"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"def anneal(t,p=7):\n",
" #pd.to_datetime('2020-01-01')-pd.to_datetime('1989-01-01')=11322\n",
" return (2-(pd.to_datetime('2020-01-01')-pd.to_datetime(t)).days/11322)**p\n",
" \n",
"tanneal={}\n",
"anneal2020=anneal(pd.to_datetime('2020'))\n",
"for t in pd.date_range('1990','2020'):\n",
" tanneal[t]=anneal(t)/anneal2020+0.1\n",
"plt.plot(tanneal.keys(),tanneal.values())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.mrgeek.me/technology/datascience/measuring-influence-in-a-group-using-social-network-analysis/"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0 %\n",
"3.5855145213338115 %\n",
"7.171029042667623 %\n",
"10.756543564001435 %\n",
"14.342058085335246 %\n",
"17.927572606669056 %\n",
"21.51308712800287 %\n",
"25.098601649336683 %\n",
"28.684116170670492 %\n",
"32.269630692004306 %\n",
"35.85514521333811 %\n",
"39.440659734671925 %\n",
"43.02617425600574 %\n",
"46.61168877733955 %\n",
"50.197203298673365 %\n",
"53.78271782000718 %\n",
"57.368232341340985 %\n",
"60.9537468626748 %\n",
"64.53926138400861 %\n",
"68.12477590534242 %\n",
"71.71029042667622 %\n",
"75.29580494801003 %\n",
"78.88131946934385 %\n",
"82.46683399067766 %\n",
"86.05234851201148 %\n",
"89.63786303334528 %\n",
"93.2233775546791 %\n",
"96.80889207601291 %\n"
]
}
],
"source": [
"tipusok={'Bizottság':['Bizottság'], \n",
" 'Ország':['Ország'], \n",
" 'Megye':['Párt','Bizottság','Ország'], \n",
" 'Párt':['Bizottság','Ország']}\n",
"edges={'Total':{'Total':{}}}\n",
"members_set=df.reset_index()['Name'].unique()\n",
"for iname,name in enumerate(members_set[:]):\n",
" if iname%100==0: print(iname/len(members_set)*100,'%')\n",
" sdf=df.loc[name]\n",
" csoportok=sdf.index\n",
" tipus=sdf['Típus'].values\n",
" start=sdf['start'].astype('datetime64').dt.date.values\n",
" end=sdf['end'].astype('datetime64').dt.date.values\n",
" for t in pd.date_range(min(sdf['start']),max(sdf['end'])):\n",
" td=t.date()\n",
" for i in range(len(csoportok)):\n",
" csop=csoportok[i]\n",
" tip=tipus[i]\n",
" if tip in tipusok:\n",
" if start[i]| \u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 44\u001b[0m \u001b[1;31m#pr = nx.pagerank(G,weight='relative')\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 45\u001b[1;33m \u001b[0mpr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpagerank_numpy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mG\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mweight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'relative'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mpersonalization\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mpersonalization\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 46\u001b[0m \u001b[0mmpr\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmedian\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 47\u001b[0m \u001b[0mnodes\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m{\u001b[0m\u001b[1;34m'id'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'tipus'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mtipuskonverter\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'pr'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mpr\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m/\u001b[0m\u001b[0mmpr\u001b[0m\u001b[1;33m}\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mpr\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\networkx\\algorithms\\link_analysis\\pagerank_alg.py\u001b[0m in \u001b[0;36mpagerank_numpy\u001b[1;34m(G, alpha, personalization, weight, dangling)\u001b[0m\n\u001b[0;32m 328\u001b[0m weight=weight, dangling=dangling)\n\u001b[0;32m 329\u001b[0m \u001b[1;31m# use numpy LAPACK solver\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 330\u001b[1;33m \u001b[0meigenvalues\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0meigenvectors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlinalg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meig\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mM\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mT\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 331\u001b[0m \u001b[0mind\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0meigenvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 332\u001b[0m \u001b[1;31m# eigenvector of largest eigenvalue is at