
MRS lab ROS platform Cheat Sheet
by Tomas Baca @ Multi-robot Systems (MRS), v1.2.0

Hitting 〈Tab〉 autocompletes commands, filenames, etc.
New terminal Ctrl+Alt+t

Need help append --help after command
Need more help! :$ man [command]

Change directory :$ cd [path]

Path symbolic links . – current directory
.. – previous directory
∼ – home directory (also $HOME)
/ – root directory

create a file :$ touch [path]
remove a file :$ rm [path]
move (also rename) a file :$ mv [from] [to]
copy a file :$ cp [from] [to]
print a file :$ cat [path]
edit a file :$ vim [path], :$ nano [path]

set a variable :$ VARIABLE="dog", VARIABLE=3.0
print a variable :$ echo "the content is: $VARIABLE"

run a script or executable :$./script.sh, ./program

output redirection > – to a file (rewrite)
>> – to a file (append)
| – pipe to another command

redirect to /dev/null > /dev/null 2>&1

Would You Like to Know More? http://google.com

Ubuntu terminal - GNU/Linux basics

Run tmux :$ tmux
List all sessions :$ tmux ls
Attach to a session :$ tmux a -t [session name]

New window (tab) Ctrl+t
New horizontal split Ctrl+9
New vertical split Ctrl+0
Moving through windows (tabs) Shift+→, Shift+←
Moving through panes (splits) Alt+→, Alt+←, Alt+↑, Alt+↓
prefix Ctrl+a

Killing window prefix x, :$ exit, :$:q
Killing session prefix k
Detach from session prefix d
Enter vim mode (scrolling, copying) F2, prefix [

Would You Like to Know More? https://github.com/klaxalk/linux-setup/wiki/tmux

TMUX - Terminal multiplexer

Vim is not a joke. Although you might not know how to exit it (yet), it is a very powerful tool. Our vim
is filled with features, including code snippets, code completion (ROS aware), code formatting, syntax high-
lighting and tmux integration. Its control is completely mouse-less and it is fully usable over ssh, which makes
it great for remote editing on a drone. Moreover, its modal editing paradigm is very intuitive. Lastly, when
you learn how to control vim, you also learn to control other tools such as Linux manual pages, ranger, less
and much more. Even gmail uses vim-like controls natively. Run :$ vimtutor to start learning vim using an
interactive “file tutorial”. Here are some simple commands:

switch to insert mode i jump a word/Word forwards w/W
return to normal mode ESC jump a word/Word backwards b/B
cut a line to clipboard dd change current word/Word ciw/ciW
paste a clipboard p delete 3 lines down 3dj

open a command line : substitute dog for cat :%s/dog/cat/g
save :w move cursor left/down/up/right h/j/k/l
quit :q delete every line containing dog :%g/dog/normal dd

Would You Like to Know More? https://www.tutorialspoint.com/vim/

Vim – a modern modular text processor

Git is a distributed version control system. Repositories are equal, some are just used as a “server” (called
remote). Git uses branches to isolate ongoing work on the same project. Branches can be merged to combine
the work back into a single piece. Changes in the files should be commited. Only commit “runnable” code.

Cloning a repository over ssh :$ git clone git@mrs.felk.cvut.cz:uav/uav core
over https :$ git clone https://github.com/klaxalk/linux-setup

Update origin state :$ git fetch
Update current branch from remote :$ git pull
Update current branch to remote :$ git push
Commit “patch” – interactive :$ git commit -p
Add files for commit :$ git add [file]
Commit changes :$ git commit -m "commit message"

Checkout a branch :$ git checkout [branch name]
Create a branch :$ git checkout -b [branch name]

unstage the file :$ git reset [file name]
undo all uncommited changes :$ git reset --hard
remove all new unstaged files :$ git clean -fd

