{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preprocessing and pipelines\n",
"> A Summary of lecture \"Supervised Learning with scikit-learn\", via datacamp\n",
"\n",
"- toc: true \n",
"- badges: true\n",
"- comments: true\n",
"- author: Chanseok Kang\n",
"- categories: [Python, Datacamp, Machine_Learning]\n",
"- image: images/gm-boxplot.png"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preprocessing data\n",
"- Dealing with categorical features\n",
" - Scikit-learn will note accept categorical features by default\n",
" - Need to encode categorical features numerically\n",
" - Convert to 'dummy variables'\n",
" - 0 : Obsevation was NOT that in category\n",
" - 1 : Observation was that category"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exploring categorical features\n",
"The Gapminder dataset that you worked with in previous chapters also contained a categorical ```'Region'``` feature, which we dropped in previous exercises since you did not have the tools to deal with it. Now however, you do, so we have added it back in!\n",
"\n",
"Your job in this exercise is to explore this feature. Boxplots are particularly useful for visualizing categorical features such as this."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
population
\n",
"
fertility
\n",
"
HIV
\n",
"
CO2
\n",
"
BMI_male
\n",
"
GDP
\n",
"
BMI_female
\n",
"
life
\n",
"
child_mortality
\n",
"
Region
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
34811059.0
\n",
"
2.73
\n",
"
0.1
\n",
"
3.328945
\n",
"
24.59620
\n",
"
12314.0
\n",
"
129.9049
\n",
"
75.3
\n",
"
29.5
\n",
"
Middle East & North Africa
\n",
"
\n",
"
\n",
"
1
\n",
"
19842251.0
\n",
"
6.43
\n",
"
2.0
\n",
"
1.474353
\n",
"
22.25083
\n",
"
7103.0
\n",
"
130.1247
\n",
"
58.3
\n",
"
192.0
\n",
"
Sub-Saharan Africa
\n",
"
\n",
"
\n",
"
2
\n",
"
40381860.0
\n",
"
2.24
\n",
"
0.5
\n",
"
4.785170
\n",
"
27.50170
\n",
"
14646.0
\n",
"
118.8915
\n",
"
75.5
\n",
"
15.4
\n",
"
America
\n",
"
\n",
"
\n",
"
3
\n",
"
2975029.0
\n",
"
1.40
\n",
"
0.1
\n",
"
1.804106
\n",
"
25.35542
\n",
"
7383.0
\n",
"
132.8108
\n",
"
72.5
\n",
"
20.0
\n",
"
Europe & Central Asia
\n",
"
\n",
"
\n",
"
4
\n",
"
21370348.0
\n",
"
1.96
\n",
"
0.1
\n",
"
18.016313
\n",
"
27.56373
\n",
"
41312.0
\n",
"
117.3755
\n",
"
81.5
\n",
"
5.2
\n",
"
East Asia & Pacific
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" population fertility HIV CO2 BMI_male GDP BMI_female life \\\n",
"0 34811059.0 2.73 0.1 3.328945 24.59620 12314.0 129.9049 75.3 \n",
"1 19842251.0 6.43 2.0 1.474353 22.25083 7103.0 130.1247 58.3 \n",
"2 40381860.0 2.24 0.5 4.785170 27.50170 14646.0 118.8915 75.5 \n",
"3 2975029.0 1.40 0.1 1.804106 25.35542 7383.0 132.8108 72.5 \n",
"4 21370348.0 1.96 0.1 18.016313 27.56373 41312.0 117.3755 81.5 \n",
"\n",
" child_mortality Region \n",
"0 29.5 Middle East & North Africa \n",
"1 192.0 Sub-Saharan Africa \n",
"2 15.4 America \n",
"3 20.0 Europe & Central Asia \n",
"4 5.2 East Asia & Pacific "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('./dataset/gm_2008_region.csv')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAGJCAYAAABrZJMZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd5xcZfXH8c+XhISQ0EukJnSiQUooogESAigdFYHQMRBsEQUFJHRcBKVIUQQJgkCW3kREMOz+NCJo6OCK9N4JgdAJ5/fHeQZu1k12szszd/be83699pXslJ1zp5x57lPOIzMjhBBCsc2XdwAhhBBqL5J9CCGUQCT7EEIogUj2IYRQApHsQwihBCLZhxBCCUSyD1Un6UJJP807jrzN7XmQtK+kqfWOaV5JOkLS+XnHEXoukn2BSXpS0ruSZkqaLumPklbIO64sSSZp1bzj6M0ktUp6L73Or0q6RtIy1fjbZnaime1fjb8V8hXJvvi2N7NBwDLAS8BZOcdTM3JlfU9/L73OqwKDgFNyjic0mLJ+MErHzN4DrgI+W7lM0iKSfi/pFUlPSTqykiwlnSPpqsxtT5Y0JSXUUZKeTaf4r6YziD3m9NiSDpD0qKTXJd0gadl0+V/TTe5LrdJdO7hvH0mnpsd5QtL30tlA33R9q6QmSX8H3gFWlrRsepzX0+MekPl7s3WtVI4l8/uTkn4i6d/pbOh3khbIXL+dpHslvSHpdkmfz1y3rqS7Jb0l6XLgk/vN+anRWZJmSPqPpDHpwm9IuqvdDQ+RdF0nfw8zewO4Dlgnc9/5JB0u6TFJr0m6QtLimev3Tq//a5KOSs/BFum6YyVdkrntDpIeSsffKmlYu+fuR5LuT8d0efa5C/mKZF8SkhYEdgXuyFx8FrAIsDKwGbA3sF+67hDg86lveRNgHLCPfVpf4zPAksBywD7AeZLW6OBxNwd+BuyCn108BVwGYGabpputbWaDzOzyDkI/ANgaT17rATt1cJu9gPHAQunvNwPPAssCOwMnVhJpF+0BfBlYBVgdODIdy3rABcCBwBLAucANkvpL6ocn2YuBxYErga938jgbAY/jz+MxwDUpCd8ArJRNpMCe6W/PlaQlgK8Bj2Yu/j7+vG2GPyfTgV+l238W+HU65mXw98Nyc/jbq+PP7Q+ApYCbgD+kY6/YBfgKsBLweWDfzmIOdWJm8VPQH+BJYCbwBvAR8DywVrquD/A+8NnM7Q8EWjO/bwi8jifQsZnLR6W/NzBz2RXAUen/FwI/Tf+fBPw8c7tBwIfA0PS7AavO5RhuAw7M/L5Fuk/f9HsrcHzm+hWAWcBCmct+BlzYPrbMsTzb7jn7Vub3bYDH0v/PAU5oF9/DeBLdND2/ylx3e/ax2t1v3w5u/09gr8xjNaX/fw5P0P3n8Lda8bOaGem5uRdYMXN9GzAm8/sy6TXoCxwNNGeuWxD4ANgi/X4scEn6/1HAFZnbzgc8B4zKPHd7Zq7/OfCbvD8H8eM/0bIvvp3MbFGgP/A94P8kVVrl/fBEXvEUmVadmf0Tb3kKT+ZZ083s7Xb3XbaDx182+xhmNhN4jTm0Hudw/2cyvz/TwW2yly0LvG5mb7WLrauP1/7vZY9rCHBI6sJ4Q9Ib+JfLsunnOUtZLnPfueno9pXHugjYXZLwM5crzOz9ufyt75vZInhrejFg+cx1Q4BrMzG34V+Ig2n3/JrZO/jr05H2r+XH6b7Z5/bFzP/fwb/cQwOIZF8SZjbLzK7BP+QjgVfx1t2QzM1WxFtqAEj6Lv4l8TxwaLs/uZikge3u+3wHD/189jHSfZbIPk4nXmD2xNXRbKJswnweWFzSQu1iqzze23jrteJKoL9mn2K4gqSvSnoGmIY/V+CJrcnMFs38LGhmzSnO5VJyzj7u3HR0++cBzOwOvIW9CbA7XejCSfd7APgp8KvM334G2Lpd3AuY2XO0e34lDcBfn460fy2Fvx5dfS1DjiLZl4Tcjnirr83MZuGt9SZJC0kaAhwMXJJuvzqeNPbEW5aHSlqn3Z89TlK/1Ke/HZ4425sM7CdpHUn9gROBO83syXT9S/iYwZxcARwkaTlJiwKHze04zewZvPvkZ5IWSAOo44BL003uBbaRtHg6w1k43S87xfC7wOnA4XiyryTa3wLfkrRRej4HSto2fbH8A+/a+r6kvpK+hneDzc3S6fbzS/oGMAzvB6/4PXA28JGZzcuc/IvS394h/f4b/HUeAiBpqfReAB+0317SF1Pf+3H4mVxHrgC2lTRG0vz4uM77+PMdGlwk++L7g6SZwJtAEz7I+lC6bgLe0n0cmIon5gvkM10uAU42s/vM7BHgCODilLDBT9en4629S/F+7v+0f3Azm4L39V6NtyJXAXbL3ORY4KLUxbBLB/H/FrgFuB+4B0+GH+FnKHMyFhiaYrsWOMbMbk3XXQzch/cv35KOv73JeAv2HPy5+Wk6lmn4gPHZ6dgfJQ1AmtkH+MDovum6XYFr5hIjwJ3AaviZQxOws5llu1AuBobTxVZ9RYrlTPx5BzgDH/S9RdJb+CD9Rum2D+Hvg8vw1+ct4GU8ibf/uw/jX/5npZi3x6f2fjAv8YV8aPYuwxA6J2kUPmi3fGe3rcFjb40P+g3p9MZd+3tPAvvjXVurpn8H49Mm3wFeNLNV5NNFz8IHYmcCp5vZmdWIYS6xDcAT73rpC7fmJA3CB/RXM7Mn6vGYoT6iZR8amqQBkrZJXSPL4VMUr63xw26f/l07Jfr5gD/gZwTLAWOAH0j6co3j+Dbwr1oneknbS1owjaecAjyAn/mEAolkHxqd8H7k6Xg3Ths+XbCeNgCWMrPjzewDM3sc717arZP7dVs64zgI7xevtR3xLq/n8W6l3SxO+Qunb94BhN7HzFqZfYZMLR/rHTzZ1oWZDQWYfZIMQ4Bl07TFij7A32odRz2kgemof1NwkexD6NwzwBNmtlregYTQXdGNE0Ln/gm8KemwNIbQR9JwSXU74wihpyLZh9CJtCZhe7w+zxP4tMPz8ToyIfQKMfUyhBBKIFr2IYRQApHsQwihBCLZhxBCCUSyDyGEEqjrPPsll1zShg4dWs+H5O2332bgwIGd37AXK8MxQhxnkZThGCGf47zrrrteNbOl2l9e12Q/dOhQpk2bVs+HpLW1lVGjRtX1MeutDMcIcZxFUoZjhHyOU1KHm+ZEN04IIZRAJPsQQiiBSPYhhFACkexDCKEEItmHEEIJRLIPIYQSiGQfQgglEMk+hBBKIHaq6iXabZM3z6KUdQjlFi37XsLM5vgz5LAb53p9JPoQQiT7EEIogejGCQ2lJ91VcQYTwpxFyz40lJ50V4UQ5iySfQghlEAk+xBCKIFI9iGEUAKR7EMIoQRiNk4IdRYL5EIeCpHsY7pe6E06e88NPfyPPHnStnWKJpRFl7pxJP1Q0kOSHpTULGkBSStJulPSI5Iul9Sv1sHOSUzXCyGEueu0ZS9pOeD7wGfN7F1JVwC7AdsAp5vZZZJ+A4wDzqlptKEQ1j7uFma8+2G37jv08D/O830WGTA/9x2zVbceL4Si6Go3Tl9ggKQPgQWBF4DNgd3T9RcBxxLJPnTBjHc/7FY3RWtrK6NGjZrn+3XnCyKEouk02ZvZc5JOAZ4G3gVuAe4C3jCzj9LNngWW6+j+ksYD4wEGDx5Ma2trFcKeN3k8Zr31tmPsTrwzZ87s9nGW4fnpTXryWvYmjXScXenGWQzYEVgJeAO4Eti6g5t22AFuZucB5wGsv/761p2WWY/c/MdutQZ7ld52jN2Mt7st+7I8P71Jt1/LXqaRjrMrA7RbAE+Y2Stm9iFwDfBFYFFJlS+L5YHnaxRjCCGEHupKsn8a+IKkBeVzHMcA/wZagJ3TbfYBrq9NiCGEEHqq02RvZncCVwF3Aw+k+5wHHAYcLOlRYAlgUg3jDCGE0ANdmo1jZscAx7S7+HFgw6pHVGL1npIIMS0xhLIoxAraoqj3lESIaYkhlEUUQgshhBKIZB9CCCUQ3TghhJqIAoWNJVr2IYSaiAKFjSWSfQghlEAk+xBCKIHosw+hBnqyZgKilHOovkj2IdRAd9dMQJRyDrUR3TghhFACkexDCKEEItmHEEIJRJ99qLuFhh3OWhcd3r07X9SdxwPoXv95CEXRK5J9zGwolrfaToo9aEOos16R7GNmQwgh9EyvSPYh9DY96qqC6K4KVRfJPoQa6G5XFcTZaKiNTpO9pDWAyzMXrQwcDSwKHAC8ki4/wsxuqnqEIYQQeqzTZG9mDwPrAEjqAzwHXAvsB5xuZqfUNMIQQgg9Nq/z7McAj5nZU7UIJoQQQm3Ma5/9bkBz5vfvSdobmAYcYmbT299B0nhgPMDgwYNpbW2d5yDzGuxqbR3Y/cfspu48PzNnzuzW/XrymD1V7+PsLccIve84u6s3xdpdPf1sVtXcNhBot5lAP+BVYHD6fTDQBz87aAIu6OxvjBgxwrpjyGE3dut+ZmYtLS11f8zu6u5jdvcYe/KYPVHv4+xNx2jWu46zu3pTrD3Rk89mdwHTrIP8Oy/dOFsDd5vZS+lL4iUzm2VmHwO/BTas2jdQCCGEqpqXZD+WTBeOpGUy130VeLBaQYUQQqiuLvXZS1oQ2BI4MHPxzyWtAxjwZLvrQgghNJAuJXszewdYot1le9UkohBCCFUXJY5DCKEEolxCCDXSo/IFN3evUmsIcxLJPoQa6G5dHPAviZ7cP4SORDdOCCGUQCT7EEIogUj2IYRQApHsQwihypqbmxk+fDhjxoxh+PDhNDc3d36nGosB2hBCqKLm5mYmTpzIpEmTmDVrFn369GHcuHEAjB07Nre4ItmHXHR7WmJMSQwNrqmpiUmTJjF69OhPdh2bNGkSEyZMiGQfyqW70wpjSmLoDdra2hg5cuRsl40cOZK2tracInLRZx9CCFU0bNgwpk6dOttlU6dOZdiwYTlF5KJl30B6tElLNzZo8ccEiNZyCNUyceJExo0b90mffUtLC+PGjaOpqSnXuCLZN5C32k7qVjdFpV+wO3q0pD+E8D8q/fITJkygra2NYcOG0dTUlGt/PUSyDyH0wNrH3cKMdz/s1n2729BYZMD83HfMVt26b72MHTuWsWPH9qghVm2R7EMI3Tbj3Q/jbLSX6DXJPioIhhBC9/WKZB8VBEMIoWc6nXopaQ1J92Z+3pT0A0mLS7pV0iPp38XqEXAIIYR512myN7OHzWwdM1sHGAG8A1wLHA5MMbPVgCnp9xBCCA1oXhdVjQEeM7OngB35dHb3RcBO1QwshBBC9cxrn/1uQKV822AzewHAzF6QtHRHd5A0HhgPMHjwYFpbW7sZavfl8Zjd1Z1YZ86c2aNjLPrz02hGjx7d6W108pyva2lpqWI0PRfv2Tnr6XFWlZl16QfoB7yKJ3mAN9pdP72zvzFixAirtyGH3Vj3x+yu7sba0tJS98fMQ2+KtSd68nrWW7xn5y6P1xKYZh3k33npxtkauNvMXkq/vyRpGYD078tV+v4JIYRQZfOS7MfyaRcOwA3APun/+wDXVyuoEEII1dWlZC9pQWBL4JrMxScBW0p6JF13UvXDCyGEUA1dGqA1s3eAJdpd9ho+Oyd3kuZ+/VwGu7yLK4QQiq0Q9ew7Goyo/LS0tHQ28BxCCIVXiGQfQghh7iLZhxBCCfSKQmghhMYUu6v1HpHsQwjdFrur9R7RjRNCCCUQyT6EEEogkn0IIZRA9NmHEEIPdLaoc27qudYnWvYhhNADc1u0OeSwGxtmUWck+xBCKIFI9iGEUAKR7EMIoQQi2YcQQglEsg8hhBKIqZehocTeBL1Pt8sX3Ny9+y0yYP7uPV7JRbJvMGX/4MwtYfeknkqoje7UxQF/n3f3vqF7upTsJS0KnA8MBwz4JvBl4ADglXSzI8zsploEWRbxwQkh1EpXW/ZnADeb2c6S+gEL4sn+dDM7pWbRhRBCqIpOk72khYFNgX0BzOwD4IOeLBEOIYRQX12ZjbMy3lXzO0n3SDpf0sB03fck3S/pAkmL1S7MEEIIPdGVbpy+wHrABDO7U9IZwOHA2cAJeB/+CcCpeF/+bCSNB8YDDB48mNbW1upE3kUzZ86s+2PmoQzHWJbXsizHWYZjhAY6zrkV6UkzIz4DPJn5fRPgj+1uMxR4sLO/NWLECKu3lpaWuj9mvQ057Ma8Q6iLMryWZuU4zrK8Z/M4TmCadZB/O+3GMbMXgWckrZEuGgP8W9IymZt9FXiwWl9AIYQQqqurs3EmAJemmTiPA/sBZ0paB+/GeRI4sCYRhhBC6LEuJXszuxdYv93Fe