<!doctype html>
<html class="no-js" lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>
    
  Poncelet 定理: 圆和抛物线 `zhangboxin|20180409` - 语时lab
  
  </title>
  
  
  <link href="atom.xml" rel="alternate" title="语时lab" type="application/atom+xml">
    <link rel="stylesheet" href="asset/css/foundation.min.css" />
    <link rel="stylesheet" href="asset/css/docs.css" />
    <script src="asset/js/vendor/modernizr.js"></script>
    <script src="asset/js/vendor/jquery.js"></script>
  <script src="asset/highlightjs/highlight.pack.js"></script>
  <link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css">
  <script>hljs.initHighlightingOnLoad();</script>
<script type="text/javascript">
  function before_search(){
    var searchVal = 'site:cshishaliu.github.io ' + document.getElementById('search_input').value;
    document.getElementById('search_q').value = searchVal;
    return true;
  }
</script>
  </head>
  <body class="antialiased hide-extras">
    
    <div class="marketing off-canvas-wrap" data-offcanvas>
      <div class="inner-wrap">


<nav class="top-bar docs-bar hide-for-small" data-topbar>


  <section class="top-bar-section">
  <div class="row">
      <div style="position: relative;width:100%;"><div style="position: absolute; width:100%;">
        <ul id="main-menu" class="left">
        
        <li id=""><a target="_self" href="index.html">Home</a></li>
        
        <li id=""><a target="_self" href="book.html">Books</a></li>
        
        <li id=""><a target="_self" href="links.html">Links</a></li>
        
        <li id=""><a target="_self" href="archives.html">Archives</a></li>
        
        <li id=""><a target="_self" href="about.html">About</a></li>
        
        <li id=""><a target="_self" href="todo.html">Todo</a></li>
        
        </ul>

        <ul class="right" id="search-wrap">
          <li>
<form target="_blank" onsubmit="return before_search();" action="https://google.com/search" method="get">
    <input type="hidden" id="search_q" name="q" value="" />
    <input tabindex="1" type="search" id="search_input"  placeholder="Search"/>
</form>
</li>
          </ul>
      </div></div>
  </div>
  </section>

</nav>

        <nav class="tab-bar show-for-small">
  <a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon">
    <span> &nbsp; 语时lab</span>
  </a>
</nav>

<aside class="left-off-canvas-menu">
      <ul class="off-canvas-list">
        
        <li><a target="_self" href="index.html">Home</a></li>
        
        <li><a target="_self" href="book.html">Books</a></li>
        
        <li><a target="_self" href="links.html">Links</a></li>
        
        <li><a target="_self" href="archives.html">Archives</a></li>
        
        <li><a target="_self" href="about.html">About</a></li>
        
        <li><a target="_self" href="todo.html">Todo</a></li>
        

    <li><label>Categories</label></li>

        
            <li><a href="problemsolving.html">解题</a></li>
        
            <li><a href="mathpost.html">数学随笔</a></li>
        
            <li><a href="Dev.html">Dev</a></li>
        
            <li><a href="Games.html">Games</a></li>
        
            <li><a href="obsolete.html">obsolete</a></li>
        
            <li><a href="misc.html">misc</a></li>
         

      </ul>
    </aside>

<a class="exit-off-canvas" href="#"></a>


        <section id="main-content" role="main" class="scroll-container">
        
       

 <script type="text/javascript">
  $(function(){
    $('#menu_item_index').addClass('is_active');
  });
</script>
<div class="row">
  <div class="large-8 medium-8 columns">
      <div class="markdown-body article-wrap">
       <div class="article">
          
          <h1>Poncelet 定理: 圆和抛物线 `zhangboxin|20180409`</h1>
     
        <div class="read-more clearfix">
          <span class="date">2018/04/16</span>

          <span>posted in&nbsp;</span> 
          
              <span class="posted-in"><a href='problemsolving.html'>解题</a></span>
           
         
          <span class="comments">
            

            
          </span>

        </div>
      </div><!-- article -->

      <div class="article-content">
      <p>已知圆 \(C_1 \colon x^2+y^2 = 1\) 和抛物线 \(C_2 \colon y = x^2 - 2\). \(P,Q,R\) 是抛物线 \(C_2\) 上的三个不同的点, 且直线 \(PQ\) 和 \(PR\) 都是圆 \(C_1\) 的切线. 求证: \(QR\) 也是圆 \(C_1\) 的切线.</p>

