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Abstract

Advanced cryptographic protocols such as zero-knowledge proof, ho-
momorphic encryption, commitment schemes, blind signature, lattice based
cryptography, secure multi-party computation, oblivious transfer, etc are
beautiful but look like magic to general software engineers. They’re noto-
riously difficult to understand. Unfortunately, I dropped out of PhD pro-
gram before I could understand advanced math and formal cryptographic
proofs. Therefore, I had to find ways to work around this challenge. This
article shares with you my notes with the hope that you will have an
intuitive understanding of these fascinating cryptographic protocols. Fur-
thermore, as a security engineer, to bypass cryptographic proofs, I’ll use
attack oriented approach to analyze protocols.
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1 Introduction

To understand this article you must finish reading the following 4 books: [II,
2], [3], [4]. T'm just kidding, don’t run away :)

The previous paragraph is a joke but it has certain elements of truth. Ad-
vanced cryptographic protocols are built upon various advanced mathematical
concepts which I honestly don’t fully understand. To overcome this obstacle,
we need to find a simple interpretation and representation of mathematical con-
cepts. Our mathematical interpretation and representation may not be accu-
rate, but we’re fine with it as long as it helps us move forward in understanding
complicated cryptographic protocols. In the same spirit, we’ll sacrifice accu-
racy in describing cryptographic protocols, instead we’ll focus on their intuitive
understanding. Dear mathematicians and cryptographers, please forgive me
for misunderstanding and misrepresenting your true math and cryptographic
protocols :)

A final note before we move on to background section. Knowing math is
not enough to understand cryptography. In the end, cryptography is a part of
security, i.e., designing cryptographic protocols that work is just a start, we have
to make sure that they’re safe. We’re not going to dig into cryptographic proofs,
instead we’ll take attack oriented approach, i.e., we’ll look at cryptographic
protocols from attacker’s point of view.



2 Background

2.1 Group

A group (G, +) is a set of elements G, together with group operation + between
any two elements of G.

If it sounds abstract to you then imagine the set of integers where you only
define addition operation 4+ and ignore multiplication operation . , i.e., (Z,+)
forms a group. Another example is the following: given an integer number p,
consider the set Z, = {0,1,...,p — 1} and the group operation + is addition
mod p then you have a finite group (Z,, +). This group is finite because the set
Z,, has finite p elements. The number of elements in a finite group is called the
order of a group, denoted as |G/|.

Now, let’s look closer at our group (Zp,+). The number 0 is called the
identity of the group because Vx € Z, : x +0 = 0+ z = . Let’s see what we
can do by using only number 1 and addition mod p operation:

1=1 modp

1+41=2 modp
1+1+1=3 modp
1+---+1=p—1 modp
——

p — 1 times

14--++1=0 modp
—_———

p times

We notice that with 1 and addition mod p operation we can generate all el-
ements of Z, including identity element 0. An element (in this case 1) that
generates all elements of the group using group operation is called a generator.

For concreteness, let’s say p = 6. The group (Zg, +) has 6 elements {0, 1,2, 3,4, 5}.
The element 1 generates all elements in (Zg, +), so it’s a generator of (Zg, +).
How’s about number 27 We have: 2,2+2 =4 mod 6,2+ 2+2 =0 mod 6,
i.e., 2 only generates three elements in the group Zg : {0,2,4}. If we only
look at the set {0,2,4} with addition mod 6 operation then we notice that
it by itself is another group and it’s contained in a larger group (Zg,+). The
group ({0,2,4},+ mod 6) is called a subgroup of the group (Ze,+). A classic
Larange’s theorem tells us that order of a subgroup divides the order of the
group. In this case, the order of the subgroup ({0,2,4},+ mod 6) is 3 which
divides 6 - the order of the group (Zg, +).

Before ending this section about group, let’s introduce a convenient shortcut
notation. If X is an element of group G, instead of writing X +--- 4+ X, we

k tim

write kX. The smallest number n for which nX = 0 is called the torgser of X.
In our previous example, in Zg, the order of number 1 is 6, while the order of
number 2 is 3 because

1+---+1=0 mod6 2+---4+2=0 mod 6
6 times 3 times

In summary, on one side, while group is an abstract mathematical concept,
it’s enough to think of group as (Z,,+). On the other side, don’t limit your



imagination of group element as only number, a group element can be anything,
for instance, a matrix, a polynomial, a point on curve, etc.

2.2 Field

A field is a set F, together with two operations addition and multiplication. You
deal with field all the time even though you aren’t aware of it. The real numbers
R, the rational numbers @Q, the complex numbers C with regular addition and
multiplication operations are all classical fields.

In cryptography, we often use the following finite field: given a prime number
p, consider the set {0,1,...,p — 1} together with addition and multiplication
operations mod p then we have a finite field denoted as F,,. For instance, the
finite field F5 has 5 elements {0,1,2,3,4} and its operations work as follow:
244 =1 mod5, 3x4 =12 = 2 mod 5. Finally, IF, is a special case of
F,k, k > 1 that is also often used in practice.

2.3 Elliptic curve

An elliptic curve F is a set of points P(z,y) where their coordinates z,y satisfy
the equation y? = 2 + ax + b (E) where z,y € F,, p is a prime number. For
instance, let’s look at the following curve:

p=17
a=14
b=14

y? =2+ ax +b(E)

The coordinates x,y are defined over F17 and they satisfy the equation 32 =
23 + 14z + 4 mod 17. The point P(8,13) is on the curve E because 13% =
8% +14%8+4 mod 17.

An extraordinary property of elliptic curve is that we can define addition
operation + between its points, i.e., given 2 points P, € FE, the operation
P + @ makes sense and the result is another point R € E. How points addition
operation + is defined is not our concern, what we care is that (E,+) forms a
group. In practice, we don’t work directly with the group (F,+), instead we
choose a base point G and works with the subgroup generated by G, i.e., the
group ({0,G,--- (¢ —1)G},+) where ¢ is G’s order. By Larange’s theorem |G]|
divides |E| and we call |E|/|G| cofactor. The value of cofactor plays a significant
role in the security of cryptographic protocols.

