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1 Training-based Quantization

1.1 XNOR-Net [4]

1.2 DoReFa-Net: Training Low Bitwidth Convolutional Neu-
ral Networks with Low Bitwidth Gradients [7]

1.2.1 Introduction

This paper trained neural network with quantized weights, activation (layer input) and
gradients. It can train AlexNet from scratch to reach 46.1% top-1 accuracy.

1.2.2 Weight Quantization

Straight-Through Estimator

Forward: ro = sign(ri)

Backward:
∂c

∂ri
=

∂c

∂ro
I|ri|≤1

(1)

k-bit representation of Straight-Through Estimator

Forward: ro = 2× quantizek

(
tanh(ri)

2max(|tanh(ri))
+

1

2

)
− 1

Backward:
∂c

∂ri
=
∂ro
∂ri
× ∂c

∂ro

(2)

quantizek is a function to map continuous values into k-bit fixed point ranging in [0, 1].

1.2.3 Activation Quantization

fkα(r) = quantizek(r) (3)

1.2.4 Gradient Quantization

Forward: rori

Backward:
∂c

∂ri
= fkγ (

∂c

∂ro
)

(4)

where:

fkγ (dr) = 2max0(|dr|)
[
quantizek

(
dr

2max0(|dr|)
+

1

2
+ noise

)
− 1

2

]
(5)
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1.2.5 Algorithm

1.3 Training and Inference with Integers in Deep Neural Net-
work [5]

1.3.1 Introduction

This paper discretized both training and inference, where weights (W), activations
(A), gradients (G) and errors (E) among layers are shifted and linearly constrained to
low-bitwidth integers (not exactly “integers”).

1.3.2 Quantization Intervals and Conversion

σ(k) = 21−k, k ∈ N+ (6)

Given a float-point x, it is converted to k-bitwidth signed integer representation:

Q(x, k) = clip

{
σ(k) · round

[
x

σ(k)

]
,−1 + σ(k), 1− σ(k)

}
(7)

e.g. Q(x, 2) quantizes {−1, 0.2, 0.6} to {−0.5, 0, 0.5}
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1.3.3 Training Algorithm

Figure 1:

2 Direct Quantization

2.1 Fixed Point Quantization of Deep Convolution Networks
[3]

This paper converted a pre-trained floating point Deep Convolution Network (DCN)
into a fixed point model, which deals with the scenario that users have no access
to origin training data. The conversion is based on signal-to-quantization-noise-ratio
(SQNR).

2.1.1 Optimal Uniform Quantizer

Range ≈ Stepsize× 2Bitwidth (8)

Previous work on minimizing SQNR showed that there exist optimal Stepsize under
different Bitwidth for various input distribution:

It furthur shows that SQNR has an approximatly linear relationship with bitwidth:

γdB ≈ κ× β (9)

2.1.2 Model Conversion

• Run a forward pass in floating point using a large set of typical inputs and record
the activations.

• Collect the statistics of weights, biases and activations for each layer.
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• Determine the fixed point formats of the weights, biases and activations for each
layer:

– Determine the effective standard deviation of the quantity being quantized:ξ.

– Calculate the step size via Table: s = ξ × Stepsize(β)

– Compute the number of fractional bits: n = −dlog2se

2.1.3 Analysis of Quantization on SQNR

In the absence of model fine-tuning, converting a floating point deep network into a
fixed point deep network is essentially a process of introducing quantization noise into
the neural network. The effect of quantization can be accurately captured in a single
quantity, the SQNR, which can be approximated theoretically and analyzed layer-by-
layer.

For quantized weights w̃ = w + nw and quantized activation: ã = a + na. When
the noise |nw| << |w| and |na| << |a|, we can have:

1

γw×a
=

1

γw
+

1

γa
(10)

Eq.10 means that introducing quantization noise to weights and activations indepen-
dently is equivalent to adding the total noise after the product operation in a normalized
system. Similarily, in one layer forward, we have:

1

γwl+1
i,j a

l
j

=
1

γwl+1

+
1

γal
(11)

Eq.11 can be generalized to all the layers in a DCN:

1

γoutput

=
1

γa0
+

1

γw1

+
1

γa1
+ ...+

1

γwL

+
1

γaL
(12)

In other word, the SQNR at the output of a layer in DCN is the Harmonic Mean
of the SQNRs of all preceding quantization steps: The network performance will be
dominated by the worst quantization step, since γoutput ≤ γal for all l.

It further shows that layers with more parameters should use relatively lower bit-
width.

3 Incremental Quantization

3.1 Incremental Network Quantization: Towards Lossless CNNs
with Low-Precision Weights [6]

3.1.1 Introduction

This paper converted weights to be either powers of two or zero using an incremental
method: repeatedly converted a portion and retrain the rest.