ind, normalized\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\linalg\\linalg.py\u001b[0m in \u001b[0;36meig\u001b[1;34m(a)\u001b[0m\n\u001b[0;32m 1303\u001b[0m \u001b[0m_assertRankAtLeast2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1304\u001b[0m \u001b[0m_assertNdSquareness\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1305\u001b[1;33m \u001b[0m_assertFinite\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1306\u001b[0m \u001b[0mt\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult_t\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_commonType\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1307\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\linalg\\linalg.py\u001b[0m in \u001b[0;36m_assertFinite\u001b[1;34m(*arrays)\u001b[0m\n\u001b[0;32m 216\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[1;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 217\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0misfinite\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 218\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mLinAlgError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Array must not contain infs or NaNs\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 219\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 220\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_isEmpty2d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mLinAlgError\u001b[0m: Array must not contain infs or NaNs"
]
}
],
"source": [
"network={}\n",
"for tip in edges:\n",
" for tip2 in edges[tip]:\n",
" \n",
" #create graph\n",
" edgelist=[]\n",
" for e in edges[tip][tip2]:\n",
" edgelist.append((e[0],e[1],edges[tip][tip2][e]['anneal']))\n",
" G=nx.Graph()\n",
" G.add_weighted_edges_from(edgelist)\n",
"\n",
" links=[]\n",
" for e in G.edges(data=True):\n",
" links.append({'source':e[0],'target':e[1],\n",
" 'value':e[2]['weight'],\n",
" 'source_type':tipuskonverter[e[0]],\n",
" 'target_type':tipuskonverter[e[1]]\n",
" })\n",
" links=order(links,tip,tip2)\n",
" \n",
" means=pd.DataFrame(links).groupby('source')['value'].median().to_dict()\n",
" meant=pd.DataFrame(links).groupby('target')['value'].median().to_dict()\n",
" nmeans=np.median(list(means.values()))\n",
" nmeant=np.median(list(meant.values()))\n",
" \n",
" #recalculate with new weights\n",
" edgelist=[(i['source'],i['target'],{'relative':i['value']/means[i['source']],'value':i['value']}) for i in links]+\\\n",
" [(i['target'],i['source'],{'relative':i['value']/meant[i['target']],'value':i['value']}) for i in links]\n",
" for link in links:\n",
" #start writing then it becomes clear\n",
" link['mean']=(link['value']*2)/(means[link['source']]+meant[link['target']])\n",
" link['nmean']=1/ ((gmean*2)/(nmeant+nmeans)) #adjust for category importance amongst all categories\n",
" link['wmean']=link['mean'] * link['nmean'] \n",
" \n",
" link['geometric']=(link['value']**2)/(means[link['source']]*meant[link['target']])\n",
" link['ngeometric']=1/ ((gmean**2)/(nmeant*nmeans)) #adjust for category importance amongst all categories\n",
" link['wgeometric']=link['geometric'] * link['ngeometric'] \n",
" \n",
" G=nx.DiGraph()\n",
" G.add_weighted_edges_from(edgelist)\n",
"\n",
" pr = nx.pagerank(G,weight='value')\n",
" mpr=np.median(list(pr.values()))\n",
" nodes={i:{'id':i,'tipus':tipuskonverter[i],'pr':pr[i]/mpr} for i in pr}\n",
" \n",
" #save \n",
" if tip not in network:network[tip]={}\n",
" network[tip][tip2]={'nodes':nodes,'links':links}\n",
" \n",
" print(tip,tip2,len(nodes),'nodes and',len(links),'edges')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"network={}\n",
"for tip in edges:\n",
" for tip2 in edges[tip]:\n",
" \n",
" #create graph\n",
" edgelist=[]\n",
" for e in edges[tip][tip2]:\n",
" edgelist.append((e[0],e[1],edges[tip][tip2][e]['anneal']))\n",
" G=nx.Graph()\n",
" G.add_weighted_edges_from(edgelist)\n",
"\n",
" links=[]\n",
" for e in G.edges(data=True):\n",
" links.append({'source':e[0],'target':e[1],\n",
" 'value':e[2]['weight'],\n",
" 'source_type':tipuskonverter[e[0]],\n",
" 'target_type':tipuskonverter[e[1]]\n",
" })\n",
" links=order(links,tip,tip2)\n",
" \n",
" means=pd.DataFrame(links).groupby('source')['value'].median().to_dict()\n",
" meant=pd.DataFrame(links).groupby('target')['value'].median().to_dict()\n",
" nmeans=np.median(list(means.values()))\n",
" nmeant=np.median(list(meant.values()))\n",
" \n",
" #recalculate with new weights\n",
