{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Correlation and Autocorrelation\n", "> A Summary of lecture \"Time Series Analysis in Python\", via datacamp\n", "\n", "- toc: true \n", "- badges: true\n", "- comments: true\n", "- author: Chanseok Kang\n", "- categories: [Python, Datacamp, Time_Series_Analysis]\n", "- image: images/dji_ufo.png" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "plt.rcParams['figure.figsize'] = (10, 5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction to Course\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A \"Thin\" Application of Time Series\n", "[Google Trends](https://trends.google.com/trends/) allows users to see how often a term is searched for. We downloaded a file from Google Trends containing the frequency over time for the search word \"diet\". A first step when analyzing a time series is to visualize the data with a plot. You should be able to clearly see a gradual decrease in searches for \"diet\" throughout the calendar year, hitting a low around the December holidays, followed by a spike in searches around the new year as people make New Year's resolutions to lose weight.\n", "\n", "Like many time series datasets you will be working with, the index of dates are strings and should be converted to a datetime index before plotting." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
diet
Date
6/26/201170
7/3/201171
7/10/201173
7/17/201174
7/24/201172
\n", "
" ], "text/plain": [ " diet\n", "Date \n", "6/26/2011 70\n", "7/3/2011 71\n", "7/10/2011 73\n", "7/17/2011 74\n", "7/24/2011 72" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diet = pd.read_csv('./dataset/diet.csv', index_col=0)\n", "diet.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFNCAYAAADCXCHaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXgb13W334sdJMBVpBZqo0RZtmU78iLJu+mlcdJsTrPXSexmsbMnX9Om6Ze0Wb6kTdu0aWxnsZMmcdPGTuLsq2Nbpm3ZsmTJuyzJonZSlEhxBUkAxHK/P2YGBEmQBEASxIDnfR4+JIEZ4AIXg/nN75x7jtJaIwiCIAiCIMwcx3wPQBAEQRAEoVQQYSUIgiAIgjBLiLASBEEQBEGYJURYCYIgCIIgzBIirARBEARBEGYJEVaCIAiCIAizhAgrQRBSKKValFLvm+9xWCilPq+U+p88971MKXVAKTWolLphFse00nxM52w9ZobnaFZKtc3V4881SqmblVLb5nscgjAfiLAShBmilLpcKfWEUqpfKdWjlHpcKbVpvsc128xE5MwTXwTu0FoHtNa/HH+nUuqIUmq1UuoHSqmbzdtuVkolTOE0qJQ6rJT6vlLqDGs/rfUx8zET0w0gk8Cwns/8+cGMX6UgCEWFCCtBmAFKqQrgt8DtQA3QAHwBiM7nuOYDZVBM3ymrgD157Lddax0AKoHrgDCwWyl1zmwOrlSYS+dOEOxIMX0JCoIdOQNAa32P1jqhtQ5rrf+ktX7e2kAp9R6l1F6lVK9S6n6l1Kq0+76ulDqulBpQSu1WSl2Rdt9mpdQu875TSqn/SLvv9UqpPUqpPjN8d1bafUeUUn+jlHredNF+rJTymfdVK6V+q5TqMsfzW6XU8ulepFLqVcD/Bd5mOjnPmbe3KKW+rJR6HBgG1iilKpVS/6WU6lBKtSulvmSdfC0HRyn1VfP5DyulXp32PI1KqUeUUiGl1APAomnG9X6lVKvpFP5aKbXMvP0gsAb4jTle73SvcTzmfB7UWn8IeAT4vPnYq5VSWinlMv/P+HrNOfk2cIk5hr5cx5D2Oj+mlHrJmiul1GuVUs+a8/+EUuo88/a/VUr9bNy+tyul/lMpdbVS6oW02x9USu1M+3+bMkOmSqmzzLntMz9nr0/b7gdKqW8ppX6vlBoCrlZK1Zrv/4D5mGvTtldKqa8ppTrNz+PzIlKFkkZrLT/yIz95/gAVQDdwN/BqoHrc/TcArcBZgAv4LPBE2v3vBGrN+z4JnAR85n3bgXeZfweAi82/zwCGgD8D3MCnzOfwmPcfAXYCyzBctL3AB8z7aoE3AWVAEPgp8Mu08bQA75vktX4e+J9xt7UAx4AN5mtwA78E7gTKgXpzLLea298MxID3A07gg8AJQKW95v8AvMCVQGj8c6Y99zXAaeACc/vbgUfT7j8CXJfjfN4MbMtw+3uAU+bfqwENuMz/p3u9Ex4vi3E0A23m3/8APA3Umf9fAHQCW8z38CbztXqBpeZno8rc1mVueyHgw3DfFpm3nzTf+yDgN++rNeewFUNIe8z3OQSsNx/zB0A/cBnGxbkPuBf4ifkenAO0W68buB7YDVQBCuNYWDrfx678yM9c/YhjJQgzQGs9AFyOcaL9DtBlXrkvNje5FfhnrfVerXUc+Cdgo+Vaaa3/R2vdrbWOa63/HePkuN7cNwY0KaUWaa0HtdZPmre/Dfid1voBrXUM+CrGifHStKHdprU+obXuAX4DbDSfr1tr/TOt9bDWOgR8Gbhqhm/DD7TWe8zXV4MhMD+htR7SWncCXwPenrb9Ua31d7SRo3Q3hhhYrJRaCWwC/kFrHdVaP2qOfTJuBL6ntX5aax0F/h7DHVo9w9eTiRMYr20M5jxP93rzRZku5fXA1VrrLvP29wN3aq13aMNVuxsj9Hyx1roDeBR4i7ntq4DTWuvdWusIsAtDsF4EPA9swxBIFwMHtNbd5t8B4Cta6xGt9VaMcPc70sb2K63141rrJMbn9E3AP5rvwYsY82oRwxBvZ2II6L3mOAWhJBFhJQgzxDxR3Ky1Xo5xtb4M+E/z7lXA182QSh/Qg3HV3gCglPqkMsKE/eb9lYyGv96L4U7tU0o9pZR6rXn7MuBo2vMngePWY5qcTPt7GONEiVKqTCl1p1LqqFJqAOMkXKVmlidzPO3vVRiOR0faa74Tw8mZMDat9bD5Z8B8Xb1a66G0bY8yOePfh0EM97Bh0j3ypwFj7saTzevNlyrgFgxh3j/uOT9pPZ/5nCsw3g8wRM07zb/fCfwwbd9HMNywK82/WzCE9VXm/5iPc9z8XFkcZez7mj7ndRgO2PFx2wNgCrM7gG8Ap5RSdykjN1EQShIRVoIwi2it92GESqwckuMYYaGqtB+/1voJZeRT/R3wVowQYhVGiEWZj3VAa/0OjJP0vwD3KaXKMdyT9DwthXFibc9iiJ/EcMS2aK0rME6wWM853cvL4vbjGO7JorTXW6G13pDF43cA1eZrtFg5xfbj34dyjFBWNu9DrrwReCzD7dO93snes2zoBV4LfF8pddm45/zyuM9Umdb6HvP+XwLnmXlMrwX+N23f8cLqESYKqxPACjV2IcJKxr6v6a+rC4hjfAbTtx/dWOvbtNYXYoSMzwD+NovXLwi2RISVIMwApdSZputkJRWvwAiZWGG7bwN/r5TaYN5fqZSywjRBjBNSF+BSSv0jRs6W9djvVErVmc6BlficwMhleY1S6lqllBtDLEWBJ7IYchAjl6ZPKVUDfC6Hl3sKWK2mWPlnhnj+BPy7UqpCKeVQSq1VSk0bbtRaH8UIVX1BKeVRSl0OvG6KXX4E/JVSaqOZnP5PwA6t9ZEcXtOkmAnojUqp2zHEyBcyjHm613sKWK6U8uQzBq11C0bI8xdKqS3mzd8BPqCU2mImhpcrpV6jlAqa+0SA+zDen51a62NpD/kEhrDebN63B0OcbsFwLwF2YORpfUop5VZKNWPMw72TjDEB/Bz4vOmIno2R9wWAUmqTOVa3+bgRjM+xIJQkIqwEYWaEME5KO8wVUk8CL2KIHbTWv8Bwm+41Q28vYuTkANwP/AF4GSN0EmFsOOVVwB6l1CDwdeDtWuuI1no/Rojndozk7dcBr9Naj2Qx3v/EyMc6bY71jzm81p+av7uVUk9Psd27MZKeX8JwXe7DyKPKhr/EeD97METff0+2odb6IYzE7p9huF1rmZ3cpkvM93wAI1RWAWzSWr8wyfZTvd6tGCUfTiqlTuczGK31A8BfAb9WSl2otd6FkWd1h/l8rRhJ8uncDZzL2DAgZpj1aWBP2udlO0beW6e5zQjweozP6Wngm8C7TTd2Mj6CEc49ieHYfj/tvgoMMdiL8TnvxsgLFISSxFqJIwiCIJQI5kKAfcASc4GFIAgFQhwrQRCEEsIM1f41cK+IKkEoPK75HoAgCIIwO5gJ/KcwQm6vmufhCMKCREKBgiAIgiAIs4SEAgVBEARBEGYJEVaCIAiCIAizRFHkWFVVVemmpqb5HsacMzQ0RHl5+fQbCkWNzKN9kbmzNzJ/9qaU5m/37t2ntdZ1me4rCmG1ePFidu3aNd/DmHNaWlpobm6e72EIM0Tm0b7I3NkbmT97U0rzp5SatN2WhAIFQRAEQRBmCRFWgiAIgiAIs4QIK0EQBEEQhFmiKHKsBEEQBEGwL7FYjLa2NiKRyKTbVFZWsnfv3gKOaub4fD6WL1+O2+3Oeh8RVoIgCIIgzIi2tjaCwSCrV69GKZVxm1AoRDAYLPDI8kdrTXd3N21tbTQ2Nma9n4QCBUEQBEGYEZFIhNra2klFlR1RSlFbWzulC5cJEVaCIAiCIMyYUhJVFvm8pmlDgUqp7wGvBTq11ueYt9UAPwZWA0eAt2qte5Uxgq8Dfw4MAzdrrZ/OeVSCIAiCIAh58vnPf55AIMDAwABXXnkl11133aTb/uAHP+CVr3wly5Ytm5Xnzsax+gETu6R/GnhIa70OeMj8H+DVwDrz5xbgW7MySkEQBEEQhBz54he/OKWoAkNYnThxYtaec1phpbV+FOgZd/MbgLvNv+8Gbki7/b+1wZNAlVJq6WwN1s4c6x7m5FByvochCIIgCCXJl7/8ZdavX891113H/v37Abj55pu57777ANi9ezdXXXUVF154Iddffz0dHR3cd9997Nq1ixtvvJGNGzcSDodnPI58VwUu1lp3AGitO5RS9ebtDcDxtO3azNs6xj+AUuoWDFeLuro6Wlpa8hyKPfja7gjDI3GWlLfM91CEGTI4OFjyn9dSRebO3sj8FS+VlZWEQqEpt0kkEtNuky/PPPMMP/rRj3j00UeJx+NcccUVnHPOOcRiMcLhMD09PXzoQx/i3nvvZdGiRfzsZz/jU5/6FN/85jc5//zz+dKXvsQFF1xAPB6fMMZIJJLT5262yy1kyvLSmTbUWt8F3AWwfv16XSr9gybjW/u303O6r2T6JC1kSqnf1UJD5s7eyPwVL3v37k2VUvjCb/bw0omBCdskEgmcTmdej3/2sgo+97oNk97/9NNP86Y3vYnFixcDcMMNN+D1enG73fj9fk6cOMHevXt54xvfmBrL0qVLCQaDOJ1OysvLJy0F4fP5OP/887Mea77C6pRSaqnpVi0FOs3b24AVadstB2YvcGljEknNSCKjxhQEQRAEYYZMtYJPa82GDRvYvn37nI8jX2H1a+Am4Cvm71+l3f4RpdS9wBag3woZLnTiSU00Md+jEARBEIS5ZTJnaS4LhF555ZXcfPPNfPrTnyYej/Ob3/yGW2+9NXX/+vXr6erqYvv27VxyySXEYjFefvllNmzYQDAYnNUQZTblFu4BmoFFSqk24HMYguonSqn3AseAt5ib/x6j1EIrRrmFv5q1kdqcRFITFcdKEARBEGadCy64gLe97W1s3LiRVatWccUVV4y53+PxcN999/Gxj32M/v5+4vE4n/jEJ9iwYQM333wzH/jAB/D7/Wzfvh2/3z+jsUwrrLTW75jkrmszbKuBD89oRCVKPKkZEcdKEARBEOaEz3zmM3zmM5+Z9P6NGzfy6KOPTrj9TW96E29605tmbRxSeb1AJJOahIZYQkouCIIgCEKpIsKqQMSThqAKx8S2EgRBEIRSRYRVgUgkjfyqsMQDBUEQBKFkEWFVIOIirARBEIQSxkizLi3yeU0irApEyrGSUKAgCIJQYvh8Prq7u0tKXGmt6e7uxufz5bTfbFdeFybBcqyGxbESBEEQSozly5fT1tZGV1fXpNtEIpGcRcp84/P5WL58eU77iLAqEJZjFRHHShDmBa014XjpXE0LQjHhdrtpbGyccpuWlpacWsPYFQkFFoi4WWZBHCtBmB9a9nfx8YeH6R+OzfdQBEEoYURYFQjJsRKE+eV47zAjCegZHpnvoQiCUMKIsCoQCTOhLyKOlSDMC1YYXsLxgiDMJSKsCkQilbwen+eRCMLCJBIzwvHRuHQ/EARh7hBhVSBSdaxi8qUuCPOB5VRFxbESBGEOEWFVAJJJjVXaIyyOlSDMC5ZjFRHHShCEOUSEVQGw3CqQ5HVBmC8icXGsBEGYe0RYFYCECCtBmHdSoUBxrARBmENEWBWAeHL0i1zqWAnC/GAJKhFWgiDMJSKsCkC6YyVLvQVhfohKuQVBEAqACKsCMCbHShwrQZgXpNyCIAiFQIRVAUimCSsJBQrC/DCaYyXHoCAIc4cIqwIQl1CgIMw71qrAiNSSEwRhDhFhVQAS4lgJwrwzGgqUY1AQhLlDhFUBsBwrhZRbEIT5YrTyujhWgiDMHSKsCkDCLLfgd0koUBDmC3GsBEEoBCKsCoDlWPldSkKBgjBPRMWxEgShAIiwKgDxhCWsjFCg1nqaPQRBmG2kQKggCIVAhFUBSKQ5VlrLF7sgFJpEUjOSkFCgIAhzjwirApAeCgQpEioIhSZdTEm5BUEQ5hIRVgUgqUdDgSArAwWh0KSLKXGsBEGYS0RYFYDRHCvDsZIEdvuSXkVfsA/pq3ElFC8IwlwiwqoAWDlWPlNYSckFe6K15op/fZitx2LzPRQhR9KPOTn+BEGYS0RYFYB4Wh0rEMfKrnQNRmnvC3NqSBwPu2GFAt0OcawEQZhbRFgVgMT45HW5YrYl7b1hAKIyfbbD6hNY7lZSx0oQhDlFhFUBGF0VaPwvqwLtSXufJawkz8puWOG/cveoyBIEQZgLRFgVgImOVXw+hyPkSZvpWEXkvGw7rPCfOFaCIMw1IqwKwMQ6VvLFbkesUOCIOFa2w2pnU+ZSROPS/UAQhLljRsJKKfVxpdSLSqk9SqlPmLfVKKUeUEodMH9Xz85Q7UuqCbPb+F9yrOzJaChwngci5IyVvF7uViT16MWOIAjCbJO3sFJKnQO8H9gMvAJ4rVJqHfBp4CGt9TrgIfP/BY3ZSQO/03KsJBRoRyzHKhKXk7LdsHKsytxj/xcEQZhtZuJYnQU8qbUe1lrHgUeANwJvAO42t7kbuGFmQ7Q/lmPlcYLTocSxsiFaa3GsbIwlpAJu4+JGSi4IgjBXuGaw74vAl5VStUAY+HNgF7BYa90BoLXuUErVZ9pZKXULcAtAXV0dLS0tMxhKcfOSWVAyPDyMx6F4+dBRWlpOzvOohFwYimkGo4bTGIknS/rzWoq8dGgEAGdyBFA88tjj1PolxdRuDA4OyrFnYxbK/OUtrLTWe5VS/wI8AAwCzwFZx7i01ncBdwGsX79eNzc35zuUoufY9iPw0h4qAuUE/AkWLa6nufm8+R6WkAMvtvfDQ9toqPJzOhSmlD+vpciz8Zfh5QPUBHxAlI0XbWZtXWC+hyXkSEtLixx7NmahzN+MLtm01v+ltb5Aa30l0AMcAE4ppZYCmL87Zz5Me2P1CnQo8LudUsfKhlhhwDMWBxhJIKvKbEYklsTjdOAxv/Gk5IIgCHPFTFcF1pu/VwJ/AdwD/Bq4ydzkJuBXM3mOUsCqY+V0QJnHKS1tbIiVuL5ucRDN6CozwR5EYgm8bgcep/F/VIqECoIwR8wkxwrgZ2aOVQz4sNa6Vyn1FeAnSqn3AseAt8x0kHbHWtrtUOBzOyV53Ya094XxuR00VPkBGBqJ47fO0kLRE40n8bmduB2SvC4IwtwyI2Gltb4iw23dwLUzedxSw1oV6FSGYyWhQPvR3humocpPmSmmZA7tRTSWwOty4HYYFzlSbkEQhLlClsUUgHTHyi+OlS1p7wvTUF1Gmce4FpFwrr2IxBOGY5UKBYpjJQjC3CDCqgAkkxqlwKEUPo8IKzvS1jtsOFZe48w8JEVebUUklsTndkgoUBCEOUeEVQGIJzUu8wu9TFYF2o7hkTi9wzGWV/spc0so0I5EYgl8Lidux+j/giAIc4EIqwKQSGqclrDyOFOFJgV7cDpkFJesD3olFGhTIjEJBQqCUBhEWBWAeFLjVIawqizzEIrEUyUYhOInbrUkcjlSocBhCQXaCisU6LFCgeJYCYIwR4iwKgDpjlWV3+gCG4rE5nNIQg4kUosPVGpVoDhW9iIST+AVx0oQhAIgwqoAxJNJXE7jra4qM4RV37AIK7tgrep0ORRlbgkF2pFoLInP5cSlQClxrARBmDtEWBWAdMeq0nSs+sIirOzCaOV8lSoKOix5crYiGjcqryul8Loc4lgJgjBniLAqAPHE6KrAUcdqZD6HJOSAJaxcToXH5cCpYFgcD1sRMR0rAK/LKcJKEIQ5Q4RVARjrWHkA6BfHyjbEU46Vcbh4nVJuwW4YqwLN+XM5pNyCIAhzhgirApDQEx0rEVb2IRUKNFd2+lyKIQkF2oZ4Ikk8qfGZmes+tzhWgiDMHSKsCkA8U46VJK/bBqvcgjWHHqeEAu1ExBRR6Y5VNC7zZzcefOkUe07LvAnFjwirApBIaFxmGMntdFDucYqwshGmrsLlNISV16kkFGgjrLCf5Vh53Q4iMXGs7MZtWw/w20OSmyoUPyKsCkA8qXGYbgdAVZmHvrB8QdiF8Y6Vz4mEAm1ESliZyes+l1McKxsSiSUYlOtRwQaIsCoAiWQylWMFRjhwQHKsbMP4HCuvU0kjbRthuVNeKxTodhAVx8p2RGJJhmLSsUIofkRYFYD0HCswEtglFGgf4ml1rMDMscojFNg7NMKIJE0XHMud8qaVW4iIY2U7ovGECCvBFoiwKgCJpB7jWFWVuaVAqI1IptWxAmNVYK4FQrXWXP+fj/Kdxw7N+viEqbEcKyt53SeOlS2JxpNEE8jFiVD0iLAqAOMdq0q/OFZ2Ir2lDRh1rHJdFTgQidMZitLaOTjr4xOmJjo+eV0KhNoSK1dOStUIxY4IqwKQSOqU2wFGkdD+8Ahai61tB9KbMIORY5VrKLArFAWgMxSZ3cEJ02KF/UaFlZRbsBta65QY7peFP0KRI8KqABiV10ff6qoyN7GElgRomzDqWI1WXh+JJ4knsnc9LEHVORCd/QEKUzIxFOiUcgs2I5bQWNeh4vYLxY4IqwIwIcdKioTaioRVbiGtjhXkFg4cdaxEWBWa8eUWxLGyH+nzJd+bQrEjwqoAZFoVCPIFYRcsYyo9xwpy6xdoOVX94Zic1AvMqGOVLqySEoq3EekOo+RYCcWOCKsCML6OVYXlWEmugC1IjCsQ6nUZv3MpEpqeW9UlrlVBsRwrr8uqY+VEaxjJIZQrzC9jHCsRVkKRI8KqAEyovO73ANAvjpUtiE8oEGrcnksCe3oIUMKBhSVT8jogKwNtRPpc9Q/LBalQ3IiwKgCZ6liBWNp2IVV5fVyOVS6LDzoHopR5nKm/hcJh1axKd6zSbxeKn0hMHCu780TraZILJPwuwqoAxBOT5FjJF4QtSGSoYwW5hwLPXloBQJeUXCgo0XgSj9ORco0tgRWRVbm2Id2xktxU+9HaOchffncHz3ctjGNOhFUBGO9Y+d1OPE6HfEHYhPEtbXxmjlUuyetdoShnLg3iUBIKLDSJZHJMHTkrJCihQPsQleR1WxOKGHMWGhHHSpgl4uPqWCmlqPC7pdCdTZjYhNm4Pdscq0gswUAkztJKP7UBr4QCC8z4VbmjOVYL4+q5FLDy5Mpc4vTbkVjC+A4N59YJzLaIsCoAST3WsQIjHChXXvYgUxNmgOGR7L4lrFWAdUEv9UGvVF8vMOMdY0letx+WY1XlVZK8bkNi5grccFwcK2GWiCeSY66YwSgSKqFAe5A0HQ9lOlY+q0Bolo6VJaTqU8JKHKtCMt4xtkKBkRzbEgnzh+UuVvmUOFY2xCptElkgh5wIqwIw/ooZDMdKhJU9GB9K8uQYCrRCf/VBH/VBnwirApNIjD3+KnyyKtdujDpWDvrDMZLJheF8lAojcXGshFkmntSppfoWRiNm+WK3A+MLvDqUwud2ZB0KtIRUfYWX+gov3YPRVN6WMPeMF8a1AaOOXPeQhJTsguVYVXsVWkMohxW5wvxjhQIjIqyE2SKR1KnEZ4tKv5s+yRWwBfEM81fuceUUCnQ6FDVlHuqDXpIaugfFtSoU41cFVpcZwqpXhJVtsPLhqnzGPEpxZXsxmmM1zwMpECKs5hitNfFJQoFDI4nUB04oXhIZHEe/x5l1uYXOgSiLAh4cDkVd0Gfclmc48LEDXTx1pCevfRcqE0K5LgdBr0scKxuRElZeYx6lHZi9iMWtVYHiWAmzgBXxSU+eBVhaaZxgj5weKvSQhBzJlCNXF/RyrGc4q/27BqPUm4KqvsILkPfKwC/9di+f+9WevPZdqGSav5qAhx4RVrYhEkvgUFDhMYWVOFa2IiqOVfYopf6PUmqPUupFpdQ9SimfUqpRKbVDKXVAKfVjpZRntgZrR+JmA1/XOMdj0+oaAHaK+1D0JMY5HmDM3/Nt/VlV7+4ciFIfNASV9TvfWladoQh7Tw4wEJETS7aMXxUIUFMuwspORONJvC4nAUtYSX6qrYjFJccqK5RSDcDHgIu01ucATuDtwL8AX9NarwN6gffOxkDtSmJcDSSLVbVl1Ae97DgkwqrYyZRjtXl1DSOJJM8e75t2/85QNOVU1VnCKo9Q4Eg8Se9wDK1hlwjyrMnkWNWKsLIV0VgCr9tBubGgUxb+2AxJXs8NF+BXSrmAMqADuAa4z7z/buCGGT6HrRnfZ85CKcXmxhp2Hu5BL5DGlHYlU47VptU1KAU7D08tcOKJJN1D0VRuldflpKrMnXUocCgaT30+utIS3ndM87zCKONzrMBIYBdhZR8isSQ+l5Nyt5W8LnNnJyR5PUu01u3AV4FjGIKqH9gN9GmtrbevDWiY6SDtzGSOFcCWNbWcHIhwvCdc6GEJOWA4HmMPlcoyN2cuqWDH4e4p9+0ZGkHrUacKYHHQx4m+6YXVQCTG5i8/yO9e6ACgc8DYx+lQ0wo6YZTx5TJgNMdKLmrsQTRuOFZuh8LvdkqOlc0YMVvaxPXCaCXlyndHpVQ18AagEegDfgq8OsOmGb+5lFK3ALcA1NXV0dLSku9QipqBqPHyDx1spa4mOuZ1OkKGir/7D49zxXL3fAxPyIKOUxGi4WRq7gYHB2lpaaHBHeXRQ3Ee3PrwhBO3RZs5xx1HDtASOQxAnSvKzoMhtj78MA6VeT+Aw/0JhkYS/H77iwR6Xmb3KeN65awaB88f7+P+Bx/G65p8f8HgdLdx4dLS0pKau76TMUYSSf74UAt+eQ+LnraOCPFoksHBJH6ng32Hj9PS0jnfwxKypPXQqMN4/9ZHU4sQSpW8hRVwHXBYa90FoJT6OXApUKWUcpmu1XLgRKadtdZ3AXcBrF+/Xjc3N89gKMXLqYEIPPwQZ61fTyB8iPTXmUxqvvrMA/R762lufsX8DVKYknuO72JAD9PcfCVgnKCbm5sJ13bw4P8+TU3TRi5YWZ1x3x2HuuHxJ7nsoo1c1rQIgK7Acbbd9zwNZ13E+iXBSZ83/EIHbH8aZ0Udzc3nc/zJo/DMi9zUvIG/ve95yledy+XrFs3+Cy4x7tj7BF63g+bmi1NzdzrYxo/3P8fZ529mVW35fA9RmIa7D+8k6hohEIhTX+XAV1FGc/NF8z0sIUseG3wJDhsXlq+4sPSPuZnkWB0DLlZKlSmjidq1wEvAw8CbzW1uAn41syHam9EGvhPvczhG86yE4iXTqpusSV0AACAASURBVECATY3mys4p5s9Ksq30jzqSWxprzf2mDiO29xlOS3uvUdahayCCQ8ErNyzBoabfXzDIvCrQmA/Js7IH0XgSn9uYw6oyNwOSvG4r0us1Di6AqvkzybHagZGk/jTwgvlYdwF/B/y1UqoVqAX+axbGaVsSCUtYZX6rNzfWcqxnmI7+yfOsfvVsO9/bdnhG49h5uId//eO+GT3GQiWR1BPKZQAsCnhZW1fOf207zF9+50m++JuXJmxjLQuvKhsVVitq/Cyp8KUS0J881M0//X7vhH3bek1hZQqszlCU2oCXSr+bcxoqeVIEeVZkrGNVbuS8ibCyB1a5BTAuUnoled1WjBFWERFWU6K1/pzW+kyt9Tla63dpraNa60Na681a6yat9Vu01gu6d0eqjtUkOThbsnA9fvzUcb78+70c686uIGUmfv50G99sOcjJ/vwKUy5kMq0qs7j1yrWsri3jZH+E7z1+OJVgbmG13kh3rJRSbFljOJWJpOazv3yRux49NKH3YLqgisYTdIai1AUMQbBxRRV7TwxI8nUWZJq/2nLpF2gnIrEEXpdxuqr0uwktgJNzKWFVzgdxrIRZYKpVgQBnLa0g6HVNuXx+IBIjkdR865GDeY/DOklLQdLcyeR4WLx10wp++oFL+drbNgIT39++8AhOhyLgHZvOuLmxhs5QlDsfPUhr5yAA7b1jXUvrf62hoy9CZyiSqoe1rj5AKBrnVJ6FRhcSGVcFmsJKHCt7YIQCDceq3OtaECfnUiKW0FjrdBbC3ImwmmPik9SxsnA6FBetrp7SsbKuzu7bfZwTffmVZrBO0jsOSV5OrsSTesrVewAbllVQ7nFOKPjaNxyjyu9Gjdvfcir//U8vp3JH2sbNbXtfmKb6QOrv9Arua83bLVEmTE4mx6rM48TjckgjZpsQjY86VkFTWCWT4tbahVg8mXLtF4LbKMJqjpnOsQIjz6q1c5DTg5ndh4FwjGvOrEdruOvRQzmPQWs96lhJXk7OTJZjlY7L6eDC1RMXIvSHY1SWTSylsbYuQG25h0RS89Fr1gFjHavBaJz+cCwlwI73DHM6refgunpjNeGBzlD+L2yBkMlxVEpRW+7JKxT4fFufhGALTDSWxGtegAR8hvs7nEU7KaE4iCWSKZdYHCthxqQqr09xYt5snjwztSnRWhOKxDlzSZAbzm/gx08dZyQtXp0NpwdHiMaTLK30caBzkO5JBJyQmUSGVWWZ2NJYw/5ToTEuSH/YcKzGo5TiqjPqWLOonPdfsQa3U6XEL4yKrItWV+NQ8Hx7P0k92sR5UcBDpd8tjlUWxBOZ5y+ffoEvtvfz+jseZ/tBcX4LiZFjZYQCA17jeFoISdClwkgiSYXPjcLoJlHqiLCaY0bLLUz+Vp/bUInP7eDJDH0Dw7EE8aSmwu/m2jPrCccSvNDen9MY2szl+jecbxTBf0ryrHJiqhyrdCyBnJ5n1TccG5O4ns4//cW5/Pqjl+NxOVha6U+tAoTROVtVW87iCh/PHDN6ElqhQKUU6+oDHBBhNS3xDDlWYAirXB2rYz3GvLTnGZIX8iMan+hYDUal5IJdGIkn8bgc+FwSChRmgcl6BabjcTm4cFXmPCvrQxj0uUZP3DmG86yTwKvPWYLX5ZA+czmSTY4VwHnLK/G6HGPmpy88QlWZJ+P2PrczldTeUOVP1auC0TlbXuWnocrP/pMDAKmegwBN9QEOirCalky9HsFyrHJzb7vM5tmS9F44tNZjyi0EzWNmIZygS4VYIonH6cDvUhIKFGaOVW5hqhwrgM2ra9l7cmBC13arEF6Fz01twEtTfSDnwpBWWGn1onIuWDl1orwwkUyryjLhdTk5f2XVWGE1hWOVTkO1f0Io0ON0sCjgpaHaj5WnW5/Wc7CpPkD30Iic5KchPonjWFPuoXcoN9fDap4t73nhsJbqW8nr5V7LsSr9E3SpEEtoPC4HftfCCOGKsJpjskleByOMpDVsP3h6zO0DEeOLP2ja35sba9h1pDf1uNnQ3hcm6HNR4XOzubGGlzoGJM8qByZzPDKxubGWPSf6GYzGSSSN/LiqDMnr42mo8tMZiqby59r6wiyr8uFwKBqq/Knt6sYJK5CVgdORSExsog1GLavBaDynprCdZnkLqX9VOCxhZZVbsFzehXCCLhViiSRupxLHSpgd4lkKqwtXVbO00sd3Hzs8ZsXRgPnlUWG6HlsaawhF4+ztGMh6DO294dTJ+bXnLUVr+P7jR3J5GQuabHOsAM5cEiSp4Wj3UMptzMaxWl7tN+pV9VttbMI0VBtzZv2u9LtTJxeAdYtlZWA2xCdZ1VmdRy2rTjMUKGUaCoclfFPlFnziWNmNkXgSt9OBz6UILYB5E2E1x1gtbaY7MXtcDm69cg27jvaOyYEaDQWOOlZATnlS7X1hlpsn53WLg7z6nCXc/cSRCWFHITPxpMaZRY4VkHqf23vDGdvZTEZD2n5gzllVmfmYxu/0MCDAskofZR6nOFbTMFmvx1T19cHchZU4VoUjGhsbCgxIKNB2jKRyrGRVoDALZOtYAbx980oWBbzcvvVA6jYrQbPCZ5ycl1b6WVlTllOeVXtvOHVyBvjINU2EonHufuJI1o+xkJnsxJwJyxls6w3TZ/Yzq/JnTl5PxxJRbX1hIrEEXaHoqGNlPqZVasFCKUVTfUCE1TRMvirQeD9z6TvXJTlWBcdyrNIrr4OEAu2EEQp04HOqBTFvIqzmmKS2HKvp32qf28mtV67h8dZudh/tBUZzrCrSwkmbG41ClNlUHu4PxwhF42PydDYsq+TaM+v53uOH5+yq78X2fr72wMt87YGX+emu43PyHIUimwKhFjXlHnxuB+19o45VpgKh41lS6UMpQ5B1mP0crTmzflt9AtNpqps9YaW15r7dbURKqPBiMqlJ6swXNrm2tYknkimnSoRV4YiMc6w8Lgdel0McKxsxJnl9AcybCKs5JhfHCuDGi1fidioe3HsKMBwrt1OlvlQArli3iN7hGC0vd077eFY9JMv9sPjINU30Dcf4nyePZjWuXEgkNR+/9xm+/tABvv7QAf72vud55ljvrD9PocjFsVJKmaUTwqkGzJkKhI7H43KwOOijvTfM1n3GvK5fYuRQ+T1OLl5TwyYzDJzOecsr6eiP8NzxvmxfzqS81DHA3/z0udRnrxRI6MlD8ZYD2JFlY/LTgyNoDUsrfTknvQv5k8qxSssvDHhdCyJXp1SImTlWVvJ6qbcjEmE1xyTMcgvZJj+XeVzUBbycGjC+7AfCMaNibVqOz5+fu5SGKj+3PdQ6bWsNK2cn3bECOH9lNVesW8R3HztEeGR2TxB/fPEkB7uGuP0d57PnC9dTVebmjq2ts/ochcRYrp/9odJQXWY4VmaIKZvkdWM/P4dPD3LnIwe5eE0N5zRUpu6795ZLuHHLqgn7vPmiFVSVubl9Ft7fPlMInsxSaNiBxBQFeit8buqC3qwdP6vUwpmm4M21VIOQH1aOlS/t4jLgcy2IkFKpEE0kcbsUPpdxHhsaKe25E2E1x8QTuTlWAHUVvlQhwlAknloFY+F2Ovhg81qePd7H461T51pZtZHGO1YAH71mHacHR7hn57GsxzYdWmtu33qANXXl/Pm5Syn3unjvZY08tK+TF3OsGF8sJLIsEGrRUGXUpOoPG18eWQurKj9PH+ujMxRN9Q+cjoDXxXsua+TBvad46UT2K0UzETLDztZnrxSYrgl6LtXrrVIL65dUANCdY3FRIT9SdazGOVYLIQm6FNBapxUINW4r9XCgCKs5JptegeOpD3pTX+IDkdiY/CqLN1+4nMUVXm7beoDTg9FU2Gk87b1hfG5HagVUOpsba9jcWMOdjx6ctbyaB/d2su9kiI9c3ZQSk+++dDVBr4vbHjLHarPViPFkMqf5W17tp2dohI7+MEGvC5czu8PMEr8XrKzi0rW1WT/fTeb7+42HZ+ZaDZhCsLOEhFVimgsbq3p9Nk2Vu8zab5ZjJXlWhWF8uQWQUKCdSCQ1WpOqvA6lv/BAhNUck8qxysHxqA96U1/iA+HYBMcKrET3tew83MNFX3qQV3zxT9y/5+SE7drMGlZqkuf/2DXrODUQ5b7dbVmPbyrufuIIK2r8vP4Vy1K3Vfrd3HzZav700iljrF/4Ew/vmz4/rFhIJnNzHK2w60sdA1klrlusqjFWBn7kmqZJ5ysTlX43N126mt+/2EHrDGpaWQslrJBXKWB1PphMGK+rDzAYjXNyYPrXbF3snLFYhFUhGZ+8DkYtq1I/OZcKMfPixu0Sx0qYJbKtvJ5OfdBHz9AII/EkoUg8VWphPO+6ZBX/+ubz+H9v2EDQ58ooVg52DbKmLjDpc13WVMvGFVV8q+UgsUQy6zFOxoHOEFsaaye4NB9qbuIrf3Eu/+8NG1he7edrD76clUtQDEy2XH8yrFpW+06Gsg4DArxhYwPf/6tNXL2+PucxvufyRvxuJ994+GDO+1pYxWgtAVEKTHf8NdUbIimbPKvOUITqMjdLKo1+jSKsCsP4cgtgOFalfnIuFaxuElaBUBBhJcyQ0RyP7N9qa7XS6cEoA5HMjhUYH9S3XrSCd12yms2rayb0AIwlkhzpHkq1PsmEUoqPXdtEe1+YXzzTnvUYMzEST9IZik5IlAdjZdvbN6/kXZes5sNXN/F8Wz+PHjid4VGKC2u5fk45VqawGoknsyoOauH3OLl6fX1ObpVFTbmHd168il89286R00M57w+jxWhLKRQ4XY6VdWwcOJWNsIpSH/RR6XfjUCKsCsX4XoFgJq+X+Mm5VBgxL9g9ZksbkFCgMEOsVYHZ9pqD0XpFnaHolI5VOpsbazh0emhMGOdo9zCxhGbdFMIK4Or19WxYVsE3H24lPgPXqqM/jNajjs1kvOmC5Syt9HH7QweK3rWaarn+ZNQHfantsykOOlu874pG3E4H32rJz7WyitH2h2MlU0pgqlWBAIsCHqrK3LR2ZSmsKrw4HYqqMo9UXy8QVv5nevJ6uVdCgXbBioQYBUKN20o9P65ohVXf8Aif//WeSZOy7YKlU3I6MVv1dfrCDI8kMiavj2fLGiPZ+anDo/WirPDGVI4VGK7VR69p4kj3ML97oSPrcSaSmn/9476UQ5Iq7TCNsPK4HHzgqrXsOtrLk4eyb80zH6ROzDkIY6dDsbTKCBflkmM1U+qDPt6xeSU/e7qNW3+4iw/8cPeEn58/PXkunZVjBaWzMnA6x0opZRRZzcKx6hqIpJpg15R7JvQL/OUz7fwhi+MnkdT8yx/38fIp6fGYDZnKLQS9LkYSyZK5AChlLGFlFAg1jsNQiYviohVW337kED944gh/3JP9ib4YSTlWOToeYORHAZOGAtPZsKyCMo+THWmtbqxE5rVT5FhZvPLsJZyxOMAdW1uzLt6250Q/32w5mAohtpmlHaz2LFPxtk0rqAuObd9TjCSmOTFPhhUOzaY46Gzywea1nLe8kiOnhzl8emjMz66jvXz2ly9O2kA4lCasSiUcmM3xt25xYFrHSmtN12A0dWzWlI91rLTWfPn3e/m3+/dPO6Y/vNjBt1oOzklx3lIkGk/idKgxeZtWv8ChqAirYifdsSpzGwLrVBaLRezM9GfseaBveIQfbj8CGM2G37Zp5byOZybksypwUcCDUqOOUzahQLfTwYWrqsfkWbV2DtJQ5U/11poKh0Px4aub+