<!doctype html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title> 平面几何 `duyan|20180123|2` - 语时lab </title> <link href="atom.xml" rel="alternate" title="语时lab" type="application/atom+xml"> <link rel="stylesheet" href="asset/css/foundation.min.css" /> <link rel="stylesheet" href="asset/css/docs.css" /> <script src="asset/js/vendor/modernizr.js"></script> <script src="asset/js/vendor/jquery.js"></script> <script src="asset/highlightjs/highlight.pack.js"></script> <link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css"> <script>hljs.initHighlightingOnLoad();</script> <script type="text/javascript"> function before_search(){ var searchVal = 'site:cshishaliu.github.io ' + document.getElementById('search_input').value; document.getElementById('search_q').value = searchVal; return true; } </script> </head> <body class="antialiased hide-extras"> <div class="marketing off-canvas-wrap" data-offcanvas> <div class="inner-wrap"> <nav class="top-bar docs-bar hide-for-small" data-topbar> <section class="top-bar-section"> <div class="row"> <div style="position: relative;width:100%;"><div style="position: absolute; width:100%;"> <ul id="main-menu" class="left"> <li id=""><a target="_self" href="index.html">Home</a></li> <li id=""><a target="_self" href="book.html">Books</a></li> <li id=""><a target="_self" href="links.html">Links</a></li> <li id=""><a target="_self" href="archives.html">Archives</a></li> <li id=""><a target="_self" href="about.html">About</a></li> <li id=""><a target="_self" href="todo.html">Todo</a></li> </ul> <ul class="right" id="search-wrap"> <li> <form target="_blank" onsubmit="return before_search();" action="https://google.com/search" method="get"> <input type="hidden" id="search_q" name="q" value="" /> <input tabindex="1" type="search" id="search_input" placeholder="Search"/> </form> </li> </ul> </div></div> </div> </section> </nav> <nav class="tab-bar show-for-small"> <a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon"> <span> 语时lab</span> </a> </nav> <aside class="left-off-canvas-menu"> <ul class="off-canvas-list"> <li><a target="_self" href="index.html">Home</a></li> <li><a target="_self" href="book.html">Books</a></li> <li><a target="_self" href="links.html">Links</a></li> <li><a target="_self" href="archives.html">Archives</a></li> <li><a target="_self" href="about.html">About</a></li> <li><a target="_self" href="todo.html">Todo</a></li> <li><label>Categories</label></li> <li><a href="problemsolving.html">解题</a></li> <li><a href="mathpost.html">数学随笔</a></li> <li><a href="Dev.html">Dev</a></li> <li><a href="Games.html">Games</a></li> <li><a href="obsolete.html">obsolete</a></li> <li><a href="misc.html">misc</a></li> </ul> </aside> <a class="exit-off-canvas" href="#"></a> <section id="main-content" role="main" class="scroll-container"> <script type="text/javascript"> $(function(){ $('#menu_item_index').addClass('is_active'); }); </script> <div class="row"> <div class="large-8 medium-8 columns"> <div class="markdown-body article-wrap"> <div class="article"> <h1>平面几何 `duyan|20180123|2`</h1> <div class="read-more clearfix"> <span class="date">2018/01/23</span> <span>posted in </span> <span class="posted-in"><a href='problemsolving.html'>解题</a></span> <span class="comments"> </span> </div> </div><!