3.1.2 Quantization Intervals

Ŵ = {±2n1 , ...,±2n2 , 0} (13)

e.g. {±1,±0.5,±0.25,±0.125, ..., 0}
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3.1.3 Training Algorithm

Figure 2: First row: results from the 1st iteration of the proposed three operations.
The top left cube illustrates weight partition operation generating two disjoint groups,
the middle image illustrates the quantization operation on the first weight group (green
cells), and the top right cube illustrates the re-training operation on the second weight
group (light blue cells). Second row: results from the 2nd, 3rd and 4th iterations of the
INQ. In the figure, the accumulated portion of the weights which have been quantized
undergoes from 50%→ 75%→ 87.5%→ 100%

Figure 3:
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4 Statistical Analysis of Weights and Activation

4.1 Deep Learning with Low Precision by Half-Wave Gaussian
Quantization [1]

For weights quantization, it use
It considered quantizing the activation of deep neural network by exploiting the

statistics of network activation: after batch normalization and dot-product of binary
weights and quantized input, it approximately satisfies a Gaussian distribution with
zeros mean and 1 std, as shown in Fig.4:

Figure 4: Dot-product distributions on different layers of AlexNet with binary weights
and quantized activations (100 random images).

Therefore, it proposed the half-wave Gaussian quantizer for activation as (“Half”
because of relu eliminate the negative response):

Q(x) =

{
qi, if x ∈ (ti, ti+1)

0, x ≤ 0
(14)

tis, qis are the optimal quantization parameters which is attained by Lloyd’s algorithm:
it drew 106 samples from a standard Gaussian distribution of zero mean and unit
variance, and obtained the optimal quantization parameters by Lloyd’s algorithm. The
resulting parameters t∗i and q∗i were used to parametrize a single HWGQ that was used
in all layers, after batch normalization of dot-products.

It then proposed 3 types of backward functions to solve the problem of derivatives
vanishing.

• Vanilla ReLU:

Q̃
′
(x) =

{
1, if x > 0

0, otherwise
(15)

• Clipped ReLU:

Q̃
′
(x) =


qm, x > qm,

x, x ∈ (0, qm],

0, otherwise

(16)

• Log-tailed ReLU:
Forward:

Q̃(x) =


qm + log(x− τ), x > qm,

x, x ∈ (0, qm],

0, otherwise

(17)
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Backward:

Q̃
′
(x) =


1

x− τ
, x > qm,

1, x ∈ (0, qm],

0, otherwise

(18)

where τ = qm − 1, the log-tailed ReLU is identical to the vanilla ReLU for dot
products of amplitude smaller than qm, but gives decreasing weight to amplitudes
larger than this.

5 Theoretical Analysis of Quantization

5.1 Training quantized nets: A deeper understanding [2]

This work investigated training methods for quantized neural networks from a theo-
retical viewpoint:

5.1.1 Stochastic Rounding

wt+1
b = Qs(w

t
b − αt∇f̃(wtb)) (19)

Qs(w) = ∆×
{ ⌊

w
∆

⌋
+ 1 for p ≤ w

∆
−
⌊
w
∆

⌋⌊
w
∆

⌋
otherwise

(20)

Quantization Error:

wt+1 = wt − αt∇f̃(wt) + rt (21)

where rt = Qs(w
t − αt∇f̃(wt))− wt + αt∇f̃(wt), which is bounded by:

E||rt||2 ≤
√
d∆αtG (22)

G is a bound for: E||∇f̃(wt)||2 ≤ G2, which is proven in the paper.

Convergence Analysis:
Assumption:

• Loss function F is µ-strongly convex: f(y) ≥ f(x) +∇f(x)>(y− x) + µ
2
||y− x||22

• Gradient is bounded: E||∇f(wt)|| ≤ G2

Theorem 1. Assume that F is µ-strongly convex and the learning rates are given by
αt = 1

µ(t+1)
. Consider the SR algorithm with updates of the form (19). Then, we have:

E[F (w̄T )− F (w∗)] ≤ (1 + log(T + 1))G

2µT
+

√
d∆G

2
(23)

where w̄T = 1
T

∑t
i=1 w

t.

General Idea:
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• Start from quantization error, which is related to quantization resolution, gradient
etc.

• Then introduce F by µ-strongly convex.

• Finally telescope sum to reduce intermediate term.