" edgelist=[(i['source'],i['target']) for i in links]+\\\n",
" [(i['target'],i['source']) for i in links]\n",
" personalization={(i['source'],i['target']):i['value']/means[i['source']] for i in links}\n",
" personalization.update({(i['target'],i['source']):i['value']/meant[i['target']] for i in links})\n",
" \n",
" for link in links:\n",
" #start writing then it becomes clear\n",
" link['mean']=(link['value']*2)/(means[link['source']]+meant[link['target']])\n",
" link['nmean']=1/ ((gmean*2)/(nmeant+nmeans)) #adjust for category importance amongst all categories\n",
" link['wmean']=link['mean'] * link['nmean'] \n",
" \n",
" link['geometric']=(link['value']**2)/(means[link['source']]*meant[link['target']])\n",
" link['ngeometric']=1/ ((gmean**2)/(nmeant*nmeans)) #adjust for category importance amongst all categories\n",
" link['wgeometric']=link['geometric'] * link['ngeometric'] \n",
" \n",
" G=nx.DiGraph(G)\n",
" \n",
" #pr = nx.pagerank(G,weight='relative')\n",
" pr = nx.pagerank_numpy(G,weight='relative',personalization=personalization)\n",
" mpr=np.median(list(pr.values()))\n",
" nodes={i:{'id':i,'tipus':tipuskonverter[i],'pr':pr[i]/mpr} for i in pr}\n",
" \n",
" #save \n",
" if tip not in network:network[tip]={}\n",
" network[tip][tip2]={'nodes':nodes,'links':links}\n",
" \n",
" print(tip,tip2,len(nodes),'nodes and',len(links),'edges')"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'🌷 RMDSZ - Romániai Magyar Demokrata Szövetség': 0.026020376055621356,\n",
" '🇨🇺 Kuba': 0.004851837223449517,\n",
" '🔱 PRM - Partidul România Mare': 0.023885780423054268,\n",
" '🌹 PSD - Partidul Social Democrat': 0.02866590517298517,\n",
" '🔶 PDL - Partidul Democrat Liberal': 0.025410842076793585,\n",
" '🕊️ PC - Partidul Conservator': 0.022629494104069656,\n",
" '🕊️ PUR-SL - Partidul Umanist din România': 0.02109308148107953,\n",
" '📐 PNL - Partidul Naţional Liberal': 0.02829363599012981,\n",
" '⚛️ PP-DD - Partidul Poporului Dan Diaconescu': 0.026036782065782155,\n",
" '👤 Independent - Independent': 0.02866590517298517,\n",
" '🕊️ ALDE - Partidul Alianţa Liberalilor şi Democraţilor': 0.02500273470585775,\n",
" '🌹 PDSR - Partidul Democraţiei Sociale din România': 0.02134143625988721,\n",
" '✳️ PNTCD - Partidul Naţional Ţărănesc Creştin Democrat': 0.019134569234901373,\n",
" '🔶 PD - Partidul Democrat': 0.025380018584278727,\n",
" '🍏 PMP - Partidul Mişcarea Populară': 0.024713674947327402,\n",
" '🔷 USR - Uniunea Salvaţi România': 0.027824422098004557,\n",
" '🇩🇿 Algéria': 0.004853606511873097,\n",
" '🇲🇦 Marokkó': 0.005352259916013787,\n",
" '🇫🇷 Franciaország': 0.008671617891148111,\n",
" '🇨🇴 Kolumbia': 0.004851837223449503,\n",
" '🇨🇾 Ciprus': 0.005352259916013787,\n",
" '🇭🇷 Horvátország': 0.00460540716512123,\n",
" '🇧🇪 Belgium': 0.009222852814504853,\n",
" '🇭🇺 Magyarország': 0.006578708344279115,\n",
" '🇸🇦 Szaúd-Arábia': 0.005112870557767754,\n",
" '🇸🇾 Szíria': 0.004965311445326677,\n",
" '🇹🇲 Türkmenisztán': 0.004360269045919821,\n",
" '🇦🇪 Egyesült Arab Emírségek': 0.0036190047857517435,\n",
" '🇪🇬 Egyiptom': 0.005352259916013787,\n",
" '🇪🇸 Spanyolország': 0.007139949980872076,\n",
" '🇲🇪 Montenegró': 0.004363854978700657,\n",
" '🇳🇱 Hollandia': 0.004358441045613121,\n",
" '🇺🇾 Uruguay': 0.005112697154705524,\n",
" '🇧🇦 Bosznia-Hercegovina': 0.004853606511873097,\n",
" '🇧🇭 Bahrein': 0.00460846839267169,\n",
" '🇨🇳 Kína': 0.0070720823162426765,\n",
" '🇮🇱 Izrael': 0.008600224037763232,\n",
" '🇯🇵 Japán': 0.006595555315911505,\n",
" '🇲🇳 Mongólia': 0.006469597636841371,\n",
" '🇲🇰 Macedónia': 0.005611523961908439,\n",
" '🇪🇪 Észtország': 0.0038682232582322542,\n",
" '🇮🇳 India': 0.005729611587134898,\n",
" '🇦🇱 Albánia': 0.005352259916013787,\n",
" '🇰🇿 Kazahsztán': 0.0043577498817673746,\n",
" '🇸🇩 Szudán': 0.0028782990358769767,\n",
" '🇹🇭 Thaiföld': 0.00594196423736642,\n",
" '🇮🇪 Írország': 0.00496595110259732,\n",
" '🇺🇦 Ukrajna': 0.004852153715321538,\n",
" '🇨🇬 Kongó': 0.0028782990358769767,\n",
" '🇨🇮 Elefántcsontpart': 0.004854432196791548,\n",
" '🇪🇨 Ecuador': 0.004860052081213451,\n",
" '🇵🇰 Pakisztán': 0.00560188111595954,\n",
" '🇲🇹 Málta': 0.00496595110259732,\n",
" '🇴🇲 Omán': 0.003366172219062498,\n",
" '🇧🇴 Bolívia': 0.005100036570201372,\n",
" '🇨🇱 Chile': 0.005909575666991053,\n",
" '🇵🇭 Fülöp-szigetek': 0.005470347541240245,\n",
" '🇦🇺 Ausztrália': 0.007525641880665576,\n",
" '🇬🇧 Egyesült Királyság': 0.006747419987406533,\n",
" '🇰🇷 Dél-Korea': 0.007649612831447117,\n",