Pi9z3L/npO8+tyl0+5jPZc1zvbeMEqRSu6dCp/byS1XrOHLv9/L7qM9XLhqYlXxYiA+TShpMhqqyoCenJLXZ4PFFT5+/qHLMt63/2SI6//zUb7/+GH++pXrJ9w/EI6ztNJHR3+kZBLYp3OswLjw6Bk6TvdglNoMbYMAeodjxBI61Qi7pswzRowd6R6mKxSlKxSlMxRJCbDxJJM6VSx3fE6kkJlILDEmvwogYH4nDkbiqdZEQnESTUtedyjFmkXlJd/ftCgdq+89foShkQRnLgmyo8hDRdNhFJc0hEu2uJxG3amDXUaILRvHCmBLYw37ToZSFb8PdA5OGwZM57XnLaNxUTm3b52+ojsYohdGhVVbb5jFQR8eV3YfqxsvXkn1LFUNnytSocAc88mtcGguyetzzfolQV61YQnff+LImLCfxUAklvq8dJVIyYVsCvSuWzz9ykArd9EK09cEPGOS13ccGnWKpxJMD+49xb6TIc5aWsG+k6FJ3UNhlGg8OVFYmReLoai9U0UWAla5BY8ZBmyqD3BgBmVh7EDRCauBSIzvP36Y6zcs5m2bVtDeF071u7MjubZDsagL+lKhwGxyrAA2N5p5Vkd6SSY1B7tyE1ZOh+JDzWt5qWMg1a9uMpJJzVNHjBPIodODxBNJ2vuGp82vSqfM4+J9V6yhZX8Xz7fNvNfdXBBPLT7IbQ6tBP7KAiavZ8NHrmkiFIlz9+NHJtwXisRZXVuOQ00MBXaGIjzeeprHW09zrNs+x2M2BXqtY+TBvad4vPV0RrFj5ZxZTlRtuYe+4ZHU4+883ENNuYdyj3NSYWV0JWhlVW0Z//jaswFSx5AwOdF4YkypBRi92JQE9uInlWPlNOZwXX2Qtt7wrLdSKyaKTlj9+tkThCJxPnx1E1tSQsG+Xz65NPBNpz7oZdj84GXrWJ23vBKf28H9e07S3hcmEktOuyJwPDec38Dyaj+3TeNavdwZom84xqVra4klNMd6hmnvC2cstTAV775kFeUeJz/ZdTyn/QpFMo/FBwDrTRdkuhWSheachkqa19fxwyePjplfrTWhSIyqMje1Ae+YUGAyqXnXd3dy43d3cON3d/Da2x/L6HgVI9mEcpdV+qguc/Odxw5z43d38H9/8cKEbV4w2zEtrRzNsUpqUl0EdhzuYUtjDReMC8ens+fEAC+093PLlWu4YFUVHpdDwoFZEIlNdKys9AYpuVD8xFKhwFHHSuvRHOJSpOiE1ZOHullS4ePchkrWLwlS4XPZOhwYT+QvrCyyybECI2/p7ZtW8stn2mnZbzhOuThWMNqH8LnjfWxrnbzOlHVCsBoD7z8ZoqMvkpNjBRD0uVlbH+Bokbog8TwWHwC8YkUV2/7u6jGNlIuFV569hM5QlMNp9a6GRhIktfFZqw96x5TtuH/PSfafCvHpV5/Jbe84n4FInB9ut0fidTaLD5RS/Oajl/OTWy/hwlXVHOsZ+1mMxBJ8b9sRLmuqZYVZHd/K6+kZitLWa1xUbG6sSYXjM7le+08a4Y+L19TidTk5f0VVKpwuTE40nsDrGutYBURY2YaolbxuiuN1i41zkgirAqG1ZufhHjY31qCUwulQbMpQ+NJOJJLJ/IRVRZqwyiEB+tar1qAU/Ku5OilXYQVGH8IlFT5uf2jy3Kcdh3tYVunjqvV1ADxxsJt4UufsWMFo0+JiJJHH4gOL5dXTr46cDzY3GgsF0o8rqzho0OcyhZXhWFnhq8ZF5bz/ijW8/hXLuHp9Hd997JAtmuBmK4yXV5exubGGtXXlE8Kg9+48xunBsY2xLWHVPTiSeh+3NNamheMnfme1dg3idqpU66ItjTXsOdE/ZjWmMJFoPInPPfZUlQoF2uAzuNCxHCuPmU6xurYcp0NlVZTXrhSVsDraPUxnKJr64ofMhS/thJFjlftJuS5tdVIgi1V9Fksr/bz5whWEInEWBbxUleWe4+N1Obn1qjXsPNIzJinXIl0AB7wullX6aHnZcMhydazAFFa94aIsFhrPIkfHbqytK6e23DNWWJkn9wq/m/qgLyUutu7r5KWOAT7UvDYlTj5yzTp6h2P8aMexwg8+R3Itl1Ef9NE9GE3tF40nuPPRQ2xeXcPFa0YbY1vCqnfYEFYVPhfrlwQ5b3nlpCG+A6cGaVxUniobsLmxlqSG3Ud7J2wrjGKsCpzEsZIcq6In1SvQ/Nx7XA5W1ZaV9MrAohJW1pfRxWvGCiuAN9zxONd8tSWrAnzFRFLnGQqsMHI5gl5XzvtbJ8Fc86vSecfmlSwKeDOu2GvtHKQrFE1dna+tD3C8x3CcVuQjrKr9RONJTg8W3wqpZHL6VWV2QynF5saaMWEoq2Bfhc9NfYWX7sEo8USS27e2srzazw3nN6S2vXBVNZc11XLno4dSVbGLlXiO81df4SWpodtsgv7rZ0/Q0R/ho9c2jdmutty48PnsL/fwi2fa2bS6BqdD4XMbIb7/3XGMq7/awk3f25kSaeMXk1ywqgqXQ9nakS8E0XgS7zjHqszjRClxrOxAeoFQi6a60l4ZWFTCaoe5sia9oOV5y6t43+WNbFpdw8mByLSr1YqNeCI/x8rKsco2cT2dFTVl/PMbz+WDzWtz3tfC53Zyy5WNbGs9zdPHxl5Rf+/xI3hcDq47y2gWvM5sZAuwLI9QoBUyK8ZwYDZ1kOzIlsaaMStux4cCkxp+/dwJnj3exweb16auNi0+es06Tg9G+fFTxbnowCKRyK1Xp3XcWY7dc219VPrdXN60aMx2iyu83HrVGi5dW8urzlnCB9KOtY9es44/O3sx9UEvj7zcxf6TISKxBEe7h1JNn8FYFXvu8krJs5qGaCw5wbFSShHwukq+gncpMJIYm7wORp7V0e7hVIPmUqOoCoTuONzN5tU1Y5rQOh2Kz5pLk193+zbbVYROJHVO7VAsrGXdueRXpfPWTSvy2i+dG7es4lstB7ljayvfu3kTACf6wty3+zhv37Qy5apZV+E15R7KPLl/pKy8rPbeMBtXVM143LOJ5Tbk0oTZDlhu487DPSyvLht1rPxu6szP3lf+sI8lFT7efOHyCftvaaxh0+pqvv3IQd6+ecWEE1+xkKtjZb12q7xCW2+Y5dX+CY2xlVL8/avPyvgYl69bxOXrFtHeF+ayr2xl5+FulIKknpjzuLmxhu9tO0x4JIHfU5zv4XwTjScmOFZguPniWBU/I+NyrMA4DuJJzdHuoVQduVKiaBwr4+o5PCa/ajzpSbV2Id86Vlbyej6O1WxR7nXx3ssb2bqvkxfN5eZ3PXoIrY0keQtrlUc+ieswmpfV3ld8KwNLMccKSK24tcJQVo5V0OdKffY6Q1FuvWpNRtFk9JdcR0d/hJ8/3V64gedINnWs0hl1rIyczvbe3EuIWDRU+Vle7WfnkZ5UPsn48PzFjUa5kmeOS57VZGQqtwDG95MdFlAsdNJb2lhYUY5SzbMqGmH1lLWyZs0UwqrCa7vmsPnWsfK5nQR9rqxLLcwV7750NUGfiy/+5iW++9gh7tl5jL+4oGHMiremupkJq0q/m6DXlWriXEwksqiDZEecDiPPyhJWlmNlhQIBFgW8vGPz5O2krli3iFcsr+SbLa2pL0+Axw50FU1F8VzLZVhNljsHomitjdpsM6hFZr3HB06FcChoXFQ+5v4LV1ejFLYuKTPXGJXXJ4r7gK+wjtWJvjC7j8o85UqmHKs1dcZxcECE1dzyq2fbqS33cOaSikm3qQv66B4ykmrtQjyZzDs/5/yV1Zy1dPL3oxBU+Nx84Kq17DzSw5d+txel4EPNYxN5q8s9bFhWwQWr8g/jNVQXZ8mFfJsw24ELVxkrbvuHYwyEY3hdDrwuJ/VBH4srvHz8unUTKl6no5TiPZc3crwnzJ4TAwCERxLc9L2dfLOlONoU5Tp/PreTSr+bzlCUvuEYwyOJvC8YwAiZnh4c4U8vnWJlTdmE97PC5+bspRWSwD4FRh2riaeqQudY/fufXuZ9d+8q2POVCuNXBYKRX9hUH+ChvaeKcjX4TMk7zqSUWg/8OO2mNcA/Av9t3r4aOAK8VWs9pc89koCH93fxt9evn/LKsj7oRWvoHhphccX0jX6LAaNXYH4n5f9+z+ZZHk1+fPjqJt59ySqSGrwuR8aT7e8+dsWMnqOhyk9bETpW+RYItQNnmCHc1q4QA5FYKp/P43Kw/dPXZtXfcs0i4zGsbvWdoQhJDU8WiQOTa44VkCqQagn9mdQjs3LZ9p0MpRZ7TNymhh/tOMZIPJl1n82FRDyhxyQ+WwR9Ljr6C1eG5+VTIXqHY8axMs+RBDsRjU9MXgf4q8tW85lfvMi21tNcsa5uPoY2Z+R9FGut92utN2qtNwIXAsPAL4BPAw9prdcBD5n/T0lfVFPhc/HuS1ZNuV19mk1vF+JJXRL5OUGfm0q/e0oHYyY0VPuLPBRo/zkcj5XncODUIAOROBVp+XzZNg1Pz8dK/10shS9HHavsv+rqK4xcTkvoz6Qt0eraslR4MX1FYDpbGmuJxpO80F6c/TLnm3gymar9lU7A6ypYHatkUqfygYrxe6qYiSWSuJ1qwgKQbApR25XZujy6FjiotT4KvAG427z9buCG6XYejmtuvqyR4DRXAdYqNDsVC803x2qhsbzaTygaT/VeG4knx/xYJ8hCk4/jYRcaqv14XQ5aOwcZCMemPf4yUVvuQSnoshwr86KnWApf5udY+egKRVOlKGYSCrRqhsHkXRA2ra4GisflKya01sQSGneG+Qt43QXLsTrRHyZs1mwTYZUbsXhyQrkWmL4QtZ2ZrSVnbwfuMf9erLXuANBadyilMvvfaSjgPZetnvZJxteYsQOJPCuvLzQaqsxaVr1h7th6gO88dnjM/eUeJw99spkllYUNASdLOMfK6VCsrQtwoHOQUCSeV2kPl9NBbbk3zbEavejZebiH5vXTHv5zSsLMx8xl/qzVx+19Yco8TqrKZhb2ubixht8935EKvY6nNuBlXX3A1s3m54rRVZ0ZHCufi6GReEEuXtNXrxVjLmgxE0tMHuJ+x+aVfOPhg3x322G2pHU2sDszFlZKKQ/weuDvc9zvFuAWgMr6Bp7d+cS0+1hXnzuf38fS4UM5j3U+6O4JoxS0tLQwODhIS0vLfA+pKDnVZ1wN3vvgDn60d4QNtQ7OrDHCjgMjmgeOxvnfP27jwsWFLT/x7CnjiviZp3fT02qMp5TmsYIILx4L4XaC8TLR6QAAIABJREFUJ+jI63WVqRh7j5ygpaWHXftHcCpYVeHgT88eZrPv5OwPOgf2HzEc0O1PPE6ZW2U1dwOdMUbiSbbvPUaVR/PII4/MaAyLE5pbz/PSfeAZWlozC4BFzgjPHx0qmc/VbDFiJj4fO3qYlpb2MfPX1xFDa/jVnx6mxje3uWl/PGx8jhwKtj//MqtGjszp85USR49H0YnEpOfAMyoS7DrYWVKf/dk4S70aeFprfcr8/5RSaqnpVi0FMpZK11rfBdwFsH79et3c3JzVk9U8/gBltUtobj535iMvALfvfQK/20lz8xZaWlrI9nUuNDaEonzxyQf57VHQSvHt917FCrNZ7WA0zjmfux9f/Wqax61InGuGX+iAZ55my+ZNqRWrpTSPLyQO8OQDLxP0uli7cllex9Wawzs5PRilufkKftP5HPU9p3nlxgb+a9shtlx6xbwWvtz/yEHYt4/mq66gzOPKau4GnjvBPfue4digYnNjLc3NM19E8spp7t+jW9l+/34uuuTynHqDljqhSAwe+BPrm5povnLNmPnT+zv575eeYuWZG7lo9eRlemaDP3Y/T035Kar8bpzBCpqbL5jT5yslftP5HIHBbpqbmzMefy/RyhN/3M+FF1+WVzpCMTIbMv8djIYBAX4N3GT+fRPwq1l4jhR1AXsVCY1LjlVWLAp48Loc9AyN8MbzG1KiCowk1aWVvnkpJleqLW0srLyfUHRs8nou1Ae9qdyqzlCE+qCXLY01RVH4Mp8cK6sB+kxLLeSC1cbrYInW9cmXeGLyAq/LrY4NBQjNHeg0+jw2VPtTuXdCdljJ65Nh1UEspWKhMxJWSqky4M+An6fd/BXgz5RSB8z7vjKT5xiPtWIHjByOXz07edVnrTXfeLiVY93zdyAkZlDHaiGhlKKhyo9DGeUdxtNUH5iXAy9ZogVCLdal5f3k2z6pPuije2iERFLTFYpSF/SmCl/+2/37+dR9z81b8/R8VwVazKQ4aC5Y81CqBRPzJWaWO8mUY2XNzUzKtHSGInzmFy/wqfue4x9++SI9GQrbam2sCFxXH2B5kdbbK2amyrECUi1tSklYzchz1loPA7XjbuvGWCU4J9QFvamrun+7fx97O0K85tylGQ+8o93D/Nv9+3nmWB/fvemiuRrSlMQT4lhly2tfsYxYIjmhOjUYpQHu2XmMZFJnXQpgNih1x2pVbTkuhyKe1Pk7VhVeEklNz9AIXaEo56+spsLn5o0bG9h+qJu9HQM8e7yPV5+7dJZHPz3W/OUyfdYiGZjZisBcWFVThtupSurkMhtYjlWmVYFlHhc15Z4ZCavbHjrAPTuPsciMhJy/soq/uGBsb8yuwSj94RhN9QGGonFOD44QiSXmrPRMqWE4VpMLqxXVfjxOR0l99m13GV4f9NE1GCU8kuC54/0MRuPs7Qhl3NaaqAf3nuIlszJ0oUmUSB2rQvDXf3YGf/eqMzPe11QfIBxLcKK/sFeLCfOKuZBirpC4nQ5Wm0I23/wGS4ic6AvTPTSS+v8/3raR7X9/LW/ftJL23vC8VFi2HOPxNXSmIuB14TdPmjOpYZULLqeDxkXlJXVymQ1GQ4GZT1UNVfk7SKcGIvzkqTbetmklW/+mGci84ny0z2Mwra+puFbZMpLQUworl9PBmrrS+uzbUFh5iSU0D+/vZMRcSr3jcOYaGJatXu5x8o2H56cI2UwqrwujzFeopNQdKxjNcajw5+dYWQUw93YYFy/poTQwxMnQSCJVo6yQ5JPjqJRKvQarDEghMMLdmS8SFypWKHCyHJ2GKj/teeY83fnIIRJa88Gr1hLwuijzODMWn7ZO+E31gTFlYYTsGIkn8EwhrADW1gdKKgxuP2FlfuH99vkTKGUIrR2T9Nlq7RxkcYWXmy9bze9f7GDrvlO80NY/a0Xl4olkxpj8mG2kjtWs0DRPyb3JEi4QamGJ1vwdK6O22Isn+sf8b2GF0+ajZVEikd/xVx/04naqMWHBuaapPsixnmEiZiFKC6td0EIk5VhNkiNn9RjN1g0NjyR4oa2fnYd7+NHOo9ywsYGVtYZYsloZWXQPRnmhrZ9dR3oJel0srvCKY5UHsYTG7Zr6GFxXH+B478TP/mxwsj9ScLfcfsLK/NJ+aG8nZy2p4Koz6njqSE/qBJhOa2eIpvoA7718DX63k/f8YBevu2Mbn7j32VkZy8+ebuOqf3uYaHzyD4NRvM52b3PRUV3uYVHAw4FT4ljNNhuWVQLkLSIsx+rF9oGMj2P12psPYZXvqtxVteWsWRQoaAi4qT5AUsPh00Op237xTBsX//ND7D+5MJ2smFXgdQrHKhKb/gLX4pM/fZbX3bGNt965nZF4kg9dvTZ1X33QNyYU+JY7t/O6O7bx6+dOcObSIEopFge9OB1KHKsciCWS0zpWTfUBtIaDXbP7/f5CWz+XfuUh/mfHsVl93OmwXcEU60s7Gk+yZU0NG5ZV8tPdbRzoHGT9ktFeXNZKjrdctIKacg+/+vBlHO0e5u7tR9hjXlnPlPa+CKFInIFwnLpg5kTGaDyJ1y3CajZYWxegdZYPvOko5V6BFtdvWMwfPn4Fq2onLhrIBp/bSYXPNWkocD6v8o0cx9yPv8++5qxUC5NCsa5+dNn5WUsrSCQ1tz3UitawrfX0mO+3hYJ1YTNpKDDts1UbmPrCYP/JEL9/4SRv37SC685azOIKX6rMBUBdhTeVixtLJDlyeog3bFzG685bxtnLjBp2LqeDpZU+KbmQAyOTtLRJx+pb2to5mLrQmw1u23qApIZvPtzKWy9ajtdVmAUHtjvjp39pb2msYYvZh2vnuDyrjv4IQyMJ1ppfVusWB7nu7MVcvKaWjv7IrDSItWzLqUKL0Sziy0J2rFsc4MCpUEFt3VLuFWihlOKspRUzeoz6Ch/ReBKlYNG4E1x1mRu/2zkvV/n5OlZVZR6WVhYmcd2icVE5DjWaR/jb509w+PQQLoea8P22UIinWhJNnrwO2bmh33i4lXKPk7971Zlcd/Zizl0+9gReH/TSZTpWJ/sjJDVcuraW685ezLK01aEzSZhfiIwkkrinKLcAsHpRGU7H7K6K3dsxwAMvneLStcY5/2e7Jy/NNNvY7oxf5nGlKhNvWl3D8mo/Syt9PDkuz2p0JcfY/lxWQcSDXUPMlOERQ1BN1WFdHKvZY119kIFIPPXlVwgWgmM1G1hOck2ZZ8LVqVLKzIUp/FW+nerI+dxOVtaUcbBzkGRSc8fWVs5YHOD1G5ex83DPvKyqnG9iialD8daqzelE+6GuQX77/Aneeckqqss9GbepD/oYjMYZHolz3HSkrDB2Og3VfgkF5kA2oUCvy8mqmrJZFVZ3PNxKwOvimzdewCuWV/LNltZUaHmuseUZvz7opak+QG3Am+oev+NQT+okCKNXfeM7yltC68ApI2fhqSM9fOq+5zLmaE1HeMSYpFA0s/ultWYkniyY/VjqWHO5/1Th8k3yKTC5ELGEVd0keVrzdZVvt84HTfUBHt7fyZ/f9hgHOgf58NVNXLymlt7hWEmtmsqW+BQFQgEq/W4CXte0n607HzmEx+XgfZevmXQb6zPcORBNCadMdcyWV/npGIjwhju2pX7e8u0nZj0/qFSIxXVWUZumWVwZePj0EL9/oYN3X7KKqjIPH71mHW29YV5z22O84Y5t/Gx326w8z2TY8mxx61Vr+D/XnZH6/1UblnB6MMrv06o7t3YOUl3mpnbc1cnKmjKjGJl5EPxoxzF+sqstr9ydVChwEsfKKgfhncYGFbLjvOWVBH0u7tlZuETEfApMLkTqK3xjfo9nvq7yEzZblXvjxavY0ljDkkof79i8gteet4yLG40azJOtfi5lpmppA6MdG6YLBT55uJur19dPKvxhNM2kMxRNCbWlVRM/z68+dynXnllPdbmH6nIPFX43Tx3pZduB01m9poVGLJGcdlUgGKHwYz3DeZkc49m6rxOt4Z0XrwLg2rPquemSVSyr8nO8N8xPdh2f8XNMhe2S1wHetmnlmP+v37CEpvoAd2xt5TXnLuX/t3fm4W2c17l/P+w7SZAEKZHiJlKUbVnWYpNeJUqOnbVxmtRpayd126R229jtbdKmbpveNkmXPLe9bVI7uYmXpG7qpI8Tx1ncLPUixrJskdplW5ItiqREihT3BSCJZWa++8csAEiQAEgAHADn9zx6KAIgMIMPmDlzznveYzAwrSNwsTGgZsSndJd1Kwerrt4JbKlKTxyqlQKX0ViFBAqsMonbZsZv39yARw/04PyIXxuFkE1ESYIxTYPJYkS92l+us7Cm1I6p+QjmQgKcORwynG8Zq32tPuxr9cXdtslrR7XHhu6+SXxcOVEUC2rpxrxCxrgmyZiZYETEpcl5fGhHzYqvpXacj/qDuDy1AJ/bmrDacNUGD5647wbtd0ni2Pq/f066q2UIJ3FeV6kpsyMsSBifCy2xbEmX7r4J1HkdmjaOMYbP37UNAPDn3z+NF8+OrOn5k1EQZ3yDgeFT+zbj7RE/Xjg7As65MjQz8YlXTTkOTM5rX4bVXA2qXUNzywVWEQqsMs3v3tIIuzl3hq/5dmJeLyqTBFa169QZKCZxfc4HonKHiaLTWWl2JytMr0hmEto7NgfOl8pCFhNXCpxeSHlOpMHAlG2gwCoRYSG5xgqIll3X+j5KEkd33yTalMa2xbRUuTAxF07ZomM15PcRJ4Zf2b4R9eUO/OsL7+A/uy5hej6y7BepWTEje+X8GABga7U7JXFo//gcLk5ERe8LEVVjtVzGSg68SGOVOcqcFnz8xnr8+NRQnN9PtpDyrJS0XqhXmMuVWlYSGXPOcahnfEU/uNVSKIFxe5MXo/4QvnmoH88eG8TM/FJd53gglHR018mBacxmoCM6VySzWwDkTMdsUFh2v84rbvaxA8cTUeoww2xkWikwnTmRNaV2DK5w0aCajRYjyWYFqqxky3KoZzxOeH5maBZXZhIb5/aMBTA1H9EcAxazOcbWJFsUTGBlMhrwR/tbcO6KH3/9wzcBADs2JfbDUM3I/qt7ACV2M+5tr8OoP4SLE8tf9YQFCfc+0YXPKc8NAAtJugLDaimQugIzyidvkwWoPzqZ/fbZQjkxZ5umSicsJsOytg3qKJBEJ5/Od8Zw7xNdeOZo5gWl+dQVuBK3NlfAaGD44vNn8JnvncIX//vMksd8+cV38OvfeH3ZzqeFsIi7v/4aHnnpfLY3N2Mks1sAoHlRHb6Q2JLiwmgABoaEw91jYYyh0mXFyGwQw9PBlDNWAJJmrD79zCnc8/jhjOiH8glR4pA4YEmharNcxurclVnc+0QXvt55AQAwPR/G3V9/DX/z4zeXPAcQrT61K9rExbRQYJUeH95Vg8N/cTsOfnYfjvzVu7C7fvlUIAC8cXkGNzR4cdNmVRy6vFfMcycGcXl6AVPz0fThQhIfK9JYZYdKtxV1XkdOXNhFCqxSospjwxt/eydubEp8MFNHxCw+aHLOtRP94d7MezUVSmBcX+7Ekb96Fw5+dh/uba/DcycuY2Ay/kKwf3we/pCAt5bJWl0YCyAichzuzR8RfDLxOgB0tFaitsyOrx7oSVh1OD8aQH25M6XKQaXHhjNDswiLUkKrheWoKbNjPBBKOJLl1MA0fvnOGPwhoeh0WJpGLoWMldtmhsdmWtKIcG5Yzjg+eagPgZCAbx3qx1xYRFdf4okrXb0TqPbYsMmbODDeWGKH3WzUMpnZoKDO+IwxVJfYsMnrWLH7QzXiA2ST0c2VLnidlmV1VoIo4asH5Gh5LhT94iyEV+4KjAZWVArMNPLA2uwHVjTrMXVW+pwbDAwbSpaKjF+/MIHjl6bhtpmy4tUkdwUWxmHO67Rgk9eBh/a3wMgYvqZcwauo7+1yZqLq9+WtoZmMGCTngugQ5uXX0Gw04A87mnFqcAYHE3Tm9YwG4hzWV8LntuId5YRbm2YpEACGEgROjx7ogdr7kuvJEeuNeg5cqZQbS02ZY8kxomc0AMaA6fkIvt55Ad861Ae3zYTpBBYknEf1Vcs1HBkMLOvnj8I44qSJ1WTUxneoC9DW4NU6BBfzk9NDuDQ5j40ltjihuhpYLauxUq5eUkmDEunR7HOjdzyglQqyhVQgGQ89kEhk/MjLPfC5rfiTd23BmD+E/hXK8auhUDJWsVSX2HD39bX4/rEB7UQuSTwmsFp+KD0ASBw4enEqNxu7RoQkBqEqH9ldgw0lNjzy8vm44DwiSuifmEuqr1Lxua1Q/zytUuAy+iDV/fu+mxoAQOtGLxbUjFWq58BEJdXzo340VjhxW0sFHj3Qg9mggC99eDuApRcRFyfmMeoPob0pcbVKhQKrLNHsc8FpMeIaZQZUW6MXg1MLmiB6NhhBxz8dQOvnfobPPHMKW6vdePe2ai2w4pwn7QokH6vs0exzISJyXFLKIV98/gw+/5O3Mv46QgFlPNab2jI7jl+aRuvnfqb9e713Ag/s3Yw9WyoAyGn8RHzrUB8++o3X085oybMCCyuwAoA/6NgMzoGnXusHAIzPheTuK5MB3X3xZskq50f9qCm1KyNyUisHBkIC3vPlV3BsnQKx6BDm5M7dD+xpwpH+qbjKw8WJeUREjuaUM1bRNv90xOtqc8biMtbjr/TCZTXhT961BRUuS06y7HpCC6xS7MytVawzYr/nPaMBtPhceGh/CwBgX2sl3ndtNao9tiVVpm5NX5U8sFJH233z1T786tcOZdSVvWjPGJ++YwseuWen9oV937UbYDEa8PjBXgDAf7zWj/6JefxmWx1+b08T/vnu6+C2mjAfESFJHCFBgnrsWlZjFaFSYLbQHPSV8R/fPzaIA+dGM/46pLHKHL+3pwm/v3czfvuWBu3fp+/Ygnvb67C50oVypyXhCd8fjOBfX3gH3X2TKzaYJKIQM1aAPGple20JTg5MA4gKfu+4ugqzQQFvX1mqH+kZDWBbjQfX1pakHFj1jc3h3BV/VvRvqZBKV6DKb7TVocJlxSMvR8X52mizVDNWikloqcOclt9atccGoyFeQ8g5xyvnx3DH1VUocZixudKVVV2PHokI6vqlHlgFQgJmF+RzaliQ0D8xj2afC22NXvyfj2zHF+7aBsYY2pu86FokHzjcN4FypyVp6Vc9f5wamMGXX3wHJy5N47kTmWuGykuD0Exw1QZPXAeTml7/3tFBfOLWRjz5ah/2tVbibz94jfaYQz3j4BwICqLW8QekoLGirsCME9syW1/uwMxCBAthOeg1ZPBEWqgn5vVgS5UbD79367L3tzV6E+oc/+P1i5hVvmNdfRNoSNLdFUuhdAUmosXn1owO1RLUh3fW4L9PD6O7bwJXb4we39QT1Hu3bUBDhRPffLUPC2ERdsvKF31jgWDc8+eaVLoCVWxmI+7f04h/+Ok5HLs4hd31ZehRApl0NFZAetkqQM6oVXtsce9T7/gcxgNhLXvSUuXCj08OgXNeNIbDatUm2RBmFW2o9vQ8ShwluDgxB1HiaFE8KT96wybtsW2NXvzo5BD6J+a1js9k+ioV1Yrpi8+fwWxQwMYSG752oAcf2VWbkeM9nfFj+P29myFxjo890YWp+QgeVFKPKg7lCkYe1CmXAQ0sFR8repszjctqwsYSG3pGA9rVd1iUMB7I7IBm1XmdyD5tjV5cnl7AYIwOaz4s4MlX+7B3S+WKDSbLIYiFGxg3+6JGh2oJ6oZGL2pK7UveJ/UE1exz4cbGckREjhOXkpf3Rmfl79N6mV+qQ5hTFT/f216PMocZjypZq57RAGpK7Slnn9RSYLqBlfo3se9Tl9J9qRpVNle6cj5Efr1RExCWlMXr8ZYLy838BaLlPlVnJR87FpY1Bo1FHW339ogfHa2V+N+/cg36J+bx/OmhlLYzGXTGj2GT14Ff3VmD4Zkgbmkux+76srj7XVb56m4+JGr6qnKXNWnGisTr2WGzIkDsimkfX8mkbzXk26y5fKZNO1BG1/M7XZcwORfGH93esmKDyXIUUlfgYpqrolnby1ML8NhM8NjMaG/y4lDPOP7u+TP4lxfeQTAixp2gdjeUgTHgcArv5agSBKxbxirNkVJOqwmfuLURB94ew1//8E283juhZbdTQS0FpiNcV1k8Wqe7bwIVLquWTVFHcKWqszpxaQq/fGdM+33MH8JTr/Un1M/plXTsFoAYLyvlfVQ7AhNlHFX5gHr8P9IXH8iuhDraDgAe2t+MO6+uwpYqeSxeJrzGCvOIswYe3N+MpgonPnNn65L7HJZoxkrtCPS5rViIiAm708Jkt5BVWnxuObDqm9TKupm+siaNVe7YWu2BR7FdUPnRySHsrCvF7voytDfJDSbpnOQLef1UQXbPaEAZwSL7Lr3/2g0AgO90X8K/vXQe/3n4YtwJymMzY1ddGZ47MZi0q3bUr5QCpxbWZZyOIKZ/YfNbNzegqdKJHxwfxFxIxP7WypT/tsJlxQ0NZbitpSLdTUVNqR1XZoMQRAmcc3T1TaK9KVqWao7RhabCl352Dp955pT2vj/ddRF/8+O38PM3r6S9betFul2BXqcFNrMhLmNVU2pPWLJmjGHPlkr8z5kRzMxH0NU3AbfNhK3ViU2KF/PubdX40I6N2F3vhcHA8Mlbm3B+NIAzwytPL0iFotVYLUd9uRMv/2lHwvucSmA1HxY1XxLVL2suLKLEHv/hoVJgdmn2ubAQkbOHD+xpwt8Pzyadcp8upLHKHUYDww0xWSl/MIK3hma0knxbTOr/V3fWpvSchexDVlMqGx2qGatNXjmwuv2qKpz+23cDAH7zscN47JVe7KwrjTtBPbCnCfd/+xh+dHIIH9m9/HuplgIXIiKm5iPwOi1Z3qt4IquY9eixmfHyZzpW9XpGA8P3fv/mVf1tTZkdosRxZTYIzoHhmWBcd5rPbYXbZkpZwN4zGsDEXBh943NoqnRp34tHXj6P926rzqiWNFuE08xYMSbPXVSP4+dH/JrQPBH372nCcycu499f60dX3yTaGrwpH68/fceWuN9vVYLp7r5JbKtJPLUlVeiMnwZOpRQ4tyhjBSTuDKQhzNklttNn/1U+lNjNuDydWR+kQs546JG2Ri96x+cw6g/i2MUpSDyqpdha7dGMRFNFEAtXI2cwMGz2OXF+1I/L0wtay38sD+1vxqg/hF+8NRJ3gnrXVVXYWu3GVzt7ViwtjfpD2kXkeuisBEnKG7sMTXg9taBp3GLLUoylbkw5ORfGhDIkuLtvEmFBwvFLU6gts+PcFT9eykIHdDYIC+kFVkDUJFSUOHrH57QSaiKu2uDBHVdX4YmDvegdm0upDLgcG0vtqC2zpy03SASd8dNAFUDOhQVNY6VmrBLprEKCBANL7sFCrA61FFLhsqKpwpmVCfOkscot6oHxSN8UuvsmYTIw7KwrBSBnE9oaEncOLodQoD5WKi0+N04NTCMQEhIKrm/aHNWKxgqADQaGB/c3o3dsDj99Y3jZ5x/zh7BF6cjK9EVLKkTE/NHIqYHtG4Mz6Hx7FCV2s/beqbSkGFjFPqa7bxJvXJ5BMCLh4fduRZ3XgUcXGaHqFbX5IFUfK0B+Hwen5rWAMpkH2UP7m7UGsrUEVurfd/evfQJEfnxidYIWWMVkrCpdasZq6YiIsCiRviqLlDktqPbYcKOiY1gsHs0EVArMLdtqSuCwGNHVN4Guvklsry3RtI0AcH2DF71jc5iZT20kS6FnHJt9Ls2KIpHgmjE5gAKwRHvy3m0b0FTpxH+83p/wuTnnGPOHsKteDmwzXWZPBUGUUu4IXG82Kuarf//Ts3j+9DDaG71LynUtPjfGA+Gk3ctqufC62hJ09U1qc2xvairHH3RsxqnBGRxPoatzvdHE66bU17Ch3IGp+Qh+8/HDAIDW6uUzVgCwvbYUe7dUwmU1rbmEd2NjOSbnwriwxtFDpLFKA6dFLQWKmjlopdKe60+UsYqI5GGVZb79iTaUOmTdR02pHa/1jGfUJ0aUOCxmCo5zhdlowO76Mhw8P47BqXl84tamuPvVDPHMQgQlDnPS5yt05/zYLFSiUiAA7Gv14ZkHbsKOTaVxtxsNDLc1V+DZ45cTfmem5yMIixKafW44Lcb1CazyKONoMxvx3ftv1OxCbmpaKoBXs69H+6fwnm3Vyz5Xz2gADosRd+2owReeP4MfnriMFp8L5S4r3rdtA/7yuTfwWs8EdtevLUOTbaJ2C6l/B+9pr0d1iR2iJMFtNWN7bfJg6V9/fQeuzATT1uMtRs14dfVNotm3ckC3EhRYpYFDE68LUBOFlStprASJ9FVZJrb+Xltmx1xYxMxCRAu21oqQYcNRIjltDV4cPP8OgKWjKRzqxU04scXJYoohY6WykvfSciWSZp8LgZCAK7NBbCiJ/3vVasHntmYlG5wKEVGCOY8C4xsavLihYflgZ3ttKazK2KFkgdXmShdubCoHALwzEsC97XUAgBKHGa1VbnT3r10LlG3SFa8DskfhB6/bmNbreJ2WjDRW1Jc74HNb0d03iXvb61f9PPnzidUBFpMBFqMBgZCI4CKNVaJ5gXJgRdmOXBErHs0UhezcrVfalZOJgQG7G+K95NTASjXoTYZQ4OtX73XAbGSwmQ2rOrGoV+WJdD+q1YLPbc2KfjEVBDF/MlapYDEZsKuuTCvtLYc6H29rtRsem3xBHxsctzd6ceziVEbn22WDqOVQfoQajDF5AkTv2nRW+bG3OsJpNWI+LGusDAzawSxhKVAQyRw0h9QqPj6JAqtASMDDz56Oc/V+/JVe/GwF4S4AiBIKOuOhR7bXlsBiMuDqjR54bPHlPjVrvJBiYFXoGSuT0YCmChdqSu2rKn9r3kojcmDVM+rHX//wTQiipFkt+Dy2uIzVY69cWFHwnknkwLiwjqFtjV6cGZ7FbDBeJ/iPPz2Lrt4J+IMRDM8EsdnngsHAtICqvbFce2x7UzluxGptAAAgAElEQVTmwyLevDyT021Pl3R9rPRAe1M5rswGcc/jXfj4k/K/3/pm97ID4hNBpcA0cVhMCIQEmAwG2M1GuGLG3CwmTKXAnKKNQ0hQsnjqtX7815EB7Kovw0evlwOwJ17tRUTk2NtaGSeQjoUyVrnHZjbij/Y3a75MsaRbCixkHyuV37mlQSu5pEuFy4JShxk9ilj3v7oH8O3DF/GhnTVxpcDaMnke56mBafzjz87hhnov3qcYkWYT2ceqsNavvdELzoFj/VPYt9UHAJiaC+Mbr/TiwNuj+NJHtgOIDgq+7+YG1HmdqC6xac+hlhu7+yaxs64MemU1dgvrzbuvrsLP3xzGQliEelp/8/IsakrtWjY9GRRYpYnLasJ8SITVJMJuMcFoYHBYjMvaLVBglTvKHGbYzcYlJQt13hwQn1n0B+WZj9/puoRP3hYvklYhjdX6sHhOp4oaWKWSsZIkDs4BY4FlPBbzG211q/5bxhiaK13oUTJWqpVFd98kxvwhOC1GOK0mrcz+uR++Cc6hBWLZRvaxKqz121lXBrORoatvUgus1PfznZEAvnbgAoBoNvG2lkrc1hLvHl/ptqKp0onuvkk8sHdzDrc+PcJ5ONbN57Hh6U/eGHfbrzzyaloaw/zZW53gsBoxFxYQjIiwW+S3z2U1LWsQShqr3BG1XIj321HnzQHA7IKcfo+IkqbTeeyVXk0ztxjysdIXjpjpB8kQlNbdQtLoZIOWKhd6xgKa0z0gu9uP+oOahlTNBr9xeQblTotsYJnhgeeJiKxipI3esVuM2F5bqg0PBqKl2HKnBS+eHYHFaEBdgoxtLO2K55KeZweqpcB8X0NZY5i6jxsFVmnitJgwFxIwHxZgV9rwXTaTZlAWS0ggu4VcU1Ma370UjIj4xiu9uKmpHC6rSdM1qBnGO6+uwqg/hO8dHUj4fIWu0ck37Jp4PXkpUD3h0PqtzOZKFybnwnjhzAgkDjRVOnG0fwpXZoLwKXYytUrGymIy4OH3bgWQ2jDhM0OzaxJYyz5WhXcMbWv04vTgjPY57hkNwG424rPvkWfUNlY4k2bq2hvL4Q8KOHdl7bPtskVIlGAxGTJmf7NeqBrDVAXthfeJzTJOqxFzIRELEQl25erZbTUt2xWYjn8HsXbqvA70j89rJ9UXz45gzB/Cp/Y1w2MzaaVANcC685pqbK8twbPHLyd8PspY6Yt0ugIFqTCulrONalnydNclmAwMD+xpgj8k4OTANCo9csaqwmVFudOCj7XX4+Zm2Z8p2TDh4ZkFfOCRg/j+scFVb1s++VilQ1ujF4LEceLSNADZEHSzz4kP76pFQ7kD121K7t0UnZ2pX9uFiMAL4hxYU2pHMCJplY9krGmPGWOljLHvM8bOMcbOMsZuYox5GWMvMMbOKz/1q6xbBU6LSR5pExZgV7JRLpspocYqLEiwkrlkTtldX4ZAKHoV19U7CafFiBubvHDbzFopcHZBXi+PzYTWKjeuzAQTPh85r+sLs1G2PEklsKKMVWqoWp5jF6ewvbYEe7bIeh5B4tosVIOB4cVP78Vfvf8qbCyxwWkxJs1Ynbvih8TlrNVqyaeRNulwfX0ZDCyqabswGkBzpQtmowE/eehWfOGubUmfI5Oz7bJFWCyMzviVGqMSsdY9/gqAn3POtwK4DsBZAA8DeIlz3gLgJeX3gsFpNWE+LGIhImqlQKdlGY0ViddzzuKruO6+Sexu8MJkNMBjj2as/ErGymM3w+exYjwQgpRAq0ClQP1htxixkEIpUNNY0fqtiBooAUBbYzk2lNg1fY9aCgTkEVJGAwNjDJtTmHl3YVS1cFi90D2fRtqkg9tmxjUbS9DdN4FASMDQTFDLHLptZthSvCBva/Siu2/ts+2yRSFlrIDUB5Gveo8ZYx4AewA8CQCc8zDnfBrAXQCeUh72FIAPrfY19IjDakRAmRWoCmldMSWmWEKCSIFVjlGv4rp6JzE5F8bbI37NvdtjM2slQPWnx2aGz22DIHFMzi9N84oFPhIlH3FajJhLK2NF67cSaqAERJ3u1QsUNWO1mOYUAitVkJ2sZLgScimwMNevrdGLE5emcXZYzuhtTjJsOBE3NpZjIgOz7bJFWJTSmhOoVzat4JGYiLV8YpsAjAH4FmPsBGPsCcaYE0AV53wYAJSfvjW8hu5wWUwICxL8QUG7qnAv1xVIzuvrQntjObr7J7WslXqScMdprATtNvXkoRoixkIZK/0hZ6zS6Aqk9UtKs88V53SvBlg+z/KB1ZXZ4BKTy1hUC4HxQAjTCS5aUkEeaVOY69fW6EVIkPCsokFrqUo/sIqdbadHwmJh6Iw9dhNcVlPKpcC1+FiZAOwC8BDnvIsx9hWkUfZjjN0P4H4AqKysRGdn5xo2JXcMDcgHkvFACFPjV9DZOYWJkTD8wQgOHDgQ1/2wEBZwZWgQnZ2jAIBAIJA3+5nPlIQjmJwL46s/PwmzAZjuPYXOfgb/ZAgTfgGdnZ040S+v4+ljXRgKyCLnFw91Y7Qy/isRjggYuhxdQ4DWcb0RQwsYuBJMugaj8/K6nn/nHDrnZG8gWrvE7LRLKLvGguOHDwEAPALHh1vMCA68ic7LSwOb0Kh8YfK9n7+CzaVLLx455zh7eR7lNoaJIMf3fnEQLWXpX2TOzQcxNjqirVkhrV84LAf+Pzg+ACMD+t84goE0g0jOOUqtDD85fBY1C33Z2Mw1MXQliHCQF8T6lZpFnOoZQGfnWNLHriWwGgQwyDnvUn7/PuTAaoQxtoFzPswY2wBgNNEfc84fA/AYALS2tvKOjo41bEruGDlyCd899wYkDjQ31KGj4yqcxQU833sON926R8ticc4h/PynaGlqQEfHFgBAZ2cn8mU/85mG8Tl8881OvDEu4sYmL+7YfxMA4EjoHDoHe7F3716ciJwHzp3He27vwND0Av6+6wCqG1vRcf2muOfiL/wUDfV16OjYqt1G67i+VL39OjiAjo6bVnxc71gAeOWX2HbN1ejYUQOA1i4d3r3CfQ3jc/jK8U64a7cs+c4A8pzB+V+8hN+8sQFPvtoHd00LOlZhZGp89QVsqq1GR8e1AApv/R596xW8PeLHlioXbt+/d1XPcevwcRztn8LevXt1Z2vwrd5uSJYwOjpuBZDf67el/wiGZ4Lo6Lgt6WNXnaPjnF8BMMAYa1Vuuh3AGQA/BnCfctt9AH602tfQI7GjT2wxPlZAvKt3SB0+ST5WOae+3IEqpYTRFjNfy2MzQ5Q45sMiZoMRuK2yc75qgjjmX1oKLIaRKPmGI8VSIHUFZo9NXgcsJoMmUF+M6uS+d0sl7GbjqnVWEZEXbCkQiJby1M7M1aDOthuYzP2Q7GRECsiHLB2T0LXu8UMAnmaMnQawA8A/APgSgDsYY+cB3KH8XjCoswGBqKeOyyr/jNVZaYEVaaxyjjyhXA6o2mMmwruVgb6zwQj8QQFuJSC2mY3w2EwYnY23XIiORCncA3s+4rCY4gxCf3xqKKHGkTRW2cNoYGiqcC4bMKn6qtZqNzb7nKvuDBTEwhtpE0s0sHKv+jnaNZ1V1Mn9zcsz+LeXzuPfXjqP508PrW0j10BYkArCbgGQLRdmg4LWUb4Sa5oVyDk/CeD6BHfdvpbn1TNqMAVAs1soc1gAyBmPxgongPyckVRIvP/aarwxOI2ddaXabR57NLM4uxCBx27W7qt0W7WhsyoipxOzHnFYjJqP1cDkPP7ouyfwxbuuwcdvaoh7HHUFZpfrakvx/OkhTM+HUaocA1XOjwTgtsqNIc2VLhzpn1rVa0QK1CBU5ebN5agpteOWzakN901Ec6UL1R4bfnD8Mu6+fhMEUcKD3zmO/gk5u8IYcGtzxZI1ygURUYLTWhgjiTXLhekFbK02r/hYOuKkSeyHRB2vobbJxl6VhQT5wE92C+vDe7ZtQOef7Ysr3WoZq4X4jBUg+/UsCayUEzMNYdYXsYGV6oQ8kKANmjJW2eV3b23EXFjENw/1L7mvZzSA5ioXGGNoqXLj8vRCwukUyRBECeYCDozLXVYceng/2ptWH1gZDAyfvK0Rr/dO4Gj/JJ4/PYz+iXl8/WO78N3fuxGcA0dXGdiulVABZaxqFZPQwRRKroWxxzkkLrBSMlY1pXbYzcZFgZVaCqS3WC94YrRws8EIPLboVYfPY12isaITsz6xW0yaxmpGcdJPZNwnKiNtqJSbHVqr3Xj3NVX490N9S2wXzitO4kD0wjNdryVJ4pA4DdFOhXva6+B1WvCVl87j0QM92Frtxp1XV2NnXSksRgO6+9fHjiEiFk5glY77emHscQ5xJigFGgxM1hHEHDhCEdJY6Q219KdqrGJLgT63FaP+YJyDMZWS9InTYkRYlBARJUwrgdVgAlGpIFJgnG0e3NeC2aCAb79+Ubttej6M8UBI82VSf6qGoakSUQLjQhE/ZxOHxYRP3taIg+fH0TMawKf2NcNgYLCZjdixqTShz1Wy4dic8zU7uheKjxUAVDitsJgM6B0LJJ0ZWBh7nEOcCcTrgFzn7hnxa7+HReoK1Btq6W92ISJ3BS4qBQYjEvwx5QqRMla6xB4ziHlGMZ5MdBVJXYHZ59raEuxrrcQTB3u1hoKTA/Jg4RZFkF3vdcBiNODU4HRaz02BcXp8/MZ6lNjNaKp04n3XbtBub2v04s3LM3ENHkPTC9j1hRfwzJGBZZ/v6a5LuPlLL0NIEoCtRKGMtAHkBMqmMjueev0idn3xhZUfm6NtKhjsMTOcbDGBVUuVG0MzQe3DG4ooGqsC+VAVAh6tK1CQM1aLSoFAvPu6oFwxk8ZKX6i6uYWwiOl51bA3jGAk3oJBK+VSKSmrPLi/BVPzETx9+BIA4PGDvahwWXGTIsg2GQ34wPYN+N7RwaRX+rFogRUdQ1PCbTPj259ow+O/dX3cxURboxeixHH8YlRn9Y1fXoA/JODLL76jNVot5hdvXcHwTDChfjFVCmWkjcr//egOfP6D1+DzH7xmxcfRJzZNDAamlQNjgyxNR6DorMjHSn/YzEZYjAaMzAYhSjwuY6V6WY36o5YLlLHSJ06rmrESNI0VsDRrRaXc3LC7vgy3NJfjsYO9eO3COA71TOCBPU1xg4T/cN9mBAURT77am/LzqqVA+v6lzvba0iUzB3fXl8FoYNqIr1F/EN89MoCt1XIy4LkTg0ueRxAlHFMCsfMxlZh0CQsSLMbCkcPs2FSK+25uwH03N6z4ODrirAKHUg50xGWs4jsDycdKn3jsJk3ovFhjBcSbhFIpSZ+oFzTzYVHTWAFLBezUfJA7HtzXgjF/CL//7WMoc5hxT3u8y3qzz433bduAp167iJn55D5AQMyFDWUc14TTasK2mhLN5+rxV3ohiBK+/rHd2F5bgq8euLCk3PfW0KzWeduzhgHPhZaxShUKrFaBahIam7Gq9zpgNjLNMI/sFvSJ22bWJpTHZ6xsAOJLgZSx0idqKXBeKQWq3Z5LM1bUFZgrbmzy4oaGMswGBXzytqaE3kUP7m9GICTgP17v1247OzyLx165kPA5VXF1Idst5Ir2Ri9ODkzjU08fx38evoQPXrcRDRVOPLivGZcm53Hft7rxqaeP4yenZDNRNQhzW02ai366cM4RFqSilMMU3x5nADVTZY/JWJmMBjRWRB2Gw5Sx0iUeW3RCeazGymMzwWoyxJUCBcpY6RJHXCkwjNZqN4wGRhmrdYQxhoffexVua6nAx2+qT/iYqzZ4sK3GgyMxWp/nTlzGP/z0XJyTvkpUY0Xrt1Y+eN1GNPvceHvEj80+J/74XfL82juursL7r92AkdkQDvdO4C+fewOzwQi6+ybRVOHEjrrSVWes1O9fodgtpENhWKLmGKclOgollmafC2eGZgFES4HF+KHSMx67WWswiC0FMsbg88S7r1MpUJ84YroCp+cj2Kw4Ty+vsaL1ywW768vw7U+0r/iYMoclbiSI+v/LUwtoqYof66I2j5B4fe1sqynBz/546fBgxhi+eu8uAPIYnA888ir+/VA/uvsm8b5rN8BmNuKZowOQJJ52E4+aXChGu4zi2+MM4LQaYTayJR+YZp8blybnEYyI0a5ACqx0RWz5L/b/gOK+HtsVSO3eusRhjpYCZxYiKHWYlQGpizJW2vrRd1AveGxmzMbo4mYX5IucwQR2GRFl/Qp5CLOe2FZTgv1bfXj0QA9mgwLaGr1oqXJhPixieNEc1VRQS7nFmFwovj3OAA6rKU5fpdLic0HiQN/4HHUF6pT48l/8vCfVJFRF4tRVpkdiS4HTCxGUOMyoKbMvn7GiUpJucNtMmA1Gy36zweWd88luIfc8uL9ZyzS1NXo19/zVDNGmjBWRFhtLbKjy2JbcHju6QRvCXIQfKj2zUsaq0m3FeCDqs0MaHX2ilgInAmGEBQmldgtqSu24MhuM626i9dMfHrs5rhSoBlmJDF41uwUKjHPGrroy7NlSicYKJ2rLHFp5djWWC8UshyGN1Sr4kzu24IG9m5fcvsmrDGmcWkBIkGAyMLra0hlqlspiMizRyJUoB31VTyCSQagusSkNIVdm5Oxiid2MUocZosRxZTaI2jIHAOoK1CMemwnBiCT7G5kM8K8w61HQSoF0DM0lX71nJxYUKYvXaYHXaUl7ziMQUwoswnNg8e1xBnBYTKhwWZfc7raZ5a6zqQWEBLEoI3W9o2apPLal1xQemxkSB+aUDiXSWOkTg4HBYTFiaEY+GZc6zNHJ8zEnaDVjRSdm/eBWLmzUrJWasUo865EyVuuB22aGzx2tyDT7XGnPeQSiY92K8TxYfHucZWrKHLg8LWesSLiuP9ROwMX6KiAadPmVg73IqatMrzgsRgwp5aNSuyxeB+IzH6Sx0h8euzKvU/mOaRqrhKVAJTCm9VtXWnwunB8NpD2QOSKo61d858Hi2+Mso3YnhSISeVjpEDWgctuXBlZq0KUe7KldX7/YLUYMq6VAhxkb1cBqemnGijKO+sFtjWasghERYUGCzWzAqD+0ZGadlrGijOO60uxzYWYhgrFAKPmDYwiLcjmRMlbEmqlVupNCgkgdgTpkpVKgep/aAj6n+F3Fji4i9IHTYtJGbpQ6LLCZjfA6Lbgyu3TWIwXG+kG7eFkQtMxwa5UbnAPDM/FZqwgZhOqCa2tKAAAnLk2n9XdhJWNFGitizdSW2REICRj1h4ryA6V3VioFehbpP9QBv6UOS462jkiV2KkHJcqa+tzWhD5kRkYnZr2gXbwEI1pmeGu1B0CiWY/F266vJ66tLYHVZNCGOKdKVGNVfN8/+sRmGFXr0Ts2RxkrHaIe2BdbLQBLS4HTyrDY0gRlQ2J9UbOIJgODU/l/pduKMX9sxkqCgVFXp55Qv2P+YETLWF21QW7pX2wSSs0j+sBqMmJnXWnagVVEsxwqvow/nfkzTI3SnXRlNkgaKx2iZawSBEuLxevTCxGYjYxKgTpEHcRc6jCDKRkpn9uGsZiRRILESZ+jM2LL7aoD+5ZqNxhbmrHShjBTxmrdaW8sx1tDM9pFZyqoGSszZayItaJmrAAaZ6NHXBYTNnnt2LJoLhkQe9CPZqxK7BbtxE3oBzXYLYkJkCvdVowFQlr3kihx0lfpDJfFBMbiM1blTiuq3LY4qwwgpvmANFbrTnujFxIHjsUM0E5GMZtkF98eZxmv0wKbUgKkwEp/GAwMBz+7H7+2u3bJfVaTEVaTQTvgzyyEUWInD109kiiw8rmtiIgcU0oJV85Y0UlZTxgMDG6rPNZGzX547CZlJFG8lxV1BeqHnXVlMBlYWuXAcBFnHItvj7MMY0zLWhVjm2m+47GbtQO+POCXhOt6xG5WS4HR9fF5ZNNedd6jKHHysNIhbpv8HVObRNw2ZYj2dOKuQPKxWn/sFiO215akF1ip83KL8DxYfHucA2qUkRqksco/3DaTZrcwPR8h4bpOcSqDmEvjMlayW7TaGShIEmWsdIjHblY0VgIMDHBajKgps2N4OqhZZADRrkAaC6YP2pvKcXpwGguKzUkyilkjV3x7nAPU8RrFGKnnOx6bOa4rsMRBgZUeUe0WYtfH51YzVnJgRRorfeK2mTS7BY/drGX5BYlr2UYgxseK1lAXtDV6ERE5Tg6k5mcVLuIhzMW3xzlALQWS3UL+IZcCVY1VBKV2KgXqEYdZzVgtXwoUROoK1CMemxn+oGwQqjaMVHvkbONIAh+yYsx46JGmCieAxOOHEhGhWYFEJolmrKgUmG+4bSb4gxFERAmBkBAnjib0g8Mqn5BjmwscFhNcVpNWCqSMlT7x2EyYXYhgdiGimfJqQXGMc74gSWCMnPP1glZqj8kqroSasSrGjCMFVlmAxOv5i8dmjvPYKaVSoC5RuwIXNxf43FbNy4q6AvWJx27W7BbUjFX0pB3NWEVEDjNlHHWD3WKEO+bCJRkhUYLFZChKuxrqJc8CNaSxyls8SsZqmgIrXeNIoLECZC+ruK5ACqx0h8dmgj8kYHohjIZyubxU4bKAsfjAShAl8rDSGZUea5wJ73e6LuGNy7Lm6s6rq7Fvq0+7LyLwovSwAiiwygpVbhtu3+rD9fXe9d4UIk08djNCgoQRpSRBpUB9cs3GEuyqK8U1Gz1xt/s8NpwelA/0g9MLKHOSRk5vuG1mZehyENfWlAKQO//KnZa4kUSUcdQfvpgLF845vvD8WzAyhojEcXbYHxdYhUWxaKs2xbnXWcZgYHjyt2/ArS0V670pRJp4lNLE4KQs0KTASp9UeWz4wR/eopWQVNRS4FxIwJuXZ9DWQBc3esNjj46O8sRo5CoXjSSKiBIJ13WGz23TsooTc2EEIxL+7N2t+NUdNUt9yARetB5klLEiiBjciph2YEp2gSaD0PzC57ZiPizi4PkxiBJHWyMFVnpD/Y4t/r9cxo3vCqRSoL6ojNEwqrMda8ocmA0KGPOHEIyIsCkdu2FFY1WMFOdeE8QyqFfQA5NKYEUZq7xC7S77yelhGA0Mu+rL1nmLiMV4YoIpNUMMKGWmGGF0RJLILkNnqBcugZCgZahqSu1aw9bwTLSUGxalotVYFedeE8QyRDNW8kHDQ4FVXqGWBl86O4JtNSVwWSkprzfcMcFUbJDlc1sxHghBUtzXBbF4S0l6JdYWI5qxsmsNW5djBmmHheIt5a5prxlj/YyxNxhjJxljR5XbvIyxFxhj55WfdMlI5A3qgf7S5Dw8NhN1leUZqvt6MCKhncqAuiT2YiVWY+VzWyFIHJPzYQDKSKIiPTHrlVhbjMGpebitJpTYzVrGKnaQdkSUirYzPhN7vY9zvoNzfr3y+8MAXuKctwB4SfmdIPIC9UA/5g/ROJs8JFbMTsJ1fbJsxsoTP+sxIlJXoN6IHRt1eXpBy1RVl9hgYMAgZawAZKcUeBeAp5T/PwXgQ1l4DYLICrFiWhpnk3947CbFlBC4gQIrXRIbWLltiWY9qiOJivfErFeig86DGJxa0KaMmI0GbCixLykFknh9dXAA/8MYO8YYu1+5rYpzPgwAyk/fsn9NEDrDaTFCvUgmc9D8gzGGSpcVW6s9lHHUKVaTETZljmp8KTDefV2QqCtQb6gXLmNqxkopAQKyiH0wxnKhmO0y1qrsvIVzPsQY8wF4gTF2LtU/VAKx+wGgsrISnZ2da9wU/RMIBIpiP/MduwmYiwAh/1TC9aJ11De3bxThtki0djrGauAIAjh9rBt9Fjl4CitDl7tOnYUvcAFjEwuQOOLWi9Zv/fGYObrOXoQ/KCI4OYzOznEAgDEcxDuT0e/d5MwCDGFWlOu3psCKcz6k/BxljD0HoA3ACGNsA+d8mDG2AcDoMn/7GIDHAKC1tZV3dHSsZVPygs7OThTDfuY73u6XMTe5gC0NNejouHbJ/bSO+qZjhfto7fRBxbFOzIzN4T23743LargP/gLuyhp0dFyDR8++BovJgI6OG7X7af3Wn7ozh3Bpch6AiD27t6Fj+wYAwNHQ2+j+5QXcetsemIwGWI51YmOVBx0du7S/LZb1W3WejjHmZIy51f8DuBPAmwB+DOA+5WH3AfjRWjeSIHKJ2yqXkMh1nSCyg9tmht1sXFIqih2ZEpE4dQXqEJ/bhvGA3LmpitfV/4sSx4hSyi1mg9C1ZKyqADynTK42AfgO5/znjLEjAJ5hjH0CwCUAd699Mwkid6i6DxKvE0R28NjNcfoqlcoYk1BBlGCmrkDdUak0GQBYorECZC+rmlI7DWFeDZzzXgDXJbh9AsDta9koglhP1BZwEj8TRHbYXOlERJCW3O5z23ByQB6iTSNt9InavWk1GVDhil58aiah0/MAvAiLEsym4lw/siUmiEWoLeA0zoYgssPn3n81JM6X3K6WAjnn8kibIs146BnVfb2mzA6lYiX/Xhrvvh4RJFiMxtxvoA6gwIogFqGVAmkAM0FkBaOBwYil2Qyfx4pgRII/JMgjbagUqDtUW4zYMiAA2MxGVLismkloqIgzVnQ5QBCLUDNWJF4niNwSNaAMQSTxui5RNVa1ZfYl99WU2XF5egGcc4QFCdYiXb/i3GuCWAG1BFhGGiuCyCmqfmdkNqgYTBZnxkPPVCmjh2rLHEvuqy2V3dcFZZA2GYQSBAEAuGvHRrisJm12GUEQuaG12g0AODU4LTuvG4rzxKxnKt1W/NOvbcfe1sol99WU2fHi2RGElMYEslsgCAIAUO6y4qM3bFrvzSCIoqPcZUWLz4Wu3klERAlG0ljpkruvT3x8rCm1IyRIuDIj66yKNWNVnHtNEARB6JL2Ji+O9k8iLFApMN9QBe194/MAijdjVZx7TRAEQeiStsZyzIVFhASyW8g3VC+rvvEAAAqsCIIgCGLdaWvwav8nu4X8IhpYzQFA0TqvF+deEwRBELqkusSG+nK544wyVvmFx2aG22ZC75gSWFHGiiAIgiDWHzVrRSNt8o/aMoeWsSLxOkEQBEHogPamcoNetMQAAAfZSURBVACAmewW8o6aUjtG/fIgbcpYEQRBEIQOaG/0gjHAZSNHoHwj1pG9WLs66VNLEARB6IpNXgee/YObsVUxDCXyh9gZgtYizVhRYEUQBEHojl11Zeu9CcQqqInJWFmMxnXckvWjOMNJgiAIgiAyTmzGymwqzlIgBVYEQRAEQWSE+IxVcYYYxbnXBEEQBEFknHKnBTazHFqQ3QJBEARBEMQaYIxp5cBiFa8X514TBEEQBJEVaspk53zKWBEEQRAEQawRNWNFBqEEQRAEQRBr5OoNbpTYzUVbCiQfK4IgCIIgMsY97fX4les2Fu0Q7eLca4IgCIIgsoLRwFDqsKz3ZqwbFFgRBEEQBEFkCAqsCIIgCIIgMgQFVgRBEARBEBmCAiuCIAiCIIgMQYEVQRAEQRBEhqDAiiAIgiAIIkNQYEUQBEEQBJEhKLAiCIIgCILIEBRYEQRBEARBZAgKrAiCIAiCIDIE45yv9zaAMeYH8DaAEgAzOXzpXL9eBYDxHL5eob+f6/W6tI75+VoArV2+vx6tX36/Xi7XL9v71so5dye