1U/nBBCUcRq6MYStXFCCDXRUb9x5aelpaVhNvUoi0j2IYRQAoVN9s3NzQwfPpwxY8YwfPhwmpub8w4phBByU8hCaM3NzUycOJFJkyYxa9Ys+vTpw7hx4wAYO3ZsztGFEEL9FbJl39TUxKRJkxg9ejR9+/Zl9OjRTJo0iaamprxDCyGEXBQy2be1tTFy5MjZLhs5ciRtbW05RRRCCPkqZLIfNmwYU6dOne2yqVOnMmzYsJwiCiGEfBUy2U+cOJFx48bR0tLCRx99REtLC+PGjWPixIl5hxZCCLko5ABtZRB2woQJtLW1MWzYMJqammJwNoRQWoVs2YcQQphdIVv2MfUyhBBmV8iWfUy9DCGE2RWyZR9TL0MI1bL2cbcw490Pu33/oYf/cZ7vs8iA+bnvmK26/ZgdKWSyr0y9HD169CeXxdTL0Oiam5tpamr6ZFLBxIkTo9uxAcx490OePGnbbt23tbWVUaNGzfP9uvMF0ZlCJvvK1MtKn31l6mV044RGFeNModYKmexj6mXobbLjTJXW4KRJk5gwYUK8b0NVFDLZgyf8sWPHdvs0KoR6inGmUGuFnI0TQm8TJT5CrXUp2UtaVNJVkv4jqU3SxpIWl3SrpEfSv4vVOtgQiipKfIRa62o3zhnAzWa2c9p0fEHgCGCKmZ0k6XDgcOCwGsUZQqHFOFOotU6TvaSFgU2BfQHM7APgA0k7AqPSzS4CWolkH0K3xThTqKWutOxXBl4BfidpbeAu4CBgsJm9AGBmL0hauqM7SxoPjAcYPHgwra2t1Yi7y2bOnFn3x8xDGY6xLK9lGY6ztx1jd2PtyXFW/fmZ2w7vaZf39YGPgI3S72cAJwBvtLvd9M7+1ogRI6zeWlpa6v6Y9TbksBvzDqEuyvBampXjOHvTMfbk89Xd4+zJYwLTrIP825UB2meBZ83szvT7VcB6wEuSlgFI/75cxe+gEEIIVdRpsjezF4FnJK2RLhoD/Bu4AdgnXbYPcH1NIgwhhNBjXZ2NMwG4NM3EeRzYD/+iuELSOOBp4Bu1CTGEEEJPdSnZm9m9eN99e2OqG04IIYRaiBW0IYRQApHsQwihBCLZhxBCCRS26mXRSJr79SfP/f4+/TaEMK8WGnY4a110ePf/wEXdeUyA7m2YMieR7HuJuSXrWF4fQu281XZSIXaqim6cEEIogUj2IYRQApHsQwihBCLZhxBCCUSyDyGEEohkH0IIJRDJPoQQSiCSfQghlEAk+xBCKIFI9iGEUAKR7EMIoQSiNk4IIXSiR7Vqbp73+y4yYP7uP94cdCnZS3oSeAuYBXxkZutLOhY4AHgl3ewIM7up6hGGEEKOulsEDfxLoif3r6Z5admPNrNX2112upmdUs2AQgghVF/02YcQQgmoK5taSHoCmA4YcK6ZnZe6cfYF3gSmAYeY2fQO7jseGA8wePDgEZdddlnVgu+KmTNnMmjQoLo+Zr2V4RghjrNIynCMAPve/DYXfmVgXR9z9OjRd5nZ+v9zhZl1+gMsm/5dGrgP2BQYDPTBzw6agAs6+zsjRoywemtpaan7Y9ZbGY7RLI6zSMpwjGZmQw67se6PCUyzDvJvl7pxzOz59O/LwLXAhmb2kpnNMrOPgd8CG/bwCymEEEKNdJrsJQ2UtFDl/8BWwIOSlsnc7KvAg7UJMYQQQk91ZTbOYODatOF1X2Cymd0s6WJJ6+D9+E8CB9YsyhBCCD3SabI3s8eBtTu4fK+aRBRCCKHqYuplCCGUQCT7EEIogUj2IYRQApHsQwihBCLZhxBCCUSyDyGEEohkH0IIJRDJPoQQSiCSfQghlEAk+xBCKIFI9iGEUAKR7EMIoQQi2YcQQglEsg8hhBKIZB9CCCUQyT6EEEogkn0IIZRAV7YlRNKTwFvALOAjM1tf0uLA5cBQfFvCXcxsem3CDCGE0BPz0rIfbWbrmNn66ffDgSlmthowJf0eQgihAfWkG2dH4KL0/4uAnXoeTgghhFqQmXV+I+kJYDpgwLlmdp6kN8xs0cxtppvZYh3cdzwwHmDw4MEjLrvssqoF3xUzZ85k0KBBdX3MeivDMUIcZ5GU4RgB9r35bS78ysC6Pubo0aPvyvTAfMrMOv0Blk3/Lg3cB2wKvNHuNtM7+zsjRoywemtpaan7Y9ZbGY7RLI6zSMpwjGZmQw67se6PCUyzDvJvl7pxzOz59O/LwLXAhsBLkpYBSP++3MMvpBBCCDXSabKXNFDSQpX/A1sBDwI3APukm+0DXF+rIEMIIfRMV6ZeDgaulVS5/WQzu1nSv4ArJI0Dnga+UbswQwgh9ESnyd7MHgfW7uDy14AxtQgqhBBCdXVpUVUIIYSOpV6POV9/8pyvsy7MhqyWKJcQQgg90NHMl8pPS0tLZzMd6yaSfQghlEAk+xBCKIFI9iGEUAKR7EMIoQQi2YcQQglEsg8hhBKIZB9CCCUQyT6EEEogkn0IIZRAJPsQQiiBSPYhhFBlzc3NDB8+nDFjxjB8+HCam5vzDikKoYUQQjU1NzczceJEJk2axKxZs+jTpw/jxo0DYOzYsbnFFS37EEKooqamJiZNmsTo0aPp27cvo0ePZtKkSTQ1NeUaVyT7EEKoora2NkaOHDnbZSNHjqStrS2niFwk+xBCqKJhw4YxderU2S6bOnUqw4YNyyki1+U+e0l9gGnAc2a2naQLgc2AGekm+5rZvdUPMYQQeo+JEyey6667MnDgQJ566imGDBnC22+/zRlnnJFrXPMyQHsQ0AYsnLnsx2Z2VXVDCiGEYuhsF6t66lI3jqTlgW2B82sbTggh9G5NTU1cfvnlPPHEE0yZMoUnnniCyy+/vNcM0P4SOBT4uN3lTZLul3S6pP7VDS2EEHqfRh2g7bQbR9J2wMtmdpekUZmrfgK8CPQDzgMOA47v4P7jgfEAgwcPprW1tedRz4OZM2fW/THrrQzHCHGcRVLkY1xxxRU5++yzWXfddT85znvuuYcVV1wx32Oe22a4aUPcnwHPAk/iyf0d4JJ2txkF3NjZ3xoxYoTVW0tLS90fs97KcIxmcZxFUuRjnDx5sq200kp222232a233mq33XabrbTSSjZ58uS6PD4wzTrIv5227M3sJ3grntSy/5GZ7SlpGTN7QT4CsRPwYLW/iEIIobeprJKdMGECbW1tDBs2jKamplxXz0LPyiVcKmkpQMC9wLeqE1IIIfRuY8eOZezYsbS2tjJq1Ki8wwHmMdmbWSvQmv6/eQ3iCSGEUAOxgjaEEEogkn0IIZRAJPsQQigB+UydOj2Y9ArwVN0e0C0JvFrnx6y3MhwjxHEWSRmOEfI5ziFmtlT7C+ua7PMgaZqZrZ93HLVUhmOEOM4iKcMxQmMdZ3TjhBBCCUSyDyGEEihDsj8v7wDqoAzHCHGcRVKGY4QGOs7C99mHEEIoR8s+hBBKL5J9CCGUQCT7EEIogUj2IbQjKT4XoXDiTR0AkNQn/TtW0h5qpJ2Sa6iS2CUNlLQWgJl9nC4r9HPQiMeXeT36SFo473iKpFSzcSTNZ2YfS+prZh9JkpXpCZiDyvMgaQngr8DOZpbvhpl1kHk/rAScA7wFrA4cbWbXZ2+TZ5y1JukLwGLAncBMM/sgx1gq78XjgdWAhYBzgX+YWRnKK8yRpBGAAa8Ar5rZu/N0/7LkuswHexBwDDAIuAu4G3jAzD7MNcAcSepjZrMkfRdYxcwOzly2ILCemU3NO85qyySWZuBG4E18G87BwEPAt8zsP3nGWCuZ1/cgYGNgFWAWcD7+XLxiZrPqHFPlM7oZcCLwZbyWVhvwNPBb4F9mNrOeceUp8zp9DdgfGAC8B1wHTAEe72pjpEzdOJVvtTPxwkTvAUcABwJjJQ3LK7C8ZT7UzwDrSFoVqLyB9gJ2ziWwGkuJfmX8A9SMb785ClgHb1UekV90tZUSyALAHsA++BndE8A4PJGMyiGmyntuAnAssCtwObAVsBZwWL1jylvms3kwcADQAvQBtsZz2c5d7Y4rTbJPH+xVgaFmdjJ+un4kvon6ScCGecaXB0lLSbq28mYxsxuA+4AdgF0lbYG/yX6XY5hVJ2llSdsBmNnjwHeANYA38G02PwQm40nnk/GMAlofuAFYAdjMzMbiCXYA/hzUjaTPZX49EvgHsBlwo5m9A1wPXFWmVn2FpA2BqcAHeBfrVsCPgWWA6V3tiu7JHrS90Qzg6PTGkplNhk/6wlrzDCwn/fEurQ0knYe3Fo4Hvg+MSdf/zMzuyy/EmlgSmC5pY2CAmd0GPC/pP3jr/gtAi5nNSF09de3OqKV241ZTJd2OJ/1XJa0ArAf808z+WseYhgCHAN+UNLTSdSapFfiJpK2ATYEN6hVT3jJdjDKzf0p6ABgKPCOpH7AA8KSZ3drlv1n0PvtMn9eqwNtm9oKkZYBrgNuBBYFZZva9XAOtM0ljgCPNbHT6/VzgG8AZZnZcrsHViaTvAAfhraYj8DPdLwPvm1lzuk0hB/El/Ry42szuTL8fiyf91YB9zOyOOscjYDRwM9AEnAx8BOyGjyfcaWY31zOmPGWS/Q+Be/m0MXo63hD7GDjOzK7p8t8s4Pv4E9kPqqSpwKFmdnv6fV1gP3yg9gdm9mZ+kdafpInAisDzeHI7KfVfTwJWBU4xszOKNhsl07Ltb2bvp9bsj/BEc66Z/Spz20Il+syxbw0cb2YbZK5bHm8t9jOzf9cxpkpjrDJD7rPAz/H35vFmdlW9YmkUmddpBN6duLaZvZeu6w+sDCxc+aLuqqL32QsgzTh4wsxuzyyY+TdwiJl9s2yJPpmED/RMAJP3uyAAACAASURBVGZIWtDMHk8t/e/hXToULNH3SR+i4cAfJC1sZs+Y2UH4wOROks6v3L5IiR5mey13wV9/MnPZPwL61zPRp5gqXWQ/kzTSzP5tZtvhfdKHSbpD0kL1jKkBVN53ewAXmNl7aTAdfCpq33lN9FDwZJ8+2AIWBx5OFw9I/26Ct+xLRW59M3sR/8L7O96K+pGkLSUtYGbXm9lX8o20+jKJ5afANWb2pqTNJX0T7+LbEjgUireKVtKymV+nACsBZBo6Z+L94vWMqbKAamtg0zSGMEjSNvg88g3wMaO36hlXniQNyjQy/gWskFr676XLJgLd+mwW6g2dJWl3+KR1dhMwQtJKZvZ2usmJwAt5xZejLYGlUovuP2a2I3At0A/YBjg4jW8UUuqqGghcLun7wA/wL/19UsNgOhTujGYtYMf0Rb84Pn1vC0l/lrSNpMOB5czsnHrGlXmOvwOcKWkV4AR8Ns6BkhaxtLitDNJ7Mzvd91Z81uBJkkZLOhDYHF9kNs8KmewlrQa8m6YW7plOeVrxU/cLJV2HL6T6Q66B5uMf+CDYHsAOknYFHsU/ZH8FlgZezy+82si01F8EnsSnk66PzzHfFW/VDixa100yA7gYnzt/Fp7YR+DJ5IB0m0PrHVRlym+K7UvAH/FJE9sDn8EbJmUyAzhN0saSbgWWA76WrhuPj6Ud2d1u50IO0GYGODYGjgb+iw/6vI9P33oaeNbMZuQYZt1lBsH64V1bOwGfxcsEtAD/hw/QvT2XP9PrpcHIlYC7zextSRcD/zWzEwo4IF2Z1TEUn8UxEF+g9BzwWzN7LsfwgE+mXq4KfGBmf5P0ReB0M9so59DqJvM6LQ6sC3wO2AJf9/JLM3utx49RtGSfGd3/Ot46aAF2xPvoW4FLzOz5os206EzmzdQXuBA4yMxek7QBfmq4GvCQmZ2eZ5zVJmkn4LvA7/Gzlin4WEU/M5spaVNgPzPbL92+UO+LTMPn9/jZzFR8sdLG+KyOR4BfWB3LhUg6A09i8wOX4b2tb6brBgM/xL+Ir6hXTHmTNL+ZfSjpbHyq5SR8zcPX8BXd0/A1MB939/1ZuEVVmUG4ffCE9oSkF/FW6x7A6ZJ2twItlJlHJwNvVloKZvYvSffip/jT8wysRobiLdr7gdeAC/Buq/6SXsKT/0+heEXPJA0ws3flpUDmB25PSf0v8gVkmwHv1DnRD8e7jibjs+XGAX9Nl1+R4vyXmV1dr5gaQUr0Q/HJEt9PDbO78dpAGwEr9jRnFbXP/sv4FKVVAMzsdeAOfFD20DIm+vTmGQQMBw4HTwbp6g2B+8xsWl7x1dBZwCn4h+hXZrYe3lf/D+BdYGUzewwKNyi7EXBoGqvYHz9zO0zSigBm9qyZXYrXwamnh/Gu1eH46u2N8W7E1fBxkzXxVmwpyEt3NKVfvwwsC5yaJpOYeaXPP1OFjcuL2I0zH7AnsB1eS+IG4K9pqmGpSZofPz18FTg2c+o8FW9N3J1nfNWW6bpaCJ+y9gDeUjq9sqAoc/pctFb91fg41Wt4Al0O78p8BD/L/beZvZxjfEfgX8CHpHgONbPbJC1pJSplLGkSPig9Be+j/xAfV3wd/9KbmhqrPX+soiV7+KRwVT98BHsl/Im7G/hjkfpju0PSmviiqafwN9ayeHG4XXINrMbkxaR+BwzDi0ldI6mf5Vi7vVbSApwT8Jbi4ma2fLp8XXxB1arAH8zs9znEVhlDWAxv2Y/Ca7zsVO9Y8pYaXz/G35NrAVuZ2cvy/QU2w8dU2szsl9V4vEJ04+jTXZY2k3Q6Xot8An4KfxWwMPCZMid6ScMkbW1eZOoavMTzRsCzwLdzDa4G2i+KMrN/4lP5Lsbr1lPERA9gZu+Z2Y/xL/NFJf1e0lJmdo+Z/QS4FN/LIY/YPk7/Tgd+gZfVniGpX9EWsnXGzD40sxPxM6+VgD3kixrvwGvg/Bn4W7Uer1Ate0kteM3rPYFFzWxv+eYb7+NLjN/PNcA6y8xM+jHweXx0/w18g45SnOVkWpLz4cvQdwd+g6/YvCff6Gojc8x74N2Yv8JnpJ1mDVLkLtPFthRwBnBdmWbfZEkaj88QOxIvW/wzM7us6o9TlM+7fHebvfHToluAHc3sudQnNslSAbSyyHyYFsann34JH6hcGu8TfB74tpndn2OYVSdpND7b42dm9kC6bD58jLpSFO+LRXw/SBqIn60PbD9GlbpwzsG7Bla2HOvCVxohmd/3wLty/p5XTPWUeiIWwwsQvtXuul3xCRTvA1tU83UqUrKfHzgKb71eY2YXSPo8Pr96vSINvs0LSV/C+0WvBi4ys43k1fQuA75rZrfkGV+1yfcq2BVYGx+nObsyzTS9R2ZZZkPxIp3dSLoS/yL/F7AovsXgIOAvZvZUus3qZvbfOsZUObvsDyxtZs9krutrZh/VK5ZGIenXeJfiM8DjeON0AHBZpfdB0hgzm1LNxy1MH1maK/wUPn1rNUlj8T77U8uW6CWtL2lHeUGpx/CduFbEN+hYFJ/mdlXREj2AmT0EnJZ+lgZ+Jy90Vukj/Thz28Ik+uQqPt157RJgeXzs6nZJV0g6C5+NUxfpy7TSgv89cJ6kxyTtCGC+mrtwa3264E94ov8pnuwXx8tVPCjpPEmX4jOUqqrXtuwzLYYV8FrkiwB/wOdOHwu8BDxqZpfkF2X9SVoSbyk8j+9C/yy+8s7wqXiL4S39nc0sl0G6ekmzUnbEt1nsi5cH+Eu+UdWOvAzGSfhMjs3w17oFP/4heFdJWx3j+TK+r+3a+ObtYyTtlWJswxc9PlSveBpFGkf8BV7kbBfgbXxF8dH4wsY304SC6j5ub032FZJuBmbiM3BG4KPX55rZG7kGlhNJvwEeNLOzUxfOL4ATzezGtEpxAXzJddHm1Fe+/Mfgq2bXBs40s0clfQZfWPSsmV2YY5g1k+2SknQwPttqNF7Z9Kgc4lkCHxh+BU9mr5jZqZnrf4lvZD+0jF05AJKOwvvmP4ufaNa05HqvTPaZwccl8cVAR6dW3NrA1/HFI8dZibYxg08KSj0B/LjywZL0K7zmza9zDa6GMu+H+fGFKEfiZ3dL4rNRJlqmUmDR+uorMrNwhgFn48l+STN7PY9jTp/JA4AvAksBp+IrtZ9P1w8ws3frGVMjyDRMVsJX9X8Nnxo+vZaL+3plsq+QNA7fN/Vs0lTC1KLYCF81W8ad6LfG580Pwgdl9zSzjdN181sd66DUm6Sf4vVWfocXe/smcDk+h/kLaY1BKaQB0ZPwPuFJZvZOHR97Ufxsuy++R8J9eF2qVfBVzP8C7rFy7hA3mzT19Cz8dTrVqlDdco6P1duSfab1cgi+QvBtvGzr1fhc3ZdyDbABpBbVnvhS9FnAxu2neBVFplW/IPAFfLFQE94/fUrq0sDMTsszznrIPBeVluNX8M0wtq3n65+mvw7DE/wUMzs6Xb4J3ke9KH72WeoSJplctjbeX/9tq2EJi143Gyc9OQPxYlZfM7Ov4osyvgJcIKlsGx78D/MVlOfjA7HXA1MlnSl9sllEYWS6Jg7D66HPwKdcLiBpdXwR1a3wv6tqe7v2x1NJ9EBllerNwNgcvuhfBEbipXlfl7Remmb5N3xl6MVlSvRz+tzZp6uJ78NrVdW0VlGva9nDJzXKJ+Gn64dm5k3/CLgzvalCkubVb2FmJ+cdSzVlWkZr4YPQ26fLN8JnID2HfwF8K884aymdxe2EV5E8s5Iw0sycD/Mam5C0Bt5XvyI+tfBufGbYj4FdytKF027gfAe8FtVFlbGKeo6l9Jpkn1oxfcwrFM6Pv8G3x2eXXGzl3GIQ+N867KklobKsL5BXUNwYONjMHkmXDcDfG2+mLo2iVbVcxsxeSLOvlsbLBO+El3E+Yu73rnls2wF7AQfjFVZ3xstor4H31f8kx/DqKtMgOQafODIAr9l/Hr6R0ntz/QPVjKU3JHtJSwN3AjfiMywm4zVeBuDz6/fD62QfWuQByI5IWtjM3sy8qQo502RO5Bs+fAtv2U7Du2z+bV5oq5DSIPxofOHNN83s6+nyNfCSCF/Ey4X8Oaf4VsM3JdkQ3+/4l3iX8QJlmhKdGUMZhK9Y/7qZvZ8WO/4IT/qHW53KRPSWPswF8Pm67+EVG/fFW/UXAGPx08RZJUz0mwJXymuAV1qtp0k6Mc+4ak3SIpJWl7QM3i3wE3yAa1H8vbGnpM/mGGKtPYcniq8DC0raXdIiZvawmW2O14h6oZ4BZful09nVCfjg8GfxDVJ2NbM3ijhuNCeZRtf2eCN1N3lZ7ZvS63QTddwtsFckezN7Gp9GtitePOjr+JP0T/wb80K8Lk7ZnABcYLNv9nAq0E/SCpK+XtAP1yr4ytirgGXN3W1mP8A/QJvh+xkUTpo+ez/+2t+Mr6sYA2wjac00E+cKq3OBu9SCHSLpgPT72/iZ1hnpJhtWblfPuPKkBO9iux1/X+6Xxpgws5+ZWdXLIswxnt703KcpXTvxaYLfxsweK/