<!doctype html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title> Poncelet 定理: 圆和抛物线 `zhangboxin|20180409` - 语时lab </title> <link href="atom.xml" rel="alternate" title="语时lab" type="application/atom+xml"> <link rel="stylesheet" href="asset/css/foundation.min.css" /> <link rel="stylesheet" href="asset/css/docs.css" /> <script src="asset/js/vendor/modernizr.js"></script> <script src="asset/js/vendor/jquery.js"></script> <script src="asset/highlightjs/highlight.pack.js"></script> <link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css"> <script>hljs.initHighlightingOnLoad();</script> <script type="text/javascript"> function before_search(){ var searchVal = 'site:cshishaliu.github.io ' + document.getElementById('search_input').value; document.getElementById('search_q').value = searchVal; return true; } </script> </head> <body class="antialiased hide-extras"> <div class="marketing off-canvas-wrap" data-offcanvas> <div class="inner-wrap"> <nav class="top-bar docs-bar hide-for-small" data-topbar> <section class="top-bar-section"> <div class="row"> <div style="position: relative;width:100%;"><div style="position: absolute; width:100%;"> <ul id="main-menu" class="left"> <li id=""><a target="_self" href="index.html">Home</a></li> <li id=""><a target="_self" href="book.html">Books</a></li> <li id=""><a target="_self" href="links.html">Links</a></li> <li id=""><a target="_self" href="archives.html">Archives</a></li> <li id=""><a target="_self" href="about.html">About</a></li> <li id=""><a target="_self" href="todo.html">Todo</a></li> </ul> <ul class="right" id="search-wrap"> <li> <form target="_blank" onsubmit="return before_search();" action="https://google.com/search" method="get"> <input type="hidden" id="search_q" name="q" value="" /> <input tabindex="1" type="search" id="search_input" placeholder="Search"/> </form> </li> </ul> </div></div> </div> </section> </nav> <nav class="tab-bar show-for-small"> <a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon"> <span> 语时lab</span> </a> </nav> <aside class="left-off-canvas-menu"> <ul class="off-canvas-list"> <li><a target="_self" href="index.html">Home</a></li> <li><a target="_self" href="book.html">Books</a></li> <li><a target="_self" href="links.html">Links</a></li> <li><a target="_self" href="archives.html">Archives</a></li> <li><a target="_self" href="about.html">About</a></li> <li><a target="_self" href="todo.html">Todo</a></li> <li><label>Categories</label></li> <li><a href="problemsolving.html">解题</a></li> <li><a href="mathpost.html">数学随笔</a></li> <li><a href="Dev.html">Dev</a></li> <li><a href="Games.html">Games</a></li> <li><a href="obsolete.html">obsolete</a></li> <li><a href="misc.html">misc</a></li> </ul> </aside> <a class="exit-off-canvas" href="#"></a> <section id="main-content" role="main" class="scroll-container"> <script type="text/javascript"> $(function(){ $('#menu_item_index').addClass('is_active'); }); </script> <div class="row"> <div class="large-8 medium-8 columns"> <div class="markdown-body article-wrap"> <div class="article"> <h1>Poncelet 定理: 圆和抛物线 `zhangboxin|20180409`</h1> <div class="read-more clearfix"> <span class="date">2018/04/16</span> <span>posted in </span> <span class="posted-in"><a href='problemsolving.html'>解题</a></span> <span class="comments"> </span> </div> </div><!