" '🇵🇱 Lengyelország': 0.005941948300406605,\n",
" '🇬🇷 Görögország': 0.0063295227260704015,\n",
" '🇮🇹 Olaszország': 0.007863040576920954,\n",
" '🇵🇹 Portugália': 0.006194223152794109,\n",
" '🇧🇾 Fehéroroszország': 0.004603527658239433,\n",
" '🇨🇦 Kanada': 0.007822126208752719,\n",
" '🇱🇻 Lettország': 0.004936359287902891,\n",
" '🇱🇺 Luxemburg': 0.005352259916013787,\n",
" '🇦🇷 Argentína': 0.0066762941648204,\n",
" '🇱🇧 Libanon': 0.007223375290531563,\n",
" '🇲🇾 Malajzia': 0.005352259916013787,\n",
" '🇦🇿 Azerbajdzsán': 0.005111101269344156,\n",
" '🇩🇰 Dánia': 0.00504381465076994,\n",
" '🇹🇳 Tunézia': 0.004853606511873097,\n",
" '🇵🇪 Peru': 0.005104060569261915,\n",
" '🇸🇪 Svédország': 0.005625806399754334,\n",
" '🇩🇪 Németország': 0.00844175492695767,\n",
" '🇻🇪 Venezuela': 0.006886220927420233,\n",
" 'Más ország': 0.006626314720329489,\n",
" '🇲🇽 Mexikó': 0.005105829857685512,\n",
" '🇳🇴 Norvégia': 0.0047159237555387465,\n",
" '🇫🇮 Finnország': 0.006335072965167173,\n",
" '🇧🇬 Bulgária': 0.0059575629830048845,\n",
" '🇮🇷 Irán': 0.0065430083224719575,\n",
" '🇦🇹 Ausztria': 0.005731756079313629,\n",
" '🇬🇳 Guinea': 0.005106655542603961,\n",
" '🇹🇷 Törökország': 0.00660629772238702,\n",
" '🇸🇰 Szlovákia': 0.005361445108274767,\n",
" '🇮🇩 Indonézia': 0.005352259916013787,\n",
" '🇱🇹 Litvánia': 0.0054319514644931045,\n",
" '🇷🇺 Orosz Föderáció': 0.004607828735401047,\n",
" '🇸🇬 Szingapúr': 0.0036178469580575396,\n",
" '🇿🇦 Dél-Afrika': 0.005632847099836578,\n",
" '🇧🇷 Brazília': 0.005438992164575344,\n",
" '🇨🇷 Costa Rica': 0.005104060569261915,\n",
" '🇨🇿 Czechia': 0.005373583053941927,\n",
" '🇻🇳 Vietnam': 0.004608002138463273,\n",
" '🇮🇸 Izland': 0.00460846839267169,\n",
" '🇮🇶 Irak': 0.0037252508143495017,\n",
" '🇵🇦 Panama': 0.005230363052252317,\n",
" 'Jugoszlávia': 0.003630706648621571,\n",
" '🇸🇮 Szlovénia': 0.005939414857139631,\n",
" '🇱🇰 Srí Lanka': 0.0026277824672143674,\n",
" '🇿🇲 Zambia': 0.00323578174580261,\n",
" '🦅 UNPR - Uniunea Naţională pentru Progresul României': 0.02189994236045929,\n",
" '🕊️ PUNR - Partidul Unităţii Naţionale Române': 0.01364973400867147,\n",
" '⚪️ FSN - Frontul Salvării Naţionale': 0.008204589961143531,\n",
" '🍀 PER - Partidul Ecologist Român': 0.0074018460306266584,\n",
" '⚪️ FDSN - Frontul Democrat al Salvarii Nationale': 0.0014349393491836775,\n",
" '🌹 PSDR - Partidul Social Democrat Român': 0.010370561835785996,\n",
" '🍀 PDAR - Partidul Democrat Agrar din România': 0.006006174594913806,\n",
" '🔘 ULB - Uniunea Liberală \"Brătianu\"': 0.0017273469664676232,\n",
" '🍀 MER - Mişcarea Ecologistă din România': 0.006278374462774228,\n",
" '🍀 FER - Federaţia Ecologistă Română': 0.0017230149201793493,\n",
" '👤 Minorități - Minorități': 0.00378511104627142,\n",
" '🔘 PRNR - Partidul Reconstrucţiei Naţionale din România': 0.002825780772883024,\n",
" '🔘 PDM - Partidul Democrat al Muncii': 0.0014413965445653446,\n",
" '🔘 PLS - Partidul Liber Schimbist': 0.0033344501896417867,\n",
" '🔘 AUR - Alianţa pentru Unitatea Românilor': 0.0025024171713600397,\n",
" '📐 PNL-CD - Partidul Naţional Liberal': 0.002483252925169643,\n",
" '🔘 GDC - Gruparea Democratică de Centru': 0.0024743958214082248,\n",
" '🇯🇴 Jordánia': 0.005103750706493799,\n",
" '🇬🇪 Grúzia': 0.004864187945185547,\n",
" '🇦🇲 Örményország': 0.004475128669637516,\n",
" '🇰🇼 Kuvait': 0.004853723359435228,\n",
" '🔘 FC - Forţa Civică': 0.003857539943896385,\n",
" '🇸🇳 Szenegál': 0.002629789826356994,\n",
" 'Republica Franceză - Senat': 0.0018807282700510262,\n",
" '🇨🇭 Svájc': 0.003370495576231763,\n",
" '🇶🇦 Katar': 0.003615941209928061,\n",
" '🔘 PAR - Partidul Alternativa României': 0.003049619761496559,\n",
" '🔘 PTLDR - Partidul Tineretului Liber Democrat din România': 0.002247439020088131,\n",
" 'fosta Republică Iugoslavă Macedonia': 0.0013816197347149696}"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pr"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'🌷 RMDSZ - Romániai Magyar Demokrata Szövetség': 0.02602197879845518,\n",
" '🇨🇺 Kuba': 0.004851567098252788,\n",
" '🔱 PRM - Partidul România Mare': 0.023887275115809462,\n",
" '🌹 PSD - Partidul Social Democrat': 0.028667651982590595,\n",
" '🔶 PDL - Partidul Democrat Liberal': 0.025412426811281016,\n",
" '🕊️ PC - Partidul Conservator': 0.022630898755092572,\n",
" '🕊️ PUR-SL - Partidul Umanist din România': 0.021094396090370244,\n",
" '📐 PNL - Partidul Naţional Liberal': 0.028295364791388777,\n",