r88Y6k+bm/wT/0z+Nf3BvgtYG2x6dcPmZmO+QWZI2k8Zv98C+2yfi87bvN7D5Jy+ELVApXCiJNL10HmIHX/tkd35hnHD775XXgL8CfclhAJXx9y2T8C+jYykQJSZcAR6RGW+mkwfJZeO4aic+Wuh+41Oq4erjXJPv0ZloQP2X/IXClme1btIG3eSFpIr7xwdr4ogzhLdtX8JLGR6cWViGlrpqVgK3xRTxP49sPbmF1rAFTL/IV0tsBuwH9gdGV1zd1aR0CtJjZH+sY0/98/iTtjX9O78E/s++a2dh6xZS3zDqHr+LJfXF8/cfv8R6Jcfg6kCvrGldvSfZZaYrlWnjXzTNlOjXMSi3cLYB1gbfN7Ox0+Q+BNYo25TDzIVobr3+zGHAFvqhuF3xa27tm9tOiDlSnaaXNwF/xSQkPm2+xuDz+mle1LG4nsWSnFR4BLIE3OK7Ap1rujVeivSOHuf65k3QnnqMm4O9Rw4vxVX1jki7F0xs/D2lu8UXAbWZ2bt7x5CHbopK0Cr5q9H58qtuPgK3N7LEcQ6wZSQ/j1Rz74C37SWbW3O42hTrjy8y2Og5/jafgA7RLpt+/i6/AvDaHmA7HVy/fhG+FuC1wrZldWq9YGo28uudw4GT8tdoKrzo7EphgOdTt6pXJHqhsRDGwTFO55iR1cY3Fu3P64V+ChVp3kGnVbwJsZ2aHSVoc767aE2/V721mT+QaaA1kkuoywFlmtnO6fCA+OLsEMMByKHaXPoc3Afub2VNpmuFW+BfRt8uyeApme50WxsfPHsRLRixmZkelL4ClLVP9s67x9dZkH/539Z3abfdWNJIWwWc1TMOTy4fy8gDLAJu0b90Xjbwk7nb4We3kPBs6kha0VFxN0hl4I+M7mW6dv+H16gtVSrsrJP0c3x3sFkmj8LGUM/CSz982s9tyiSuSfe9XhtlImZb9gXhVz/8AR5rZo+n6ygKWwvXVZ1qMG+PJfiW8a+AO4BEz+6DO8RyEFyC8Ks2dXwHfxH4gvqhtEPBlMxtTz7jylHmNVsBLd+xVuRx/bhYD2szs9NxiLNjnorAyb6bl8GXXG+IfttvT9X3wTUkK9YJmjnshfMrawsDL+KYs2+JzzQ+1tHdnkbQbAF0U3+jj3pT09wc+Am4ys+vrGNNn8C+a3ezTDd3741UuBwM/wHdKu97MHq9XXI1C0vl4X/1J+GvzQbo89wZZr1hUFT6tkIfXvl4Rr4dypaRrJA01s1lFS/Qw23H/GjgGuBIffD4YT/arAcvlFF6tCUDSYXjXzS8kPY4Pyo7Hp9vWe/OPY/GNsR+QtLSk3fDW/NHAima2tZmdXrZEr08rkP4OnygxHviqpKVSgyX3M+9I9g0uuwJW0hbAomb2czzJ7YInhP9I2iWnEGum8gGStC9eHuACfDDyAXmhs7fNbBsze1zFK1+sdEYzmLQ3gZltiW/I8lNgBzM72eq4aXwajH0LX9MAviPYtniNnknApukMrDQyn0+Tb55+u5mNx2sU7Y03zr6QV3xZZdzZvbcZhH/AwPerPDS1pp41s7/Ld+Z6GF85WSiZVv0y+PZtWwN/SLM+NgIOlHRAOqspzDRLmK2swBC8sNuj6QugNc1p30LS9emmdTmjSwPiVwLHSvoa/sW7f6Yr8cf4LJRcBiBzInz+/KF4HaBZku7DN1PaEa/d1BBfgJHsG98ESTcAT9uny88XAp5P/fd7Ajeb2et5Blltkj6PL5B6BJ9904xPtR2abnIEvgvSrKINykraHK9F/zcz+6ekQZJONrPD0k3WxKfw5fEF9y88sS2HrwJ9OMW8JV6CvDSJPnP2tQb+Odweb3TNj3/p/QU43epYxnhuYoC2gaWuiRXxVYhXAW34FK43gIvxAcul0ul9YUjaHy/hO6mSPNIsnK3wY34WGGFmm+YXZW2k7qkj8YHo/+Cvex+8L3gVfED6C3gVydwXzaVujCF4ZcufmNmfcg6p7iQdDzwEvITvmLYv3jiZgU8/bYiaQJHsewlJW+F77q4OXGhmV6c+1D6N0nKohjSz4068e2Baumw+vMbK5/ANMF4B7jXfvKNwawskrYrPttoA7ya4xcxukrQBPp/9OTN7MscQP5Fer3WAdc3sN3nHU0+ZmWLrAY/iZzz3pM/mEcB71kB7H0eyb1CZeeWrAYPNbGpaQTkS2AHftOU4K1h1xzSHe20z+2YHi8Y2Bl5olERXbWn16XuWKiHKK5vujo/b9Mdb+Q824vhE0brS5mZOxyrp63ixs9PxYnUjrYH22o0++waVaa3+EmgFpgJv4h/4e/CEX6h++uQ5fJ4yQF9JH8EnWyx+COwt6USrY2nYOroMWELSNfhaijvwiolrAsvjZZ2/gncZNJSyJHr49FjTRImtgQeAf6YW/XRgFN590zCJHmLqZUOTb1A8wMx+IWl9vPjXjfj77TQrYB0YvJ7IMEkbmVllw+w+6bpvAf2KlujllsQreW6EL1A6DO/znQY8A9wA/NnMGi7Rl4mkYfLaN+BlnO8CVgbGprPSl8zsaKtjmemuim6cBpbm1X8Fr9O+NvBHvB/3Y7xUQCFfPEnfA76Df7GdkC7+En6W87kizsCpkLQTcDY+bnGwmT2Vc0ghQ9LR+I5TjwAvmtmxaZB6B2BzfGvMoxvxdYuWfQPKLNS4B1gBHwA71cyuwZekv1TERFdhXpd/X7wL43F896O98M2ZZ6XxjEIdf1qQg5ldZ2bLA0/ii8fOSaUwQmOYhH8Z98fXeexo7nrgOLyEScMleoiWfUORtC5eYOp5oL+ZvZYurwzW7g/sY2ab5BlnPck35VgY36SjULNuOiKpb2aA9jP4lMsN8FIE7+QaXAA+2WZwCXw18wb4VOBzGr2LLZJ9A5F0Oz618Nf4aryX8PnL4EvStwBeM7M78omwvtRuA5Kidt20l87s5qt8uUka0qitxbLINLgWxld0v2Re8XM4sCuwJXBCI/bVV0Q3TgNIA3Tz4YNwM/DWfRPwGr7s+iB8lsrCRUv0aRFR+8sEXi4h06VVphkfqnRXpS+4SPQ5Sq9B5azyenyiwCOSDjezB83sKHzv44ZePRzJvgGkPr+Pzewk4Hi8C+dufIDyv2a2LbApPhunMFKr6MeSBleSuqStgfUqtylygpe0t6T++rTg26qSBlTOZqyglUx7ocrrcyQ+jvYLvCG2i6RnJO1iZlPMrN4VSOdJJPsGoU+rNk4FRki6Dh+YPBTAzP6Nd+sUyS/xbqnsgPOqwAmSPiNpzbRCs3DkZYt3wYtoVY59b+D/JC2e+oVDA0hnWQvgK7hPxKuOHmNm6wGP4XWaGl4k+waRac09CuyEd+U8amZTMrcpTCsvlQSYH68hgqS+kj6H1wJfDrgcOMmKuSnJQHyF5TFm9kHmdf058De8UuKf5RVNQ44kbZfGjt4Dvg98gK9onpFucj/+Wja8GKBtMJl6GyPw3W5uNrNTizg4qU/3VH0fXzswE/8QPYq3dieb2X/bD9QWQTr2+fBVwf3w4maD8ZlYhheBuza/CIOkE/CVy4eb2UuZy8fji98WBgaZ2dY5hThPItk3gHTKbtZuNxtJY/ANinfOJ7LaqHxxSVoaWAsvD3u5md2crt8J2N7MxuUZZy3JN6LeAi+LcCtwo/mWg6vjX/K7tn8/hPqR7yX7B2AzM5uRull3xVv2j+BdOm/ihc+ezy/SrovaODmSbyf4JHAw/sZ6KF1emY0yRdL/5RdhbVTOUMzsZWCKvHrnkemwn8a3vtsP/nf6ZVGYb0JyO95CnIgPxoOvGJ4aiT53e+Gvwwx5McJKie338SS/m5m9kmeA8yr67HMiaUVgc0m/BfbLLshIs3MqCbFQdWA6klr0lwPn4wPSk83snnQGULhEn6baKvXX/w1fQ3GapCl4LaSGKYtbYrcCgyStie//OwgYb2Yb4A2SXreXQnTj5CS1Zr+Cv5H+AVyIl69tS6eMwxp9RV5PZMYm+ma/0CT1rwzKFq1VP6dxF/mOYwvgfcCPmdmbdQ8uzCat/zgTnyzwOvBtfOe0jyT9CWg2s9/nGeO8imSfg8xqvAWBdfGqeSOAd4G/AwcAt5rXiCmMuQ0yq4CbkHRE0krAImZ2b96xhM6lFbPvmdkH6fedge+a2eh8I5t30Y1TZ6m1Wkn0l+AtuYvxEgmvAmPwIku/zjHMqkvHbZIWlTRB0rcl7VuZR1/kRC+pX1pAtTY+T3uJdPl8mdvEZ7GBSJpP0vzpLOvjdNnmeD2cE+Z65wYVA7T1V2nZngY8bmYvShqKb0P3G7x1379I3RdJ5bh/iZd++Bwww8wulLSYmU3PL7SaM3zF5c3p92/Bp2srJC1gBdpasigyg+TXSTrYzG6T9FJv7V6N1kSdpdbtIsDqZvajNM3wWLy10Aws1OjLrrsjHfdqwFAzm4j3T1+Srt4mXVdI5puw/BH4M/AXfJXssQCSFgOOi5Z9Y8l8EW8HLGhm/02X98pED5Hs8/Ix8IKkNnyK17lmthKeAAfmGlltfQjcL+ksfNPsWyUtDhwNFHLWkVItevmm1Eeb2V54y37N9PrfCjxVwDO5XknS5yV9R9LO8pLjQ4Dvpet6dU9IDNDWSUczSyRtC9xrZs9JOg5Yxcz2zCfC+pA0DvgBvgnEZHzDh3fM7JACzr6pzDhaES+D