<span id="more"></span><!-- more -->

<blockquote>
<p>Qer: zhangboxin 20180409</p>
</blockquote>

<h2 id="toc_0">解答</h2>

<p>首先给出如下引理 (证明放在最后面): </p>

<blockquote>
<p>对于抛物线 \(C_2 \colon y = x^2 - 2\) 上的两个不同的点 \(M(s, s^2 - 2)\) 和 \(N(t, t^2-2)\) (其中 \(s \ne t\)), <br/>
直线 \(MN\) 与圆 \(C_1 \colon x^2+y^2 = 1\) 相切的充分必要条件是<br/>
\[<br/>
s^2 t^2 - s^2 - t^2 + 2st + 3 = 0<br/>
\]</p>
</blockquote>

<p><strong>原题证明如下:</strong></p>

<p>设 \(P,Q,R\) 三点的坐标分别为 \(P(p, p^2 - 2)\), \(Q(q, q^2 - 2)\) 和 \(R(r, r^2 - 2)\) (其中 \(p,q,r\) 两两互不相等).</p>

<p>则由 \(PQ,PR\) 与圆 \(C_1\) 相切得\[<br/>
\begin{cases}<br/>
p^2 q^2 - p^2 - q^2 + 2pq + 3 = 0 \\<br/>
p^2 r^2 - p^2 - r^2 + 2pr + 3 = 0<br/>
\end{cases}<br/>
\]<br/>
将这两个等式变形为<br/>
\[<br/>
\begin{cases}<br/>
(p^2 - 1) q^2+ 2pq - (p^2 - 3) = 0 \\<br/>
(p^2 - 1) r^2+ 2pr - (p^2 - 3) = 0<br/>
\end{cases}<br/>
\]<br/>
由于 \(q \ne r\), 故可将 \(q,r\) 看做二次方程<br/>
\[<br/>
(p^2 - 1) x^2+ 2px - (p^2 - 3) = 0 <br/>
\]<br/>
的两根, 因此由韦达定理<br/>
\[<br/>
\begin{cases}<br/>
q+r = -\dfrac{2p}{p^2-1} \\<br/>
qr = -\dfrac{p^2-3}{p^2-1}<br/>
\end{cases}<br/>
\]<br/>
于是<br/>
\[<br/>
\begin{aligned}<br/>
&amp;\phantom{{}={}} q^2 r^2 - q^2 - r^2 + 2qr + 3 \\<br/>
&amp;= (qr)^2 - (q+r)^2 + 4qr + 3 \\<br/>
&amp;= \left( -\dfrac{p^2-3}{p^2-1} \right)^2 - \left( -\dfrac{2p}{p^2-1} \right)^2 + 4 \left( -\dfrac{p^2-3}{p^2-1} \right) + 3 \\<br/>
&amp;= \cdots \\<br/>
&amp;= 0<br/>
\end{aligned}<br/>
\]<br/>
因此根据引理知, 直线 \(QR\) 与圆 \(C_1\) 相切.</p>

<h3 id="toc_1">引理的证明</h3>

<p>对于抛物线 \(C_2 \colon y = x^2 - 2\) 上的两个不同的点 \(M(s, s^2 - 2)\) 和 \(N(t, t^2-2)\) (其中 \(s \ne t\)), 直线 \(MN\) 的方程为<sup id="fnref1"><a href="#fn1" rel="footnote">1</a></sup><br/>
\[<br/>
MN \colon (s+t)x - y - (st+2) = 0<br/>
\]</p>

<p>直线 \(MN\) 与圆 \(C_1 \colon x^2+y^2 = 1\) 相切的充分必要条件是<sup id="fnref2"><a href="#fn2" rel="footnote">2</a></sup><br/>
\[<br/>
\dfrac{|st+2|}{\sqrt{(s+t)^2+1}} = 1<br/>
\]</p>

<p>这个关系式可等价的变形为<br/>
\[<br/>
s^2 t^2 - s^2 - t^2 + 2st + 3 = 0<br/>
\]</p>

<p>即证.</p>

<div class="footnotes">
<hr/>
<ol>

<li id="fn1">
<p>写出两点式化简, 即可得到.&nbsp;<a href="#fnref1" rev="footnote">&#8617;</a></p>
</li>

<li id="fn2">
<p>即圆心 \(O(0,0)\) 到直线 \(MN\) 的距离等于半径 \(1\).&nbsp;<a href="#fnref2" rev="footnote">&#8617;</a></p>
</li>

</ol>
</div>


    

      </div>

      <div class="row">
        <div class="large-6 columns">
        <p class="text-left" style="padding:15px 0px;">
      
          <a href="15265462412456.html" 
          title="Previous Post: 一组高中联赛二试模拟/选拔题 `zhangboxin|20180516`">&laquo; 一组高中联赛二试模拟/选拔题 `zhangboxin|20180516`</a>
      
