<!doctype html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title> CMO 2018 题 3 - 语时lab </title> <link href="atom.xml" rel="alternate" title="语时lab" type="application/atom+xml"> <link rel="stylesheet" href="asset/css/foundation.min.css" /> <link rel="stylesheet" href="asset/css/docs.css" /> <script src="asset/js/vendor/modernizr.js"></script> <script src="asset/js/vendor/jquery.js"></script> <script src="asset/highlightjs/highlight.pack.js"></script> <link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css"> <script>hljs.initHighlightingOnLoad();</script> <script type="text/javascript"> function before_search(){ var searchVal = 'site:cshishaliu.github.io ' + document.getElementById('search_input').value; document.getElementById('search_q').value = searchVal; return true; } </script> </head> <body class="antialiased hide-extras"> <div class="marketing off-canvas-wrap" data-offcanvas> <div class="inner-wrap"> <nav class="top-bar docs-bar hide-for-small" data-topbar> <section class="top-bar-section"> <div class="row"> <div style="position: relative;width:100%;"><div style="position: absolute; width:100%;"> <ul id="main-menu" class="left"> <li id=""><a target="_self" href="index.html">Home</a></li> <li id=""><a target="_self" href="book.html">Books</a></li> <li id=""><a target="_self" href="links.html">Links</a></li> <li id=""><a target="_self" href="archives.html">Archives</a></li> <li id=""><a target="_self" href="about.html">About</a></li> <li id=""><a target="_self" href="todo.html">Todo</a></li> </ul> <ul class="right" id="search-wrap"> <li> <form target="_blank" onsubmit="return before_search();" action="https://google.com/search" method="get"> <input type="hidden" id="search_q" name="q" value="" /> <input tabindex="1" type="search" id="search_input" placeholder="Search"/> </form> </li> </ul> </div></div> </div> </section> </nav> <nav class="tab-bar show-for-small"> <a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon"> <span> 语时lab</span> </a> </nav> <aside class="left-off-canvas-menu"> <ul class="off-canvas-list"> <li><a target="_self" href="index.html">Home</a></li> <li><a target="_self" href="book.html">Books</a></li> <li><a target="_self" href="links.html">Links</a></li> <li><a target="_self" href="archives.html">Archives</a></li> <li><a target="_self" href="about.html">About</a></li> <li><a target="_self" href="todo.html">Todo</a></li> <li><label>Categories</label></li> <li><a href="problemsolving.html">解题</a></li> <li><a href="mathpost.html">数学随笔</a></li> <li><a href="Dev.html">Dev</a></li> <li><a href="Games.html">Games</a></li> <li><a href="obsolete.html">obsolete</a></li> <li><a href="misc.html">misc</a></li> </ul> </aside> <a class="exit-off-canvas" href="#"></a> <section id="main-content" role="main" class="scroll-container"> <script type="text/javascript"> $(function(){ $('#menu_item_index').addClass('is_active'); }); </script> <div class="row"> <div class="large-8 medium-8 columns"> <div class="markdown-body article-wrap"> <div class="article"> <h1>CMO 2018 题 3</h1> <div class="read-more clearfix"> <span class="date">2018/11/14</span> <span>posted in </span> <span class="posted-in"><a href='problemsolving.html'>解题</a></span> <span class="comments"> </span> </div> </div><!-- article --> <div class="article-content"> <p><mark>TODO: 微博图床已挂, 本篇缺图, 需要找回</mark></p> <p>\(\triangle ABC\) 中, \(AB < AC\), \(O\) 为外心, \(D\) 是 \(\angle BAC\) 平分线上一点, \(E\) 在 \(BC\) 上, 满足 \(OE \parallel AD\), \(DE \perp BC\). 在射线 \(EB\) 上取点 \(K\) 满足 \(EK = EA\), \(\triangle ADK\) 外接圆与 \(BC\) 交于另一点 \(P \ne K\), \(\triangle ADK\) 外接圆与 \(\triangle ABC\) 外接圆交于另一点 \(Q \ne A\). 求证: \(PQ\) 与 \(\triangle ABC\) 外接圆相切.</p> <span id="more"></span><!-- more --> <blockquote> <p>题目来源: <a href="https://mp.weixin.qq.com/s/Lk68mFHaHnc0Rly4F2nEwQ">2018冬令营首日学生回忆版试题 (爱尖子发布)</a></p> <p><img src="https://ws2.sinaimg.cn/large/006tNbRwly1fx7tzuhui2j30uk0i879u.jpg" alt=""/></p> </blockquote> <h2 id="toc_0">解答</h2> <p>设 \(\triangle ABC\) 的外心为 \(O\), \(\triangle ADK\) 的外心为 \(O_1\). 连结 \(AO\), \(DO\), \(AO_1\), \(KO_1\) 和 \(EO_1\). 设 \(OD\) 与 \(BC\) 的交点为 \(F\).</p> <p><img src="https://ws4.sinaimg.cn/large/006tNbRwly1fx7v0jv000j30hd0h7mye.jpg" alt=""/></p> <p>不难证明 \(\angle OAD = \angle ADE = \dfrac{B-C}2\), 故 \(ADEO\) 是等腰梯形.