Detailed Proof :
We start from weights update:

wt+1 = wt − αt∇f(wt) + rt → wt+1 − w∗ = (wt − w∗)− (αt∇f(wt)− rt)

Take expectation of both sides:

E‖wt+1 − w∗‖2

= ‖wt − w∗‖2 − 2E〈wt − w∗, αt∇f̃(wt)− rt〉︸ ︷︷ ︸
E[rt]=0

+E‖αt∇f̃(wt)− rt‖2︸ ︷︷ ︸
E[rt]=0

= ‖wt − w∗‖2 − 2αt〈wt − w∗,∇F (wt)〉+ α2
tE‖∇f̃(wt)‖2 + E‖rt‖2

≤ ‖wt − w∗‖2 − 2αt〈wt − w∗,∇F (wt)〉+ α2
tG

2 +
√
d∆αtG︸ ︷︷ ︸

E
∥∥rt∥∥2

2
≤
√
d∆αtG.

,

By µ-strongly convex: F (w∗)− F (wt) ≥ 〈w∗ − wt,∇F (wt)〉+ µ
2
||w∗ − wt||2 →

E‖wt+1 − w∗‖2 ≤ (1− αtµ)‖wt − w∗‖2 − 2αt(F (wt)− F (w∗))

+α2
tG

2 +
√
d∆αtG.

Re-arranging the terms, taking expectation, and asssume that the stepsize decreases
with the rate αt = 1/µ(t+ 1). Then we have:

E(F (wt)− F (w∗)) ≤ µt

2
E‖wt − w∗‖2 − µ(t+ 1)

2
E‖wt+1 − w∗‖2

+
1

2µ(t+ 1)
G2 +

√
d∆G

2
.

Averaging over t = 0 to T , we get a telescoping sum on the right hand side:

{t = t} :
µt

2
E‖wt − w∗‖2︸ ︷︷ ︸

eliminate

−µ(t+ 1)

2
E‖wt+1 − w∗‖2

{t = t− 1} :
µ(t− 1)

2
E‖wt−1 − w∗‖2︸ ︷︷ ︸

eliminate when t=1

− µt
2
E‖wt − w∗‖2︸ ︷︷ ︸

eliminate

After elimination:

1

T

T∑
t=0

E(F (wt)− F (w∗)) ≤ G2

2µT

T∑
t=0

1

t+ 1
+

√
d∆G

2

− µ(T + 1)

2
E‖wT+1 − w∗‖2(Get rid of)

≤ (1 + log(T + 1))G2

2µT
+

√
d∆G

2
.
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Using Jensen’s inequality, we have:

E(F (w̄T )− F (w∗)) ≤ 1

T

T∑
t=0

E(F (wt)− F (w∗))

≤ (1 + log(T + 1))G2

2µT
+

√
d∆G

2
Q.E.D

5.1.2 Binary Connect

BinaryConnect: wt+1
r = wtr − αt∇f̃

(
Q(wtr)

)
. (24)

Assumption:

• Hessian satisfies the Lipschitz bound: ‖∇2fi(x)−∇2fi(y)‖ ≤ L2‖x−y‖ for some
L2 ≥ 0.

Theorem 2. Assume F is L-Lipschitz smooth, the domain has finite diameter D, and
learning rates are given by αt = c√

t
. Consider the BC-SGD algorithm with updates of

the form (24). Then, we have:

E[F (w̄T )− F (w∗)] ≤ 1

2c
√
T
D2 +

√
T + 1

2T
cG2 +

√
d∆LD.

Detailed Proof :
We start from weights update:

wt+1 = wt − αt∇f̃
(
Q(wt)

)
= wt − αt∇f̃

(
wt + rt

)
.

Taking expectation conditioned on wt and rt, we have

E‖wt+1 − w∗‖2

= E‖wt − αt∇f̃
(
wt + rt

)
− w∗‖2

= E‖wt − αt∇f̃
(
wt) + αt∇f̃

(
wt
)
− αt∇f̃

(
wt + rt

)
− w∗‖2

= ‖wt − w∗‖2 − 2αtE〈wt − w∗,∇f̃
(
wt
)
〉+ 2αtE〈wt − w∗,∇f̃

(
wt
)
−∇f̃

(
wt + rt

)
〉+ E‖αt∇f̃

(
wt + rt

)
‖2

= ‖wt − w∗‖2 − 2αt〈wt − w∗,∇F
(
wt
)
〉+ 2αt〈wt − w∗,∇F

(
wt
)
−∇F

(
wt + rt

)
〉+ α2

tE‖∇f̃
(
wt + rt

)
‖2

≤ ‖wt − w∗‖2 − 2αt〈wt − w∗,∇F
(
wt
)
〉+ 2αt‖wt − w∗‖‖∇F

(
wt
)
−∇F

(
wt + rt

)
‖+ α2

tG
2

≤ ‖wt − w∗‖2 − 2αt〈wt − w∗,∇F
(
wt
)
〉+ 2αtL‖rt‖‖wt − w∗‖+ α2

tG
2.

6 Quantization Training

6.1 Deep Learning as a Mixed Convex Combinatorial Opti-
mization Problem
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