-- article --> <div class="article-content"> <p>已知圆 \(C_1 \colon x^2+y^2 = 1\) 和抛物线 \(C_2 \colon y = x^2 - 2\). \(P,Q,R\) 是抛物线 \(C_2\) 上的三个不同的点, 且直线 \(PQ\) 和 \(PR\) 都是圆 \(C_1\) 的切线. 求证: \(QR\) 也是圆 \(C_1\) 的切线.</p> <span id="more"></span><!-- more --> <blockquote> <p>Qer: zhangboxin 20180409</p> </blockquote> <h2 id="toc_0">解答</h2> <p>首先给出如下引理 (证明放在最后面): </p> <blockquote> <p>对于抛物线 \(C_2 \colon y = x^2 - 2\) 上的两个不同的点 \(M(s, s^2 - 2)\) 和 \(N(t, t^2-2)\) (其中 \(s \ne t\)), <br/> 直线 \(MN\) 与圆 \(C_1 \colon x^2+y^2 = 1\) 相切的充分必要条件是<br/> \[<br/> s^2 t^2 - s^2 - t^2 + 2st + 3 = 0<br/> \]</p> </blockquote> <p><strong>原题证明如下:</strong></p> <p>设 \(P,Q,R\) 三点的坐标分别为 \(P(p, p^2 - 2)\), \(Q(q, q^2 - 2)\) 和 \(R(r, r^2 - 2)\) (其中 \(p,q,r\) 两两互不相等).</p> <p>则由 \(PQ,PR\) 与圆 \(C_1\) 相切得\[<br/> \begin{cases}<br/> p^2 q^2 - p^2 - q^2 + 2pq + 3 = 0 \\<br/> p^2 r^2 - p^2 - r^2 + 2pr + 3 = 0<br/> \end{cases}<br/> \]<br/> 将这两个等式变形为<br/> \[<br/> \begin{cases}<br/> (p^2 - 1) q^2+ 2pq - (p^2 - 3) = 0 \\<br/> (p^2 - 1) r^2+ 2pr - (p^2 - 3) = 0<br/> \end{cases}<br/> \]<br/> 由于 \(q \ne r\), 故可将 \(q,r\) 看做二次方程<br/> \[<br/> (p^2 - 1) x^2+ 2px - (p^2 - 3) = 0 <br/> \]<br/> 的两根, 因此由韦达定理<br/> \[<br/> \begin{cases}<br/> q+r = -\dfrac{2p}{p^2-1} \\<br/> qr = -\dfrac{p^2-3}{p^2-1}<br/> \end{cases}<br/> \]<br/> 于是<br/> \[<br/> \begin{aligned}<br/> &\phantom{{}={}} q^2 r^2 - q^2 - r^2 + 2qr + 3 \\<br/> &= (qr)^2 - (q+r)^2 + 4qr + 3 \\<br/> &= \left( -\dfrac{p^2-3}{p^2-1} \right)^2 - \left( -\dfrac{2p}{p^2-1} \right)^2 + 4 \left( -\dfrac{p^2-3}{p^2-1} \right) + 3 \\<br/> &= \cdots \\<br/> &= 0<br/> \end{aligned}<br/> \]<br/> 因此根据引理知, 直线 \(QR\) 与圆 \(C_1\) 相切.</p> <h3 id="toc_1">引理的证明</h3> <p>对于抛物线 \(C_2 \colon y = x^2 - 2\) 上的两个不同的点 \(M(s, s^2 - 2)\) 和 \(N(t, t^2-2)\) (其中 \(s \ne t\)), 直线 \(MN\) 的方程为<sup id="fnref1"><a href="#fn1" rel="footnote">1</a></sup><br/> \[<br/> MN \colon (s+t)x - y - (st+2) = 0<br/> \]</p> <p>直线 \(MN\) 与圆 \(C_1 \colon x^2+y^2 = 1\) 相切的充分必要条件是<sup id="fnref2"><a href="#fn2" rel="footnote">2</a></sup><br/> \[<br/> \dfrac{|st+2|}{\sqrt{(s+t)^2+1}} = 1<br/> \]</p> <p>这个关系式可等价的变形为<br/> \[<br/> s^2 t^2 - s^2 - t^2 + 2st + 3 = 0<br/> \]</p> <p>即证.</p> <div class="footnotes"> <hr/> <ol> <li id="fn1"> <p>写出两点式化简, 即可得到. <a href="#fnref1" rev="footnote">↩</a></p> </li> <li id="fn2"> <p>即圆心 \(O(0,0)\) 到直线 \(MN\) 的距离等于半径 \(1\). <a href="#fnref2" rev="footnote">↩</a></p> </li> </ol> </div> </div> <div class="row"> <div class="large-6 columns"> <p class="text-left" style="padding:15px 0px;"> <a href="15265462412456.html" title="Previous Post: 一组高中联赛二试模拟/选拔题 `zhangboxin|20180516`">« 一组高中联赛二试模拟/选拔题 `zhangboxin|20180516`</a> </p> </div> <div class="large-6 columns"> <p class="text-right" style="padding:15px 0px;"> <a href="15166882779923.html" title="Next Post: 平面几何 `duyan|20180123|2`">平面几何 `duyan|20180123|2` »</a> </p> </div> </div> <div class="comments-wrap"> <div class="share-comments"> </div> </div> </div><!