
Reproducible research
workflows for psychologists

Other topics in reproducible research

Johannes Breuer & Frederik Aust

KU Leuven, 27.-28.04.2022

Other topics in reproducible
research
As we said in the introduction, we cannot cover all tools and topics
related to reproducible research in this workshop. However, we want
to use this session to cover some additional tools as well as other
topics in reproducible research:

Collaborating with others who do not use R Markdown and/or
Git

·
R package dependency management·
Preventing code rot·
Publishing reproducible research environments and "one-click
reproducibility"

·

Other approaches to
collaboration
There also are R packages that you can use for
collaborating on R Markdown documents with people
who do not (want to) use R Markdown (and Git):

trackdown uses Google Drive for this·
redoc "is a package to enable a two-way R
Markdown-Microsoft Word workflow" (note:
development currently suspended)

·

https://claudiozandonella.github.io/trackdown/
https://noamross.github.io/redoc/

trackdown

The basic workflow for trackdown is that you upload the
content of an .Rmd file to Google Drive where you can
collaboratively edit the text parts. You can then
download the document again (e.g., to edit the code in
the R Markdown document in RStudio), and also update
the file on Google Drive after changing the .Rmd locally.
The trackdown documentation provides further details.

https://claudiozandonella.github.io/trackdown/

Advanced use of trackdown with
Git

To combine R Markdown with collaborative text editing
via trackdown and version control (and to avoid
potential issues caused by - possibly unintended -
changes to the code parts on Google Drive), the author
of the trackdown package, Claudio Zandonella
Callegher, proposes a solution in an issue in the GitHub
repository for the package.

Essentially, the idea here is to create a trackdown
branch in the Git repository and merge it with the main
branch which is (mainly) used to edit the code.

https://github.com/ClaudioZandonella
https://github.com/ClaudioZandonella/trackdown/issues/31

Dependency management

Dependency management
Our projects may use/require different package
versions

·
Manually managing dependencies is a nightmare·

Keeping track of the dependencies and their
changes

·
Restore the R environment·

Dependency management
1. checkpoint by Microsoft

Requires a project-based workflow·
Package database will gradually grow·

2. groundhog

Package database will gradually grow·
3. renv by RStudio

Most flexible and powerful·
Least straight forward to use·
No "forensic" applications·

https://github.com/RevolutionAnalytics/checkpoint/
https://groundhogr.com/
https://rstudio.github.io/renv/articles/renv.html

Dependency management

Dependency management
Dependencies are detected automatically

Uses a date-specific directory outside of usual library

library("checkpoint")
checkpoint("2022-04-27")

library("ggplot2")

~/.checkpoint/...

Code rot

✅

Code rot

Code rot
We need to archive the computing environment·
But how?·

Lock away computer used to run the analysis?·
Trade-off between robustness and feasibility·

checkpoint("2020-01-01", r_version = "3.6.2")

✅

(✅)

Code rot

Code rot

Virtual machines

Code rot

Containers

(Piccolo & Frampton, 2016)

✅

✅

✅

Code rot

Docker

Docker: Kind of like Hermann
Herman cake (often called Herman) is a 'friendship cake'.

[...] the starter is passed from person to person (like a

chain letter) and continues to grow as it contains yeast

and lactic acid bacteria. One starter can, in theory, last

indefinitely. (Wikipedia)

https://en.wikipedia.org/wiki/Herman_cake

Docker: Kind of like Hermann
Herman cake (often called Herman) is a 'friendship cake'.

[...] the starter is passed from person to person (like a

chain letter) and continues to grow as it contains yeast

and lactic acid bacteria. One starter can, in theory, last

indefinitely. (Wikipedia)

https://en.wikipedia.org/wiki/Herman_cake

Docker
Built on a prepackaged base images from DockerHub
("rocker")

https://github.com/rocker-org/rocker#versioned-stack-builds-on-r-ver

Docker
Simplified Docker example

Select base image
FROM rocker/rstudio:4.1.2

Latest Debian version·
R 4.1.2·
Latest RStudio version·

Pandoc·
Git·

Docker
Add system-level requirements

System libraries
RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 libgsl0-dev \
 libnlopt-dev \
 libxt6 \
 ssh

Docker
Install TeX Live 2021 and required LaTeX packages

TeX Live
ENV CTAN_REPO=http://mirror.ctan.org/systems/texlive/tlnet
RUN /rocker_scripts/install_texlive.sh
ENV PATH=$PATH:/usr/local/texlive/bin/x86_64-linux

RUN tlmgr install \
 apa6 apa7 booktabs caption csquotes \
 ...

