
Summary of Pruning

Chen Shangyu

May 14, 2019

Contents

1 Element-Wise Pruning 3
1.1 Learning sparse neural networks via sensitivity-driven regularization [15] 3

1.1.1 Sensitivity . 4
1.1.2 Bounded Insensitivity . 4
1.1.3 Update Rule . 4
1.1.4 Regularization . 4

1.2 To prune, or not to prune: exploring the efficacy of pruning for model compression 5

2 Structure Pruning 5
2.1 Learning Structured Sparsity in Deep Neural Networks 5
2.2 Extreme Network Compression via Filter Group Approximation 5

3 Filter Pruning 5
3.1 Pruning filters for efficient convnets . 6
3.2 Network trimming: A data-driven neuron pruning approach towards efficient

deep architectures . 6

4 Channel Pruning 6
4.1 Learning efficient convolutional networks through network slimming 6
4.2 Channel pruning for accelerating very deep neural networks 6
4.3 Thinet: A filter level pruning method for deep neural network compression . . . 7
4.4 Discrimination-aware Channel Pruning for Deep Neural Networks [17] 7

4.4.1 Greedy Algorithm for Channel Selection 8
4.5 Squeeze-and-excitation networks [8] . 8
4.6 Dynamic Channel Pruning: Feature Boosting and Suppression [1] 9
4.7 Filter Pruning via Geometric Median for Deep Convolutional Neural Networks

Acceleration [5] . 10
4.8 Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression [12] 10
4.9 Structured Pruning of Neural Networks with Budget-Aware Regularization [10] . 10
4.10 Comparison . 10

5 Skipping & Early Stop 10
5.1 SkipNet: Learning Dynamic Routing in Convolutional Networks 10

5.1.1 Gating Network Design . 10

6 Data-Free Pruning 11
6.1 DAC: Data-free Automatic Acceleration of Convolutional Networks 11

1

7 RL-based Pruning 11
7.1 N2N Learning: Network to Network Compression via Policy Gradient Reinforce-

ment Learning . 11
7.2 ADC: Automated Deep Compression and Acceleration with Reinforcement Learn-

ing . 11

2

1 Element-Wise Pruning

Neural network pruning is long studied dated back to 20th. [9] formulated the final loss variation
due to the prunning of given elements. With the assumption of local identity and independence
between element prunning. Formulation can be simplified as a quactical objective function
involving a dignoal hessian.

δloss =
∑
i

giδwi +
1

2

∑
i

hiiδw
2
i +

∑
i 6=j

hijδwiδwj (1)

where gi is the gradient of loss w.r.t wi, and hij are the elements of Hessian matrix. With the
simplification that off-dignoal elements in Hessian matrix and gradient can be neglected, Eq.(1)
can be reduced to:

δloss =
1

2

∑
i

hiiδw
2
i (2)

Eq.(1) is the criterion of weights prunning.
[4] expanded [9] with weights update after one element is pruned, with objective is changed

to measure the difference of layer output after prunning:

δE = (
∂E

∂w
)>δw +

1

2
δw>Hδw (3)

Minimizing Eq.(3) with the constraint that weights of index q is pruned leads to weights com-
pensation and corresponding loss as:

δw = − wq

[H−1]qq
H−1eq

Lq =
1

2

w2
q

[H−1]qq

(4)

According to Eq.(4), [4] updated the rest of weights after prunning and attained an more
accurate loss due to weights pruning.

Entering the new century with deep learning explosion, The huge volumn of parameters in
modern neural network makes [9] and [4] intractable. [3] (LWC) pioneered element prunning
in deep neural network. It proposed to prune elements by its absolute value: it deleted those
weights who approach to zero and remained the rest, which held the assumption that larger
weights contribute more to the performance of neural network.

Inspired by such straightforward and effective prunning, [2] incorporated LWC into network
training to prune weights in an incremental way. Specifically, during the training of deep neural
network, it occasionally pruned weight according to their absolute value. Then it continued to
train with pruned ones fixed as zero. Those pruned weights can be restored in latter retrain.

1.1 Learning sparse neural networks via sensitivity-driven regular-
ization [15]

A method to push insensitive weights toward 0 gradually, then a thresholding is applied as
pruning. The criterion of sensitivity is measured by gradient.

• Quantify the output sensitivity to parameters.

• Introduce a regularization that gradually lowers the absolute value of parameters with
low sensitivity.