</p> <p>于是由 \(O_1A = O_1D\) 知 \(O_1O = O_1E\), 且 \(OD = AE = EK\). </p> <p>因此, \(\triangle O_1KE \cong \triangle D_1DO\), 故 \(\angle KO_1D = \angle KFD = \angle EO_1O\).</p> <p>因为 \(EO_1\) 垂直平分 \(AK\), 且 \(O_1O\) 垂直平分 \(AQ\), 所以 \(\angle EO_1O = \angle KAQ = 180^\circ - \angle KPQ\).</p> <p>于是 \(\angle KFO = 180^\circ - \angle KFD = 180^\circ - \angle EO_1O = \angle KPQ\), 故有 \(OD \parallel PQ\). </p> <p>另外, 由 \(\angle KFD = \angle KO_1D = 2 \angle KPD\) 知 \(\angle FPD = \angle FDP\), \(FP = FD\).</p> <p>因此, 点 \(P\) 到 \(FD\) 的距离与点 \(D\) 到 \(FP\) 的距离相同, 都等于 \(DE = OA\). </p> <p>即, 平行线 \(OD\) 与 \(PQ\) 之间的距离等于 \(\triangle ABC\) 外接圆 (圆 \(O\)) 的半径, 因此 \(PQ\) 与圆 \(O\) 相切.</p> </div> <div class="row"> <div class="large-6 columns"> <p class="text-left" style="padding:15px 0px;"> <a href="15490078791835.html" title="Previous Post: 两个数列不等式问题">« 两个数列不等式问题</a> </p> </div> <div class="large-6 columns"> <p class="text-right" style="padding:15px 0px;"> <a href="15395877048195.html" title="Next Post: 两个二次函数问题">两个二次函数问题 »</a> </p> </div> </div> <div class="comments-wrap"> <div class="share-comments"> </div> </div> </div><!-- article-wrap --> </div><!-- large 8 --> <div class="large-4 medium-4 columns"> <div class="hide-for-small"> <div id="sidebar" class="sidebar"> <div id="site-info" class="site-info"> <div class="site-a-logo"><img src="https://i.loli.net/2020/02/26/hjpG5rStAgRYm9P.jpg" /></div> <h1>语时lab</h1> <div class="site-des">Gnoloac 发文的地方</div> <div class="social"> <a target="_blank" class="weibo" href="https://weibo.com/gnoloac" title="weibo">Weibo</a> <a target="_blank" class="github" target="_blank" href="https://github.com/cshishaliu" title="GitHub">GitHub</a> <a target="_blank" class="email" href="mailto:cshishaliu@163.com" title="Email">Email</a> <a target="_blank" class="rss" href="atom.xml" title="RSS">RSS</a> </div> </div> <div id="site-categories" class="side-item "> <div class="side-header"> <h2>Categories</h2> </div> <div class="side-content"> <p class="cat-list"> <a href="problemsolving.html"><strong>解题</strong></a> <a href="mathpost.html"><strong>数学随笔</strong></a> <a href="Dev.html"><strong>Dev</strong></a> <a href="Games.html"><strong>Games</strong></a> <a href="obsolete.html"><strong>obsolete</strong></a> <a href="misc.html"><strong>misc</strong></a> </p> </div> </div> <div id="site-categories" class="side-item"> <div class="side-header"> <h2>Recent Posts</h2> </div> <div class="side-content"> <ul class="posts-list"> <li class="post"> <a href="15864160277643.html">平面几何的全等和相似符号到底该怎么写</a> </li> <li class="post"> <a href="15863333927200.html">数列不等式 `lhc@jinan|20200407`</a> </li> <li class="post"> <a href="15863166036092.html">如何判断复合根式是否可以进一步化简</a> </li> <li class="post"> <a href="15859891289445.html">Simon Tatham's Portable Puzzle Collection</a> </li> <li class="post"> <a href="book.html">Books</a> </li> </ul> </div> </div> </div><!-- sidebar --> </div><!-- hide for small --> </div><!-- large 4 --> </div><!-- row --> <div class="page-bottom clearfix"> <div class="row"> <p class="copyright">Copyright © 2015 Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>, Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.</p> </div> </div> </section> </div> </div> <script src="asset/js/foundation.min.js"></script> <script> $(document).foundation(); function fixSidebarHeight(){ var w1 = $('.markdown-body').height(); var w2 = $('#sidebar').height(); if (w1 > w2) { $('#sidebar').height(w1); }; } $(function(){ fixSidebarHeight(); }) $(window).load(function(){ fixSidebarHeight(); }); </script> <script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){ var mwebii=0; var mwebChartEleId = 'mweb-chart-ele-'; $('pre>code').each(function(){ mwebii++; var eleiid = mwebChartEleId+mwebii; if($(this).hasClass('language-sequence')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = Diagram.parse($(this).text()); diagram.drawSVG(eleiid,{theme: 'simple'}); }else if($(this).hasClass('language-flow')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = flowchart.parse($(this).text()); diagram.drawSVG(eleiid); } });});</script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-AMS_SVG-full"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script> </body> </html>