8CUzezbVWZkfX1C2ppldkGugJSdpCft074iH8TOw1fBSCFPM7JY846uWSPZ1JulwfBXeS8A/zOzxlAyuAbbNLsvu7bKzb1L5h/fx3ac2BJbEV5BOwWvEvFfEkhAAki7FN6Q+Q9KeeMGzv5lZrxzoKxpJE4F3gAXx8gc/Sava9waOAnY3s7/nGWM19OrTkt6iMpdc0hHAmvism/2B2yTdge8tO8bMZszt7/RCAiydtWyKd1HdDLwMnIxXD3w3zU4qVKu+InXjPAe8KGkyviDnD8AXJW2SFlWFnKSk/gK+adBywGckrWlm/wHOT5MnRuBTonu16LOvg5ToB+GLqPbFF9Bch8/QOAqft1uoRF9Z/SppMLBJmpe8DXAfvqvPGDObWZlyWcRED59MKb0Vn1L7gpkdbmZn4cklNiXJWVrFfAFej+gm4A1gD0nflO+3MBq4O88YqyVa9jUmaT3zjUiWAc4CVgTWsrSPbBoEuiHHEGsi0x3zdWBhScuY2QvA1ZIM+IakP5nZ2/lFWRuZRXOL491V95rZrem6fviG1beZ2dN5xhmcpC8AmwGnAn8F9sDLFn8HuMDMpuYYXtVEy76GJB0KbA9gZo+Y2ZV4nXqllkNlvvX9OYZZM2nJ+XvAW8AZkr6RrloMHy8qYqKvbCnYHy9uthcwVdLPJQ1KKzH/RdqUJjSEj/GNw68D1jazk4Ef4QO1F+UZWDXFAG2NpO6LvwA7mNkTksbig3SPSdoGn1v/HHBkb5672xWp33NrvPvm88ADwP5m9lrRyiRkxmdOx2uqTAFOB57AZ9+caWbn5hlj+J/JA/Phq5q3xFv1T+Nn4W1FmjAQyb5GJP0OmGZmv5K0Mb46doNMjQ0B81d+L4pMF8YOeH/nSHzPzruBAcA3gEXwQdqLi9iVIWkh4Ax8Pv1l+HFemwpovW0F25+gt5LvGLZG6matdLFtgpe0eM7MvpZnfNUW3Tg1IGl5YB+8wBn4oowzM4l+NXxj8cItJLJP9+s8BR+LOAvfa/VE4FngHHzj9KXxgepCkLSwpJ+lhTcf4PuSDsK7sR5NN3sRX2MQcpTqUoHPEPubpLMlLZ0Ga6fgDZOj8ouwNqJlXyPyPVbPxbebe83MVsxcdy3wFzP7VV7x1ZKkXfG5yTtmLrsA+JeZnZN+X9Z6yQ4/XZG6bRYws2+nlv3baTbSMfgCnf745y1a9TmSdBA+bnal+cYkg4EmPPFfgjdCVjezrXIMsyaiZV8jZvaomY3BB2jflXSHpNXSsvmFipboK7Vd0qnwzfgxj0pTTgFuw7/4AChYov888CXSsnr87GWH9P/T8M1JzgcKu81ibyDpM8B44M7MVOeXzWx/fFrwYsDDeO36womplzVmZrcBa6SZOXcCi+JvrELJzJP/NXA1cBf+ofl7Svg7AT+EQtauPxq4I3VhfRlY3syuS4OAb0m61Xz7yZCvY4HLzOwB+f7HmwMHSXoFuNrMfphrdDUWLfs6MbOf4zvVH2hpY+2iyLTq1wEWM7M/mdkvgCuAwXi/9elm9vfK1MQcw60q+eYWrwD9JO2Nrww+DT6p9LkVvmI25Ei+M9xbwMx00ZHAtviCt3OBLVL3W2FFn32oGklHATsCP8ksIpqt3k2B6998A59eujpervrfZvaMpD8AF5nZVbkGGJC0Id66Xwifarm/md2ermsFjk9n4oUUyT70SLamjbyK5474bJRpwP+Z2RN5xldr7Y5/Ibx41heAB/EzuZXNbNscQwxJmu78ObwGzpNm9nC6fEu8/PQmecZXaszWpgAABxlJREFUa5HsQ4+l+cpH44uH3gB2B9bB69ffXGnlF1m7pL8GnvRHAd8u6grp3i4l/yH4ytmfmNmfcg6ppiLZhx6TtCye7FcFrscHaVfA9+u82szuyzG8mumgi2p++3QrOyQNMbModtagUkmLdYB1zew3ecdTa5HsQ7e0L0mcujBG4IvJFgfOKdpAdEUHSX4VM3ss83vRZhsVWlHHkdqLZB96RNJoM2tJ/+8DDMVno6wAbG9mz+UYXk1kSkJ8FxiGV7a838xOzDm0EOYopl6GeSZpfUkLSFoBuFjSnyStb2azUgt3GvBT8+0WlXO4VZWpallZoPNrvGz1U+n6YWmaXwgNJZJ9mCepqNthZvaemT1jZssDrcDlkn4jaQK+C1chB2Uzp/ubAL/Fl95/YGaXpst/iC+5D6GhRLIP8+oYvBwCqRzCF1P9743xfTz74zNQ3krdHYXpJ5S0VKbVfhfwVWAqPjiNpIOBZYvYdRV6v+izD10maRywhZmNTatm78FXBN+Rc2g1J2lRvAzEdcBVZvZCWkj1TeBJvKbK/sDO5vuXhtBQItmHLpP0EPCxma0l6TvAOmY2PnP9KcBpRSpyliVpc+BAYH7g9/iOU6vg0/cGAVPM7M78IgxhzqIQWpgXawFnSZqJb0SyfOUKST8Clitiok/7D3wBuMbMbpO0DzABXyV7iZmdmWuAIXRBtOzDPJM0BPgVsDZwqJk1S5oK7Gdmj7Sfg9/bpfr8Y4F7gVYza03rCg7BB2rvBY4zszdzDDOEuYpkH7ot1cI5Dd+c43QzO6Roib4iFdFqwmurnA9cYWYPSvossIuZHZtnfCF0JpJ96DFJ+wGXmtkHRVuNmFlAdQE+IP06vlHJZ/App1cVsesqFE8k+1A1RWrVZ7+0JK2Mb3qxYeb6o/HNWQ42s+acwgyhy2KefaiaoiT6JLuRxXPAw5KOTEXfMLPjgX8At+QRXAjzKpJ9CB07TdKzkjYys/eBX+J1f3aXdLSka4CHzOy1XKMMoYuiGyeEOZD0Y3zF8GTgYGApfCPxpYE3gZ8XaXwiFFvMsw+hHUn9zOwDfFXs74CRwLP49MrTcw0uhG6Kln0IGZWBWUmrAzcBI8xshqQ1gRuARYHdirxXaSim6LMPISPTLTMImGZmM9Ll/8FXzU4FZuQUXgjdFsk+hETSWEmrApjZ3cAASZdkKl1uDPzFzO7KLcgQuimSfQj4/rHA+8Djkg6WtAHw/+3dT4iVVRjH8e+PyMbBRUUZZX8UjCwIp5JWIYQxFOIii2pRC1sEIgjBtBFaGEVuWtQio7AcWhQEUYpJSAsjEByb0WohUlgRFKHQ0MAUJb8W50iTTEjdq6/e8/vAcOe87+XwvJuHc897eJ5HgFnguKS3gHWUypcRF53s2UcAkhbb/lnSMOUEztWUmjdvAFdQCr9N2z7RYZgR/1tW9tE8SQ8DB2vzkQXAFuBdSrvBV4D7gZNJ9HExy9HLiHLCZiGwBrgX+MD2DkkHgbXAKKUz1S/dhRjRm2zjRACSNgI3UXrnPghcBWy3vV/StbZ/7DTAiB4l2Uezzih2dh2wjfJr92XgDsqq/gdgs+0/Ogs0og+S7KNZkp6mJPc9lG2cb4D1wE+2P5K0CrjG9p4Ow4zoi+zZR5Mk3Qi8VIfXU0ojvEbpLzss6Wvbh7qKL6LfkuyjSba/l7QMeB7YAGym9JldSSlvnJexMVCyjRPNk/QA8Cp/789PdRxSRN/lnH00z/Ze28soe/efSNorKb96Y6Ak2UdUtrcBNwD7bP/ZdTwR/ZRtnIiIBmRlHxHRgCT7iIgGJNlHRDQgyT4iogFJ9jGwJJ2SdFjSV5J2S7q8h7mek3RfP+OLOJ9yGicGlqQZ24vq/+PAMdsvdBxWRCeyso9WHACWnB5IekbShKQvJG2dc/1ZSUcl7ZP0jqSxen1nbXKCpDWSpiR9KelNSZfV699K2ippst5bcZ6fMeJfJdnHwJN0CaUxya46HgVuBu4GRoC7JK2uVS4fopQ3Xg+smmeuIWAn8Kjt2yn1pTbO+coJ23cC24Gxc/VMEf9Vkn0MsoWSDgMngSspjUmgdJ4aBaaASWAFJfnfA3xoe9b2r8Dueea8BThu+1gdjwOr59x/v35+Dizt36NE9CbJPgbZrO0RSgeqBcCmel3Ai7ZH6t9y2zvq9bM523d+r5+nSFXZuIAk2cfAsz1NKWE8JulS4GPgSUmnX94ukbQY+AxYJ2mo3ls7z3RHgaWSltfxE8D+c/4QET3KyiOaYHtK0hHgMdtvS7oVOCAJYAZ43PaEpF3AEeA74BAwfcY8v0naALxXK2NOUJqeRFzQcvQyYg5Ji2zPSBoGPgWesj3ZdVwRvcrKPuKfXpd0GzAEjCfRx6DIyj4iogF5QRsR0YAk+4iIBiTZR0Q0IMk+IqIBSfYREQ34Cy5XpZ2eYRk8AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Create a boxplot of life expectancy per region\n",
"df.boxplot('life', 'Region', rot=60)\n",
"plt.savefig('../images/gm-boxplot.png', dpi=100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Creating dummy variables\n",