-- article --> <div class="article-content"> <p><mark>TODO: 微博图床已挂, 本篇缺图, 需要找回</mark></p> <p>已知 \(H\) 为 \(\triangle ABC\) 的垂心, 过 \(H\) 的直线交 \(BC, AB\) 于 \(D,Z\), 过 \(H\) 且垂直于 \(ZH\) 的另一条直线交 \(BC, AC\) 于 \(E,X\), 点 \(Y\) 使得 \(DY \parallel AC, EY \parallel AB\). 求证: \(X,Y,Z\) 三点共线.</p> <p><img src="https://ws2.sinaimg.cn/large/006tKfTcly1fnqjnu4ou9j30iu0h7js7.jpg" alt=""/></p> <span id="more"></span><!-- more --> <blockquote> <p>Qer: duyan 20180123</p> </blockquote> <h2 id="toc_0">解答</h2> <p>延长 \(YD\) 交 \(AB\) 于 \(G\), 延长 \(YE\) 交 \(AC\) 于 \(F\). 比较 \(\triangle GYZ\) 和 \(\triangle FXY\), 已有两边对应平行, 故只需证明它们相似即可. 下面设法证明 \(\dfrac{GZ}{GY} = \dfrac{FY}{FX}\), 亦即证明 \(GZ \cdot FX = GY \cdot FY\).</p> <p>记 \(\angle HDE = \alpha\), \(\angle HED = \beta\), 有 \(\alpha + \beta = 90^\circ\). 另外, 下面直接将 \(\triangle ABC\) 的三内角简记为 \(A,B,C\).</p> <p><img src="https://ws1.sinaimg.cn/large/006tKfTcly1fnqjnwnkb2j30iu0h70to.jpg" alt=""/></p> <p>在 \(\triangle GDZ\) 中, 有 <br/> \[<br/> \dfrac{GZ}{GD} = \dfrac{\sin \angle GDZ}{\sin \angle GZD} = \dfrac{\sin (C+\alpha)}{\sin(B-\alpha)}<br/> \]<br/> 在 \(\triangle FEX\) 中, 有<br/> \[<br/> \dfrac{FX}{FE} = \dfrac{\sin \angle FEX}{\sin \angle FXE} = \dfrac{\sin (B+\beta)}{\sin(C-\beta)}<br/> \]<br/> 故<br/> \[<br/> \begin{aligned}<br/> \dfrac{GZ}{GD} \cdot \dfrac{FX}{FE} <br/> &= \dfrac{\sin (C+\alpha)}{\sin(B-\alpha)} \cdot \dfrac{\sin (B+\beta)}{\sin(C-\beta)} = \dfrac{\cos (C-\beta)}{\sin(B-\alpha)} \cdot \dfrac{\cos (B-\alpha)}{\sin(C-\beta)} \\<br/> &= \dfrac{\cos(B-C) + \cos(B+C-90^\circ)}{\cos(B-C) - \cos(B+C-90^\circ)} \\<br/> &= \dfrac{\cos(B-C) + \sin A}{\cos(B-C) - \sin A}<br/> \end{aligned}<br/> \]<br/> 下面只需证明 \(\dfrac{GY}{GD} \cdot \dfrac{FY}{FE} = \dfrac{\cos(B-C) + \sin A}{\cos(B-C) - \sin A}\).</p> <p>显然, \(\dfrac{GY}{GD} \cdot \dfrac{FY}{FE} = \dfrac{BE}{BD} \cdot \dfrac{CE}{CE}\), 考虑 \(B,D,E,C\) 四点的交比<sup id="fnref1"><a href="#fn1" rel="footnote">1</a></sup>, 有</p> <p>\[<br/> \begin{aligned}<br/> \dfrac{ED}{BD} \cdot \dfrac{BC}{EC} <br/> &= \dfrac{\sin \angle EHD}{\sin \angle BHD} \cdot \dfrac{\sin \angle BHC}{\sin \angle EHC} \\<br/> &= \dfrac{\sin 90^\circ}{\sin (\alpha-90^\circ+C)} \cdot \dfrac{\sin (180^\circ - A)}{\sin (\beta-90^\circ+B)} \\<br/> &= \dfrac{\sin A}{\sin (B-\alpha) \sin (C-\beta)} \\<br/> &= \dfrac{2\sin A}{\cos (B-C) - \sin A}<br/> \end{aligned}<br/> \]</p> <p>因此<br/> \[<br/> \begin{aligned}<br/> \dfrac{BE}{BD} \cdot \dfrac{CE}{CE} <br/> &= \dfrac{(BD+ED) \cdot (DE+EC)}{BD \cdot EC} \\<br/> &= \dfrac{ED \cdot (BD+DE+EC) + BD \cdot EC}{BD \cdot EC} \\<br/> &= \dfrac{ED \cdot BC}{BD \cdot EC} +1 \\<br/> &= \dfrac{2\sin A}{\cos (B-C) - \sin A} + 1 \\<br/> &= \dfrac{\cos (B-C) + \sin A}{\cos (B-C) - \sin A}<br/> \end{aligned}<br/> \]<br/> 证毕.</p> <div class="footnotes"> <hr/> <ol> <li id="fn1"> <p>交比的相关结论可用正弦定理证明. <a href="#fnref1" rev="footnote">↩</a></p> </li> </ol> </div> </div> <div class="row"> <div class="large-6 columns"> <p class="text-left" style="padding:15px 0px;"> <a href="15238569346799.html" title="Previous Post: Poncelet 定理: 圆和抛物线 `zhangboxin|20180409`">« Poncelet 定理: 圆和抛物线 `zhangboxin|20180409`</a> </p> </div> <div class="large-6 columns"> <p class="text-right" style="padding:15px 0px;"> <a href="15166821516457.html" title="Next Post: USAMO19xx #5, 高斯函数, 不等式, 第二数学归纳法">USAMO19xx #5, 高斯函数, 不等式, 第二数学归纳法 »</a> </p> </div> </div> <div class="comments-wrap"> <div class="share-comments"> </div> </div> </div><!