Merge a branch :$ git merge [branch name]
Rebase on a branch :$ git rebase [branch name]

refactor branch history :$ git filter-branch [lot of args]

show status :$ git status
show log :$ git log
show better log :$ glog

– is an alias for :$ git log with more arguments
show super forest log :$ flog

– uses /.scripts/git-forest.sh

Would You Like to Know More? https://try.github.io/

Git version control system

When a new terminal is opened and an instance of bash is launched, the ∼/.bashrc file is sourced (executed
while its leftover variables, functions and aliases stay in the context). We use .bashrc heavily for setting con-
text for ROS and our development environment. .bashrc sources ROS setup scripts, which are also generated
by each workspace. If you change this file, source it (or open a new terminal) to activate the changes: :$
source ∼/.bashrc or just :$ sb. Here is an example of what should not be missing in the bottom of a healthy
.bashrc file:

source /opt/ros/melodic/setup.bash
source /usr/share/gazebo/setup.sh

source ~/ workspace/devel/setup.bash
source ~/ other_workspace/devel/setup.bash

export ROS_WORKSPACES ="~/ mrs_workspace ~/ workspace"

export GIT_PATH=$HOME/git

export RUN_TMUX=true

VARIABLES TO CONFIGURE THE MRS ROS PIPELINE
export UAV_NAME ="uav1"
...
export MRS_STATUS =" readme"

source $GIT_PATH/uav_core/miscellaneous/shell_additions/shell_additions.sh

source $GIT_PATH/linux -setup/appconfig/bash/dotbashrc

.bashrc – Bash configuration

1

Please, visit http://wiki.ros.org/ROS/Tutorials before starting work on a bigger project.
Use 〈Tab〉 to complete commands, topic names, message types and pre-fill message contents.

Getting help append --help after any following command
Listing all ROS nodes :$ rosnode list
Listing all ROS topics :$ rostopic list
Listing all ROS services :$ rosservice list
Listing all ROS params :$ rosparam list

Running a ROS binary :$ rosrun package name binary name
Running a launch file :$ roslaunch package name launch file.launch

Showing a node info :$ rosnode info /node/path
Showing a topic info :$ rostopic info /topic/path
Showing a service info :$ rosservice info /service/path

Showing a topic type :$ rostopic type /topic/path
Showing a service type :$ rosservice type /topic/path

Showing a message type structure :$ rosmsg show [msg type]
Showing a service type structure :$ rossrv show [srv type]

Showing topic messages :$ rostopic echo /topic/path
Showing a param value :$ rosparam get /parm/path

Calling a service :$ rosservice call /service/path [args]
Publishing on a topic :$ rostopic pub /topic/path [args]
Setting a param value :$ rosparam set /parm/path [args]

Would You Like to Know More? http://wiki.ros.org/ROS/CommandLineTools

ROS in Linux terminal

MRS lab main workspace

path ∼/mrs workspace/
contains src/uav core/ – core MRS repository

src/uav modules/ – modules MRS repository

MRS lab student workspace

path ∼/workspace
contains example packages/

– waypoint flier – general example
– vision example – computer vision template

General ROS package structure

build generated makefiles and support files
do not modify

devel compiled binaries, libraries and installed headers
do not modify

src package source codes
place your stuff in here

ROS workspace structure

go to a package :$ roscd [package name]

compile the whole workspace :$ catkin build
compile a particular package :$ catkin build [package name]
compile current package :$ catkin bt
clean the whole workspace :$ catkin clean
clean a particular package :$ catkin clean [package name]

show workspace config :$ catkin config
show compilation profiles :$ catkin profile list
set a compilation profile :$ catkin profile set [profile name]

create a new workspace :$ catkin init
set workspace extending :$ catkin config --extend [path]

Would You Like to Know More? https://catkin-tools.readthedocs.io/en/latest/

Navigating and compiling ROS workspace

Some of the following items might be missing, depending on the package use case.

package.xml manifest, dependencies and plugins
CMakeLists.txt description of compilation procedure
src/ C and C++ source codes
include/ C and C++ headers
scripts/ Python and bash scripts
config/ yaml config files
cfg/ dynamic reconfigure scripts
launch/ ROS launch files

Would You Like to Know More? http://wiki.ros.org/Packages

ROS package structure

Rviz 3-D visualization of data and models
:$ rviz
:$ roslaunch mrs testing rviz uav1.launch