"Scikit-learn does not accept non-numerical features. You saw in the previous exercise that the ```'Region'``` feature contains very useful information that can predict life expectancy. For example, Sub-Saharan Africa has a lower life expectancy compared to Europe and Central Asia. Therefore, if you are trying to predict life expectancy, it would be preferable to retain the ```'Region'``` feature. To do this, you need to binarize it by creating dummy variables, which is what you will do in this exercise."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['population', 'fertility', 'HIV', 'CO2', 'BMI_male', 'GDP',\n",
" 'BMI_female', 'life', 'child_mortality', 'Region'],\n",
" dtype='object')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['population', 'fertility', 'HIV', 'CO2', 'BMI_male', 'GDP',\n",
" 'BMI_female', 'life', 'child_mortality', 'Region_America',\n",
" 'Region_East Asia & Pacific', 'Region_Europe & Central Asia',\n",
" 'Region_Middle East & North Africa', 'Region_South Asia',\n",
" 'Region_Sub-Saharan Africa'],\n",
" dtype='object')\n",
"Index(['population', 'fertility', 'HIV', 'CO2', 'BMI_male', 'GDP',\n",
" 'BMI_female', 'life', 'child_mortality', 'Region_East Asia & Pacific',\n",
" 'Region_Europe & Central Asia', 'Region_Middle East & North Africa',\n",
" 'Region_South Asia', 'Region_Sub-Saharan Africa'],\n",
" dtype='object')\n"
]
}
],
"source": [
"# Create dummy variables: df_region\n",
"df_region = pd.get_dummies(df)\n",
"\n",
"# Print the columns of df_regions\n",
"print(df_region.columns)\n",
"\n",
"# Create dummy variables with drop_first=True: df_region\n",
"df_region = pd.get_dummies(df, drop_first=True)\n",
"\n",
"# Print the new columns of df_region\n",
"print(df_region.columns)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Regression with categorical features\n",
"Having created the dummy variables from the 'Region' feature, you can build regression models as you did before. Here, you'll use ridge regression to perform 5-fold cross-validation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preprocess"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"X = df_region.drop('life', axis='columns')\n",
"y = df_region['life']"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.86808336 0.80623545 0.84004203 0.7754344 0.87503712]\n"
]
}
],
"source": [
"from sklearn.linear_model import Ridge\n",
"from sklearn.model_selection import cross_val_score\n",
"\n",
"# Instantiate a ridge regressor: ridge\n",
"ridge = Ridge(alpha=0.5, normalize=True)\n",
"\n",
"# Perform 5-fold cross-validation: ridge_cv\n",
"ridge_cv = cross_val_score(ridge, X, y, cv=5)\n",
"\n",
"# Print the cross-validated scores\n",
"print(ridge_cv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Handling missing data\n",
"- Dropping missing data\n",
" - It can remove most of datas, we need a more robust method.\n",
"- Imputing missing data\n",
" - Making an educated guess about the missing values\n",
" - Example : Using the mean of the non-missing entries\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dropping missing data\n",
"You will see that there are certain data points labeled with a ```'?'```. These denote missing values. As you saw in the video, different datasets encode missing values in different ways. Sometimes it may be a ```'9999'```, other times a ```0``` - real-world data can be very messy! If you're lucky, the missing values will already be encoded as ```NaN```. We use ```NaN``` because it is an efficient and simplified way of internally representing missing data, and it lets us take advantage of pandas methods such as ```.dropna()``` and ```.fillna()```, as well as scikit-learn's Imputation transformer ```Imputer()```.\n",
"\n",
"In this exercise, your job is to convert the ```'?'```s to NaNs, and then drop the rows that contain them from the DataFrame."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preprocess"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
party
\n",
"
infants
\n",
"
water
\n",
"
budget
\n",
"
physician
\n",
"
salvador
\n",
"
religious
\n",
"
satellite
\n",
"
aid
\n",
"
missile
\n",
"
immigration
\n",
"
synfuels
\n",
"
education
\n",
"
superfund
\n",
"
crime
\n",
"
duty_free_exports
\n",
"
eaa_rsa
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
republican
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
?
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
republican
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
?
\n",
"
\n",
"
\n",
"
2
\n",
"
democrat
\n",
"
?
\n",
"
1
\n",
"
1
\n",
"
?
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
democrat
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
?
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
4
\n",
"
democrat
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
?