• Finally, fraction of the parameters approach zero and are eventually set to zero by simple
thresholding.

3

1.1.1 Sensitivity

∆yk ≈ ∆wn,i
∂yk
∂wn,i

(5)

A weighted sum of the variation in all output elements:

S(y, wn,i) =
C∑
k=1

αk|∆yk| = |∆wn,i|
C∑
k=1

αk|
∂yk
∂wn,i

| (6)

Two types of weighted coefficients: The factors αk are therefore taken as the elements in
the one-hot encoding for the desired output y∗:

Sspec(y,y∗, wn,i) =
C∑
k=1

y∗| ∂yk
∂wn,i

| (7)

1.1.2 Bounded Insensitivity

:

S̄b(y, wn,i) = max

0, 1− S(y, wn,i)︸ ︷︷ ︸
S̄(y,wn,i)

 ∈ [0, 1] (8)

The higher S̄b(y, wn,i), the less important the weight is.

1.1.3 Update Rule

:

wtn,i := wt−1
n,i − η

∂L

∂wt−1
n,i

− λwt−1
n,i S̄b(y, wn,i) (9)

if the loss function is near a minimum, then the first correction term is very small. Weights
with higher S̄b(y, wn,i) will be moved towards zero in proportion to λ.

1.1.4 Regularization

Overall regularization term as a sum over all parameters is defined, with integration of each
term over wn,i:

R(θ) =
∑
i

∑
n

Rn,i(wn,i) =
∑
i

∑
n

(∫
wn,iS̄b(y, wn,i)dwn,i

)
(10)

For ReLu activation, (10) reduced to:

Rn,i(wn,i) =
w2
n,i

2
S̄(y, wn,i) (11)

4

Figure 1: Four main types of structure prunning in convolution layers. [16]

1.2 To prune, or not to prune: exploring the efficacy of pruning for
model compression

2 Structure Pruning

Fig.1 demonstrates the four main types of structure prunning in convolution layer. Suppose
the original convolution weights’ dimension as [cin × cout × w × h].

• Filter-wise prunning reduces the entire filter, which results in pruned convolution weights’
dimension as [cin × c

′
out × w × h], where c

′
out < cout.

• Channel-wise prunning can be regarded as “cut out of slices in convolution weights”:
[c

′
in × cout × w × h], where c

′
in < cin.

• Shape-wise methods prune weights in the same position among all filters, making a
different shape of filters.

• Layer-wise methods prune the whole layer.

2.1 Learning Structured Sparsity in Deep Neural Networks

[16] proposed to prune entire structure of deep neural network to improve memory locality,
which can accelerate computation than individual prunning with low locality. It come up with
4 schemes to prune: 1) Filter-wise 2) Channel-wise 3) Shape-wise and 4) Layer-wise. Pruning
is performed by imposing L2,1 norm in corresponding scheme then training.

2.2 Extreme Network Compression via Filter Group Approximation

3 Filter Pruning

Among the various methods, filter prunning in convolution layer is a popular research topic
since each filter takes effect independently. Intuitively, prunning a whole filter brings less harm
to overall performance. Besides, these methods lead to significant and obvious memory saving
and acceleration due to network slim.

5

3.1 Pruning filters for efficient convnets

Similar with [3], [11] pruned entire filter in convolution layers by measuring the sum of their
absolute value.

3.2 Network trimming: A data-driven neuron pruning approach to-
wards efficient deep architectures

[7] recorded neurons the non-activate percentage during a batch of data to measure whether to
prune this neuron.

4 Channel Pruning

Figure 2: Pruning channels: prunning channels in layer k results in prunning filters in previous
layer. Figure is cited from [6]

Fig.2 demonstrates how channel prunning is conducted and how it effects the before and
latter layers. Some “slices” of all filters in W results in the invalidation of some input feature
maps, thus back propagate to the filters in previous layers. As we can observe, the number of
filters ckout in layer k is same as the number of channels ck+1

in in layer k + 1, prunning certains
channels / filters in layer k + 1 / k results in the corresponding filters / channels in layer k /
k + 1.

4.1 Learning efficient convolutional networks through network slim-
ming

[13] introduced a scaling factor γ for each channel. By training entire neural network with γ,
filters with less importance is neglected with γ = 0.

