TODO: 微博图床已挂, 本篇缺图, 需要找回
无穷数列 \(P \colon a_1, a_2, \dots, a_n, \dots\) 满足 \(a_i \in \mathbb N^*\), 且 \(a_i \le a_{i+1}\) (\(i\in \mathbb N^*\)). 对于数列 \(P\), 记 \(T_k (P) = \min \{ n | a_n \ge k \}\) (\(k\in \mathbb N^*\)), 其中 \(\min \{ n | a_n \ge k \}\) 表示集合 \(\{ n | a_n \ge k \}\) 中最小的数.
- 若数列 \(P\colon 1,3,4,7,\dots\), 写出 \(T_1(P), T_2(P), \dots, T_5(P)\);
- 若 \(T_k (P) = 2k-1\), 求数列 \(P\) 的前 \(n\) 项之和;
- 已知 \(a_{20} = 46\), 求 \(s = a_1 + a_2 + \dots + a_{20} + T_1 (P) + T_2 (P) + \dots + T_{46} (P)\) 的值.
解答
\(T_1(P) = 1\), \(T_2(P) = 2\), \(T_3(P)=2\), \(T_4(P)=3\), \(T_5(P) = 4\).
不难得出满足 \(T_k (P) = 2k-1\) 的数列为 \(P\colon 1,1,2,2,3,3,4,4,\dots\), 其通项公式可以写作 \(a_n = \dfrac{2n+1-(-1)^n}4\). 其前 \(n\) 项的和为 \(S_n = \dfrac{2n^2 + 4n + 1 - (-1)^n}8\).
我们证明一个更一般的结论: 记
\[
s_n = a_1 + a_2 + \dots + a_n + T_1(P) + T_2(P) + \dots + T_{a_n}(P)
\]
则
\[
s_n = (n+1) a_n
\]
采用数学归纳法证明.\(n=1\) 时,
\[
s_1 = a_1 + T_1(P) + T_2(P) + \dots + T_{a_1}(P) = a_1 + \underbrace{1+1+\dots+1}_{a_1~\text{个}~1} = 2 a_1
\]
结论成立.假设 \(n = m-1\) 时结论成立, 即有
\[
s_{m-1} = a_1 + a_2 + \dots + a_{m-1} + T_1(P) + T_2(P) + \dots + T_{a_{m-1}}(P) = m a_{m-1}
\]
则 \(n = m\) 时, 若 \(a_m = a_{m-1}\), 则 \(s_m\) 相比于 \(s_{m-1}\) 中只增加了一项 \(a_m\) (注意此时 \(T_{a_m}(P)\) 就是 \(T_{a_{m-1}}(P)\)), 因此
\[
s_m = s_{m-1} + a_m = m a_{m-1} + a_m = (m+1) a_m
\]
若 \(a_m > a_{m-1}\), 则 \(s_m\) 相比于 \(s_{m-1}\) 中增加的项有: \(a_m\), \(T_{a_{m-1}+1}(P), T_{a_{m-1}+2}(P), \dots, T_{a_m}(P)\), 共有 \(a_m - a_{m-1} + 1\) 项. 其中, \(T_{a_{m-1}+1}(P) = T_{a_{m-1}+2}(P) = \dots = T_{a_m}(P) = m\), 因此
\[
s_m = s_{m-1} + a_m + (a_m - a_{m-1}) m = (m+1) a_m
\]
证毕.
因此, 原题中要求的和数为 \(s_{20} = (20+1) \times 46 = 966\).