Rqt plot simple and lightweight plotting
:$ rqt plot

Rqt bag visualizing contents of a rosbag
:$ rqt bag

Plot juggler complex and powerful plotting
:$ rosrun plotjuggler PlotJuggler

Rqt reconfigure online parameter setting
:$ rosrun rqt reconfigure rqt reconfigure

Rqt image view camera images visualization
:$ rqt image view

Gazebo client Gazebo GUI
:$ gzclient

rqt Integrates most of the rqt tools
:$ rqt

Would You Like to Know More? http://wiki.ros.org/Tools

ROS visualization tools

Following ROS services and topics allow for controlling the UAV from terminal. Each address contains a
particular name of the UAV.

Informative topics (subscribe to know stuff)

state estimate (rviz-able) /uav1/odometry/odom main
control reference (rviz-able) /uav1/control manager/cmd odom
control reference (full-state) /uav1/control manager/position cmd
control manager diagnostics /uav1/control manager/diagnostics

Control Services/Topics (call or publish to influence stuff)

The addresses for reference, trajectory reference are the same for both the topic and the service.
position+heading goal /uav1/control manager/reference

takeoff /uav1/uav manager/takeoff
land /uav1/uav manager/land
land home /uav1/uav manager/land home
hover /uav1/uav manager/hover

switch controller /uav1/control manager/switch controller [Controller]
switch tracker /uav1/control manager/switch tracker [Tracker]
set tracker constraints /uav1/constraint manager/set constraints [Constraints]
set SO(3) controller gains /uav1/gain manager/set gains [Gains]

load trajectory /uav1/control manager/trajectory reference
trajectory goto start /uav1/control manager/goto trajectory start
trajectory start tracking /uav1/control manager/start trajectory tracking

Would You Like to Know More? https://ctu-mrs.github.io/docs/system/uav_ros_interface.html

Useful UAV ROS topics and services

2

� Generate your SSH key by: :$ ssh-keygen -t rsa -b 4096 -C "your email@example.com".

� The keys are stored in ∼/.ssh.

� Show the content of the public key by: :$ cat ∼/.ssh/id rsa.pub and copy it to Github or Gitlab.

� Copy your public key over ssh to another machine by: :$ ssh-copy-id user@machine.

� Entries in the ∼/.ssh/config allow connecting to a machine via alias while using an ssh key:

host mrs
hostname mrs.felk.cvut.cz
user git
identityfile ~/.ssh/id_rsa

SSH keys

We use a ROS node called mrs drone spawner to dynamically load a UAV into the Gazebo/ROS simulator. By
default, it starts automatically with Gazebo using :$ roslaunch mrs simulation simulation.launch.
Spawn a drone by calling a service :$ rosservice call /mrs drone spawner/spawn "1 --enable-rangefinder"
If the service does not exist, start the spawner by :$ roslaunch mrs simulation mrs drone spawner.launch
Various arguments can be used to influence the type of the drone, its sensors, its starting location and
additional onboard hardware. Run the command :$ rosrun mrs simulation mrs drone spawner.py to see the
complete list. Here are some notable examples:

use initial position from a CSV file (id, x, y, z, heading) --file [path to file]
use initial position from an argument --pos [x y z heading]
selecting UAV type (f450, f550, t650) --f450, --f550, --t650
add down-facing rangefinder --enable-rangefinder
add front-facing camera --enable-bluefox-camera
add front-facing RealSense --enable-realsense-front
add 2-D rangefinder --enable-rplidar
add 3-D rangefinder --enable-velodyne

add UV camera for UVDAR --enable-uv-camera
add UV leds for UVDAR --enable-uv-leds
set UV led frequencies (left) --uvled-fr-l [freq]

add super long pendulum --enable-pendulum
add ball holder --enable-ball-holder

A typical simulation spawning looks like:
:$ rosservice call /mrs drone spawner/spawn "1 --f450 --enable-rangefinder"

Spawning a UAV in Gazebo simulator

� Add your local machine hostname to the remote machine’s hostname /etc/hosts and vice versa.