Why is elliptic curve widely used in cryptography? From mathematical point
of view, it’s because elliptic curve has nice mathematical property as its points
form group structure. However, having group structure is not enough to be
useful in cryptography. From a security point of view, elliptic curve is popular
because the following discrete log problem is extremely hard: Given point X,
base point G, find z such that X = 2G. We often write x = log(X).



2.4 Polynomial modulus

I guess you're familiar with polynomial, for instance, let P(z) be a polyno-
mial of degree k over Fy, i.e., P(x) = ap_12%71 + ap_92*2 + -+ + ap where
ag, - ,ax—1 € Fq. The operation mod n where n is a number is also a familiar
operation. How’s about their combination, i.e., mod P(z) operation?

It’s best to take a look at a specific example. Let’s assume P(z) = 2% +z+1.
What does mod x°+z+1 look like? Let’s go back to see what mod 7 means.
In mod 7 world, 7 is equal to 0. For instance: 8 +4=7+1+4=14+4=5
mod 7. Similarly, in mod x° 4z + 1 world, z° + 2 4+ 1 equals to 0 and you can
replace 2° + x + 1 with 0 or you can replace x° with —z — 1. For instance: let’s
say Pi(z) = o, Py(z) = 2°+1 and if we add and multiply them mod 2°+x+1,
we have:

Pz)=aS+1=zx@)+1l=ax(—z—-1)+1=—-a?—2+1
Py(z) + ()—x4—x2—x—|—1

(x)*PQ( )=ats (-2 —x+1)=—af —2° + 2"

- *

sxd —(—z—D+at=—ax(—z—D+az+l+at=2 422 +22+1
In this article, we’ll use polynomials in Z,[z]/(P(x)) , i.e., polynomials whose
coefficients are in Z, and every operation is mod P(z).

2.5 Alice, Bob and Eve

In cryptographic protocols, we often have 3 characters: Alice, Bob and Eve.
Typically, Alice wants to interact with Bob while Eve tries to attack Alice, Bob
and their communication. The nonobvious question in the previous description
is whether Alice and Bob trust each other. A common mistake in cryptographic
implementation is to assume that Alice and Bob are both trustworthy. It’s
better to assume that Alice and Bob may be malicious, i.e., Alice and Bob
must protect themselves while interacting with each other. Life is hard. Wait a
second, are you saying that we shouldn’t trust anyone at all? No, I didn’t say
that but it’s your right to interpret it in any way you want :)

Note that, in practice, the characters Alice, Bob and Eve are not human,
they’re computer programs, so don’t be surprised if I say Alice’s memory, Alice’s
state, Alice’s program, etc.

2.6 Quantum computer

In classical computers, the basic unit is a bit that is either a 0 or 1 at any
moment. In quantum computers, the basic unit is a qubit that can exist at both
states 0 and 1 at the same time. This gives quantum computer more computing
power than classical one. That’s it for quantum computer section. You may
wonder why this section is so short. If I'm smart enough to understand quantum
computer then I’'m not here to write this article about intuitive understanding
of cryptographic protocols :)

From cryptographic point of view, the reason we care about quantum com-
puter is because Peter Shor [5] showed us that quantum computer can solve
discrete log problem and factoring problem, i.e., it can break our most popu-
lar public key algorithms. I didn’t tell you that quantum computer can break



symmetric key encryption or AES, did I? No, quantum computer can not break
AES. The only known quantum attack against encryption is to use Grover’s
quantum search algorithm [6] that can search N entries in v/N time. There-
fore, if you're worried that quantum computer can break your symmetric key
encryption, then increase your AES’s key from 128 bits to 256 bits. Don’t
waste money for snake oil salesman that sells you quantum-safe symmetric key
encryption.

3 Elliptic curve Diffie-Hellman (ECDH) key ex-
change

Alice Eve Bob

Imagine that Alice wants to talk to Bob in a secure way so that Eve who
eavesdrops on Alice and Bob’s communication can’t understand Alice and Bob’s
messages. Easy. Alice encrypts her plaintexts and sends ciphertexts to Bob.
Not so fast. You said Alice encrypts message, but what key does she use for
encryption? How could Alice securely send her encryption key to Bob in the
first place? Remember, Eve always listens. Sounds difficult? It’s indeed a really
hard problem. Fortunately, Diffie and Hellman [7] invented an elegant protocol
that fundamentally changed cryptography forever.

Alice Bob
a<s$Zq, A=0aG A

B bsZq, B =bG
aB = a(bG) = abG bA = b(aG) = baG

Let’s say Alice and Bob agree in advance that they’ll use some standard
elliptic curve F with base point G of order ¢. Alice generates a random private
key a <-sZg, computes her public key A = aG and sends A to Bob. Bob
generates a random private key b <—sZ,, computes his public key B = bG and
sends B to Alice. Now Alice computes aB = a(bG) = abG and Bob computes
bA = b(aG) = baG. We notice that Alice and Bob compute the same result abG
and it’s their shared key that can be used for encryption.

All right, math works. Let’s convince ourselves that this protocol is secure.
What does Eve know? By eavesdropping the communication between Alice and
Bob, Eve knows A (aka aG) and B (aka bG). As the discrete log problem in
elliptic curve is hard, knowing aG and bG doesn’t help finding a and b and hence
Eve can’t compute abG. The shared key abG between Alice and Bob is protected
from Eve. You know what, there was a flaw in my argument. Eve’s goal is to
compute abG assuming she knows aG and bG. In my argument, I assumed
that she has to find a, b (i.e. to solve discrete log problem) first before she can



compute abG, but my assumption is wrong because no one knows for sure it’s the
only way to compute abG. There may exist other ways to compute abG without
computing a, b. Therefore, strictly speaking, we have to make a new security
assumption to guarantee that the protocol is safe. It’s called Computational
Diffie-Hellman (CDH) assumption: given G, aG, bG, it’s infeasible to compute
abG. Cryptography is subtle! A closely related assumption is Decisional Diffie-
Hellman (DDH): given G, aG, bG, it’s infeasible to distinguish abG from a
random point in F.

