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Introduction



Machine Learning - What is it really?

• Goal: Extract Knowledge from Data

• Sometimes called predictive analysis or statistical learning

• Given a large matrix of observations X , fit a function f (x)

that maps observation x to a response variable y
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Important Terms

Classifiers Algorithms that learn functions to map observations

to a discrete response. E.g., is this tumor malignant

or benign? Is this email spam or not?

Regressors Algorithms that learn functions to map observations

to a continuous response. E.g., how much should

this house cost?

Underfitting The learned function is too simple. “We barely

studied for the exam.”

Overfitting The learned function is too complex. “We memorized

all the practice problems, but don’t understand the

material.”

Generalization How well does the learned function extend to new

observations?



Scikit-Learn: Machine Learning in Python

• Provides many machine learning tools with a common

Estimator interface1

• Built in helpers for common ML tasks (e.g., metrics,

preprocessing)

• Easily combine algorithms to make a complex pipeline2

• Relies heavily on numpy and scipy, often used with pandas

1http://scikit-learn.org/stable/developers/contributing.html#

apis-of-scikit-learn-objects
2Sound familiar?

http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects
http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects
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Supervised Learning



Learning to Predict Breast Cancer

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer() # Get some data

X_train, X_test, y_train, y_test = train_test_split(

cancer.data, cancer.target,

stratify=cancer.target, random_state=1337)

tree = DecisionTreeClassifier(random_state=7331)

tree.fit(X_train, y_train) # Learn a Decision Function



Evaluating Accuracy of a Model

# How well did we do?

train_acc = tree.score(X_train, y_train)

test_acc = tree.score(X_test, y_test)

print("Training Accuracy: {:.3f}".format(train_acc))

print("Testing Accuracy: {:.3f}".format(test_acc))

# Training Accuracy: 1.000

# Testing Accuracy: 0.923



Other Supervised Learning Models

• Decision trees are a common first step, because they’re easy

to interpret and don’t require much preprocessing

• Decision trees are prone to overfitting, so a good improvement

is the RandomForest

• Support Vector Machines, Logistic/Linear Regression, and

Artificial Neural Networks are commonly the first algorithms

studied

• See the scikit-learn documentation for a comprehensive

guide of available algorithms
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Becoming a “Data Scientist”

1. Get some (more) data

2. Pick an algorithm (or algorithm chain)

3. Train the model

4. Test generalization ability of trained model

5. Good enough? Done. Else, go back to step 1 or 2.

Then, tell people you’re a genius . . . it’s that easy!



Unsupervised Learning



Distinction from Supervised Learning

Supervised Learning You tell the model what the correct answers

are for training examples.

Unsupervised Learning You ask the model to extract information

from a dataset.

Unsupervised Clustering Partition data into similar groups.

Example: K-Means Clustering

Unsupervised Transformations Create new representations of

data. Example: Principal Component Analysis



Model Evaluation and Improvement



Choice of Evaluation Metric

• Accuracy is not always the best metric for your system

• Plenty of others exist, pick the best for your business costs

• Look in the sklearn.metrics module for alternatives

• You can also use your own evaluation function!
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Cross Validation

Never Fit Models to Test Data! Ever!

Learning the parameters of a prediction function and testing it on

the same data is a methodological mistake: a model that would

just repeat the labels of the samples that it has just seen would

have a perfect score but would fail to predict anything useful on

yet-unseen data. This situation is called overfitting.



Grid Search with Cross Validation

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.model_selection import GridSearchCV

cancer = load_breast_cancer() # Get some data

X_train, X_test, y_train, y_test = train_test_split(

cancer.data, cancer.target,

stratify=cancer.target, random_state=1337)

tree = DecisionTreeClassifier(random_state=7331)

search_grid = {’criterion’: [’gini’, ’entropy’],

’max_depth’ : [5, 10, 15, 20]}

# search_grid could also be a list of dicts

search = GridSearchCV(tree, search_grid, cv=5)

search.fit(X_train, y_train)

print(search.best_params_)



Pipelines



Pipelines

Use Pipeline to combine multiple estimators into a single

estimator. Two conveniences:

1. Convenience: You only have to call fit and predict once on

your data to fit a whole sequence of estimators.

2. Joint parameter selection: You can grid search over

parameters of all estimators in the pipeline at once.



A Simple Pipeline

>>> from sklearn.pipeline import Pipeline

>>> from sklearn.svm import SVC

>>> from sklearn.decomposition import PCA

>>> estimators = [(’reduce_dim’, PCA()), (’clf’, SVC())]

>>> pipe = Pipeline(estimators)

>>> pipe

Pipeline(steps=[(’reduce_dim’, PCA(copy=True, iterated_power=’auto’,

n_components=None, random_state=None, svd_solver=’auto’, tol=0.0,

whiten=False)), (’clf’, SVC(C=1.0, cache_size=200, class_weight=None,

coef0=0.0, decision_function_shape=None, degree=3, gamma=’auto’,

kernel=’rbf’, max_iter=-1, probability=False, random_state=None,

shrinking=True, tol=0.001, verbose=False))])



Grid Search - Tuning a Complex Pipeline

from sklearn.pipeline import make_pipeline

from sklearn.svm import SVC

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import GridSearchCV

pipe = make_pipeline(PCA(), StandardScaler(), SVC())

params = dict(pca__n_components=[2, 5, 10],

svc__C=[0.1, 10, 100])

grid = GridSearchCV(pipe, param_grid=params)

# Next, call grid.fit on some training data

# This will use cross validation to estimation performance using each

# combination of parameters for pipeline in params dict

# With fitted model

print(grid.best_params_)



Questions?



Copyright Notice

This presentation was from the Mines Linux

Users Group. A mostly-complete archive of our

presentations can be found online at

https://lug.mines.edu.

Individual authors may have certain copyright or

licensing restrictions on their presentations. Please

be certain to contact the original author to obtain

permission to reuse or distribute these slides.

https://lug.mines.edu
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