" '⚛️ PP-DD - Partidul Poporului Dan Diaconescu': 0.02603840281696248,\n",
" '👤 Independent - Independent': 0.028667651982590595,\n",
" '🕊️ ALDE - Partidul Alianţa Liberalilor şi Democraţilor': 0.025004265415305805,\n",
" '🌹 PDSR - Partidul Democraţiei Sociale din România': 0.021342768877524346,\n",
" '✳️ PNTCD - Partidul Naţional Ţărănesc Creştin Democrat': 0.019135757785766924,\n",
" '🔶 PD - Partidul Democrat': 0.025381549293726775,\n",
" '🍏 PMP - Partidul Mişcarea Populară': 0.024715187648429053,\n",
" '🔷 USR - Uniunea Salvaţi România': 0.027826132890917076,\n",
" '🇩🇿 Algéria': 0.004853336386676385,\n",
" '🇲🇦 Marokkó': 0.005351953774124172,\n",
" '🇫🇷 Franciaország': 0.008671185690833359,\n",
" '🇨🇴 Kolumbia': 0.004851567098252788,\n",
" '🇨🇾 Ciprus': 0.005351953774124172,\n",
" '🇭🇷 Horvátország': 0.004605155048270961,\n",
" '🇧🇪 Belgium': 0.009222402605843649,\n",
" '🇭🇺 Magyarország': 0.0065783301690037115,\n",
" '🇸🇦 Szaúd-Arábia': 0.005112582424224587,\n",
" '🇸🇾 Szíria': 0.004965041320129961,\n",
" '🇹🇲 Türkmenisztán': 0.004360034937416001,\n",
" '🇦🇪 Egyesült Arab Emírségek': 0.0036188247022872597,\n",
" '🇪🇬 Egyiptom': 0.005351953774124172,\n",
" '🇪🇸 Spanyolország': 0.00713953578890378,\n",
" '🇲🇪 Montenegró': 0.004363620870196835,\n",
" '🇳🇱 Hollandia': 0.004358206937109295,\n",
" '🇺🇾 Uruguay': 0.00511240902116236,\n",
" '🇧🇦 Bosznia-Hercegovina': 0.004853336386676385,\n",
" '🇧🇭 Bahrein': 0.004608216275821426,\n",
" '🇨🇳 Kína': 0.00707166812427438,\n",
" '🇮🇱 Izrael': 0.00859977382910203,\n",
" '🇯🇵 Japán': 0.006595177140636101,\n",
" '🇲🇳 Mongólia': 0.006469219461565965,\n",
" '🇲🇰 Macedónia': 0.005611199811672374,\n",
" '🇪🇪 Észtország': 0.003868025166421323,\n",
" '🇮🇳 India': 0.0057292874368988335,\n",
" '🇦🇱 Albánia': 0.005351953774124172,\n",
" '🇰🇿 Kazahsztán': 0.004357515773263552,\n",
" '🇸🇩 Szudán': 0.00287817297745184,\n",
" '🇹🇭 Thaiföld': 0.005941622078783914,\n",
" '🇮🇪 Írország': 0.004965680977400611,\n",
" '🇺🇦 Ukrajna': 0.00485188359012482,\n",
" '🇨🇬 Kongó': 0.00287817297745184,\n",
" '🇨🇮 Elefántcsontpart': 0.00485416207159483,\n",
" '🇪🇨 Ecuador': 0.004859781956016735,\n",
" '🇵🇰 Pakisztán': 0.005601574974069924,\n",
" '🇲🇹 Málta': 0.004965680977400611,\n",
" '🇴🇲 Omán': 0.0033660101439444657,\n",
" '🇧🇴 Bolívia': 0.0050997484366582125,\n",
" '🇨🇱 Chile': 0.005909233508408549,\n",
" '🇵🇭 Fülöp-szigetek': 0.005470041399350632,\n",
" '🇦🇺 Ausztrália': 0.007525227688697271,\n",
" '🇬🇧 Egyesült Királyság': 0.00674704181213113,\n",
" '🇰🇷 Dél-Korea': 0.007649180631132364,\n",
" '🇵🇱 Lengyelország': 0.005941606141824104,\n",
" '🇬🇷 Görögország': 0.006329162559141445,\n",
" '🇮🇹 Olaszország': 0.007862590368259752,\n",
" '🇵🇹 Portugália': 0.006193862985865157,\n",
" '🇧🇾 Fehéroroszország': 0.004603275541389162,\n",
" '🇨🇦 Kanada': 0.007821676000091517,\n",
" '🇱🇻 Lettország': 0.004936089162706171,\n",
" '🇱🇺 Luxemburg': 0.005351953774124172,\n",
" '🇦🇷 Argentína': 0.00667591598954499,\n",
" '🇱🇧 Libanon': 0.007222961098563262,\n",
" '🇲🇾 Malajzia': 0.005351953774124172,\n",
" '🇦🇿 Azerbajdzsán': 0.00511081313580099,\n",
" '🇩🇰 Dánia': 0.005043544525573226,\n",
" '🇹🇳 Tunézia': 0.004853336386676385,\n",
" '🇵🇪 Peru': 0.005103772435718748,\n",
" '🇸🇪 Svédország': 0.005625482249518275,\n",
" '🇩🇪 Németország': 0.008441286709950027,\n",
" '🇻🇪 Venezuela': 0.00688582474379838,\n",
" 'Más ország': 0.006625954553400526,\n",
" '🇲🇽 Mexikó': 0.005105541724142345,\n",
" '🇳🇴 Norvégia': 0.004715671638688481,\n",
" '🇫🇮 Finnország': 0.006334712798238216,\n",
" '🇧🇬 Bulgária': 0.005957220824422372,\n",
" '🇮🇷 Irán': 0.006542630147196558,\n",
" '🇦🇹 Ausztria': 0.0057314319290775705,\n",
" '🇬🇳 Guinea': 0.00510636740906079,\n",
" '🇹🇷 Törökország': 0.006605919547111614,\n",
" '🇸🇰 Szlovákia': 0.005361138966385151,\n",
" '🇮🇩 Indonézia': 0.005351953774124172,\n",
" '🇱🇹 Litvánia': 0.005431645322603493,\n",
" '🇷🇺 Orosz Föderáció': 0.004607576618550775,\n",
" '🇸🇬 Szingapúr': 0.0036176668745930584,\n",
" '🇿🇦 Dél-Afrika': 0.005632522949600517,\n",
" '🇧🇷 Brazília': 0.005438686022685735,\n",
" '🇨🇷 Costa Rica': 0.005103772435718748,\n",
" '🇨🇿 Czechia': 0.005373276912052315,\n",
" '🇻🇳 Vietnam': 0.004607750021613002,\n",
" '🇮🇸 Izland': 0.004608216275821426,\n",
" '🇮🇶 Irak': 0.0037250707308850214,\n",
" '🇵🇦 Panama': 0.005230074918709154,\n",
" 'Jugoszlávia': 0.003630526565157089,\n",
" '🇸🇮 Szlovénia': 0.005939072698557119,\n",
" '🇱🇰 Srí Lanka': 0.00262767441713568,\n",
" '🇿🇲 Zambia': 0.003235637679031026,\n",