-- article-wrap --> </div><!-- large 8 --> <div class="large-4 medium-4 columns"> <div class="hide-for-small"> <div id="sidebar" class="sidebar"> <div id="site-info" class="site-info"> <div class="site-a-logo"><img src="https://i.loli.net/2020/02/26/hjpG5rStAgRYm9P.jpg" /></div> <h1>语时lab</h1> <div class="site-des">Gnoloac 发文的地方</div> <div class="social"> <a target="_blank" class="weibo" href="https://weibo.com/gnoloac" title="weibo">Weibo</a> <a target="_blank" class="github" target="_blank" href="https://github.com/cshishaliu" title="GitHub">GitHub</a> <a target="_blank" class="email" href="mailto:cshishaliu@163.com" title="Email">Email</a> <a target="_blank" class="rss" href="atom.xml" title="RSS">RSS</a> </div> </div> <div id="site-categories" class="side-item "> <div class="side-header"> <h2>Categories</h2> </div> <div class="side-content"> <p class="cat-list"> <a href="problemsolving.html"><strong>解题</strong></a> <a href="mathpost.html"><strong>数学随笔</strong></a> <a href="Dev.html"><strong>Dev</strong></a> <a href="Games.html"><strong>Games</strong></a> <a href="obsolete.html"><strong>obsolete</strong></a> <a href="misc.html"><strong>misc</strong></a> </p> </div> </div> <div id="site-categories" class="side-item"> <div class="side-header"> <h2>Recent Posts</h2> </div> <div class="side-content"> <ul class="posts-list"> <li class="post"> <a href="15864160277643.html">平面几何的全等和相似符号到底该怎么写</a> </li> <li class="post"> <a href="15863333927200.html">数列不等式 `lhc@jinan|20200407`</a> </li> <li class="post"> <a href="15863166036092.html">如何判断复合根式是否可以进一步化简</a> </li> <li class="post"> <a href="15859891289445.html">Simon Tatham's Portable Puzzle Collection</a> </li> <li class="post"> <a href="book.html">Books</a> </li> </ul> </div> </div> </div><!-- sidebar --> </div><!-- hide for small --> </div><!-- large 4 --> </div><!-- row --> <div class="page-bottom clearfix"> <div class="row"> <p class="copyright">Copyright © 2015 Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>, Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.</p> </div> </div> </section> </div> </div> <script src="asset/js/foundation.min.js"></script> <script> $(document).foundation(); function fixSidebarHeight(){ var w1 = $('.markdown-body').height(); var w2 = $('#sidebar').height(); if (w1 > w2) { $('#sidebar').height(w1); }; } $(function(){ fixSidebarHeight(); }) $(window).load(function(){ fixSidebarHeight(); }); </script> <script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){ var mwebii=0; var mwebChartEleId = 'mweb-chart-ele-'; $('pre>code').each(function(){ mwebii++; var eleiid = mwebChartEleId+mwebii; if($(this).hasClass('language-sequence')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = Diagram.parse($(this).text()); diagram.drawSVG(eleiid,{theme: 'simple'}); }else if($(this).hasClass('language-flow')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = flowchart.parse($(this).text()); diagram.drawSVG(eleiid); } });});</script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-AMS_SVG-full"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script> </body> </html>