4.2 Channel pruning for accelerating very deep neural networks

[6] proposed a two-step layer-wise method: it firstly selected representative channels and pruned
redundant ones by a LASSO regression based method. Then, it minimized the reconstruction

6

loss. The whole process is formulated as:

arg min
β,W

1

N
||Y −

c∑
i=1

βiXiWi||

s.t. ||β||0 ≤ ε

(12)

For each layer, after c channels are selected by β, it adjusts the remaining W to compensate
pruned error in layer output. It alternatively optimizes β and W.

4.3 Thinet: A filter level pruning method for deep neural network
compression

[14] and [6] solved the same problem but with different approaches. As a comparsion, [14]
transformed the problem of pruning filter in layer i as a input channel combination problem to
minimize reconstruction error in layer i+ 1. Specifically, it formulated the problem as:

arg min
S

m∑
i=1

(ŷ −
∑
j∈S

x̂i,j)
2 (13)

where m is number of instance, S is the selected channels. It simplifies Eq.(13) as:

arg min
S

m∑
i=1

(
∑
j∈T

x̂i,j)
2 (14)

where T is the complementary set of S. However, Solving Eq.(14) is still NP hard, thus it used
a greedy strategy by adding one element to T at a time, and choosing the channel leading to
the smallest objective value.
After prunning it will further minimize the reconstruction error (Eq.(13)) by weighing the
channels, which can be defined as:

W∗ = arg min
W

m∑
i=1

(
∑
j∈T

ŷi −W>
i,jx̂i)

2 (15)

4.4 Discrimination-aware Channel Pruning for Deep Neural Net-
works [17]

• This paper aims at pruning-based training: training (distillation) while layer-wisely prun-
ing.

• To measure the discriminative power of channels in intermediate layers by introducing:

– Layer-Wise Output Reconstruction Loss.

– Early Prediction (Discrimination-aware Loss).

– Final Prediction Loss.

• Learn early predictors θ by Fps .

• Finetune pruned network M with Lf .

• Select channel by G = ∂L
∂W

, where L = LM + Lps + Lf .

7

Figure 3: Illustration of discrimination-aware channel pruning.

4.4.1 Greedy Algorithm for Channel Selection

By introducing P losses {LpS}Pp=1, for each layer during P and P + 1:

• First remove all channels and select channels.

• Add channels to set A according to their gradient G. Update the added channels by:

minL(W) = LM(W) + λLpS(W). s.t.WAc = 0 (16)

• Until

|L(Wt−1)− L(Wt)|
L(W0)

≤ ε (17)

4.5 Squeeze-and-excitation networks [8]

Figure 4: A Squeeze-and-Excitation block features

• SE-Net aims at adaptively recalibrating channel-wise feature responses by explicitly mod-
eling interdependencies between channels.

• SE-Net takes action in the output features U ∈ RH×W×C , with a global average pooling
for each channel:

zc = Fsq(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (18)

8

• Then a learnable excitation operation is conducted:

s = Fex(z,W) = σ(g(z,W)) = σ(W2σ(W1z)) (19)

where δ refers to ReLU, W1 ∈ RC
r
×C , W2 ∈ RC×C

r , which is a bottleneck with two FC
layers around non-linearity.

• Finally the output U is rescaled as:

x̃c = sc ×Uc (20)

4.6 Dynamic Channel Pruning: Feature Boosting and Suppression
[1]

Figure 5: A high level view of a convolutional layer with FBS

• The auxiliary components (in red) predict the importance of each output channel based
on the input features, and amplify the output features accordingly, formally:

f̂l(xl−1) = πl(xl−1) · conv(xl−1, θl) (21)

where πl(xl−1) = wtaddCle(gl(xl−1)), wtak(z) is a k-winners-take-all function, i.e. it returns
a tensor identical to z, except that we zero out entries in z that are smaller than the k
largest entries in absolute magnitude.

• Channel saliency predictor gl(xl−1) is defined as:

gl(xl−1) = FC(ss(xl−1),Wl)

ss(xl−1) =
1

H ×W
[s(x1

l−1), s(x2
l−1), ..., s(xCl−1)] (22)

s(·) is chosen to be l1 norm.