" '🦅 UNPR - Uniunea Naţională pentru Progresul României': 0.021901292986442913,\n",
" '🕊️ PUNR - Partidul Unităţii Naţionale Române': 0.013650562392608045,\n",
" '⚪️ FSN - Frontul Salvării Naţionale': 0.008205058178151176,\n",
" '🍀 PER - Partidul Ecologist Român': 0.007402260222594942,\n",
" '⚪️ FDSN - Frontul Democrat al Salvarii Nationale': 0.0014349573575301233,\n",
" '🌹 PSDR - Partidul Social Democrat Român': 0.010371174119565198,\n",
" '🍀 PDAR - Partidul Democrat Agrar din România': 0.006006498745149857,\n",
" '🔘 ULB - Uniunea Liberală \"Brătianu\"': 0.0017273829831605206,\n",
" '🍀 MER - Mişcarea Ecologistă din România': 0.00627871662135673,\n",
" '🍀 FER - Federaţia Ecologistă Română': 0.0017230509368722433,\n",
" '👤 Minorități - Minorități': 0.0037852731213894415,\n",
" '🔘 PRNR - Partidul Reconstrucţiei Naţionale din România': 0.002825888822961708,\n",
" '🔘 PDM - Partidul Democrat al Muncii': 0.0014414145529117928,\n",
" '🔘 PLS - Partidul Liber Schimbist': 0.0033345942564133643,\n",
" '🔘 AUR - Alianţa pentru Unitatea Românilor': 0.002502507213092278,\n",
" '📐 PNL-CD - Partidul Naţional Liberal': 0.002483342966901878,\n",
" '🔘 GDC - Gruparea Democratică de Centru': 0.0024744858631404643,\n",
" '🇯🇴 Jordánia': 0.005103462572950642,\n",
" '🇬🇪 Grúzia': 0.004863917819988829,\n",
" '🇦🇲 Örményország': 0.004474894561133693,\n",
" '🇰🇼 Kuvait': 0.004853453234238512,\n",
" '🔘 FC - Forţa Civică': 0.0038577200273608612,\n",
" '🇸🇳 Szenegál': 0.002629681776278309,\n",
" 'Republica Franceză - Senat': 0.0018806742450116795,\n",
" '🇨🇭 Svájc': 0.0033703335011137283,\n",
" '🇶🇦 Katar': 0.003615761126463582,\n",
" '🔘 PAR - Partidul Alternativa României': 0.0030497458199216865,\n",
" '🔘 PTLDR - Partidul Tineretului Liber Democrat din România': 0.002247511053473924,\n",
" 'fosta Republică Iugoslavă Macedonia': 0.0013816017263685201}"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pr"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7125488"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"open('json/plotter_csoportok.json','w').write(json.dumps(network))"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"------ Bizottság Bizottság ------\n",
" ------by value------\n",
"⏫ Gazdaság, ipar ➿ Infrastruktúra, energia, kommunikáció 6.3815852945016855 24729.79357480326\n",
"🔀 Állami ügyek 🚻 Munka, szociális és családi ügyek 2.770967662287746 22988.38533477297\n",
"🚻 Munka, szociális és családi ügyek 🔄 Közigazgatás, környezetvédelem 2.721019701321973 22978.028420834973\n",
"🔀 Állami ügyek 🔄 Közigazgatás, környezetvédelem 2.503839384409689 21451.718851576206\n",
"⏺️ Európa ⏫ Gazdaság, ipar 2.5424269852369554 20345.724792275054\n",
" ------by geometric------\n",
"⏫ Gazdaság, ipar ➿ Infrastruktúra, energia, kommunikáció 6.3815852945016855 24729.79357480326\n",
"➿ Infrastruktúra, energia, kommunikáció 🔄 Közigazgatás, környezetvédelem 5.214994533327797 19676.21109542993\n",
"🛃 Biztonság 🌐 Külpolitika, diaszpóra 4.753380998921376 7375.420321314794\n",
"➿ Infrastruktúra, energia, kommunikáció 🛃 Biztonság 4.555302494401599 10766.304167201957\n",
"🔀 Állami ügyek 🚹 Emberi jogok, kisebbségek 3.503115673195939 16457.96633761585\n",
" ------common------\n",
"('🔠 Oktatás, tudomány, sport', '🚻 Munka, szociális és családi ügyek')\n",
"('➿ Infrastruktúra, energia, kommunikáció', '🔄 Közigazgatás, környezetvédelem')\n",
"('⏫ Gazdaság, ipar', '➿ Infrastruktúra, energia, kommunikáció')\n",
"('🔀 Állami ügyek', '🔄 Közigazgatás, környezetvédelem')\n",
"('🔀 Állami ügyek', '🚻 Munka, szociális és családi ügyek')\n",
"('🔀 Állami ügyek', '🚹 Emberi jogok, kisebbségek')\n",
"('⏫ Gazdaság, ipar', '⏺️ Európa')\n",
"('🔄 Közigazgatás, környezetvédelem', '🚻 Munka, szociális és családi ügyek')\n",
"\n",
"------ Ország Ország ------\n",
" ------by value------\n",
"🇲🇦 Marokkó 🇫🇷 Franciaország 11.556748483650424 13181.936535653984\n",
"🇨🇳 Kína 🇮🇹 Olaszország 26.50394646393255 12451.171035058527\n",
"🇨🇳 Kína 🇰🇷 Dél-Korea 20.079686797979093 12257.336594856633\n",
"🇸🇮 Szlovénia 🇨🇿 Czechia 31.97214452609909 11531.93966238356\n",
"🇨🇦 Kanada 🇮🇹 Olaszország 19.60198093939084 11267.420423988084\n",
" ------by geometric------\n",
"🇸🇮 Szlovénia 🇨🇿 Czechia 31.97214452609909 11531.93966238356\n",
"🇨🇳 Kína 🇮🇹 Olaszország 26.50394646393255 12451.171035058527\n",
"🇸🇮 Szlovénia 🇸🇰 Szlovákia 25.307823696917435 9988.484227807989\n",
"🇦🇿 Azerbajdzsán 🇹🇷 Törökország 23.74877770870401 7367.774933254753\n",