� Make sure the robot’s /etc/hosts contains the ’127.0.1.1 <robot’s hostname>’ entry.

� Make sure the machines can ping each other using their hostnames.

� Add export ROS MASTER URI=http://localhost:11311 to the remote’s (robot’s) .bashrc.

� Add export ROS MASTER URI=http://<hostname>:11311 to the local’s .bashrc, where hostname is the
remote’s hostname.

� Add export ROS IP=<your IP> to the local’s .bashrc, where the IP should be of the interface used to
communicate with the robot.

� Do NOT export ROS IP in the remote’s (robot’s) .bashrc

� Remove the remote’s (robot’s) own hostname in /etc/hosts except of 127.0.1.1.

� Run roscore only on the remote machine.

ROS on a remote machine

2-D rotational matrix:

R (φ) =

[
cosφ − sinφ
sinφ cosφ

] Degrees-to-radian conversion table with values of sin and cos:
deg 0 30 45 60 90 120 180
rad 0 0.523 0.785 1.047 1.57 2.09 3.14
sin 0.0 0.500 0.707 0.866 1.0 0.866 0.0
cos 1.0 0.866 0.707 0.500 0.0 -0.50 -1.0

The math that everybody needs, but nobody remembers

“Complex” numbers with three imaginary parts: i, j, k and ‖ · ‖ = 1.

By axis [x, y, z] and angle φ q = cos φ2 + (xi+ yj + zk) sin φ
2

Component-wise qw = cos φ2 , qx = x sin φ
2 , qy = y sin φ

2 , qz = z sin φ
2

Inverse quaternion q−1 = cos −φ
2 + (xi+ yj + zk) sin −φ

2 =
qw−qxi−qyj−qzk
q2w+q2x+q2y+q2z

Transforming the vector [1, 2, 3] u = 0 + 1i+ 2j + 3k, v = quq−1

Converting various representations of rotation using mrs lib::AttitudeConverter:

every combination is possible
tf2:: Quaternion tf2_quat = AttitudeConverter(roll , pitch , yaw);
tf2:: Matrix3x3 tf2_matrix = AttitudeConverter(tf2_quat);
geometry_msgs :: Quaternion quaternion = AttitudeConverter(tf2_matrix);
Eigen:: Quaterniond eig_quat = AttitudeConverter(guaternion);
Eigen::AngleAxis <double > eig_angle_axis = AttitudeConverter(eig_quat);
Eigen:: Matrix3d eig_matrix = AttitudeConverter(eig_angle_axis);
auto [roll2 , pitch2 , yaw2] = AttitudeConverter(eig_matrix);
tie(roll2 , pitch2 , yaw2) = AttitudeConverter(roll2 , pitch2 , yaw2);
double heading1 = AttitudeConverter(tf2_quat). getHeading ();

Would You Like to Know More? https://eater.net/quaternions

Quaternions (unit quaternions)

node handler ros::NodeHandle nh = ros::NodeHandle("∼");
nodelet handler ros::NodeHandle nh = nodelet::Nodelet::getMTPrivateNodeHandle();

subscriber ros::Subscriber subscriber = nh.subscribe("name", 1, callback, this,
ros::TransportHints().tcpNoDelay());

publisher ros::Publisher publisher = nh.advertise<message class>("name", 1);

service client ros::ServiceClient client = nh.serviceClient<service class>("name");
service server ros::ServiceServer server = nh.advertiseService("name", callback, this);

timer ros::Timer timer = nh.createTimer(ros::Rate(30), callback, this);

Would You Like to Know More? http://wiki.ros.org/ROS/Tutorials

Common ROS handlers in C++

node handler rospy.init node(’node name’, anonymous=True)

subscriber subscriber = rospy.Subscriber(’∼topic name’, MessageClass, callback,
queue size=1)

publisher publisher = rospy.Publisher(’∼topic name’, MessageClass, queue size=1)

service client client = rospy.ServiceProxy(’∼service name’, MessageClass)
service server server = rospy.Service(’∼service name’, MessageClass, callback)

timer timer = rospy.Timer(rospy.Duration(1/30.0), callback)