9

4.7 Filter Pruning via Geometric Median for Deep Convolutional
Neural Networks Acceleration [5]

4.8 Exploiting Kernel Sparsity and Entropy for Interpretable CNN
Compression [12]

4.9 Structured Pruning of Neural Networks with Budget-Aware
Regularization [10]

4.10 Comparison

Method Network CR (%) FP Acc (%) Drop (%)

Weight-based
[11] VGG16 36 93.25 -0.15

ResNet56 86.3 93.04 -0.02
ResNet110 67.6 93.53 0.23

Table 1: Experiments of filter-wise Pruning on CIFAR10

Method Network CR (%) Top1/Top5 (%) Drop Top1/Top5(%)

ThiNet
[14]

VGG16
95.01

68.34/88.44
-1.46/-1.09

6.01 1/0.52

Table 2: Experiments of filter-wise Pruning on ImageNet

5 Skipping & Early Stop

5.1 SkipNet: Learning Dynamic Routing in Convolutional Networks

This work proposed a modified residual network to selectively skip convolutional blocks based
on the activations of the previous layer. Whether to skip is learnt by RL. Denoted xi as inputs,

Figure 6: The SkipNet learns to skip convolutional layers on a per-input basis. More layers are
executed for challenging images (top) than easy images (bottom)

F i(xi) be the output of the ith layer or group of layer, then the output of the gated layer (or
group of layers) as:

xi+1 = Gi(xi)F
i(xi) + (1−Gi(xi))xi (23)

5.1.1 Gating Network Design

• Supervised Pre-training Optimizing

• Skipping Policy Learning with Hybrid RL

10

6 Data-Free Pruning

6.1 DAC: Data-free Automatic Acceleration of Convolutional Net-
works

7 RL-based Pruning

7.1 N2N Learning: Network to Network Compression via Policy
Gradient Reinforcement Learning

7.2 ADC: Automated Deep Compression and Acceleration with Re-
inforcement Learning

11

Reference

[1] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, and Cheng-zhong Xu. Dynamic
channel pruning: Feature boosting and suppression. arXiv preprint arXiv:1810.05331,
2018.

[2] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns.
In Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

[3] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems, pages
1135–1143, 2015.

[4] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal
brain surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[5] Yang He, Ping Liu, Ziwei Wang, and Yi Yang. Pruning filter via geometric median for
deep convolutional neural networks acceleration. CVPR, 2019.

[6] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In International Conference on Computer Vision (ICCV), volume 2,
page 6, 2017.

[7] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[8] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 7, 2017.

[9] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touret-
zky, editor, Advances in Neural Information Processing Systems 2, pages 598–605. Morgan-
Kaufmann, 1990.

[10] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured pruning of neural
networks with budget-aware regularization. CVPR, 2019.

[11] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[12] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian
Wu, Feiyue Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for inter-
pretable cnn compression. CVPR, 2019.

[13] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2755–2763. IEEE, 2017.

[14] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. arXiv preprint arXiv:1707.06342, 2017.

[15] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini. Learning
sparse neural networks via sensitivity-driven regularization. In Advances in Neural Infor-
mation Processing Systems, pages 3879–3889, 2018.

12

[16] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. 2016.

[17] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu,
Junzhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural
networks. In Advances in Neural Information Processing Systems, pages 881–892, 2018.

13

	Element-Wise Pruning
	Learning sparse neural networks via sensitivity-driven regularization tartaglione2018learning
	Sensitivity
	Bounded Insensitivity
	Update Rule
	Regularization

	To prune, or not to prune: exploring the efficacy of pruning for model compression

	Structure Pruning
	Learning Structured Sparsity in Deep Neural Networks
	Extreme Network Compression via Filter Group Approximation

	Filter Pruning
	Pruning filters for efficient convnets
	Network trimming: A data-driven neuron pruning approach towards efficient deep architectures

	Channel Pruning
	Learning efficient convolutional networks through network slimming
	Channel pruning for accelerating very deep neural networks
	Thinet: A filter level pruning method for deep neural network compression
	Discrimination-aware Channel Pruning for Deep Neural Networks zhuang2018discrimination
	Greedy Algorithm for Channel Selection

	Squeeze-and-excitation networks hu2017squeeze
	Dynamic Channel Pruning: Feature Boosting and Suppression gao2018dynamic
	Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration he2018pruning
	Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression li2018exploiting
	Structured Pruning of Neural Networks with Budget-Aware Regularization lemaire2018structured
	Comparison

	Skipping & Early Stop
	SkipNet: Learning Dynamic Routing in Convolutional Networks
	Gating Network Design

	Data-Free Pruning
	DAC: Data-free Automatic Acceleration of Convolutional Networks

	RL-based Pruning
	N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
	ADC: Automated Deep Compression and Acceleration with Reinforcement Learning