"🇨🇳 Kína 🇱🇧 Libanon 22.232883485319345 10347.379256902952\n",
" ------common------\n",
"('🇪🇸 Spanyolország', '🇮🇹 Olaszország')\n",
"('🇨🇳 Kína', '🇮🇹 Olaszország')\n",
"('🇨🇳 Kína', '🇱🇧 Libanon')\n",
"('🇨🇿 Czechia', '🇭🇷 Horvátország')\n",
"('🇨🇳 Kína', '🇰🇷 Dél-Korea')\n",
"('🇨🇿 Czechia', '🇸🇮 Szlovénia')\n",
"('🇯🇵 Japán', '🇰🇷 Dél-Korea')\n",
"('🇨🇦 Kanada', '🇮🇹 Olaszország')\n",
"('🇧🇬 Bulgária', '🇨🇦 Kanada')\n",
"\n",
"------ Megye Párt ------\n",
" ------by value------\n",
"🇷🇴 Bukarest 🌹 PSD - Partidul Social Democrat 87.86548483252996 18120.20076267836\n",
"🇷🇴 Bukarest 📐 PNL - Partidul Naţional Liberal 116.76550645203189 16771.311820854728\n",
"🇷🇴 Iași 🌹 PSD - Partidul Social Democrat 33.02456945564692 12441.217436905392\n",
"🇷🇴 Prahova 🌹 PSD - Partidul Social Democrat 27.766357873987648 11810.660221959935\n",
"🇷🇴 Bákó 🌹 PSD - Partidul Social Democrat 21.836376567942505 10787.24092443513\n",
" ------by geometric------\n",
"🇷🇴 Kovászna 🌷 RMDSZ - Romániai Magyar Demokrata Szövetség 207.69454948102333 9797.30941356248\n",
"🇷🇴 Hargita 🌷 RMDSZ - Romániai Magyar Demokrata Szövetség 201.5719535421448 10399.149668255362\n",
"🇷🇴 Bukarest 🔷 USR - Uniunea Salvaţi România 164.67544708760144 8672.33137038993\n",
"🇷🇴 Bukarest 📐 PNL - Partidul Naţional Liberal 116.76550645203189 16771.311820854728\n",
"🇷🇴 Bukarest 🌹 PSD - Partidul Social Democrat 87.86548483252996 18120.20076267836\n",
" ------common------\n",
"('🇷🇴 Hargita', '🌷 RMDSZ - Romániai Magyar Demokrata Szövetség')\n",
"('🇷🇴 Prahova', '🌹 PSD - Partidul Social Democrat')\n",
"('🇷🇴 Bukarest', '🔶 PDL - Partidul Democrat Liberal')\n",
"('🇷🇴 Bukarest', '📐 PNL - Partidul Naţional Liberal')\n",
"('🇷🇴 Iași', '🌹 PSD - Partidul Social Democrat')\n",
"('🇷🇴 Bukarest', '🔷 USR - Uniunea Salvaţi România')\n",
"('🇷🇴 Bákó', '🌹 PSD - Partidul Social Democrat')\n",
"('🇷🇴 Bukarest', '🌹 PSD - Partidul Social Democrat')\n",
"('🇷🇴 Buzău', '🌹 PSD - Partidul Social Democrat')\n",
"('🇷🇴 Kovászna', '🌷 RMDSZ - Romániai Magyar Demokrata Szövetség')\n",
"\n",
"------ Megye Bizottság ------\n",
" ------by value------\n",
"🇷🇴 Bukarest 🎦 Művészet, média 22.480999780043156 10830.883350022794\n",
"🇷🇴 Bukarest 🌐 Külpolitika, diaszpóra 12.986946971080092 10579.55306360625\n",
"🇷🇴 Bukarest 🚻 Munka, szociális és családi ügyek 8.218809658888784 9216.778071435285\n",
"🇷🇴 Bukarest 🔀 Állami ügyek 5.3483053008896615 8566.916323345182\n",
"🇷🇴 Bukarest ⏫ Gazdaság, ipar 4.978623249388054 7691.277865978298\n",
" ------by geometric------\n",
"🇷🇴 Bukarest 🎦 Művészet, média 22.480999780043156 10830.883350022794\n",
"🇷🇴 Diaszpóra 🌐 Külpolitika, diaszpóra 18.445381759710465 5805.441164838362\n",
"🇷🇴 Bukarest 🌐 Külpolitika, diaszpóra 12.986946971080092 10579.55306360625\n",
"🇷🇴 Iași 🔠 Oktatás, tudomány, sport 12.159777108937417 6536.234817559425\n",
"🇷🇴 Bukarest 🚻 Munka, szociális és családi ügyek 8.218809658888784 9216.778071435285\n",
" ------common------\n",
"('⏫ Gazdaság, ipar', '🇷🇴 Bukarest')\n",
"('🇷🇴 Kolozs', '🔠 Oktatás, tudomány, sport')\n",
"('⏫ Gazdaság, ipar', '🇷🇴 Prahova')\n",
"('🇷🇴 Bukarest', '🚻 Munka, szociális és családi ügyek')\n",
"('🇷🇴 Bukarest', '🔠 Oktatás, tudomány, sport')\n",
"('🇷🇴 Bukarest', '🌐 Külpolitika, diaszpóra')\n",
"('🇷🇴 Bukarest', '🎦 Művészet, média')\n",
"('🇷🇴 Iași', '🔠 Oktatás, tudomány, sport')\n",
"('⏺️ Európa', '🇷🇴 Bukarest')\n",
"('♿️ Egészségügy', '🇷🇴 Bukarest')\n",
"('🇷🇴 Brassó', '🔀 Állami ügyek')\n",
"('🇷🇴 Diaszpóra', '🌐 Külpolitika, diaszpóra')\n",
"('⏫ Gazdaság, ipar', '🇷🇴 Brassó')\n",
"('🇷🇴 Bukarest', '🔀 Állami ügyek')\n",
"\n",
"------ Megye Ország ------\n",
" ------by value------\n",
"🇷🇴 Bukarest 🇫🇷 Franciaország 33.79416821490717 8832.854055227512\n",
"🇷🇴 Bukarest 🇮🇱 Izrael 42.60015947037402 6865.587562850804\n",
"🇷🇴 Bukarest 🇭🇺 Magyarország 19.513911848759772 5057.887444764805\n",
"🇷🇴 Bihar 🇭🇺 Magyarország 44.85370531668689 5031.32116195008\n",
" ------by geometric------\n",
"🇷🇴 Bihar 🇭🇺 Magyarország 44.85370531668689 5031.32116195008\n",
"🇷🇴 Bukarest 🇮🇱 Izrael 42.60015947037402 6865.587562850804\n",
"🇷🇴 Bukarest 🇫🇷 Franciaország 33.79416821490717 8832.854055227512\n",
"🇷🇴 Bukarest 🇭🇺 Magyarország 19.513911848759772 5057.887444764805\n",
" ------common------\n",
"('🇮🇱 Izrael', '🇷🇴 Bukarest')\n",
"('🇭🇺 Magyarország', '🇷🇴 Bihar')\n",
"('🇫🇷 Franciaország', '🇷🇴 Bukarest')\n",
"('🇭🇺 Magyarország', '🇷🇴 Bukarest')\n",
"\n",
"------ Párt Bizottság ------\n",
" ------by value------\n",