        </p>
        </div>
        <div class="large-6 columns">
      <p class="text-right" style="padding:15px 0px;">
      
          <a  href="15166882779923.html" 
          title="Next Post: 平面几何 `duyan|20180123|2`">平面几何 `duyan|20180123|2` &raquo;</a>
      
      </p>
        </div>
      </div>
      <div class="comments-wrap">
        <div class="share-comments">
          

          

          
        </div>
      </div>
    </div><!-- article-wrap -->
  </div><!-- large 8 -->




 <div class="large-4 medium-4 columns">
  <div class="hide-for-small">
    <div id="sidebar" class="sidebar">
          <div id="site-info" class="site-info">
            
                <div class="site-a-logo"><img src="https://i.loli.net/2020/02/26/hjpG5rStAgRYm9P.jpg" /></div>
            
                <h1>语时lab</h1>
                <div class="site-des">Gnoloac 发文的地方</div>
                <div class="social">







<a target="_blank" class="weibo" href="https://weibo.com/gnoloac" title="weibo">Weibo</a>

<a target="_blank" class="github" target="_blank" href="https://github.com/cshishaliu" title="GitHub">GitHub</a>
<a target="_blank" class="email" href="mailto:cshishaliu@163.com" title="Email">Email</a>
  <a target="_blank" class="rss" href="atom.xml" title="RSS">RSS</a>
                
              	 </div>
          	</div>

             

              <div id="site-categories" class="side-item ">
                <div class="side-header">
                  <h2>Categories</h2>
                </div>
                <div class="side-content">

      	<p class="cat-list">
        
            <a href="problemsolving.html"><strong>解题</strong></a>
        
            <a href="mathpost.html"><strong>数学随笔</strong></a>
        
            <a href="Dev.html"><strong>Dev</strong></a>
        
            <a href="Games.html"><strong>Games</strong></a>
        
            <a href="obsolete.html"><strong>obsolete</strong></a>
        
            <a href="misc.html"><strong>misc</strong></a>
         
        </p>


                </div>
              </div>

              <div id="site-categories" class="side-item">
                <div class="side-header">
                  <h2>Recent Posts</h2>
                </div>
                <div class="side-content">
                <ul class="posts-list">
	      
		      
			      <li class="post">
			        <a href="15864160277643.html">平面几何的全等和相似符号到底该怎么写</a>
			      </li>
		     
		  
		      
			      <li class="post">
			        <a href="15863333927200.html">数列不等式 `lhc@jinan|20200407`</a>
			      </li>
		     
		  
		      
			      <li class="post">
			        <a href="15863166036092.html">如何判断复合根式是否可以进一步化简</a>
			      </li>
		     
		  
		      
			      <li class="post">
			        <a href="15859891289445.html">Simon Tatham's Portable Puzzle Collection</a>
			      </li>
		     
		  
		      
			      <li class="post">
			        <a href="book.html">Books</a>
			      </li>
		     
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		  
		      
		   
		  		</ul>
                </div>
              </div>
        </div><!-- sidebar -->
      </div><!-- hide for small -->
</div><!-- large 4 -->

</div><!-- row -->

 <div class="page-bottom clearfix">
  <div class="row">
   <p class="copyright">Copyright &copy; 2015
Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>,&nbsp; 
Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.</p>
  </div>
</div>

        </section>
      </div>
    </div>

  
    

    <script src="asset/js/foundation.min.js"></script>
    <script>
      $(document).foundation();
      function fixSidebarHeight(){
        var w1 = $('.markdown-body').height();
          var w2 = $('#sidebar').height();
          if (w1 > w2) { $('#sidebar').height(w1); };
      }
      $(function(){
        fixSidebarHeight();
      })
      $(window).load(function(){
          fixSidebarHeight();
      });
     
    </script>

    <script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){    var mwebii=0;    var mwebChartEleId = 'mweb-chart-ele-';    $('pre>code').each(function(){        mwebii++;        var eleiid = mwebChartEleId+mwebii;        if($(this).hasClass('language-sequence')){            var ele = $(this).addClass('nohighlight').parent();            $('<div id="'+eleiid+'"></div>').insertAfter(ele);            ele.hide();            var diagram = Diagram.parse($(this).text());            diagram.drawSVG(eleiid,{theme: 'simple'});        }else if($(this).hasClass('language-flow')){            var ele = $(this).addClass('nohighlight').parent();            $('<div id="'+eleiid+'"></div>').insertAfter(ele);            ele.hide();            var diagram = flowchart.parse($(this).text());            diagram.drawSVG(eleiid);        }    });});</script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-AMS_SVG-full"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script>


  </body>
</html>