3.1 Active attacker and authenticated key exchange

In the previous section, we assume that Eve only eavesdrops on the communi-
cation between Alice and Bob, i.e., we assume that Eve is passive. How’s about
the case when Eve actively interferes with the communication between Alice
and Bob?

Alice Eve Bob

The attack is instead of forwarding Alice’s public key A to Bob, Eve sends
her public key E to Bob. Similarly, instead of forwarding Bob’s public key B to
Alice, Eve sends her public key E to Alice. In the end, Eve establishes a shared
key aeG with Alice and a shared key beG with Bob. l.e., Eve can decrypt the
ciphertexts sent from Alice or Bob. The fundamental issue is that when Alice
(Bob) receives public key from the other party, she (he) has no way to know
whether the public key actually comes from Bob (Alice).

To prevent the previous attack, Alice and Bob use digital signature to sign
their ECDH’s public keys A and B. As Eve can’t generate valid signature on
behalf of Alice or Bob, the above attack doesn’t work anymore.

3.2 ElGamal encryption

A straightforward application of key exchange is ElGamal encryption|[8][9].
The basic idea is to use ECDH to establish shared secret and use the shared
secret to mask out the message.

To encrypt message m, we create a point P,, on E that has x coordinate
as m. When Bob receives Alice’s public key A, instead of sending his public
key B to Alice as in ECDH key exchange, he sends both B and bA + P, to
Alice, i.e., (c1,c2) = (B,bA + P,,). When Alice receives (¢, ¢2), she computes
co —acy = bA+ P,, — aB = baG + P, — abG = P,,. The message m is the z
coordinate of point P,,.

4 Interactive zero-knowledge proof

Have you ever heard of zero-knowledge proof? No? You don’t read news, do
you? It’s a buzzword in every cryptocurrency protocol and you’ve never heard



of it? T didn’t ask you whether you know what it is, I only asked you whether
you’ve heard of it :)

Informally, zero-knowledge proof of knowledge is a proof where you prove
to other people that you know something without revealing it. Does it sound
like magic? It’s indeed magic. The technicality behind zero-knowledge proof is
complicated, so we’ll take a look at concrete protocols and analyze them. All
protocols in this section require interaction between parties, which is why this
section is called interactive zero-knowledge proof.

4.1 Schnorr identification protocol

In this section, we’ll analyze Schnorr identification protocol[10]. It’s a cool
protocol that serves as basis for digital signatures, so pay attention to this
section.

Suppose F is an elliptic curve with base point G of order ¢, Alice’s private
key is x, her public key is X = zG. Alice wants to prove to Bob that she
knows x without revealing to Bob what x is. Designing a protocol that reveals
nothing about x is easy: Alice does nothing. On the hand, designing a protocol
where Alice convinces Bob that she knows x is even easier: she sends x to Bob.
The hard part is how to achieve two properties at the same time. Schnorr [10]
invented the following protocol:

Alice Bob

r<sZq, R=1rG R

¢ c+sC

e=r+cr modgq

eG = R+ cX

In the above protocol, C'is called challenge space and ¢ is randomly generated
from C ¢<-sC. In the end of the protocol, Bob verifies whether eG equals to
R + ¢X and if it does, then Bob is convinced that Alice knows x. Note that if
Alice is honest, i.e., e is indeed equal to r + cx then multiplying both sides of
equation e = r + cx with G, we get eG = rG + cxG = R+ cX.

Why does Bob know nothing about z7 The only information related to x
that Bob receives is e = r + cx mod ¢q. No matter what x or cx is, adding a
random value r mod g to it makes the result indistinguishable from the random
number, i.e., r completely masks out the value of cz.

Another question is why ¢ needs to be unpredictable? If Alice can predict ¢
in advance then she can generate a random e, compute eG and R = eG — ¢X,
i.e., she can generate R and e without knowing r and x but Bob’s verification
equation is still satisfied.

All right, we’ve convinced ourselves that this protocol doesn’t leak informa-
tion about x. The hard part is how Bob is convinced that Alice knows x. If
Alice does not know z then no matter what we do with Alice, we can’t get
x. Now, if we're allowed to control the execution environment in which Al-
ice is running and if by clever manipulating that execution environment, we
somehow can get x then Alice definitely knows z (otherwise, where does x



come from so that we can get it?). Are you confused now? No worries, I was
even more confused than you're :) For this protocol, what we’re going to do
is to wait until Alice finishes generating » and R = rG and then we clone
Alice, i.e., make 2 copies of Alice with the same value r. In one copy, Alice
receives ¢, sends e and in another copy, Alice receives ¢/, sends ¢/. We have
eG=R+cX,/G=R+dX = (¢/-e)G=(d—c)X = (/—¢)/(d —c)G=X
and hence x = (¢/ —¢e)/(c — ¢/). An obvious question is whether Bob can use
the same trick to extract . To do this, Bob must have the capability to force 2
copies of Alice to use the same r. In theory, Bob doesn’t have that capability.
In practice, if you don’t implement Alice’s multithreading program carefully,
you may be vulnerable to this attack. Don’t say I didn’t warn you :)

4.2 Chaum-Pedersen protocol

Let’s say E is an elliptic curve and Alice’s private key is . Let G and H be
two points on E. Alice publishes U = G, V = xH. She wants to convince Bob
that loge(U) = logy (V) and to prove that she knows z without revealing what
x is[11].

Alice Bob

r<sZqy, P=rG,Q=rH PQ

¢ c+sC

e=r+cr modgq

eG;P—i—cU
eH;Q—i—cV

Adding random value » mod g to cx completely masks out its value and
leaks zero information about = to Bob.