-- article-wrap --> </div><!-- large 8 --> <div class="large-4 medium-4 columns"> <div class="hide-for-small"> <div id="sidebar" class="sidebar"> <div id="site-info" class="site-info"> <div class="site-a-logo"><img src="https://i.loli.net/2020/02/26/hjpG5rStAgRYm9P.jpg" /></div> <h1>语时lab</h1> <div class="site-des">Gnoloac 发文的地方</div> <div class="social"> <a target="_blank" class="weibo" href="https://weibo.com/gnoloac" title="weibo">Weibo</a> <a target="_blank" class="github" target="_blank" href="https://github.com/cshishaliu" title="GitHub">GitHub</a> <a target="_blank" class="email" href="mailto:cshishaliu@163.com" title="Email">Email</a> <a target="_blank" class="rss" href="atom.xml" title="RSS">RSS</a> </div> </div> <div id="site-categories" class="side-item "> <div class="side-header"> <h2>Categories</h2> </div> <div class="side-content"> <p class="cat-list"> <a href="problemsolving.html"><strong>解题</strong></a> <a href="mathpost.html"><strong>数学随笔</strong></a> <a href="Dev.html"><strong>Dev</strong></a> <a href="Games.html"><strong>Games</strong></a> <a href="obsolete.html"><strong>obsolete</strong></a> <a href="misc.html"><strong>misc</strong></a> </p> </div> </div> <div id="site-categories" class="side-item"> <div class="side-header"> <h2>Recent Posts</h2> </div> <div class="side-content"> <ul class="posts-list"> <li class="post"> <a href="15864160277643.html">平面几何的全等和相似符号到底该怎么写</a> </li> <li class="post"> <a href="15863333927200.html">数列不等式 `lhc@jinan|20200407`</a> </li> <li class="post"> <a href="15863166036092.html">如何判断复合根式是否可以进一步化简</a> </li> <li class="post"> <a href="15859891289445.html">Simon Tatham's Portable Puzzle Collection</a> </li> <li class="post"> <a href="book.html">Books</a> </li> </ul> </div> </div> </div><!-- sidebar --> </div><!-- hide for small --> </div><!-- large 4 --> </div><!-- row --> <div class="page-bottom clearfix"> <div class="row"> <p class="copyright">Copyright © 2015 Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>, Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.</p> </div> </div> </section> </div> </div> <script src="asset/js/foundation.min.js"></script> <script> $(document).foundation(); function fixSidebarHeight(){ var w1 = $('.markdown-body').height(); var w2 = $('#sidebar').height(); if (w1 > w2) { $('#sidebar').height(w1); }; } $(function(){ fixSidebarHeight(); }) $(window).load(function(){ fixSidebarHeight(); }); </script> <script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){ var mwebii=0; var mwebChartEleId = 'mweb-chart-ele-'; $('pre>code').each(function(){ mwebii++; var eleiid = mwebChartEleId+mwebii; if($(this).hasClass('language-sequence')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = Diagram.parse($(this).text()); diagram.drawSVG(eleiid,{theme: 'simple'}); }else if($(this).hasClass('language-flow')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = flowchart.parse($(this).text()); diagram.drawSVG(eleiid); } });});</script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-AMS_SVG-full"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script> </body> </html>