"🌹 PSD - Partidul Social Democrat 🔄 Közigazgatás, környezetvédelem 36.40802788855921 42239.99235359756\n",
"🌹 PSD - Partidul Social Democrat 🔀 Állami ügyek 34.710301451591356 41245.38678919411\n",
"🌹 PSD - Partidul Social Democrat ⏫ Gazdaság, ipar 32.21093082827018 38825.25051682637\n",
"🌹 PSD - Partidul Social Democrat 🚻 Munka, szociális és családi ügyek 38.34153667308945 36639.44709672594\n",
"🌹 PSD - Partidul Social Democrat 🌐 Külpolitika, diaszpóra 20.223508582210595 26609.84873658999\n",
" ------by geometric------\n",
"🌹 PSD - Partidul Social Democrat 🚻 Munka, szociális és családi ügyek 38.34153667308945 36639.44709672594\n",
"🌹 PSD - Partidul Social Democrat 🔄 Közigazgatás, környezetvédelem 36.40802788855921 42239.99235359756\n",
"🌹 PSD - Partidul Social Democrat 🔀 Állami ügyek 34.710301451591356 41245.38678919411\n",
"🌹 PSD - Partidul Social Democrat ⏫ Gazdaság, ipar 32.21093082827018 38825.25051682637\n",
"📐 PNL - Partidul Naţional Liberal 🚻 Munka, szociális és családi ügyek 23.68707567074256 24626.697635912107\n",
" ------common------\n",
"('🌹 PSD - Partidul Social Democrat', '🚰 Mezőgazdaság, erdők')\n",
"('🌹 PSD - Partidul Social Democrat', '🔀 Állami ügyek')\n",
"('🌹 PSD - Partidul Social Democrat', '🚻 Munka, szociális és családi ügyek')\n",
"('📐 PNL - Partidul Naţional Liberal', '🚰 Mezőgazdaság, erdők')\n",
"('🌹 PSD - Partidul Social Democrat', '🔄 Közigazgatás, környezetvédelem')\n",
"('📐 PNL - Partidul Naţional Liberal', '🔀 Állami ügyek')\n",
"('📐 PNL - Partidul Naţional Liberal', '🚻 Munka, szociális és családi ügyek')\n",
"('⏫ Gazdaság, ipar', '🌹 PSD - Partidul Social Democrat')\n",
"('🌐 Külpolitika, diaszpóra', '🌹 PSD - Partidul Social Democrat')\n",
"('🌹 PSD - Partidul Social Democrat', '🔠 Oktatás, tudomány, sport')\n",
"('⏫ Gazdaság, ipar', '📐 PNL - Partidul Naţional Liberal')\n",
"('🌹 PSD - Partidul Social Democrat', '💹 Pénzügy')\n",
"\n",
"------ Párt Ország ------\n",
" ------by value------\n",
"🌹 PSD - Partidul Social Democrat 🇸🇰 Szlovákia 45.10801169781598 17944.01375094544\n",
"🌹 PSD - Partidul Social Democrat 🇮🇳 India 38.85123522399486 17053.20113581174\n",
"🌹 PSD - Partidul Social Democrat 🇦🇺 Ausztrália 37.482481510540815 16729.29882776785\n",
"🌹 PSD - Partidul Social Democrat 🇸🇪 Svédország 31.34425985660645 16718.547390287873\n",
"📐 PNL - Partidul Naţional Liberal 🇫🇷 Franciaország 29.683676361468503 16342.327291171045\n",
" ------by geometric------\n",
"🌹 PSD - Partidul Social Democrat 🇸🇰 Szlovákia 45.10801169781598 17944.01375094544\n",
"🌹 PSD - Partidul Social Democrat 🇮🇳 India 38.85123522399486 17053.20113581174\n",
"🌹 PSD - Partidul Social Democrat 🇦🇺 Ausztrália 37.482481510540815 16729.29882776785\n",
"🌹 PSD - Partidul Social Democrat 🇫🇮 Finnország 34.97970645866033 15480.64388179426\n",
"⚪️ FSN - Frontul Salvării Naţionale 🇮🇹 Olaszország 33.45423676527179 9730.475995199435\n",
" ------common------\n",
"('🇦🇺 Ausztrália', '🌹 PSD - Partidul Social Democrat')\n",
"('🇸🇪 Svédország', '🌹 PSD - Partidul Social Democrat')\n",
"('🇪🇸 Spanyolország', '🌹 PSD - Partidul Social Democrat')\n",
"('🇫🇮 Finnország', '🌹 PSD - Partidul Social Democrat')\n",
"('🇮🇳 India', '🌹 PSD - Partidul Social Democrat')\n",
"('🇫🇷 Franciaország', '📐 PNL - Partidul Naţional Liberal')\n",
"('🇸🇰 Szlovákia', '🌹 PSD - Partidul Social Democrat')\n",
"('🇭🇷 Horvátország', '🌹 PSD - Partidul Social Democrat')\n",
"('🇱🇺 Luxemburg', '🌹 PSD - Partidul Social Democrat')\n",
"('🇿🇦 Dél-Afrika', '🌹 PSD - Partidul Social Democrat')\n"
]
}
],
"source": [
"N=5000\n",
"n=15\n",
"key='geometric'\n",
"for tip in tipusok:\n",
" for tip2 in tipusok[tip]:\n",
" print('\\n------',tip,tip2,'------')\n",
" g=[i for i in network[tip][tip2]['links'] if i['value']>N]\n",
" \n",
" print(' ------by value------')\n",
" nset1=set()\n",
" for k,i in enumerate(sorted(g, key=lambda k: k['value'],reverse=True)[:n]):\n",
" if k<5:\n",
" print(i['source'],i['target'],i[key],i['value'])\n",
" nset1.add(tuple(np.sort([i['source'],i['target']])))\n",
" \n",
" print(' ------by '+key+'------')\n",
" nset2=set()\n",
" for k,i in enumerate(sorted(g, key=lambda k: k[key],reverse=True)[:n]):\n",
" if k<5:\n",
" print(i['source'],i['target'],i[key],i['value'])\n",
" nset2.add(tuple(np.sort([i['source'],i['target']])))\n",
" \n",
" print(' ------common------')\n",
" for i in nset1.intersection(nset2):\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plots"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|