Similar to Schnorr identification protocol, to prove that Alice knows x and
x = loga(U) = logu(V), we wait until Alice finishes generating r and clone
her. In one copy, Alice receives c, sends e and in another copy, Alice receives ¢,
sends ¢’. We have:

G =P+ cU (1)
€G=P+JU (2)
e =Q+cU (3)
eH=Q+ U (4)

From equations (1) and (2), we deduce (e —¢’)/(c — )G = U, ie., z =
(e—¢')/(c—¢). From equations (3) and (4), we deduce (e—¢')/(c—)H = Q,
ie, x=(e—¢€)/(c— ). We observe that we extract the same z in two set of
equations.



5 Fiat-Shamir heuristics and noninteractive zero-
knowledge proof

In the previous section, we looked at interactive protocols. In practice, interac-
tive protocols have a few disadvantages: they cost bandwidth and they require
all parties to be online and synced. Fiat and Shamir showed that we can trans-
form an interactive protocol to a noninteractive one using cryptographic hash
function such as SHA256.

5.1 Schnorr signature

To transform [Schnorr interactive identification protocol| to noninteractive pro-
tocol, Alice uses cryptographic hash function to compute ¢ = hash(G, X, R),
instead of waiting for Bob to generate random c. It’s important to hash every-
thing in the transcript (see [12]).

Alice Bob
r<sZqy, R=1rG
¢ = hash(G, X, R)

e=r+cr modq

¢ =hash(G, X, R)

eG=R 4+ cX

Let’s take a closer look to see whether this noninteractive protocols is as safe
as the interactive one. In Schnorr identification protocol section, we noticed that
if Alice can predict ¢ in advance then the protocol is not safe anymore. Does
Fiat-Shamir’s transform make the protocol insecure? The answer is no, but
to convince ourselves that it’s the case is nontrivial. Let’s recall a property of
cryptographic hash function. For cryptographic hash function, you can’t control
both the input and output at the same time, i.e., if you choose your input first
then the output looks like random number and if you choose your output first,
you can’t find the input that hashes to your chosen output. Therefore, Alice
can’t choose c first and then compute R such that hash(G, X, R) = ¢. In other
words, Alice has to generate R first and then compute ¢ = hash(G, X, R). But
once R is determined, the output ¢ = hash(G, X, R) looks like random number
and is out of Alice’s control. This is exactly the property that we needed for
Schnorr identification protocol’s security. In general, the order of cryptographic
operations is critical to protocols’ security, so watch out your program’s state
machine.

Schnorr signature [I3] is a small modification of the above protocol. To
sign message m, instead of computing ¢ = hash(G, X, R), we compute ¢ =
hash(G, X, R,m) and the signature is simply (R,e =7+ cx mod q).

5.2 Noninteractive Chaum-Pedersen protocol

After reading the previous section, it’s easy to guess that ¢ = hash(G, H,U,V, P, Q).
The complete protocol is shown below:

10



Alice Bob
r4sZq, P=rG,Q=rH
¢ = hash(G, H,U,V, P,Q)

e=7r+cxr modgq PQe

¢ =hash(G, H,U,V, P,Q)
eG;P—FCU
eH; Q+CV

6 Ring signature

To verify a signature, the verifier has to know the signer’s public key. Therefore,
if you use digital signature such as Schnorr signature to sign a message, then
everyone knows that it’s you that signed the message. This is, in fact, an
expected security property. However, there are certain use cases where you
don’t want to be tracked and held responsibility for what you signed. Ring
signature [14] allows a signer to blend himself into a set of n users, i.e., if there
are n users and only one of them signs the message, the signature doesn’t leak
who was the signer, but the verifier can verify that the signature is signed by 1
of n users.
We'll describe a protocol based on Schnorr signature and OR-proof technique[15],

[16]. Let’s recall ourselves how Schnorr signature looks like:

User Verifier
r<sZq¢, R=1rG
¢ = hash(G, X, R, m)

e=7r+cr modgq

¢ = hash(G, X, R,m), eG ZR+cX

Suppose that we have n users usery, - - - , user,, and user; is the signer. User;
uses his private key x; to sign the message m as usual. However, user;,j # ¢
doesn’t use his private key but still has to produce something that looks like
signature so that the verifier can verify. You may wonder whether the previous
sentence makes any sense at all and you’re right, it doesn’t. If a user can produce
a signature without using his private key, do we have a vulnerability in signature
scheme? The only way to overcome this seemingly paradox is to give user; more
capability and freedom so that he can cheat. The extra capability that we give
user; is to let him choose ¢; in advance himself. In particular, user;, j # 4 first
chooses ¢; himself, randomly generates e; and computes R; = e¢;G —¢; X;. Now
the verifier’s equation e;G; < R; + ¢; X is still satisfied. What’s happening
here? The trick was that userj,j # ¢ not only chooses c; himself but also
computes everything in an unusual order ¢; — e; — R; while the regular order
is R; — c¢; — e;j. This section once again stresses how important the order of

11



cryptographic operations is to protocols’ security, so watch out your program’s
state machine. Using the above trick, user; can produce signature without
knowing or using private key z;.

We're close but we’re not done yet. One important detail that I left out
was what user;’s ¢; is. At high level, there must be some ¢ that is computed by
using hash of something as in Fiat-Shamir heuristics. How is that ¢ related to
¢; and ¢;, j # i? The paper [15], [16] proposed a beautiful solution.