Would You Like to Know More? http://wiki.ros.org/ROS/Tutorials

Common ROS handlers in Python

Fixed matrix Matrix<double, 3, 3> A; element-wise product P.cwiseProduct(Q)
Dynamic matrix MatrixXd A; Norm v.norm()
Dynamic vector VectorXd v; Squred norm v.squaredNorm()
Zero matrix MatrixXd::Zero(rows, cols) Dot product v.dot(u)
Identity matrix MatrixXd::Identity(n, n) Cross product v.cross(v)
Vector element v(n) Solve Ax=b x = A.qr().solve(b);
Matrix element A(row, column) Eigen-decomposition EigenSolver<Matrix3d> eig(A);
Matrix inversion A.inverse() Matrix transposition A.transpose()
Matrix column A.col(n) #include <Eigen/Dense> for everything
no. of rows and cols A.rows(), A.cols() #include <Eigen/Geometry> for cross
Sub-matrix A.block(i, j, rows, cols) #include <Eigen/QR> for QR decomposition

Would You Like to Know More? https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

Common Eigen operations in C++

3

If you’re experiencing crashes of your C/C++ ROS node/nodelet or if your program is not behaving as expected
in general and you want to inspect it, you can reach for a debugger. A debugger (namely GDB in our case)
enables you to inspect the state of the program after a crash or at any point during the program runtime and
is a very powerful tool for rooting out bugs.

command description comment
b filename.cpp:310 breakpoint in filename.cpp at line 310
bt backtrace
f <num> change to frame <num> <num> = the number from bt
s step in function
n step to the next line
fin finish function in case you accidentaly step into
c continue resume program until breakpoint or crash
p <num> print variable <num> = variable name
wh open window with code (tui) actually sets window height
tui enable/disable open/close window with code (tui) the official way of wh
focus cmd/src changes focus in gdb tui if you want to use arrows for cmd hist.
up/down jumps in the frames ip/down
<enter> repeats the last command
u <num> continue until line <num> <num> = the line number in the current file
ref refresh the screen in case of some visual problems
run run the executable
thread apply all # apply command # to all threads
the .gdbinit file put pre-start settings in here an example is in the file
–args exec arg1 ... running executable with args

Would You Like to Know More? https://ctu-mrs.github.io/docs/software/gdb.html

GDB - GNU Debugger

Although ros::tf2 library provides options for transforming data between frames of reference, it is far from
friendly-to-use. Therefore, we have built a wrapper that simplifies most of the tasks.

include <mrs_lib/transformer.h> include this
mrs_lib::Transformer transformer_; declare
transformer_ = mrs_lib::Transformer(<node_name>); initialize

� mrs lib::Transformer is capable of inferring full name of a UAV: gps origin -> uav3/gps origin (after
enabling by transformer_.setDefaultPrefix(<uav_name>);.

� mrs lib::Transformer finds the latest available <tf> if there is none available for <time> (after enabling
by transformer_.retryLookupNewest()

� mrs lib::Transformer can transform from/to latlon origin, our custom GPS frame with deg. of lat/lon

Getting transformation <from> frame <to> frame in particular time

if (auto ret = transformer_.getTransform(<from >, <to>, <time >) {
mrs_lib :: TransformStamped tf = ret.value ();

}

Transforming <what> <to> frame using the transformation <tf>:

if (auto ret = transformer_.transform(<what >, <transformation >) {
auto result = ret.value ();

}

Transforming <what> <to> only once (finds the <tf> automatically):

if (auto ret = transformer_.transformSingle(<what >, <to >) {
auto result = ret.value ();

}

Would You Like to Know More? https://ctu-mrs.github.io/mrs_lib

mrs lib::Transformer, MRS ros::tf2 wrapper

http://github.com/ctu-mrs

http://mrs.felk.cvut.cz

this cheat sheet PDF
github.com/ctu-mrs/mrs_cheatsheet

4

