已知 \(x_1, x_2, \dots, x_9\) 满足方程组 \[ \begin{cases} \dfrac{x_1}{11} + \dfrac{x_2}{12} + \dots + \dfrac{x_9}{19} = 1 \\ \dfrac{x_1}{21} + \dfrac{x_2}{22} + \dots + \dfrac{x_9}{29} = 1 \\ \dfrac{x_1}{31} + \dfrac{x_2}{32} + \dots + \dfrac{x_9}{39} = 1 \\ \dfrac{x_1}{41} + \dfrac{x_2}{42} + \dots + \dfrac{x_9}{49} = 1 \\ \dfrac{x_1}{51} + \dfrac{x_2}{52} + \dots + \dfrac{x_9}{59} = 1 \\ \dfrac{x_1}{61} + \dfrac{x_2}{62} + \dots + \dfrac{x_9}{69} = 1 \\ \dfrac{x_1}{71} + \dfrac{x_2}{72} + \dots + \dfrac{x_9}{79} = 1 \\ \dfrac{x_1}{81} + \dfrac{x_2}{82} + \dots + \dfrac{x_9}{89} = 1 \\ \dfrac{x_1}{91} + \dfrac{x_2}{92} + \dots + \dfrac{x_9}{99} = 1 \\ \end{cases} \] 试求 \(x_1 + x_2 + \dots + x_9\).
TODO: 本篇内容似乎也还没完成
试求所有的实系数多项式 \(p(x)\), 使得对满足 \(ab + bc + ca = 0\) 的所有实数 \(a、b、c\), 均有: \[ p(a - b) + p(b - c) + p(c - a) = 2p(a + b + c). \]
已知数列 \(\{a_n\}\) 和 \(\{b_n\}\), 其中 \(n \ge 0\) (即两个数列的首项分别为 \(a_0\) 和 \(b_0\)). 若满足 \[ b_n = \sum_{k=0}^n (-1)^k C_n^k a_k \,, \quad \forall n \in \mathbb N. \] 求证: \[ a_n = \sum_{k=0}^n (-1)^k C_n^k b_k \,, \quad \forall n \in \mathbb N. \]
TODO: 微博图床已挂, 本篇缺图, 需要找回
解题 数学随笔 Dev Games obsolete misc
Copyright © 2015 Powered by MWeb, Theme used GitHub CSS.