Users Verifier
Userjj #i:cj +sC

ej <sZq, Rj = e;G — c; X

User; : r; s Zq, Ri = 1r:G

¢ =hash(X1, -+, Xn,R1, -+ ,Rn,m)

i = Djzic; B

e =i+ cizs mod g Ri,-++ ,Rp,C1,-" ,Cn,€1, ", €n

c¢=hash(X1, -+, Xn,R1, -+, Rn,m)
cta® - Ben

ekG;Rk-i-Cka,k‘:l---n

User;, j # 4 randomly generates c;, e;, computes R; = e;G — ¢; X; as men-
tioned above. User; on the other hand, generates random r;, computes R; = ;G
as usual. Now ¢ is computed as hash(Xy, -+, X,, R1, -, Ry, m) which binds
all Ry, ---, R, tom. The trick is to use ¢; = @ 1;¢;@csuch that ¢ = ¢ ®- - -Dey,.
The core idea is that there is only 1 constraint ¢ = ¢; ®- - - @ ¢, while there are n
variables c1,- -+, ¢,. Le., the verifier forces n users to have 1 and only 1 choice,
which corresponds to the fact that 1 user signs the message m using his real
key while the remaining n — 1 users are free to cheat in producing signatures.
Finally, it’s obvious from the protocol that the verifier can’t distinguish ¢;, e;, R;
from the remaining values and hence the verifier doesn’t know who user; is.

7 Shamir’s secret sharing

”"Don’t put all your eggs in one basket”. In this section, we will follow this wise
advice to protect our secret.

Let’s say we have a valuable secret s to protect. Storing s in one system
doesn’t sound a like a good strategy. A better approach is to break s into pieces
and store different pieces in different systems. This is to increase the attack cost
because the attacker has to compromise multiple systems to get s. We’ll break
s into n pieces si,--- , S, so that with any k pieces we can reconstruct s, but
with k — 1 pieces, it’s not enough to determine s.

Let P(z) be a polynomial of degree k over F,, i.e., P(z) = ap_12F~! +
ak—2x"72 + -+ ag where ag, -+ ,ap_1 € F,. We will use the following math-
ematical property of polynomial P(x): if we know the values P(z1),--- , P(xg)
at k different x1,--- ,z; then we can uniquely reconstruct P(x), but knowing
the values P(x1), -, P(xgx—1) at any k — 1 different 21, , 25— isn’t enough
to determine P(x). Why’s that? Let’s look at a small example and convince
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ourselves that this is true. Let’s say kK = 2, P(xz) = a1z + ag. The graph
(x,y = a12 + ag) is a straight line. Knowing any 2 points (zg,yo = a120 + ao)
and (z1,y1 = a1x1 + a1) uniquely determines our straight line. On the other
hand, if we only know 1 point (xg,y0 = a12zo + ag), we can’t determine our
straight line because there are so many lines that go through that point.

Using the above property, Shamir’s protocol[I7] is simple yet elegant: set
ag = s and randomly generate aq,--- ,ar—1. The n pieces that are stored at n
different systems are s; = P(1),s2 = P(2),---,s, = P(n). Knowing any k of
{51, -+ ,8n} uniquely identify P(z) and hence s = ay = P(0), while knowing
k—1of {s1,- - ,8,} doesn’t determine P(x) and hence doesn’t determine s =
P(0).

8 Secure multi-party signature computation

Let’s say we have a private key = that is used to produce digital signature.
Following beautiful [Shamir secret sharing] to protect x, we’ll break = into pieces
and store them at different systems. Is our job of managing secret done? If we
put more thought on it, we’ll see that Shamir secret sharing has a weakness
when deployed in practice. As an attacker, I don’t care how x is broken into
pieces and stored at multiple systems, I wait until = is reconstructed at some
system and only attack that single system.

To mitigate the previous attack, we need a stronger security requirement.
We'll break the secret = into pieces x1,:-- ,x, as before and store them at
multiple systems. These systems only use their own secrets x1,--- ,x,. We let
these systems interact with each other and in the end, they collectively produce
a digital signature corresponding to x, but they keep z1,- - - , z, for themselves,
i.e., they don’t leak z1,---,x, to other systems or anyone else. In such a
design, the attack cost significantly increases because to get z, the only way is
to compromise all systems.

8.1 Secure multi-party Schnorr signature computation

We'll consider a special case when there are only n = 2 systems (for Schnorr
signature, it’s easy to extend to arbitrary n systems). The secure two-party
Schnorr signature computation is pretty straightforward. Split secret key x into
2 keys x1, x9 such that £ = x1 + z2 mod ¢. Similarly, when we generate r, we
split r into two parts such that r =r; +r2 mod gq.

Party 1 Party 2
Private keyx1 Private keyxo
T1 <—$Zq,R1 =T1G Rl

Ry T2 (—$Zq,R2 ITQG
R=Ri+ R> R=Ri+ R>
¢ = hash(G, X1, X2, R,m) ¢ = hash(G, X1, X2, R,m)
e1=r1+cr; modq ez =12+ cr2 mod q
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In the above protocol, each party computes its own R;, Ry locally and
exchange Ri, R to each other. R is the sum of R; and R,;. Each party
again computes ¢, e;, es locally. The signature of message m is the sum
(R=R1+ Ry,e = e + e3). Why’s that? We have:

R:R1+R2:T1G+T2G:(T1+T2)G:TG
e=e1+e =1 +cxy+ro+cre = (r1 +re) + ez + x2)

=r+cr modq

We see that (R, e) is a valid m’s signature signed by z. In summary, each
party protects its own key x1,x2, generates its signature locally and the final
signature is the sum of the generated signatures.

9 Pairing based cryptography

If you reach this section, you have seen enough protocols that are based on
All of our protocols so far use only 1 elliptic curve. However,
cryptographers are not satisfied yet. They want to use 2 elliptic curves at the
same time. They drive me crazy :) Do you know how miserable an incompetent
security engineer’s life like mine is? I have to deal with more and more and
more complicated math and it never stops. After finishing this article, I'll retire
from cryptography, but you, my fellow, should continue the mission to make the
world a safer place by using amazing cryptographic protocols :)

Pairing[18] is defined as a map e: E; X Ey — F where E7, Es are 2 elliptic
curves |I| and F'is a field like Fj,x. An important observation before we continue
is that e maps 2 elliptic curves to a field. This has a profound impact on security
as we’ll see shortly.