Docker
Install papaja and required R packages

Setup R packages for papaja
RUN install2.r --error \
--skipinstalled \
 tinytex \
 remotes \
 markdown \
 mime

Latest papaja development version
RUN Rscript -e "remotes::install_github('crsh/papaja')"

Docker
Our image bundles (among other things)

Latest Debian version·
R 4.1.2·
Latest RStudio version·

Pandoc·
Git·
TeX Live 2021·
Latest papaja version·

Docker
A minimally obtrusive Docker workflow to work
reproducibly with papaja

https://github.com/crsh/papaja_docker

A quick demonstration!

Publishing reproducible
research environments
If you want to publicly share your fully reproducible
research environment and allow others to interact with it
without having to install any software on their own
machines, you can use services like Code Ocean or
RStudio Cloud. A good free and open source alternative
is BinderHub.

https://codeocean.com/
https://rstudio.cloud/
https://binderhub.readthedocs.io/en/latest/

What is BinderHub?
From the BinderHub GitHub repository:

BinderHub allows you to BUILD and REGISTER a Docker
image from a Git repository, then CONNECT with
JupyterHub, allowing you to create a public IP address
that allows users to interact with the code and
environment within a live JupyterHub instance. You can
select a specific branch name, commit, or tag to serve.

https://github.com/jupyterhub/binderhub

What is BinderHub?
From the BinderHub GitHub repository:

BinderHub ties together:

JupyterHub to provide a scalable system for
authenticating users and spawning single user
Jupyter Notebook servers, and

·

Repo2Docker which generates a Docker image
using a Git repository hosted online.

·

https://github.com/jupyterhub/binderhub
https://github.com/jupyterhub/jupyterhub
https://jupyter.org/
https://github.com/jupyter/repo2docker

What is BinderHub?

How to use BinderHub
Using a BinderHub deployment like mybinder.org or
GESIS Notebooks you can turn an existing public Git
repository into a publicly accessible executable
environment.

In order for this to work, you just need to add a few
Binder-specific files to your repo (i.e., "Binderize" it).

A platform that works in similar ways is PsychNotebook
by the Leibniz
Institute for Psychology (ZPID).

https://mybinder.org/
https://notebooks.gesis.org/binder/
https://www.psychnotebook.org/
https://leibniz-psychology.org/en/

Binderizing your Git repository
The minimum requirements are the following:

Note: It would also be ok to add those files to the root folder of your
project.

1. Add a binder folder to your repo

2. In that folder, create two files: runtime.txt &
install.R

Binderizing your Git repository
In the runtime.txt file, you need to specify a version
number and date, indicating which snapshot to use from
the R Studio Package Manager. Example: r-4.1-2022-
04-22).

https://packagemanager.rstudio.com/client/#/repos/1/overview
https://packagemanager.rstudio.com/client/#/

Binderizing your Git repository
In the install.R file, you need to specify which R
packages to install as you normally would in an .R file
(e.g., install.packages(c("gapminder",
"tinytex"))). CRAN packages are installed through the
R Studio Package Manager.

https://packagemanager.rstudio.com/client/#/

Binderizing your Git repository
There are many more options for changing or extending
the executable environment. Two good resources to
learn more are the Turing Way guide Zero-to-Binder or
the Binder example for R .

https://the-turing-way.netlify.app/communication/binder/zero-to-binder.html
https://github.com/binder-examples/r

Deploying your executable
environment
Once you have "Binderized" your repository, you can use
mybinder.org to create the executable environment. You
can set a few additional parameters in the process (such
as the branch). NB: Creating the executable environment
can take some time (esp. if you install many and/or large
R packages).

Note: You can also use the holepunch package to Binderize your R
project hosted on GitHub.

https://mybinder.org/
https://karthik.github.io/holepunch/

Deploying your executable
environment
Once the executable environment has been created,
anyone who has the link to it can use it. The easiest way
to share it and enable "1-click reproducibility" for others
is by adding a Launch Binder button to the README for
your associated GitHub (or GitLab) repository. The
Markdown code for this will be displayed on the
mybinder site.

Things to note when using
Binder

1. The BinderHub deployments are hosted on free-to-use servers (sometimes
by academic institutions), so you might experience some "hiccups" in
deploying and using the executable environments (e.g., if the service is
heavily used at the time).

2. Related to that, the amount of RAM is limited for the executable
environment.

3. One thing you need to consider is how to share your data when using
Binder. The Turing Way guide Zero-to-Binder has some suggestions for
that.