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" party infants water budget physician salvador religious satellite aid \\\n",
"0 republican 0 1 0 1 1 1 0 0 \n",
"1 republican 0 1 0 1 1 1 0 0 \n",
"2 democrat ? 1 1 ? 1 1 0 0 \n",
"3 democrat 0 1 1 0 ? 1 0 0 \n",
"4 democrat 1 1 1 0 1 1 0 0 \n",
"\n",
" missile immigration synfuels education superfund crime duty_free_exports \\\n",
"0 0 1 ? 1 1 1 0 \n",
"1 0 0 0 1 1 1 0 \n",
"2 0 0 1 0 1 1 0 \n",
"3 0 0 1 0 1 0 0 \n",
"4 0 0 1 ? 1 1 1 \n",
"\n",
" eaa_rsa \n",
"0 1 \n",
"1 ? \n",
"2 0 \n",
"3 1 \n",
"4 1 "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('./dataset/house-votes-84.csv', header=None)\n",
"df.columns = ['party', 'infants', 'water', 'budget', 'physician', 'salvador',\n",
" 'religious', 'satellite', 'aid', 'missile', 'immigration', 'synfuels',\n",
" 'education', 'superfund', 'crime', 'duty_free_exports', 'eaa_rsa']\n",
"df.replace({'n':0, 'y':1}, inplace=True)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"party 0\n",
"infants 12\n",
"water 48\n",
"budget 11\n",
"physician 11\n",
"salvador 15\n",
"religious 11\n",
"satellite 14\n",
"aid 15\n",
"missile 22\n",
"immigration 7\n",
"synfuels 21\n",
"education 31\n",
"superfund 25\n",
"crime 17\n",
"duty_free_exports 28\n",
"eaa_rsa 104\n",
"dtype: int64\n",
"Shape of Original DataFrame: (435, 17)\n",
"Shape of DataFrame After Dropping All Rows with Missing Values: (232, 17)\n"
]
}
],
"source": [
"# Convert '?' to NaN\n",
"df[df == '?'] = np.nan\n",
"\n",
"# Print the number of NaNs\n",
"print(df.isnull().sum())\n",
"\n",
"# Print shape of original DataFrame\n",
"print('Shape of Original DataFrame: {}'.format(df.shape))\n",
"\n",
"# Drop missing values and print shape fo new DataFrame\n",
"df = df.dropna()\n",
"\n",
"# Print shape of new DataFrame\n",
"print(\"Shape of DataFrame After Dropping All Rows with Missing Values: {}\".format(df.shape))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imputing missing data in a ML Pipeline I\n",
"As you've come to appreciate, there are many steps to building a model, from creating training and test sets, to fitting a classifier or regressor, to tuning its parameters, to evaluating its performance on new data. Imputation can be seen as the first step of this machine learning process, the entirety of which can be viewed within the context of a pipeline. Scikit-learn provides a pipeline constructor that allows you to piece together these steps into one process and thereby simplify your workflow.\n",
"\n",
"You'll now practice setting up a pipeline with two steps: the imputation step, followed by the instantiation of a classifier. You've seen three classifiers in this course so far: k-NN, logistic regression, and the decision tree. You will now be introduced to a fourth one - the Support Vector Machine, or [SVM](http://scikit-learn.org/stable/modules/svm.html). For now, do not worry about how it works under the hood. It works exactly as you would expect of the scikit-learn estimators that you have worked with previously, in that it has the same ```.fit()``` and ```.predict()``` methods as before."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Note: ```sklearn.preprocessing.Imputer``` is replaced with ```sklearn.imputer.SimpleImputer``` from version 0.20"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.impute import SimpleImputer\n",
"from sklearn.svm import SVC\n",
"\n",
"# Setup the Imputation transformer: imp\n",
"imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')\n",
"\n",
"# Instantiate the SVC classifier: clf\n",
"clf = SVC()\n",
"\n",
"# Setup the pipeline with the required steps: steps\n",
"steps = [('imputation', imp),\n",
" ('SVM', clf)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imputing missing data in a ML Pipeline II\n",
"Having setup the steps of the pipeline in the previous exercise, you will now use it on the voting dataset to classify a Congressman's party affiliation. What makes pipelines so incredibly useful is the simple interface that they provide. You can use the ```.fit()``` and ```.predict()``` methods on pipelines just as you did with your classifiers and regressors!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preprocess"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"X = df.drop('party', axis='columns')\n",
"y = df['party']"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" democrat 0.97 0.97 0.97 36\n",
" republican 0.97 0.97 0.97 34\n",
"\n",
" accuracy 0.97 70\n",
" macro avg 0.97 0.97 0.97 70\n",
"weighted avg 0.97 0.97 0.97 70\n",
"\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import classification_report\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"# Setup the pipeline steps: steps\n",
"steps = [('imputation', SimpleImputer(missing_values=np.nan, strategy='most_frequent')),\n",
" ('SVM', SVC())]\n",
"\n",
"# Create the pipeline: pipeline\n",
"pipeline = Pipeline(steps)\n",
"\n",
"# Create training and test sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n",
"\n",
"# Fit the pipeline to the train set\n",
"pipeline.fit(X_train, y_train)\n",
"\n",
"# Predict the labels of the test set\n",
"y_pred = pipeline.predict(X_test)\n",
"\n",
"# Compute metrics\n",
"print(classification_report(y_test, y_pred))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Centering and scaling\n",
"- Why scale your data?\n",
" - Many models use some form of distance to inform them\n",
" - Features on larger scales can unduly influence the model\n",
" - Example: k-NN uses distance explicitly when making predictions\n",
" - Want features to be on a similar scale\n",
" - Normalizing (or scaling and centering)\n",
"- Ways to normalize your data\n",
" - Standardization: Subtract the mean and divide by variance\n",
" - All features are centered around zero and have variance one\n",
" - Can also subtract the minimum and divide by the range\n",
" - Minimum zero and maximum one\n",
" - Can also normalize so the data ranges from -1 to +1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Centering and scaling your data\n",
"You will now explore scaling for yourself on a new dataset - [White Wine Quality](https://archive.ics.uci.edu/ml/datasets/Wine+Quality)! Hugo used the Red Wine Quality dataset in the video. We have used the ```'quality'``` feature of the wine to create a binary target variable: If ```'quality'``` is less than 5, the target variable is 1, and otherwise, it is 0.\n",
"\n",
"Notice how some features seem to have different units of measurement. ```'density'```, for instance, takes values between 0.98 and 1.04, while ```'total sulfur dioxide'``` ranges from 9 to 440. As a result, it may be worth scaling the features here. Your job in this exercise is to scale the features and compute the mean and standard deviation of the unscaled features compared to the scaled features."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preprocess"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
"0 7.0 0.27 0.36 20.7 0.045 \n",
"1 6.3 0.30 0.34 1.6 0.049 \n",
"2 8.1 0.28 0.40 6.9 0.050 \n",
"3 7.2 0.23 0.32 8.5 0.058 \n",
"4 7.2 0.23 0.32 8.5 0.058 \n",
"\n",
" free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
"0 45.0 170.0 1.0010 3.00 0.45 \n",
"1 14.0 132.0 0.9940 3.30 0.49 \n",
"2 30.0 97.0 0.9951 3.26 0.44 \n",
"3 47.0 186.0 0.9956 3.19 0.40 \n",
"4 47.0 186.0 0.9956 3.19 0.40 \n",
"\n",
" alcohol quality \n",
"0 8.8 False \n",
"1 9.5 False \n",
"2 10.1 False \n",
"3 9.9 False \n",
"4 9.9 False "
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['quality'] = df['quality'] < 5\n",
"X = df.drop('quality', axis='columns').values\n",
"y = df['quality'].values\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean of Unscaled Features: 18.432687072460002\n",
"Standard Deviation of Unscaled Features: 41.54494764094571\n",
"Mean of Scaled Features: 2.7314972981668206e-15\n",
"Standard Deviation of Scaled Features: 0.9999999999999999\n"
]
}
],
"source": [
"from sklearn.preprocessing import scale\n",
"\n",
"# Scale the features: X_scaled\n",
"X_scaled = scale(X)\n",
"\n",
"# Print the mean and standard deviation of the unscaled features\n",
"print(\"Mean of Unscaled Features: {}\".format(np.mean(X)))\n",
"print(\"Standard Deviation of Unscaled Features: {}\".format(np.std(X)))\n",
"\n",
"# Print the mean and standard deviation of the scaled features\n",
"print(\"Mean of Scaled Features: {}\".format(np.mean(X_scaled)))\n",
"print(\"Standard Deviation of Scaled Features: {}\".format(np.std(X_scaled)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Centering and scaling in a pipeline\n",
"With regard to whether or not scaling is effective, the proof is in the pudding! See for yourself whether or not scaling the features of the White Wine Quality dataset has any impact on its performance. You will use a k-NN classifier as part of a pipeline that includes scaling, and for the purposes of comparison, a k-NN classifier trained on the unscaled data has been provided."
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy with Scaling: 0.964625850340136\n",
"Accuracy without Scaling: 0.9666666666666667\n"
]
}
],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"# Setup the pipeline steps: steps\n",
"steps = [('scaler', StandardScaler()),\n",
" ('knn', KNeighborsClassifier())]\n",
"\n",
"# Create the pipeline: pipeline\n",
"pipeline = Pipeline(steps)\n",
"\n",
"# Create train and test sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n",
"\n",
"# Fit the pipeline to the training set: knn_scaled\n",
"knn_scaled = pipeline.fit(X_train, y_train)\n",
"\n",
"# Instantiate and fit a k-NN classifier to the unscaled data\n",
"knn_unscaled = KNeighborsClassifier().fit(X_train, y_train)\n",
"\n",
"# Compute and print metrics\n",
"print('Accuracy with Scaling: {}'.format(knn_scaled.score(X_test, y_test)))\n",
"print('Accuracy without Scaling: {}'.format(knn_unscaled.score(X_test, y_test)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Bringing it all together I: Pipeline for classification\n",
"It is time now to piece together everything you have learned so far into a pipeline for classification! Your job in this exercise is to build a pipeline that includes scaling and hyperparameter tuning to classify wine quality.\n",
"\n",
"You'll return to using the SVM classifier you were briefly introduced to earlier in this chapter. The hyperparameters you will tune are ```C``` and ```gamma```. ```C``` controls the regularization strength. It is analogous to the ```C``` you tuned for logistic regression in Chapter 3, while ```gamma``` controls the kernel coefficient: Do not worry about this now as it is beyond the scope of this course."
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.9693877551020408\n",
" precision recall f1-score support\n",
"\n",
" False 0.97 1.00 0.98 951\n",
" True 0.43 0.10 0.17 29\n",
"\n",
" accuracy 0.97 980\n",
" macro avg 0.70 0.55 0.58 980\n",
"weighted avg 0.96 0.97 0.96 980\n",
"\n",
"Tuned Model Parameters: {'SVM__C': 100, 'SVM__gamma': 0.01}\n"
]
}
],
"source": [
"from sklearn.metrics import classification_report, accuracy_score\n",
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
"from sklearn.svm import SVC\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"# Setup the pipeline\n",
"steps = [('scaler', StandardScaler()),\n",
" ('SVM', SVC())]\n",
"\n",
"pipeline = Pipeline(steps)\n",
"\n",
"# Specify the hyperparameter space\n",
"parameters = {'SVM__C':[1, 10, 100],\n",
" 'SVM__gamma':[0.1, 0.01]}\n",
"\n",
"# Create train and test sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)\n",
"\n",
"# Instantiate the GridSearchCV object: cv\n",
"cv = GridSearchCV(pipeline, param_grid=parameters, cv=3)\n",
"\n",
"# Fit to the training set\n",
"cv.fit(X_train, y_train)\n",
"\n",
"# Predict the labels of the test set: y_pred\n",
"y_pred = cv.predict(X_test)\n",
"\n",
"# Compute and print metrics\n",
"print(\"Accuracy: {}\".format(cv.score(X_test, y_test)))\n",
"print(classification_report(y_test, y_pred))\n",
"print(\"Tuned Model Parameters: {}\".format(cv.best_params_))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Bringing it all together II: Pipeline for regression\n",
"For this final exercise, you will return to the Gapminder dataset. Guess what? Even this dataset has missing values that we dealt with for you in earlier chapters! Now, you have all the tools to take care of them yourself!\n",
"\n",
"Your job is to build a pipeline that imputes the missing data, scales the features, and fits an ElasticNet to the Gapminder data. You will then tune the ```l1_ratio``` of your ElasticNet using ```GridSearchCV```."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preprocess"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"