The pairing that we use has a few nice properties such as: e(P + @, R) =
e(P, R)e(Q, R) and e(aP,bQ) = e(P,Q)* where a,b € Z. One trick to under-
stand math is to see its implications. So, let’s play with this formula a little bit.
We have: e(aP,bQ) = e(P,Q)™ = e(abP,Q) = e(P, Q) = e(bP,aQ). What
we’ve just done is to move ”coefficients” a,b around in 2 curves but keep the
mapping result equal to e(P, Q). If you look at pairing based cryptography,
you’ll see that this trick is used over and over again. A cool consequence of the
above trick is the following: in special case where F1 = Fo = Fand P=Q =G
is the base point of elliptic curve E, we have e(aG, bG) = e(G,G)* = e(abG, G).
Le., given G, aG, bG we can distinguish abG from random number because we
know e(abG, G) = e(aG,bG) but e(random number, G) # e(aG,bG). In other
words, once we have pairing, Decisional Diffie-Hellman (DDH) problem becomes
easy!

9.1 MOV attack

For elliptic curve that has pairing, Menezes, Okamoto and Vanstone (MOV) [19]
found a beautiful attack against discrete log problem in elliptic curve. Recall

1Depending on protocols, F1 may equal to Ey.
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the discrete problem in elliptic curve E: given base point G and point A, find
a such that A = aG.

The attack works as follows: let’s assume B is another point in F that we can
pair up with A. We have: e(A, B) = e(aG, B) = e¢(G, B)®. Note that e(A4, B)
and e(G, B) are in F. Instead of solving discrete log problem in elliptic curve,
we’ll solve the same problem over a field: given u = e(G, B) and v = e(A, B),
find a such that v = u®. In general, discrete log problem over a field is easier
than discrete log problem in elliptic curve, so for elliptic curve that has pairing,
the security of the system reduces. I'm not saying you shouldn’t use pairing,
but be aware of the consequence that comes with it. There is no free lunch.

9.2 BLS signature

In 2001, Boneh, Lynn and Shacham (BLS) [20] invented a cool signature scheme
based on pairing. Let’s assume Alice’s private key is x, her public key is
X = xG, H is a hash function that maps messages to points on elliptic curve
E. The signature is simply o = xH(m). To verify signature o, we check
whether e(o, G) < e(H(m), X). Why’s that? We have e(o, G) = e(xH(m),G) =
e(H(m),G)* = e(H(m),zG) = e(H(m), X).

9.3 BLS signatures aggregation

Traditionally, BLS signature scheme was attractive because it’s short. How-
ever, with the advance of cryptanalysis of discrete log problem in a field, cryp-
tographers had to increase security parameters and signature’s size to achieve
reasonable security level. On the other hand, this signature scheme has a nice
property that is still applicable today. It allows signature aggregation [21].

The basic goal of signature aggregation is the following. Let’s assume we
have n users, each has private key x;, public key X; = x;G. Each user signs its
own message m; as o; = x;H(m;). Now, in verification, instead of checking n
signatures o; individually, we want to verify a single aggregated signature. This
not only reduces CPU cycles but also saves bandwidth in transferring signatures
over the network.

To achieve the previous goal, we compute an aggregated signature o as fol-
low: 0 = o1+ -+0,. To verify o, we check whether e(c, G)) Z e(H(my), X1) - -e(H(my), Xn).
Why’s that? We have:

e(0,G) =e(o1 + -+ 0o, G)
=e(x 1 H(my) + - +x,H(my,),G)
=e(r1H(m1),G) - e(z,H(m,),G)
=e(H(m1),G)" -+ e(H(my), G)"™
=e(H(m1),21G) - e(H(my), z,G)
=e(H(my),X1) - e(H(my), Xp)

10 Blind signature

In 1983, when electronic payment was only in early stage, there was a great man
named David Chaum who worried about users being tracked by banks, so he
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invented blind signature [22]. It’s such a futuristic vision. Hats down to David
Chaum.

Let’s look at the following scenario. Assuming a bank has a private key x
and public key X = xG in elliptic curve E. The bank only issues tokens of fixed
value, e.g. $1 dollar. A token is a serial number together with bank’s signature
over that serial number. Using an issued token, a user can go to any store and
show the serial number and its corresponding signature. The store who knows
the bank’s public key X can verify the bank’s signature.

Let’s pause for a moment to see what’s wrong with this protocol. A user can
reuse the same token with the same serial number at different stores. This is
called double-spending attack. To mitigate this attack, the stores have to contact
the bank to make sure that each serial number is only used once and the bank
has a database to keep track of used serial numbers. As a consequence, the bank
knows which stores users use their tokens and hence can track users’ locations
and spending time.

To protect users’ privacy, what we need to do is to let users choose their serial
numbers, mask them out, but somehow the bank can still sign them. Let m be
the message/serial number to sign. We will describe a blind signature based on
signature by Alexandra Boldyreva [23]. Recall that in BLS signature, the
signature of a message m is simply zH (m).

User Bank
Private key x
Public key X = G

3

r<sZqy, R=rG,m=H(m)+R

!
oc=0 —rX

In the above protocol, the bank knows /m but has zero information about
serial number m because adding a random point R to H(m) completely masks
out its value. The bank signs the blinded value m = H(m) + R by computing
o’ = xm. The user can extract the serial number m’s signature by computing
o' —rX =x(H(m)+rG) —reG =zH(m) = 0.

11 Oblivious Transfer

We'll take a look at a simple oblivious transfer (OT) protocol based on elliptic
curve Diffie-Hellman protocol [24]. The problem is the following: Alice has 2
messages mg, m1, Bob chooses a random bit ¢ (i.e. ¢ is either a 0 or 1). The goal
is for Bob to receive m, without knowing what the remaining message mi_. is.

Did you find the protocol? It’s easy: Bob sends c to Alice and Alice sends m,.
to Bob :) I intentionally left out an important security property in the problem’s
requirements: Alice must not know ¢. Now, the problem becomes difficult and
challenging. Be careful when reading problem’s requirements!

