com/existing-github-last.html

Git through the GUI
You can perform quite a few Git operations via the
RStudio GUI: You can, e.g., create a new Git repository,
clone an existing repository, stage and commit changes
and push them to a remote repository, or pull changes
from there, and merge those with your local changes.

We'll go through a few of these common steps in the
following.

New Git project connected to
existing remote repo
You can create a new version-controlled project that is
connected to a remote repository that already exists on
GitHub or GitLab via File -> New Project -> Version
Control in the RStudio menu.

New Git project connected to
existing remote repo
Next, choose Git ...

Associate remote repo: HTTPS
In the menu that opens after that, enter the URL of the
remote repository, give the local repository a name, and
tell RStudio where it should be stored. It usually makes
sense to check "Open in new session".

NB: Which URL you should enter depends on the
authentication method you use. If you use HTTPS , you
can simply copy the URL from the address bar of your
browser.

Associate remote repo: HTTPS

URL for SSH
In case you use SSH , you can get the right URL from
GitLab via the blue Clone button on the website of the
repository.

Associate remote repo: SSH

Modifying & creating files within
the project
Once you have successfully created the project, you can
start editing �les or creating new ones. When you have
modi�ed existing �les and/or created new ones and
saved the changes, these will be displayed in the Git
tab in RStudio and their status will be indicated as
modi�ed or untracked.

Note: The Git tab also displays in which branch you are
currently working.

Modifying & creating files within
the project

Staging changes
Once you have reached a point at which you want to
commit (and possibly also push) your changes, you can
stage them by checking the boxes in the Staged column
in the Git tab. This the RStudio GUI equivalent of git
add . The status of previously untracked �les will then
change to added.

Committing & pushing changes
After staging your changes you can commit them via the
Commit button in the Git tab. In the commit menu that
opens you should enter a meaningful commit message.
Once that is done you can click the Commit button. If
you want to, you can also directly push your changes to
the remote repository on GitHub via the Push button.
You can, of course, also do this at a later point (directly
via the Git tab).

Committing & pushing changes

Pulling changes from the
remote repository
You can also pull changes from the remote repository via
the Pull button in the Git tab.

As a general work�ow recommendation (especially if
you're just getting started with Git and GitHub/GitLab)
it is usually advisable to �rst pull from the remote
repository before making (and then staging, committing,
and pushing) any local changes. This is even more
relevant when you collaborate with others on the same
repository (more on that later).

Pulling changes from the
remote repository
Important technical note: If you click the Pull button in
RStudio this will perform a pull with rebase. Put brie�y,
pulling with rebase means that local changes are
reapplied on top of remote changes. This is di�erent
from pull with merge. In many scenarios, this is generally
the preferable method and nothing you need to worry
about. However, in some cases, this can cause issues,
and it is good to be aware of this.

http://gitready.com/advanced/2009/02/11/pull-with-rebase.html
https://sdqweb.ipd.kit.edu/wiki/Git_pull_--rebase_vs._--merge

Limitations of the GUI
While the RStudio GUI can be used for quite a few basic
Git operations, it has a set of limitations. The �rst one is
the use of speci�c defaults as is the case with pulling
(with rebase). Another one is that it can become quite
tedious to stage a large number of �les through the GUI.

Limitations of the GUI
Another downside of interacting with Git through the
RStudio GUI is that there is a risk of RStudio becoming
really slow or even crashing if you add/commit a lot of
�les at the same time and/or very large �les. If the
overall size of added or altered �les is large, the Commit
menu in RStudio usually also gives a warning about this.

The RStudio GUI is also not the best tool for handling
merge con�icts (we will discuss those in more detail
when we talk about Git & collaboration).

https://happygitwithr.com/git-branches.html?q=merge%20conflict#dealing-with-conflicts

Destination Terminal
If you want to add/commit a lot of �les or large �les,
want more control over the Git commands, or need to
use more advanced Git operations, the RStudio GUI is
not the right choice. Instead, you should use a command
line interface (CLI).

Destination Terminal
Lucky for us, if you need a CLI for using Git , you don't
need to leave RStudio. As of version 1.3.1056-1, RStudio
provides a Terminal tab in the console pane. Through
this, RStudio provides access to the system shell. If you
have properly installed Git you can use this to execute
the full range of Git commands.

https://happygitwithr.com/shell.html

Picking shells 🐚
Depending on your OS as well as your installation of
Git , you can pick di�erent shells to be run in the
RStudio Terminal tab. You can choose those via the the
Terminal menu in the RStudio Global Options.

Picking shells 🐚
If you use Windows and have installed Git for Windows,
you should use Git Bash as the shell that is run in the
RStudio terminal (shown in the picture below). On
MacOS, you should be able to simply use its own
Terminal in RStudio.

Terminal and Shell in RStudio
For some more information on choosing and using the
shell in RStudio, you can check out the chapter on this in
Happy Git and GitHub for the useR or the RStudio How
To Article on Using the RStudio Terminal in the RStudio
IDE.

https://happygitwithr.com/shell.html
https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal-in-the-RStudio-IDE

Using the Terminal in RStudio
You can use the Terminal in RStudio to run all available
Git commands, such as git status .

Using the Terminal in RStudio
You can also use the full range of arguments to
customize your Git commands. For example, to stage
and commit all changes, you could run the following
command in the Terminal : git add -A && git commit
-m "Your Message"

Exercise time �💪🏃🚴

Solutions

https://crsh.github.io/reproducible-research-practices-workshop/exercises/5_git-rstudio_question.html
https://crsh.github.io/reproducible-research-practices-workshop/exercises/5_git-rstudio_solution.html

Resources
A really great resource on using Git (and GitHub) in
combination with R and RStudio is the website Happy
Git and GitHub for the useR by Jennifer Bryan. Much of
the content in this session is based on this resource and
it o�ers a lot of additional helpful information and advice
(including some help with troubleshooting commonly
encountered issues).

Another good introductory resource is the RStudio How-
To Article on Version Control with Git and SVN.

https://happygitwithr.com/
https://jennybryan.org/
https://support.rstudio.com/hc/en-us/articles/200532077?version=2021.09.0%2B351&mode=desktop