4. By default, the link to the executable environment will open an instance of
Jupyter Notebook, but it is also possible to run Jupyter Lab, or RStudio (this
can be done by adding parameters at the end of the URL, such as
$urlpath=rstudio).

https://the-turing-way.netlify.app/communication/binder/zero-to-binder.html
https://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/#

Test drive 🏎
We have prepared a Binderized repo for you that you
can test, clone, fork or whatever else you would like to
to: https://github.com/jobreu/binder-r-demo

https://github.com/jobreu/binder-r-demo

Exercise
Try out and explore one or more of the tools we have
just presented:

trackdown·
one of the R packages for dependency
management (such as renv , checkpoint , or
groundhog)

·

Docker·
Binder·

Exercise
What did you do?

What were your experiences?

Do you think you are going to use the tool(s)? Why/why
not? If yes, for what purposes?

Project setup and templates
In this workshop, we have shown you how to manually
set up a reproducible research workflows. However,
there are some tools that you can use to automate parts
of this process. These can range from very simple to very
elaborate solutions. We will show you two examples in
the following.

Project setup and templates
create-project.sh : small shell script for initializing a
basic project folder structure (which can be easily
adapted and extended using any text editor)

To run the file, open a shell/command line interface (and
navigate to) where the create-project.sh file is
located. To execute it, you need to provide a valid path
for the new project folder that should be created as an
argument.

Project setup and templates

sh create-project.sh "./my-project"

Project setup and templates
Frederik's R package for initializing new projects:
https://github.com/crsh/template

https://github.com/crsh/template

Workflow tools
There also several R other packages for facilitating the
creation and maintenance of reproducible research
workflows, such as...

start your lab also provides an R Project Template.

WORCS - Workflow for Open Reproducible Code in
Science

·
workflowr·
starter·
rrtools - Tools for Writing Reproducible Research
in R

·

https://www.startyourlab.com/
https://github.com/startyourlab/r-project-template
https://cjvanlissa.github.io/worcs/index.html
https://workflowr.github.io/workflowr/
https://www.danieldsjoberg.com/starter/
https://github.com/benmarwick/rrtools

Choosing the right tools 🔨🔧

There are a few things to consider for choosing the right
tools:

Your habits, knowledge, and preferences (as well as
those of your collaborators)

·
Your goals and their relative importance: E.g.,
computational reproducibility, reusability,
replicability

·

Your audience: Future you, collaborators, the
academic community, the general public

·

Shoulders of giants... but
sometimes also clay feet
As you may have already experienced, not all tools always play
together nicely. Keep in mind, that most tools that we have covered in
this workshop are free and open source software (FOSS). Also, tool
stacks can have break points and many tools themselves depend on
other tools/tool stacks. Hence, things may not always work perfectly.

But don't despair! There usually are solutions (Stack Overflow and
issues in associated GitHub repositories are good places to find them)
and the advantage of FOSS is that there usually is an active
development community that you can also get involved in.

https://stackoverflow.com/

Showing appreciation 👏
The creation and maintenance of FOSS takes a lot of
time and this is rarely recognized as much as it should
be. One thing we can do to change this is to at least give
credit where credit is due and cite the tools and
resources that we use.

Showing appreciation 👏

citation("papaja")

Aust, F. & Barth, M. (2020). papaja: Prepare reproducible A
articles with R Markdown. R package version 0.1.0.9999. Ret
from https://github.com/crsh/papaja

Ein BibTeX-Eintrag für LaTeX-Benutzer ist

@Manual{,
title = {{papaja}: {Prepare} reproducible {APA} journal a
author = {Frederik Aust and Marius Barth},
year = {2020},
note = {R package version 0.1.0.9999},
url = {https://github.com/crsh/papaja},
}

Showing appreciation 👏
When working with R Markdown , you can create a
packages.bib file to cite the packages you have used,
either manually, using papaja::r_refs() , or the
grateful package.

https://pakillo.github.io/grateful/

Share the ❤️ for reproducible
research tools
In addition to properly citing the tools and resources you
use, you can make sure that they get the recognition
they deserve by talking about them (e.g., on social
media) and convincing your collaborators to use them as
well.

Looking back
You created a GitHub/GitLab repository containing
materials for a fully reproducible research pipeline! 🎉

If you created a public GitHub repository: Head over to
http://starlogs.net/ and paste the URL of the repository
to recap your heroic journey into the universe of
reproducible research! 🌌

http://starlogs.net/

Looking forward
We hope that we could get you started or help you with
with making your research (more) reproducible. Of
course, as always, there is much more to explore and
learn. The only way to really get familiar with the tools
and workflows is if you use them for your own research.

Keep calm and stay reproducible! 😊

Thank you very much for
participating in this workshop!

🙇

We hope that you learned something and also had some
fun (at least a little bit...)