Let’s recall our familiar protocol. Note that in the last step,

we use the shared secret k to encrypt Alice’s messages mq, mq.

16



Alice Bob

a<s$Zq, A=0aG A

B b<sZq, B =bG

k=aB = abG k =bA = baG

Enci(mo), Enci(m1)

In this form of basic ECDH, Bob can decrypt both Encg(mg), Ency(my).
The trick to solve OT problem is that if ¢ = 0, Bob sends Alice his real public
key B = bG, otherwise Bob sends Alice a masked key using Alice public key
B = bG + A. Alice can’t differentiate these two cases because both bG and
bG 4+ A looks random to Alice, so Alice doesn’t know ¢. When receiving B
from Bob, Alice’s job is to make sure that Bob can only decrypt one of two
messages. Alice derives 2 keys: kg = aB and k1 = aB — aA and sends Bob
Enck,(mo), Encg, (my). The basic observation is that only one of two keys
ko, k1 is the shared secret, while the other looks like a random number to Bob.

Alice Bob

a<s$Zq, A=0aG A

b<sZq.
If ¢ =0,set B =bG
Ifc=1,set B=bG+ A

ko :aB,k1 :a(B—A)

Ency, (mo), Encg, (m1)

If c =0, B =0bG, then kg = aB = abG is the shared secret while k; =
a(B — A) = abG — aA looks like a random number to Bob because Bob doesn’t
know aA.

Ife=1, B=bG+ A, then k1 = a(B — A) = abG is the shared secret while
ko = aB = abG + aA looks like a random number to Bob because Bob doesn’t
know aA.

To recap, Bob only knows key k. which is the shared secret and hence can
only decrypt one of two ciphertexts Encg,(mo), Enck, (m1) to get the message
me. Problem is solved.

12 Commitment schemes
Are you committed to read this article to the end? You said yes, didn’t you? I

don’t believe you because even if you said yes, you can easily make an excuse
and break your commitment. In this section, we’ll take a look at cryptographic

17



commitment schemes where it’s impossible to break commitment.

A commitment scheme often consists of two phases. In the commit phase,
the committer Alice commits to a value but hides the committed value. In the
reveal phase, Alice reveals the committed value and we expect that Alice doesn’t
have capability to cheat by revealing a value that she hasn’t committed to.

12.1 Hash based commitment scheme

We'll use a cryptographic hash function h (e.g. SHA256) for our commitment
scheme. To commitment to a value v, Alice randomly generates a large fixed size
number 7(e.g. 128-bits) and publishes ¢ = h(r||v). To open the commitment,

Alice reveals r and v and everyone can verify whether h(r||v) Ze

Why can’t we use ¢ = h(v)? The main issue is that this leaks v because an
attacker can brute-force v, computes h(v) and stops until the result matches c.
The role of r is to increase randomness so that guessing r||v is an impossible
task.

Why can’t Alice cheat by opening to a different value rather than v? To open
to a different value v’, Alice has to find v/, " such that h(r’'|[v") = ¢ = h(r]||v).
In other words, Alice has to find a collision for h. For standard cryptographic
hash function such as SHA256, this is an infeasible task.

12.2 Pedersen commitment scheme

Pedersen commitment scheme [25] is based on discrete log problem. Let G' and
H be two points in elliptic curve E and no one knows log~(H). To commit to
a value v, Alice generates a random r and publishes ¢ = vG + rH. To open the
commitment, Alice reveals r» and v.

Why does ¢ hide v? The reason is that rH is random point in F, so no
matter what vG is, adding rH to it completely masks out its value.

Why can’t Alice cheat by revealing a different value v'? To achieve that
goal Alice has to find v/, 7’ such that ¢ = vG + rH = v'G + r'H. This implies
(v=v")G = (r'—=r)H or (v—2")/(r' —r)G = H. This means that the committer
knows log(H) = (v —v")/(r' — r). This contradicts with the assumption that
no one knows log(H). In other words, don’t use any Pedersen’s commitment
scheme if you aren’t convinced that no one knows log,(H) because knowing
log(H) allows the committer to cheat.

12.2.1 Homomorphic property

Pedersen commitment scheme has a nice homomorphic property: given 2 com-
mitments cq, ¢z, even though we don’t know their committed values, we still
can compute another commitment ¢ = ¢; + ¢ that corresponds to commit-
ted values’ sum. It’s straightforward to check whether the previous statement
is true: if ¢; = v1G + r1H,co = v9G + roH are commitments of vy, vy then
c=c1+ce = (v1 +v2)G + (r1 + ro)H is the commitment of v = vy + vs.

13 Lattice based cryptography

In the last ten years, lattice based cryptography[26], [4] blossoms. There are two
main reasons. The first reason is that lattice based cryptography is assumed to
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be safe against quantum computer, while ECDH key exchange and RSA aren’t.
As quantum computer is more powerful than classical computer, can we deduce
that lattice based cryptography is safe against classical computer? No, we can’t.
It’s because we start with a security assumption (not fact) which might turn out
to be wrong. Like many other things in cryptography, lattice based cryptogra-
phy’s security is an assumption, no one knows for sure. Furthermore, there is no
evidence that lattice based cryptography is safer than ECDH against classical
computer. Therefore, it’s not wise to rush into lattice based cryptography and
abandon classical protocols such as ECDH key exchange. The second reason is
that with lattice based cryptography, cryptographers can design cryptographic
protocols with extraordinary properties that have never been achieved. The
most famous application of lattice based cryptography is fully homomorphic
encryption (FHE).

We'll describe lattice based cryptography without even defining what lattice
is because the math behind lattice theory is way over my head. Instead, we’ll
talk about familiar polynomials which have lattice structure. By the way, do
you notice a pattern in this article? Whenever I see a complicated thing, I run
away because I can’t deal with complexity!

Lattice based cryptography are often rely on the hardness of finding some-
thing small or solving equations with error. Every time, you see the words
small and error in the context of polynomials, you know that you land in the
realms of lattice based cryptography. In this section, we’ll use polynomials in
Zg4|z]/(P(x)) or Z[z]/(P(x)) , i.e., polynomials whose coefficients are in Z, (or
Z) and all operations are mod P(z). There are 2 problems that are infeasible
to solve in Zg[z]/(P(z)). We'll briefly introduce them without further discus-
sion. The main goal is to introduce a few terminologies and to give you high
level idea what hard problems that we depend on.

The first problem is called Ring-Short Integer Solution (R-SIS): given m
polynomials a; in Z4[x]/(P(z)), find m small polynomials z; in Z[z]/(P(z))
such that ), a;.z; = 0. Note that without "small” requirement, the problem is
easy to solve.

The second problem is called Ring-Learning With Error (R-LWE): given
a secret s in Zg[z]/(P(x)), m random polynomials a; in Zg[z|/(P(z)) and m
small "error” polynomials e;, distinguish (a;,b; = a;.s + ;) from random pair
of polynomials. Note that without "error”, the problem is trivial to solve.

13.1 Lattice based homomorphic encryption

Let’s assume we have data that we store in a cloud. To protect our data, we
encrypt them and keep the key to ourselves. On the other hand, we want to take
advantage of cloud’s computing power, so we want the cloud to compute on our
ciphertexts without knowing what our plaintexts are. Homomorphic encryption
is special type of encryption that achieves the previous goal. In this section,
we’ll describe a simple lattice based homomorphic encryption [27].

We'll use Zq[w]/(xzk + 1) (¢q is a prime number), i.e., polynomials whose
coefficients are in Z, and all operations are mod 22" + 1. We also use a small
modulus ¢ that is much smaller than ¢q. Note that every thing in this section
including secret key, message, ciphertext are polynomials.

The secret key is a polynomial s in Zg 2] /22" +1).
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To encrypt a message polynomial m € Z[z]/ (xzk + 1) , we randomly gen-
erate polynomial a, small error polynomial e and the ciphertext is simply
¢ = Enc(m) = (¢, c1) = (—a,as + m + et).

To decrypt a ciphertext ¢ = (¢, ¢1), we compute ¢; +c¢os mod t = as+m+
et —as modt=m+et modt=m.

To see how this encryption is additive homomorphic, let’s take a look at
two encryptions of m and m’: ¢ = Enc(m) = (cp,¢1) = (—a,as +m + et) and
' = Enc(m’) = (¢}, c}) = (=d',a’s +m' + €'t). If we add (co, 1) and (¢, )
together, we have:

(co,e1) + (cp, ¢1) = (co + chc1 + )
=(—a—ad,as+m+et+a's+m' +e't)
=(—(a+d),(a+d)s+(m+m)+(e+e)t

If we denote @’ = a+d’, m" = m+m/, ¢ = e+ €, then we see that
" = (cf, ) = (co,c1) + (¢f,c}) is the encryption of m” = m + m’ with error
e’ = e+¢€’. To recap, what we’ve done is to add 2 ciphertexts together without
knowing the messages, but the result corresponds to the sum of the messages.
It’s pretty cool, right?

Another nice property is that if you multiply a polynomial p to the encryp-
tion of m then the result corresponds to encryption of pm. To see why it’s
the case, let’s take a look at polynomial p and encryption of m: (cp,c1) =

(—a,as +m + et). We have:

p(Co,Cl) = (PCO7P61)
= (p(—a),p(as + m + et))
= (—pa, pas + pm + pet)

If we denote ¢’ = —pa, m’ = pm, e’ = pe, then we see that (cf, ;) = p(co, 1)
is the encryption of m’ = pm with error ¢’ = pe.

The final note is that the error increases in both cases. For lattice based
cryptography to work, the error must be small. Therefore, various techniques
have been designed to reduce the error over time. We won’t discuss error re-
duction techniques here, instead, we’ll take a look at an awesome application of
the previous homomorphic encryption.

13.2 Private information retrieval

Let’s say a server has a public database (e.g. movies, songs, lyrics, stories,
books) with n items z1, -+ ,z,. A user wants to see a single item x; at in-
dex i from the database without revealing to the server what item has been
downloaded. This is to protect user’s privacy. An obvious solution is the user
downloads all n items from the database. This has perfect privacy, but it costs
significant bandwidth and user’s local storage. We’ll trade CPU with bandwidth
and storage using the above homomorphic encryption [28]. The basic protocol
works as follows.
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The user forms a sequence of 0 and 1 where only at index i, it’s 1 while

the remaining numbers are 0: 0,--- ,0, 1 ,0,---,0. The user uses homomor-
index i
phic encryption to encrypt the above sequence, i.e., ¢; = Enc(0),--- ,¢;—1 =

Enc(0),¢; = Enc(l),c;41 = Enc(0),- -+, ¢, = Enc(0). The user sends ¢y, -+ , ¢,
to the server.

The server computes x = x1¢1 + - - - + T,¢, Without knowing what 4 is and
sends x to the user.

The user decrypts x and the result is z;. Why’s that? By homomorphic
property, = z1cy + -+ + T,¢p corresponds to the encryption of x1.0 + - +
zi-1.04+2;1+2;10+---+2,1=04+---4+0+2;,+0+--- +0=2,.

14 Conclusion

I can’t believe that you finish reading this article. I adore your patience, thank
you! By the way, if you cheated and jumped directly to the conclusion section,
then go back and read the article :)

My hope is you can see the beauty of advanced cryptographic protocols
before running away because of their difficulties. And if we’re lucky, you will
use these fantastic cryptographic protocols in your applications. In that case,
don’t forget to read nice cryptography engineering blog [29] and serious book
about applied cryptographic protocols [I5]. On the other hand, if you reach
this section and you have no idea what these cryptographic protocols are about
then I failed spectacularly :( T'll try better next time :)
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