8h3O+7v8AHFV+Ppbj18316x0t8P3L6evROub/69Ha0evR+hXV6+Vs/bK9byvti95KgT8p8NfLNcXyftI65u/r0drR6+mZQn8/C3n91m3f9FIKPMo5v369tyPbFMt+Fjq0jvkLrV1+Q+uX3xTS+q20L3rJWD223huQI4plPwsdWsf8hdYuv6H1y28Kaf2W3RddZKwIgiAIgiAKAb1krAiCIAiCIPIeCqzWAGNsE2PsAGPsLGPsLcbYHyu3exljLzDGzis/y5TbtzLGXmeMhRhjf5rseYjckMF1tDHGuhljp5Tn+fx67VOxkKm1i3k+I2PsBGPs+VzvSzGSyfVjjPUzxt5gjJ1kjB1dj/0pNjK8fqWMse8zxs4pz3fTeuxTJqBS4BpgjG0AsIFzfpwx5gZwDMCHAPw2gEnO+ZcYYw8DKOOc/zljzAegXnnMFOf8n1d6Hs75mXXYraIjg+vIADg55wHGmBnAqwD+mHN+eB12qyjI1NrFPN+nAVwPwMM5/0Au96UYyeT6Mcb6AVzPOc+lz1VRk+H1ewrAQc75E4wxCwAH53w61/uUCShjtQY458Oc8+PK//0AzgKoAXAXgKeUhz0F+UMEzvko5/wIgEiKz0PkgAyuI+ecB5Rfzco/unLJIplaOwBgjNUCeD+AJ3Kw6QQyu35E7snU+jHGPAD2AHhSeVw4X4MqgAKrjMEYawCwE0AXgCrO+TAgf/AA+Fb5PESOWes6KqWkkwBGAbzAOad1zBEZ+A5+GcBnAUhZ2kRiBTKwfhzA/zDGjjHG7s/WdhKJWeP6NQEYA/AtpRT/BGPMmcXNzSoUWGUAxpgLwLMA/hfnfHa9n4dYHZl4/znnIud8B4BaAG2MsW2Z3EYiMWtdO8bYBwCMcs6PZXzjiKRk6Nh3C+d8F4D3AvgUY2xPxjaQWJEMrJ8JwC4A/49zvhPAHICHM7iJOYUCqzWiaGmeBfA05/wHys0jSu1ZrUGPrvJ5iByRqXVUUdLYnQDek+FNJRaRobW7BcAHFZ3OfwHYzxj7zyxtMhFDpr57nPMh5ecogOcAtGVni4lYMrR+gwAGYzL834ccaOUlFFitAUWs/CSAs5zzf4m568cA7lP+fx+AH63yeYgckMF1rGSMlSr/twN4F4Bzmd9iQiVTa8c5/wvOeS3nvAHAbwB4mXP+sSxsMhFDBr97TkU8DaWEdCeANzO/xUQsGfz+XQEwwBhrVW66HUDeNm9RV+AaYIzdCuAggDcQ1WX8JeQa8zMA6gBcAnA353ySMVYN4CgAj/L4AICrAWxP9Dyc85/maFeKmgyuYwNkoaYR8kXLM5zzL+RuT4qPTK1dbPmCMdYB4E+pKzD7ZPC7VwE5SwXIZaXvcM7/Plf7Uaxk8vvHGNsBuXHEAqAXwO9wzqdyuT+ZggIrgiAIgiCIDEGlQIIgCIIgiAxBgRVBEARBEESGoMCKIAiCIAgiQ1BgRRAEQRAEkSEosCIIgiAIgsgQFFgRBJFXMMZExthJxthbjLFTjLFPM8ZWPJYxxhoYY/fkahsJgiheKLAiCCLfWOCc7+CcXwPgDgDvA/A3Sf6mAQAFVgRBZB3ysSIIIq9gjAU4566Y35sAHIFsElkP4NsA1AGuD3LOX2OMHQZwFYA+yCau/wbgSwA6AFgBfJVz/o2c7QRBEAULBVYEQeQViwMr5bYpAFsB+AFInPMgY6wFwHc559cvdlNnjN0PwMc5/zvGmBXAIcju0H053RmCIAoO03pvAEEQRAZgyk8zgEeV8RgigC3LPP5OANsZY7+m/F4CoAVyRosgCGLVUGBFEEReo5QCRQCjkLVWIwCug6whDS73ZwAe4pz/IicbSRBE0UDidYIg8hbGWCWArwN4lMu6hhIAw5xzCcDHIQ/EBuQSoTvmT38B4A8YY2blebYwxpwgCIJYI5SxIggi37Azxk5CLvsJkMXq/6Lc9zUAzzLG7gZwAMCccvtpAAJj7BSAfwfwFcidgscZYwzAGIAP5WoHCIIoXEi8ThAEQRAEkSGoFEgQBEEQBJEhKLAiCIIgCILIEBRYEQRBEARBZAgKrAiCIAiCIDIEBVYEQRAEQRAZggIrgiAIgiCIDEGBFUEQBEEQRIagwIogCIIgCCJD/H+xR7T71D4jQQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFYCAYAAACRR7LyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3iUVdrH8e9JD6kkhBBqQu8dpRdBBcuqoGJv2Puuvey+7q4FXdfVddW1YFcUwd4QQUIHAaUGQodQQ0kjCWnn/WMmbEQgk5kkM5P8PtfFFfKUc+5nQHJ7znnuY6y1iIiIiIjnArwdgIiIiEhdocRKREREpJoosRIRERGpJkqsRERERKqJEisRERGRaqLESkRERKSaKLESkVpljHnbGPO4m/deYIzZYYzJM8b0qsaYhhhj1ldXeyfo4xpjzLya7KMmGWMeM8a87+04RHydEiuRWmaMCTXGTDLGbDPG5BpjfjHGjDnmmpHGmHXGmHxjzE/GmFYVzl1sjFngPDf7mPvaG2O+MMZkGmMOGmOmG2M6nCQWt5McL3kWuN1aG2mt/eXYk8YY6/w62xgz3Pn7x4wxxc7POtcYk26M+Y8xJqn8PmvtXGvtCT+nY/r4XYJR3p/z3GMePJ+I+DklViK1LwjYAQwDYoA/A1OMMckAxphGwKfO43HAUuDjCvcfBJ4HJh6n7VjgS6ADkAgsAb5wN1BjTJC799aQVsAaN+772FobhePzvABoAiyrmFyJg3HQzwYRN+k/HpFaZq09bK19zFq71VpbZq39GtgC9HFeMhZYY639xFpbCDwG9DDGdHTe/6O1dgqw6zhtL7HWTrLWHrTWFgP/AjoYY+KPvdYYcyNwOXC/c2rtK+fxrcaYB4wxK4HDxpggY0xTY8w050jYFmPMnRXaecwYM8UY865zRGiNMaZvhfO9jDHLnec+BsJO9NkYYwKMMY86R/P2OduMcY7y5QGBwApjzKaqfOYVPp9ia+0aYDyQCdzj7He4MSajQhzHfV5jzGjgYWC88zNb4U4czrb+YYyZZ4yJcX5/nTEmzRhzyDnS2Mp5/CVjzD+PufcrY8zdxphry//cnMc3GmOmVPh+hzGmp/P3A40xPxtjsp1fB1a4brYx5gljzHwgH2htjEkxxqQ6/9xmAI0qXB9mjHnfGHPAGJPlbC/R3c9CpC5RYiXiZc4fSO3530hMF+DoD2xr7WFgk/N4VQ0F9lhrDxx7wlr7GvAB8Ixzau3cCqcvBc7GMQJWBnzljKkZMBK42xhzZoXr/wB8xP9GzP7jfLYQ4HPgPRyjRZ8A404S7zXOXyOA1kAk8B9r7RFrbaTzmh7W2jbHu9laa5xfh1trZ5+oE2ttKY6RvCHHnnOO1hz3ea213wNP4hgBi7TW9qjYnzNhfuwkz1eePL4OdAfOsNZmG2POx5GwjQUSgLnAZOct7wCXlo8iOUc0RzrPpwJDnG0mAcHAIOd15Z/fSmNMHPAN8G8gHngO+OaYhPtK4EYgCtgGfAgsw5FQ/R24usK1V+MYbW3hbO9moOBkzy1SXyixEvEiY0wwjuTmHWvtOufhSCD7mEuzcfzAq0rbzYGXgD+5Edq/rbU7rLUFQD8gwVr7N2ttkbV2M/A6cEmF6+dZa791JizvAT2cx/vj+GH/vHO0aCrw80n6vRx4zlq72VqbBzwEXFJDU5K7cCR7x3Lled0VjCMhigPOtdbmO4/fBDxlrU2z1pbgSN56GmNaWWuX4PjzH+m89hJgtrV2rzO2XKAnjqnl6cBO5+jmMGCutbYMR5K8wVr7nrW2xFo7GVgHVEym37bWrnH2n+T8HP7sTGrn4Eg2yxXjSKjaWmtLrbXLrLU51fD5iPg9X1s/IVJvOEcg3gOKgNsrnMoDoo+5PBrHD1BX204AfgBedv4QraodFX7fCmhqjMmqcCwQx6hKuT0Vfp8PhDmToabATvvb3d63naTfpsec34bj36lEYKfr4bukGY71asdy5Xnd1RZH0nmKtbbomD5fOGbKzzhj3IZj1OoKYIbz6wsVrksFhjvbTgWycCRVA5zfw+8/V5zfN6vwfcU/86bAIedoacXrWzh//57z9x8ZY2KB94FHnNPPIvWaRqxEvMAYY4BJOBKGccf8QFrD/0Z8MMZEAG1wcdG2MaYhjqTqS2vtE5Vcbl04vgPYYq2NrfArylp7lgvh7AaaOZ+3XMuTXL8LR5JR8doSYK8LfbnMmdSey/GTpcqe90SfmSvSgGuB78xv39bcAdx0TJ/h1toFzvPvA+cZY3oAnXBMr5YrT6yGOH+fiiOxGsb/EqtjP1dwfLYVk9WKz7UbaOj8u1fxeseFjtHHv1prOwMDgXOAq1z5AETqOiVWIt7xCo4fkOc6p9sq+gzoaowZZ4wJA/4CrCyfKjTGBDqPBwEBzoXEwc5z0Timg+Zbax90IY69ONYyncwSIMe5oD3c2X9XY0w/F9pfiCMxutO5CH4scMpJrp8M/NG5cDqS/61nKnGhr0oZY4KNMZ2c/TTBsdboWJU9714g2bj55pxzBPFh4EdjTPlasf8CDxljujjjjDHGXFThngwcU6jvAdOO+TuTimNNWrjzurnAaBxTdeUlKb4F2htjLnP+OYwHOgNfnyDGbTjeRv2rMSbEGDOYCtOGxpgRxphuxphAIAfH1GCpO5+HSF2jxEqkljnf9roJx7qYPc63y/KMMZcDWGszcSzwfgI4BJzKb9f3XIljofArOEYpCnCsAQJHKYF+wLUV2s0zxpxolGgS0Nn5Ztfnx7vAuW7qXGe8W4D9wBs4Fi+flHO6ayyOBemHcLyN9+lJbnkTR/Iwx9lXIXBHZf24YLxxvFWYhWNx/QGgj7X2eG9WVva8nzi/HjDGLHcnGGvtO8DfgFnGmGRr7WfA0zim1nKA1cCYY257B+iG4/Op2FY6junjuc7vc4DNOJLrUuexAzhGle5xPvv9wDnW2v0nCfMyHH/3DgL/B7xb4VwTYCqOpCoNR3Kn4qEigPnt0gcREfFFxpihOJKXZOeCdBHxQRqxEhHxcc6p3ruAN5RUifg2JVYiIj7MuSYsC0cJhOe9HI6IVEJTgSIiIiLVRCNWIiIiItXEJwqExsbG2rZt23o7jGp3+PBhIiIiKr/QByhW7/KnZ1Ks3udPz+VPsbrKn55JsdaMZcuW7bfWJhzvnE8kVomJiSxdutTbYVS72bNnM3z4cG+H4RLF6l3+9EyK1fv86bn8KVZX+dMzKdaaYYw54Q4SmgoUERERqSZKrERERESqiRIrERERkWriE2usRERExH8VFxeTkZFBYWGh223ExMSQlpZWjVF5LiwsjObNmxMcHOzyPUqsRERExCMZGRlERUWRnJyMMcatNnJzc4mKiqrmyNxnreXAgQNkZGSQkpLi8n2aChQRERGPFBYWEh8f73ZS5YuMMcTHx1d5FE6JlYiIiHisLiVV5dx5JiVWIiIiItWk0jVWxpg3gXOAfdbars5jccDHQDKwFbjYWnvIOFK7F4CzgHzgGmvt8poJXUREROT3HnvsMSIjI8nJyWHo0KGMGjXqhNe+/fbbnHHGGTRt2rRa+nZlxOptYPQxxx4EZlpr2wEznd8DjAHaOX/dCLziShDaB1pERESq29/+9reTJlXgSKx27dpVbX1WmlhZa+cAB485fB7wjvP37wDnVzj+rnVYBMQaY5Iq62N3fpnrEYuIiIgc44knnqBDhw6MGjWK9evXA3DNNdcwdepUAJYtW8awYcPo06cPZ555Jrt372bq1KksXbqUyy+/nJ49e1JQUOBxHMa6MFxkjEkGvq4wFZhlrY2tcP6QtbahMeZrYKK1dp7z+EzgAWvt7zYCNMbciGNUi5DENn2+/fB1AgPq1sK3vLw8IiMjvR2GSxSrd/nTMylW7/On5/KnWF3lT89UW7HGxMTQtm1bAJ7+YRPr9uZVuQ1r7QkXi3dMjOSBM9qc8N5ffvmFW265hVmzZlFSUsKQIUOYMGECa9euZfTo0Zx99tmMGTOGjz76iEaNGjFt2jRmzpzJyy+/zFlnncXjjz9O7969j9v2xo0byc7O/s2xESNGLLPW9j3e9dVdx+p4n8hxMzdr7WvAawChSe1syy59aZfoO/UrqoM/bSipWL3Ln55JsXqfPz2XP8XqKn96ptqKNS0t7WgNquCQYAIDA6vcRmlp6QnvCw4JPmmNq+XLlzNu3DgSExMBOP/88wkNDSU4OJjw8HB27dpFWloaF1xwwdG+kpKSiIqKIjAwkIiIiBO2HxYWRq9evVx+DncTq73GmCRr7W7nVN8+5/EMoEWF65oDLk1crt2dU+cSKxERkfrm/87t4tZ9nhYIPVlpBGstXbp0YeHChW637yp3yy18CVzt/P3VwBcVjl9lHPoD2dba3ZU1ZoC1u3LcDEVERETqs6FDh/LZZ59RUFBAbm4uX3311W/Od+jQgczMzKOJVXFxMWvWrAEgKiqK3NzcaovFlXILk4HhQCNjTAbwf8BEYIoxZgKwHbjIefm3OEotbMRRbuFaV4IIDnCMWImIiIhUVe/evRk/fjw9e/akVatWDBky5DfnQ0JCmDp1KnfeeSfZ2dmUlJRw991306VLF6655hpuvvlmwsPDWbhwIeHh4R7FUmliZa299ASnRh7nWgvcVtUgQgINa3blnHThmoiIiMiJPPLIIzzyyCMnPN+zZ0/mzJnzu+Pjxo1j3Lhx1RaHT1ReDwmEg4eL2JtzxNuhiIiIiLjNRxIrxyjV2t3ZlVwpIiIi4rt8I7FyRqEF7CIiIv7JlbqY/sadZ/KJxCrAQHJ8Ay1gFxER8UNhYWEcOHCgTiVX1loOHDhAWFhYle6r7gKhbuvcNJo1GrESERHxO82bNycjI4PMzEy32ygsLKxyElPTwsLCaN68eZXu8Z3EKimab1ftIbewmKiwYG+HIyIiIi4KDg4mJSXFozZmz55dpQrnvsonpgLBMWIFsG5P9RXpEhEREalNPpNYdWkaA2gBu4iIiPgvn0msGkeFEh8RosRKRERE/JbPJFbGGMcCdtWyEhERET/lM4kVOBawp+/Jo7i0zNuhiIiIiFSZbyVWTaMpKi1jU2aet0MRERERqTLfSqySHG8Gap2ViIiI+COfSqxaJ0QSFhygxEpERET8kk8lVoEBhg5NorW1jYiIiPgln0qswDEduGZXTp3ab0hERETqB99LrJpGk11QzK7sQm+HIiIiIlIlvpdYaQG7iIiI+CmfS6w6JUVhjBIrERER8T8+l1g1CAkipVEEa1WBXURERPyMzyVW8L8F7CIiIiL+xDcTq6bRZBwqILug2NuhiIiIiLjMNxMr5wL2NNWzEhERET/ik4lVl6YxgBawi4iIiH/xycQqISqUhKhQVWAXERERv+KTiRVoAbuIiIj4H99NrJpGs3FfLkUlZd4ORURERMQlvptYJUVTXGrZsC/X26GIiIiIuMR3E6um2tpGRERE/IvPJlbJ8RE0CAnUAnYRERHxGz6bWAUGGDo2idKIlYiIiPgNn02swDEduHZ3DtZab4ciIiIiUinfTqySYsgtLCHjUIG3QxERERGplG8nVs4F7KpnJSIiIv7ApxOrjk2iCDBoAbuIiIj4BZ9OrMKCA2mTEKkF7CIiIuIXfDqxAucC9l3Z3g5DREREpFK+n1glRbMru5BDh4u8HYqIiIjISXmUWBlj7jLGrDbGrDHG3O08FmeMmWGM2eD82tCTPsoXsKdpnZWIiIj4OLcTK2NMV+AG4BSgB3COMaYd8CAw01rbDpjp/N5tnZOcW9sosRIREREf58mIVSdgkbU231pbAqQCFwDnAe84r3kHON+TAOMjQ2kSHaYF7CIiIuLzjLtVzY0xnYAvgAFAAY7RqaXAldba2ArXHbLW/m460BhzI3AjQEJCQp8pU6acsK9/LSvkQEEZjw9u4Fas3pKXl0dkZKS3w3CJYvUuf3omxep9/vRc/hSrq/zpmRRrzRgxYsQya23f450LcrdRa22aMeZpYAaQB6wASqpw/2vAawAdOnSww4cPP+G1S4+s55XUTfQfNISw4EB3Q651s2fP5mTP5UsUq3f50zMpVu/zp+fyp1hd5U/PpFhrn0eL1621k6y1va21Q4GDwAZgrzEmCcD5dZ+nQXZuGk1pmWXD3jxPmxIRERGpMZ6+FdjY+bUlMBaYDHwJXO285Goc04Ue+d8CdtWzEhEREd/l9lSg0zRjTDxQDNxmrT1kjJkITDHGTAC2Axd5GmTLuAZEhgZpAbuIiIj4NI8SK2vtkOMcOwCM9KTdYwUEGDolRWkzZhEREfFpPl95vVznpGjSdudQVubeW4wiIiIiNc1/Equm0RwuKmX7wXxvhyIiIiJyXP6TWCXFAKrALiIiIt5T2cyZ3yRW7RIjCQowrMzQm4EiIiLiHXd+9MtJz/tNYhUWHEifVg2ZtW6vt0MRERGReiq7oPik5/0msQIY07UJ6Xvz2JSpQqEiIiJS+7Ly61BidWbXJgB8v3qPlyMRERGR+qhOjVglxYTTs0WsEisRERHxiqz8opOe96vECmB01yas2plNxiGVXRAREZHaU1pmySksOek1fpdYjdF0oIiIiHhBbuHJpwHBDxOrVvERdEqKZvoaJVYiIiJSeypbuA5+mFgBjO7ShKXbDrEvt9DboYiIiEg9UdnCdfDTxGpMtyZYC9PXqKaViIiI1I6suppYtWscSetGEUzXOisRERGpJXV2xMoYw+iuTVi4+QCHDp/8tUcRERGR6pBdSakF8NPECmBM1yRKyyw/pmk6UERERGpenR2xAujaLJpmseEquyAiIiK1Iiu/mAYhgSe9xm8Tq/LpwLkb9pN35OTFukREREQ8lV1QTEx48Emv8dvEChxV2ItKy5i1bp+3QxEREZE6LquuJ1Z9WjYkISqU71fv9nYoIiIiUsfV+RGrgADDGZ0T+WldJoXFpd4OR0REROqw7PxiYhvU4cQKHG8HFhSXkpqe6e1QREREpA6r8yNWAKe2jiO2QbCKhYqIiEiNyiooIrZByEmv8fvEKjgwgFGdEpmRtpeikjJvhyMiIiJ1UGFxKYXFZXV/xApgTNcm5BaWsGDTfm+HIiIiInVQjrM4aL1IrAa1bURESCDT12g6UERERKpfdn1KrMKCAzmtUyI/rNlLaZn1djgiIiJSx2Q5E6s6/1ZgudFdmnDgcBE/bz3o7VBERESkjsnOr0cjVgDDOyQQGhSgvQNFRESk2h0dsQqv428FlosIDWJY+wS+X72HMk0HioiISDWqV2usyo3u2oQ9OYWsyMjydigiIiJSh2TnF2EMRIUFnfS6OpVYjeyUSFCA0XSgiIiIVKusgmKiw4IJCDAnva5OJVYx4cEMbNuI79fswVpNB4qIiEj1yC6ofJ9AqGOJFTiKhW47kE/a7lxvhyIiIiJ1RFZ+5fsEQh1MrE7vnEiAge9VLFRERESqiSsbMEMdTKwaRYbSLzmO71fv9nYoIiIiUkfU28QKHNOB6Xvz+HWH3g4UERERz9XbNVYA5/RoSmJ0KFdOWqyNmUVERMQj1tr6PWLVKDKUT28dRJPoMK5582e+XLHL2yGJiIiIn8o7UkJpma206jp4mFgZY/5ojFljjFltjJlsjAkzxqQYYxYbYzYYYz42xlQeRQ1oFhvO1JsH0qtlLHdO/oXX5mxSCQYRERGpsiwX9wkEDxIrY0wz4E6gr7W2KxAIXAI8DfzLWtsOOARMcLcPT8U0CObdCadwdvcknvx2HX/9ai2l2u5GREREquDodja1sMYqCAg3xgQBDYDdwGnAVOf5d4DzPezDI6FBgbx4SS+uH5zC2wu2ctsHyyksLvVmSCIiIuJHXN0nEMB4Mj1mjLkLeAIoAH4A7gIWWWvbOs+3AL5zjmgde++NwI0ACQkJfaZMmeJ2HK6avrWYj9YV0TY2gLt6hxEZcvKy9J7Ky8sjMjKyRvuoLorVu/zpmRSr9/nTc/lTrK7yp2dSrNXj5z0lvPTrEf4+KJwWUQGMGDFimbW273Evtta69QtoCMwCEoBg4HPgSmBjhWtaAKsqa6t9+/a2tny9Ypdt98i3dsSzP9ntBw7XaF8//fRTjbZfnRSrd/nTMylW7/On5/KnWF3lT8+kWKvHB4u22VYPfG13ZeVba60FltoT5DSeTAWOArZYazOttcXAp8BAINY5NQjQHPCpV/LO7p7E+xNOZX/uEca+soDVO7O9HZKIiIj4sPKpwJp+K3A70N8Y08AYY4CRwFrgJ+BC5zVXA1940EeNOCUljmm3DCQkMIDxry4kNT3T2yG55EhJKftyC70dRp1z+EgJuYXF3g5DRER8VFZBESFBAYQFV542uZ1YWWsX41ikvhxY5WzrNeAB4E/GmI1APDDJ3T5qUrvEKD69dSAt4yOY8PbPfLJ0h7dDqtSz09dzyhMzue7tn1mwcb/KR1SDsjLLZW8sZvg/ZqtSv4iIHFeOszioYxzp5Dx6K9Ba+3/W2o7W2q7W2iuttUestZuttadYa9taay+y1h7xpI+alBgdxpSb+tO/dTz3TV3JizM3+GyyYq1l+pq9tIxrwIodWVz2xmLGvDCXT5bu4EiJ3nJ016e/7GTFjiyKS8u49LVFzEzb6+2QRETEx2TlFxPrwhuBUEcrr1dFVFgwb17Tj7G9mvHPGek8/NlqSkrLvB3W72w9kM/2g/ncMCSF+Q+extPjulFmLfdNXcmgiT/x75kbOJDnszmsT8ovKuEf09fRo3kMP94zjLaNI7nh3aVMXrLd26GJiIgPcXU7G1BiBUBIUAD/vLgHtw5vw+Ql27npvWXkF5V4O6zfSF2/D4Bh7RsTFhzI+H4tmX73UN6bcApdmkbz3Ix0Bk6cxUOfrmTD3lwvR+sfXk3dzN6cI/z5nM40jgrjoxv7M7R9Ag99uornfljvs6OXIiJSu7LyXduAGZRYHWWM4f7RHfn7+V35af0+Ln19Mft9aARodnomrRtF0DK+wdFjxhiGtEvgnetOYcYfhzK2d3M+Xb6T0/81h6veXMIKrRk6oT3Zhbw6ZxNnd0uib3IcABGhQbx+VV8u7tucf8/ayH1TV1Lsg6OXIiJSu7ILionWiJV7ruzfiv9e0Yf1e3IY98oCtu4/7O2QKCwuZdHmAwxtn3DCa9olRvHU2G4sePA07jm9PWt35XDRqwv5btXuWozUfzwzfR1lZfDgmI6/OR4cGMDT47pz96h2TF2WwYR3lpJ3xLdGL0VEpHZlFxS7VGoBlFgd1xldmvDhDf3JKShm3CsLvP622JItByksLmNYhxMnVuXiI0O5Y2Q7fvjjULo2jebWD5fz1vwttRCl/1iZkcWny3dy7eBkWsQ1+N15Ywx3j2rP0+O6MX/jfi55baHKXIiI1FPFpWXkHSnRGitP9W7ZkGm3DKRBaCCXvLbQq2+LpaZnEhIUQP+UeJfviYsI4YPr+3N6p0T++tVanvw2jTJtQI21lse/TiM+IoTbR7Q96bXj+7Xkjav6smnfYca+vIBNmXm1FKWIiPiKnPLioFpj5bnWCZF8essg2idGccO7S/lwsXfeFpu9fh/9W8cTHhJYpfvCQwJ55Yo+XNm/Fa/N2cxdH/9a70szTF+zhyVbD/KnM9oTFVb5fyQjOjbm45v6U1hcyrhXFrB068FaiFJERHxFVhU2YAYlVpVKiApl8g39GdY+gYc/W8Ujn61ix8H8Wut/x8F8NmUeZthJ1ledTGCA4W/ndeGB0R35asUurn5zydHS/PXNkZJSnvx2He0TIxnft4XL93VvHsuntwyiYYMQLn9jMf9N3VRvP0MRkfqm/N/7GI1YVZ/yt8WuGZjMxz/vYNg/fuLWD5axbNvBGn8lf84Gx3Y77iZW4FgzdMvwNvxrfA+WbTvExf9dyK6sguoK0W+8u2Ab2w/m8+jZnQkKrNpf/ZbxDZh2y0BObR3PxO/WMfCpmTz25Rq2HfD+yw0iIlJzsvM1YlUjggIDeOwPXZj7wAhuHNqGeRv2M+6VhZz/8gK+XLGrxl7LT12fSbPYcNokRHjc1gW9mvP2taewM6uAsS8vYN2enGqI0D8cyDvCv2dtYHiHhJO+XXkycREhvHvdKXx9x2DO7NKEDxZvY/izs7nx3aUs2VLzSbaIiNS+/23ArMSqRiTFhPPgmI4sfGgkfzuvC9n5Rdw5+ReGPfMTr1bzFFFRSRnzN+5neIcEl/YncsWgto2YctMALJaLXlnIgk37q6VdX/f8jxvILyrlkbM6edxW12YxPDe+J/MeOI3bhrdlydaDXPzqQv7wn/l8/stO1b4SEalDsvKLAI1Y1biI0CCuGpDMrHuG88ZVfWkZ34CnvlvHgGqcIlq27RCHi0o9mgY8ns5No/n01kE0iQnj6jeX8MWvO6u1fV+zYW8uHy7ZzmWntKRdYlS1tZsYHca9Z3Zg4YMjeeKCruQXlXD3x78y5OmfeHn2xqP/MYqIiP/KLnDUMnQ1sQqqyWDqg4AAw6jOiYzqnMjqndm8OX8LHyzexjsLt3JDt1CGe9B2anomwYGGgW0bVVO0/9MsNpypNw/kxveWctdHv3Jqk0Bi22TRs0VstfflbU98m0aDkED+eHr7Gmk/PCSQy09txaX9WpKansmkeVt45vv1vDhzIxf2ac61g5JpnRBZI31L7dl24DBvzd/Klyt2UVjs2tu1DRuEcOkpLbjs1FbERbhWXFBEfEtWQRGRoUEur81VYlWNujaL4bmLe/LA6I5MeOdnPtuQywNllsAA96bxUtMz6dsqjsjQmvljimkQzLsTTuG5Gem8O38z5780n76tGjJhcApndGnidty+JDU9k9nrM3nkrE41/oMtIMAwomNjRnRszLo9OUyau4WPf97B+4u3MbJjY64bnMKA1vHVNq0rNc9ay89bD/HG3M3MSNtLUIDhzC5NSIoJc+n+dXtyefaHdF6ctZGxvZszYXAybRtX36ipiNS8qmzADEqsakRidBi3Dm/LrR8sZ8baPYzumlTlNvbmFJK2O+d3W65Ut9CgQB4a04mewXvYHZbMWwu2cMsHy2neMJxrB6Vwcd/mLtV78kUlpWU88c1aWsU34KqBrWq1745NovnHRT24f3RH3l+0jfcXbeOy1xfTOSmaCYNTOLdHU2PplBAAACAASURBVEKCNBPvq4pLy/hm5W4mzdvCqp3ZxDYI5rbhbblyQCsSo11Lqsql783lzXlbmLY8g8lLtjO8QwITBqcwuG0jJdkifiA7X4mVTzizSxMSwg2vzdnsVmKVmu55mYWqCA8yXDc4hasHJjNj7R4mzdvC379ey79mpDO+XwuuGXj87V982cdLd5C+N4//XtGb0KCqFVetLglRofzx9PbcMrwNX/y6kzfmbuGeT1Yw8ft1XD2glaaIfExWfhEfLtnOuwu2sSenkDYJETxxQVfG9mpe5QK95donRjFxXHfuPbMDHyzaznuLtnLlpCV0bBLFdYNS+EPPpoQFe+fvp4hULrug2OWq66DEqsYEBhjOTA7m/bQslm07SJ9WcVW6PzU9k8ToUDo2qd1pg8AAw+iuSYzumsSKHVlMmreFtxds5a35WxjdtQmXntLS5cy9ecMGXksacgqLee6HdE5JiePMLk28EkNFYcGBjO/Xkov7tmDuhv28MW/Lb6aIuoXoTUJv2nbgMG/M3cLUZRkUFJcyuG0jnhrbjWHtEwiopinxRpGh3DWqHTcPb82Xv+5i0rwt3D9tJc9MX8cV/VsxvENjXOkqwBiKtT2VSK3JKiimXWPX18kqsapBQ5oF8dVWy+tzttDnStcTq5LSMuZt2M+ZXRK9OlXQo0Us/760Fw+O6cg7C7cyefF2vl21x+X7o8KCePXKPgxsU/2L7yvz1LdpHDhcxNtnd/ap6RZjDEPbO2ppbdiby5vznVNEJWX8kLlEU0RekJl7hHNenMeR4jLO69mU6wan0Ckpusb6Cw0K5KK+LbiwT3MWbDrAG3M38/yPG3j+xw0utxEdYrjebuDyU1sSHxlaY7GKiEasfEpokOGK/i15efYmtu4/THIj14p8rsjIIrugmGHtG9dwhK5pGhvOQ2M6cedp7fh560FKXfi/5ZIyy7PT13PNmz/z7MU9+EOPprUQqcPnv+xk8pId3DysDd2ax9Rav1XVLjGKp8Z2594zOvD4R6nM3ZmjKSIveG5GOgVFpXx315BqLcdRGWMMg9o2YlDbRmzZf5jNLm7ynV9Uyus/ruS5Gem89NNGxvZuxnWDUmo1dpH6wlpLdn4x0Vpj5TuuHpDM63O28Ob8LfztvK4u3ZO6PpMAA4NroMyCJyJCgxjewfVkr39KPDe+t5Q7J//CnuwCbhjSusZHYjbuy+Phz1bRL7kh955RM+UVqlt8ZCjntQ1h4jVDjjtFdEX/VjTSqESNWLcnh49/3s7VA5O9mpikNIogxcX/8QKIOpRO8859eHP+VqYty2Dykh0MbZ/A9YNTGNJOI54i1aWwuIyi0jJiw11f1qLXkmpY4+gwzuvZlClLd3DosGsFI1PTM+nVsqHLGz76qvJyDmd3T+LJb9fx16/WujTa5a6ColJu+2A5YcGBvHhp7yrvB+ht5VNE3901hA+vP5XuzWN5/scNDJw4i/unrmD9nlxvh1inWGt54ps0osKCuWtkO2+HU2VtG0fx5AXdWPjQSO49oz1pu3O46s0lnPn8HD5ast3lWlsicmJZBVWrug5KrGrFDUNbU1hcxvuLtlV67YG8I6zcmc3wWnobsKaFBgXy4iW9uH5wCm8v2MrtHy6vsX/w/+/L1azfm8u/xvekiYt1hnyRMY6isG9e04+Z9wzj4r7N+XLFLs58fg5XvLGYn9bvo6yeLl7en3eE71btrpZ9GWevz2Tuhv3cNbIdsQ38983MuIgQbj+tHfMeGME/L+pBUEAAD366ikETZ/HcjHQyc494O0QRv3V0n8AqDHQosaoF7ROjGNY+gXcWbqs0qZi7YT/WwrAOdSOxAkfhzEfP6cyfz+nM92v2cMUbi6t9u5dpyzKYsjSD20a0qbUSFbWhTUIkj5/fjYUPjuS+MzuwYV8u1771M6f/K5UPF9evUYlNmXlc8PJ8bvlgOW/O3+pRW8WlZTz+zVpSGkVwRf/arXFWU0KDAhnXpznf3DmYyTf0p1fLWF6ctYFBE2dx3ycr6tWm6yLVJSvfkVhpxMoH3Ti0NfvzjlS6L19qeiZxESF0beq7i67dNWFwCv+5tDcrd2Yz7pUF7DiYXy3tbtiby6Ofr+bUlDj+OMo/1lVVVcOIEG4b0Za595/Gv8b3IDwkkIc/W8WAp2byzx/Wsy+n0Nsh1qhl2w5x4SsLyD9SyqkpcUz8Lo1fd2S53d7kJdvZlHmYh8/qVOcKtRpjGNAmnjeu7sfMPw1jfL8WfL1yN6Ofn+sY8VxXf0c8RaqqfMRKiZUPGtgmns5J0bw+d8sJ/1ErK7PMSc9kaLtG1VY7x9ec3T2J9yecSmbuEca+soDVO7M9ai+/qIRbP1hOg5BA/n1pL79bV1VVIUEBXNCrOV/dPpiPbuxP3+Q4/vPTRgY9PYs/TfmVNbs8+zx90fQ1e7js9UXEhAfz6a0Dee3KvjSOCuO2D5a7NfKZnV/Mv2akM6B1PKM6+cabtzWldUIkfz+/KwsfOo0HRndk4748rn3bMeL5weJtFBTVnxFPEXdka8TKdxljuGFoChv35R2tqn6s1buyOXC4qEpv3vmjU1LimHbLQEICAxj/6sITfh6u+MsXa9iYmcfzl/Ss8lYj/swYQ//W8bx+VV9+umc4l5/aiu9X7+Hsf8/j0tcW8ePavXViVOLdhVu55f1ldEqKZtotA2kVH0FMg2Beurw3+3ILufeTlVVeb/WfnzaQVVDMo+d0qjdvz8U2COGW4W2Y+8AIXrikJw1Cgnjks9UMnDiTZ6fX/RFPEXdpjZWPO6d7U5pEh/HanM3HPZ+6PhNjYEg73yqzUBPaJUbx6a0DaRkfwYS3f+b5H9M56OJbk+U+WbqDqcsyuGNEW4a0qzvrqqoquVEEj/2hCwsfHMlDYzqy9cBhrn93KaOeS+W9hVvJLyrxdohVVlZmmfjdOv7yxRpO65jI5Bv6/6YQZs8WsTw0phM/pu1l0rwtLre7df9h3l6wlYv6NKdLHZxur0xwYADn9WzGl7cPYspNAzglJY6XZjtGPP/61ZpqeSlApC7JKigiMMAQGep6dSolVrUoODCA6wYns3DzgeNOgaWmZ9KtWUy9qaScGB3GlJv6M7JTY57/cQMDnprJw5+tYuO+ygslrt+Ty5+/WM2A1vHcVUfXVVVVTINgbhrWhjn3j+Dfl/YiKiyIP3+xhgFPzeLp79exJ9s/RiWKSsr405Rf+W/qJi4/tSX/vaL3cffpu3ZQMmd2SWTid+tYvv2QS20/9V0awYEB3HtGh+oO268YYzglJY5Xr+zL7HuHc26Pprw1fys/pu3zdmgiPiW7wLEBc1VGt5VY1bJLTmlJZGgQr8/97ahVdn4xy7cfqjNlFlwVFRbMq1f25Yc/DuWCXs2YuiyDUc+lcs1bS5i7IfO4/wddWGK59YNlRIYG88KlPQmso+vR3BUcGMAfejTl89sGMfXmAQxsE8+rqZsY/PQs7v7oF1Zl+O46rJzCYq55awmf/7qL+87swOPndz3hujljDM9c2IOk2DBud2G91aLNB5i+Zi+3Dm9D43o0bVyZVvERPD2uO20SInjy2zSKSrRvpUi5rPxiYquwvgqUWNW66LBgLnG+pbMzq+Do8Xkb91NWx8osVEX7xCgmjuvOggdP44+j2rN6ZzZXTlrCmBfmMuXnHUfLClhreXdtEZv3H+aFS3rSOEo/IE/EGEPf5DheuaIPqfeN4KoByfyYto9z/zOPi19dyPQ1e2q0YGtV7cku5OL/LmTJloM8d3EPbhvRttL/S4wJD+aly3qTmXeEe6asOOmLIY9/s5amMWFcP6R1TYTv14IDA3j07M5s2X/YpXp7IvVFdkHVtrMBJVZece3gFADenv+/tSGp6fuIDguiR/NYb4XlExpFhnLXqHbMe+A0nrmwOwD3T1vJ4Kdn8fyP6Uyat4UFu0q4a2Q7BvnYlj++rEVcA/5ybmcWPHQaj57diZ2HCrjpvWWc9s/ZvDV/C3lHvLsOK31vLhe8PJ+MQwW8dW0/xvZu7vK93ZvH8shZnZi5bt/vRoLLffrLTlbvzOGBMR21/+IJDO+QwJB2jXhh5oZqrzMn4q+qugEzKLHyimax4ZzdLYnJS3aQU1iMtZbU9EyGtEuo8+UCXBUWHMjFzu1dPrj+VLo1i+H5Hzfw+DdpdIkP4I7T/G8LEl8QHRbM9UNak3rfcF6+vDfxESH89au1DHhqJk9+m/abUdTasCe7kKe/X8fYlxdQWmb5+Kb+br2IcPXAZM7q1oRnpq9n2baDvzmXX1TCP6avo0eLWM7tXnubgfsbYwyPnN2J3MJiXpi5wdvhiPiErPziKpVaAG3C7DU3DGnNlyt28fGSHQxp34i9OUfq7TTgyRhjGNS2EYPaNmLjvjymr9lDi+IdWlfloaDAAM7qlsRZ3ZL4Zfsh3pi3hUnOX2O6NmHC4BR6tWxYY/2vzMhi0rwtfLNyN2XWckbnJjx6TieaN2zgVnvGGCaO687qnfO4/cNf+ObOIcRFOLapeTV1M3tzjvDy5b3rbH246tKxSTTj+7XkvYXbuLJ/K1onRHo7JBGvyi6o+horJVZe0q15DP1bx/Hm/C0cKXGsH6pLW7HUhLaNI2nbuC2zZ2d4O5Q6pVfLhrx0WUN2ZhXwzoKtTF68na9X7qZPq4ZMGJzCGZ0Tq2UktbTMMmPtXt6ct4UlWw8SGRrEVQOSuXZQMi3i3EuoKooOC+bly3sz9uUF/GnKr7x5dT8OFpbx6vxNnN09iT6t4jzuoz740+nt+WrFLp78dh1vXN3X2+GIeE1ZmSWnUCNWfuXGoa257u2lvDx7Ex2bRNWrApfie5rFhvPwWZ24c2Q7Plm6g7fmb+XWD5bTLDacawclM75fC6LCqvYPDEDekZKj7W0/mE+z2HAePbsTF/drQbQb7Z1M12Yx/PmcTvz5izW8Omcz89KLKbPw4OiO1dpPXZYQFcqtI9rwzPfrWbBxPwO1llHqqdzCEqyFmCpu0q7EyouGt29M28aRbNyXp2lA8RmRoUFcOyiFqwYkHx1hevybNJ7/cQMX921B09JSGrmwFVFxaRnfrd7D5CXbyS0soXfLWB4c07HaRsBO5Ir+rVi05SDP/rCe0jLLzcPaVMuIWH1y3aAUPli0nb9/k8bXdwzW1LvUS1kFjpc4NGLlRwICDDcOac3901YysmOit8MR+Y3AAMPork0Y3bXJ0TVR7y7cSkmZhUXzqtTGhMEp9K7BNVsVGWOYOLYba3ZmczA3n9tGtKmVfuuSsOBAHhzTkTsm/8K0ZRlc3K+Ft0MSqXVHt7NRYuVfLurbnE5J0XRrXv+21xD/0b15LC9c0osHx3Tko+nz6dq1m0v3dW4aTbPY8BqO7veiwoL5/LZBzJozz63pS4Fzuifx9oKt/OOH9ZzVPalKW3qI1AVZ5RswV7Hcgtv/pRhjOgAfVzjUGvgL8K7zeDKwFbjYWuvafhP1kDFGSZX4jaSYcHo1DmJ4Z98fYY1tEEJcmMqXuMsYw6Nnd+KClxfwauom7qnn2wBJ/ePuiJXb/+pYa9dba3taa3sCfYB84DPgQWCmtbYdMNP5vYiI+JleLRtyXs+mvDZnc63XOBPxtixnYuWtNVYjgU3W2m3GmPOA4c7j7wCzgQeqqR8REalF94/uyPer9/CP79fx/CW9XL4vp7CY71bt5tetxWw8QUV8d/VoEUu/ZJXPkJqV40ysqrqljTneJrdVZYx5E1hurf2PMSbLWhtb4dwha+3vVq0aY24EbgRISEjoM2XKFI/j8DV5eXlERvpHgT3F6l3+9EyK1ftq+7mmpRfx1eZi/tI/jNaxJ98SaF9+GTO2FTM3o4TC0pqJJ9DAQ6eG0baSWGqKP/29Uqzu+2jdEWZtL+G1MyJ+d27EiBHLrLXHLfTmcWJljAkBdgFdrLV7XU2sKurQoYNdv369R3H4otmzZzN8+HBvh+ESxepd/vRMitX7avu5Dh8pYfizs2kZ14CpNw/43ebY1lp+3nqISfM288PavQQaw7k9mnLtoGQy0n5h8JDB1RZL/pFSLvzvAqyFb+4cTGwVawxVB3/6e6VY3Xf/1BXMSd/PoodH/u6cMeaEiVV1TAWOwTFatdf5/V5jTJK1drcxJgnYVw19iIiIl0SEBnHvGe15YNoqvlm1m3Ocey4Wl5bx7ardTJq3hZUZ2cSEB3PLsDZcNSCZJjGOgscHN5pqLQQbHRbMS5f15sL/LuCeKSt4/aq+2qpIaoQ7+wRC9SRWlwKTK3z/JXA1MNH59Ytq6ENERLzowj4teHvBNiZ+t45TkuOYtnwn7yzYyp6cQlo3iuDv53dlXO9mNAip+bIMPVrE8shZnXjsq7W8MW8zNw5VrTKpftkFxVUutQAeJlbGmAbA6cBNFQ5PBKYYYyYA24GLPOlDRES8LzDA8OezO3HZG4vp/9RMyiwMbBPPExd0ZUSHxrU+anT1wGQWbznI09+vp0+rhtoLUqpddkGxW7s2eJRYWWvzgfhjjh3A8ZagiIjUIQPbNuLGoa05dLiIawel0LlptNdiMcbw9IXdWfPvedz+4S98c+cQ4iJqf72V1F3ZBcV0c2MqUNXzRETEZQ+f1Yl/XNTDq0lVueiwYF6+vDcH8or405RfKSvz/C13kXLurrFSYiUiIn6ra7MY/nxOJ2avz+TVOdVbL0vqryMlpRQUlxLrxhorJVYiIuLXrujfinO6J/HsD+v5eetBb4cjdUC2m1XXQYmViIj4OWMMT43tRouG4dz+4XIO5B3xdkji58qrrse4USdNiZWIiPi9qLBgXrq8N4fyi/njlBVabyUeycrXiJWIiNRzXZrG8H/ndmZOeiavpG7ydjjix8qnAmOVWImISH122Skt+UOPpvzzh/Us2nzA2+GIn9KIlYiICI71Vk+O7UZyfAR3Tv6FzFytt5KqyyofsdJbgSIiUt9Fhgbx0uW9yS4oZtRzqTz9/Tr2ZBd6OyzxI+VTgVFu7HOpxEpEROqcTknRTL15IAPbxPNq6iYGPz2Luz/6hVUZ2d4OTfxAdn4R0WFBBLqxVVPN75YpIiLiBd2ax/DKFX3YcTCft+ZvZcrSHXz+6y5OSYljwuAURnVKdOsHp9R92QXFxLpRagE0YiUiInVci7gG/OXczix46DQePbsTOw8VcNN7yzjtn7N5e/4WDh8p8XaI4mOyCtzbzgaUWImISD0RHRbM9UNak3rfcF6+vDfxESE89tVa+j81k6e+TVOCJUc5RqzcS6w0FSgiIvVKUGAAZ3VL4qxuSSzffohJ87bw2tzN7Mwq4MVLe2GMpgfru+z8YprGhrt1r0asRESk3urdsiEvXdabe8/owNcrd/PB4u3eDkl8QHZBsVvFQUGJlYiICLcMa8Ow9gn87eu1rN6pNwfrM2ut1liJiIh4IiDA8K/xPYlrEMJtHy4np7DY2yGJlxwuKqW0zLq9xkqJlYiICBAXEcKLl/Ui41ABD01bhbXub+RsreWDxduYvERTi/4mK78IcG87G1BiJSIiclS/5DjuPaMD36zazXuLtrnVRmmZ5S9frOGRz1bz6Oer2bA3t5qjlJpUXnU9Jlx1rERERDx209DWjOiQwONfp1W5UnthcSm3vL+M9xZt46oBrWgQEsgT36bVUKRSE7I92IAZlFiJiIj8RkCA4bmLe9IoMoRbP1x2dASjMgcPF3HZ64uYkbaXx87tzN/O68odp7Vl9vpMUtMzazhqqS7ZHmzADEqsREREfqdhRAgvXtab3VmFPDB1ZaXrrbYfyOfCVxawelcOL1/Wm2sGpQBw9cBkWsY14Ilv1lJSWlYboYuHsgo0YiUiIlLt+rRqyP2jO/D9mj28vWDrCa9blZHN2Ffmc+BwER9efypjuiUdPRcaFMhDYzqSvjePj5fuqIWoxVMasRIREakhNwxpzahOjXny2zR+3ZH1u/M/rd/H+NcWEhoUyLRbBtI3Oe5314zu2oRTkuN47od0lXHwA1n5xQQHGsKDA926X4mViIjICRhjePaiHjSOCuP2D5cfXdgMMOXnHVz/zlJSGkXw2a0Dads48oRtPHpOJw4cLuLlnzbVVujipuyCYmLCQ9ze2kiJlYiIyEnENgjhP5f1Yk92IfdOXUGZtTz/Yzr3T1vJwDbxfHzTABpHh520je7NYxnbuxlvztvCjoP5tRS5uCO7oIiYcPe3UlZiJSIiUoleLRvy4JiOzFi7l78tLOT5Hzcwrndz3rymH5Ghrv0Qvu/MDgQEwMTv19VwtOKJ7IJiYhu4V8MKlFiJiIi4ZMLgFM7onMjWnDLuOK0tz17UneBA13+MJsWEc9PQNnyzcjdLtx6swUjFE1n57u8TCEqsREREXGKM4d+X9uKxAWHcc0YHt9bg3DSsNYnRofz9mzTKytzfMkdqTnZBMbFKrERERGpeWHAgyTHuvS0G0CAkiPvO7MiKHVl8uWJXNUYm1SU7v5hoJVYiIiL+YWyvZnRtFs3T36+joKjU2+FIBSWlZeQeKXG7hhUosRIREalVAQGGR8/uzO7sQt6Yu9nb4VBWZpm7IZON+/Kqtd0jJaV8tWLXb0pU+LqcwhLA/arrAO6/TygiIiJu6d86njO7JPJK6ibG92tRabmGmpBfVMK0ZRm8NX8rm/cfpkeLWL64bVC1tf/J0gwe/Xw14cGBXNinOdcOSqZ1wvFrffmKrPwiwP2q66ARKxEREa94aEwnikvLePaH9bXa757sQp7+fh0DnprFn79YQ1R4MKd3TmRlRhYH8o5UWz+z1++jaUwY53RP4uOfdzDyuVSuf+dnFmzaX+nei96S7eE+gaARKxEREa9IbhTB1QOSmTR/C1cPTKZL05ga7W9VRjaT5m3m65W7KbOWM7s04fohKfRu2ZCVGdnMWLuXeRv3c17PZh73daSklAWbDjCud3P+fn5X7hvdgfcXbef9Rdv48fXFdE6KZsLgFM7t0ZSQIN8Z4/nfBsyqYyUiIuJ37hjZjtjwYB7/Oq1GRnHKrOX71Xu4+L8LOfc/8/gxbR9XD0wm9b4RvHJFH/q0isMYQ7dmMcRFhJC6PrNa+l229RD5RaUMa58AQOOoMP50ensWPHgaE8d2o7i0jHs+WcGgp2fxn1kbOHi4qFr69VSORqxERET8V0x4MHePas//fbmGL37dxfm9PB8tKjdr3V4emFNAZsEymsWG8+jZnRjfrwVRYb9PGgICDEPbNWLOhkzKyiwBAe7tk1cuNT2TkMAABrSJ/83xsOBALjmlJeP7tWDuhv28MW8Lz/6QzouzNjK6VSDDh3vUrceynAvtPVljpcRKRETEiy47tSWf/7qTP035lfyiUi47taXHbb6/aBt/+WI1TSMML1/emzM6JxJUSZX4YR0S+PzXXazZlUO35p5NS85en0m/lIZEnGC7H2MMQ9snMLR9Ahv25vLM9PV8sXYvt+7JpUOTKI/69kR1rLHSVKCIiIgXBQcG8P6EUxnWPoGHP1vFP39Y7/a0oLWWf0xfx6Ofr2ZY+wT+3D+cs7olVZpUAQxp55i2S03f51bf5XZnF7B+b+7RacDKtEuM4plx3QkJxOvlJ7Lyi4kICazSVkXH8iixMsbEGmOmGmPWGWPSjDEDjDFxxpgZxpgNzq8NPelDRESkrosIDeL1q/oyvm8LXpy1kXs/WUlxaVmV2igqcaxbeumnTVzSrwWvX9WX0CDXp/QaRYbSrVkMqemerbOa47x/WPvGLt/TMCKEIc2C+PzXnezLKfSof094ugEzeD5i9QLwvbW2I9ADSAMeBGZaa9sBM53fi4iIyEkEBQYwcVw37h7VjmnLM7ju7Z/JO1Li0r25hcVMeOdnPl2+kz+Oas9TY7u5NEp1rOEdEli+PevolJg7UtMzaRIdRvvEqtWsOjM5mJIyyzsLt7rdt6eyC4o82s4GPEisjDHRwFBgEoC1tshamwWcB7zjvOwd4HyPIhQREaknjDHcPao9z4zrzoJNBxj/6sJKR3D25hQy/tVFLNh0gGcu7M5do9q5tUE0wLD2CZSWWeZv3O/W/SWlZczdsJ/hHRKqHEPjBgGc2bkJ7y/azmEXE8rq5ukGzADG3XlcY0xP4DVgLY7RqmXAXcBOa21shesOWWt/Nx1ojLkRuBEgISGhz5QpU9yKw5fl5eURGenbVWbLKVbv8qdnUqze50/P5U+xuqq2nmllZgkv/XqEyGDDPX3DaBr5+7GQXXll/HNpIXnFltt6htI94beLxasaa2mZ5fZZ+fRrEsR1XUOrHHP6oVKeXFzIbT1D6dekau/H5eXlsac4nMcXF3J5pxBOb+VZguOOh+flkxQRwB29Tl4Jf8SIEcustX2Pe9Ja69YvoC9QApzq/P4F4O9A1jHXHaqsrfbt29u66KeffvJ2CC5TrN7lT8+kWL3Pn57Ln2J1VW0+04odh2yfv/9ge/x1uv15y4HfnFuy5YDt/th02+fvM+yqjKzj3u9OrLe8v9Se+sSPtqysrMr3/uP7dbb1Q9/YrPyiKt9bHuvYl+fbwU/PtCWlVe/fU/0en2EfmLqi0uuApfYEOY0na6wygAxr7WLn91OB3sBeY0wSgPOrZ68XiIiI1FPdm8fy6S2DaNgghMveWMx3q3YD8N2q3Vz+xmLiI0P47NaBdG1WfVXbh7dvzJ6cQtbvza3yvanpmfRuGetRuYIbhqSw42AB09fscbsNd2UVFHsUO3iwxspauwfYYYzp4Dw0Ese04JfA1c5jVwNfeBShiIhIPdYyvgHTbhlI16bR3Prhcu6Y/Au3fricbs1imHbzQFrENajW/oY6yyRUtQp7Zu4RVu3MZngH198GPJ7TOzehVXwDXpuzuVb3FCwsLqWopIwYD4qDgudvBd4BfGCMWQn0BJ4EJgKnG2M2AKc7vxcRERE3xUWE8MH1/Tm9UyJfrdjFGZ0T+eD6U2kY4VlpgONpEhNGxyZRVS67MHdDeZkF1+pXnUhgMMlNkAAAFkBJREFUgOH6wSn8uiOLZdsOedRWVZRXXfd0xMqjyuvW2l9xrLU61khP2hUREZHfCg8J5JUr+rB8+yF6t2xIoIfbzpzMsPYJvDl/C3lHSog8QfX0Y6WmZ9IoMoTOSdEe939hnxb8c0Y6r83ZTN/kOI/bc0V5iYlYDzZgBlVeFxER8RuBAYZ+yXE1mlSBY3ub4lLLwk0HXLq+tMwyJz2Toe0SPN5nEBxJ5JX9WzEjbS9b9h/2uD1XZOU7NoL22horERERqZv6toqjQUigy9vbrNqZzaH8YoZ18GwasKIrB7QiOCCASfNqZ5uboyNWXl5jJSIiInVMSFAAA9s0Yvb6TJcWkKeuz8SY/+03WB0aR4VxQa9mfLI0g4OHi6qt3RPJqoYNmEGJlYiIiBzH8A4JZBwqYLMLU3Gp6fvo3jyWuGpeTH/9kBSOlJTx/qJt1dru8eSUJ1YasRIREZHqNszFsgtZ+UX8uiPL47cBj6ddYhQjOiTwzoKtFBaXVnv7FWXlFxNgIDLEo/f6lFiJiIjI77WIa0DrhIhKyy7M3bCfMusY4aoJNwxtzYHDRXz2y84aab9cVkERMeHBHi++V2IlIiLy/+3deZQdZZnH8e+vl6ydPd0hkZAQkg4SZIuALKYTRQQGj+DoADojqCPujjo4rqMzzozDOG4gOGyjImdE8SAjOiQhYhKWCJKwJB1CAiQIQpbOSpoknXT3M39UddJJeu976/Ztfp9z+tx7q+pWPVVdy3Pf9623rE011ZU8vHZLh6VFi9fUMWJwOSceObLdaXrjjCljmDFhOLc8sJbm5vx1GLpjd2Ov21eBEyszMzNrx+zpVTQ0NvPw2ra7XYgIFq+p483TxuatCwhJXDlrCs/VvcrC1fl7St72XXsZMaT3bcScWJmZmVmbTj96NAPLStqtDly1fid1Oxvy0r6qtQveMJ4JIwZx8wP563rhlRw8JxCcWJmZmVk7BpWX8qYpY9pNrBal/VzlO7EqLy3hA2cdzcNrt7L8z9vzsoztu/cx0omVmZmZ5VNNdSVr617lxa27Dhu3eHUdx40fTtXwQXmP49LTJjJsYBk3P7AuL/Pf4RIrMzMzy7eWu/0WHVJqtXPPPpb9aVtOe1vvyLBB5Vx2+lHcs2I9f952eJLXG83NwY7d+3rd6zo4sTIzM7MOHD12KBNHDz6sP6slz22hsTnyXg3Y2hVnTkbAT/+Q2w5DdzY0EtH7XtfBiZWZmZl1QBI11ZUseW4zDY0Hul1YtLqOioFlzJw0KrNYJowczNnTxrLgqY05ne+OXbl5nA04sTIzM7NO1FRXsWtvE8ue3wYk3Szcv6aOs6aOobw021SiprqSdZtf5U9bOn/UTlftyNFzAsGJlZmZmXXizGPGUF6q/XcHPldXz0vbd1NTXZV5LLOnJ8u8v5Me4btj++7kIc8j3Y+VmZmZ5dvQgWWcOnn0/sRqUdrealb12MxjmTxmCEeNHtLpo3a6wyVWZmZmlqma6kqe3rCT9Tt2s3hNHVOrKjhy1JDM4zjQ5mvLQW2+emPDjj0AjBrqxMrMzMwy0NKtwrzaDTyydiuzM7wb8LBYqivZtbeJpWmbr966b9UmplZVUDWs9/1xObEyMzOzTk0fN4wjhg/i+oXPsrepObP+q9pyxjFjGFDa/qN2umNLfQOPrNvC+ccfkYPInFiZmZlZF7RUwW2u38ug8hJOnTy6YLEMHVjGqUePOqxvrZ743aqNNAe8fYYTKzMzM8tQSynVGVPGMKi8tLCxVFeyeuNOXt6+u1fzmVu7gYmjBzNjwvCcxOXEyszMzLrk7GljGTmknHecOKHQoezv6qE33S7s2L2Ph57dzHkzjkBSTuJyYmVmZmZdMnxQOcu++jYuPvl1hQ6F6nEVjB8xqFftrBY+vYl9TcF5x4/PWVxOrMzMzKzLSkuUs9Kd3mhp8/XgM5vZ19Tco3nMrV3PuOEDOXniyJzF5cTKzMzMilJNdSU7Gxp5/IXt3f7urr2NLF5Tx9tnHEFJSe4SRSdWZmZmVpTOnDqW0hKxeM2mbn938eo69uxr5rwcdbPQwomVmZmZFaURg8uZedSoHrWzmlu7gVFDyjktx91GOLEyMzOzolUzvZLal16hbmdDl7/T0NjE75/exLnHHUFZaW5TISdWZmZmVrRq0kfrdKfbhYee3Ux9Q2POqwHBiZWZmZkVsePGD2dsxYBuVQfOq93AsIFlnDl1TM7jcWJlZmZmRaukRMyqruSBZ+poao5Op29sambBUxt56+urGFiW+97jnViZmZlZUauprmTbrn2seGlHp9M+sm4r23bty0s1IDixMjMzsyL35mmVSLBodefdLsyr3cCg8pL9j8TJNSdWZmZmVtRGDx3ACUeO7LSdVXNzMH/lBmZXVzF4QH4eIu3EyszMzIre7OpKnnxxO9te3dvuNI+/uI1NOxs4/w35qQYEJ1ZmZmbWD9RMr6Q54MFnN7c7zdwVGxhQWsJbjs1PNSA4sTIzM7N+4MQjRzJicDmLVrddHRgRzK3dwFlTxzBsUHne4uhVYiXpeUkrJD0haWk6bLSkBZKeSV9H5SZUMzMzs7aVlog3TxvL4jV1NLfR7cLKl1/hpe27Of/48XmNIxclVnMi4qSIeGP6+YvAfRExDbgv/WxmZmaWV7OnV7G5voFVG145bNzc2vWUlohzjhuX1xjyURX4TuDW9P2twEV5WIaZmZnZQWZNGwvQ5t2B82o3cPrRoxk9dEBeY1BE572UtvtlaR2wDQjgxoi4SdL2iBjZapptEXFYdaCkK4ErASorK2fecccdPY6jr6qvr6eioqLQYXSJYy2sYlonx1p4xbRexRRrVxXTOr0WY/3aQ7sZXAZfOn3w/mEv1TfzlQd389evH8A5k3rfvmrOnDnLWtXUHSwievwHTEhfq4AngVnA9kOm2dbZfKqrq6M/WrhwYaFD6DLHWljFtE6OtfCKab2KKdauKqZ1ei3G+h9zV8UxX/q/2LF77/5h1/xuTUz6wm9jw47dOVkGsDTayWl6VRUYES+nr5uAu4DTgI2SxgOkr513g2pmZmaWAzXVlTQ2B0ue3bJ/2LzaDcycNIpxwwflffk9TqwkDZU0rOU9cC5QC9wNXJ5Odjnw694GaWZmZtYVp0waRcXAsv3trF7Ysoun1r/CeTPy1yloa2W9+O444C5JLfP5WUTMk/QocIekDwEvAO/pfZhmZmZmnSsvLeGsqWNYvHoTEcG8lesB8vbQ5UP1OLGKiLXAiW0M3wK8tTdBmZmZmfXU7OlVzF+5kWc31TO3dgMzJgxn4ughmSzbPa+bmZlZvzKruhKAnz/6Io+/sJ3zMyqtAidWZmZm1s+8buRgplVV8JMlzwNwXp57W2/NiZWZmZn1OzXVlTQ1B1OrKphalV1fXk6szMzMrN+ZPb0KINNqQOjdXYFmZmZmfdKbpozm82+fziWnTsx0uU6szMzMrN8pKy3hE3OmZr5cVwWamZmZ5YgTKzMzM7MccWJlZmZmliNOrMzMzMxyxImVmZmZWY44sTIzMzPLESdWZmZmZjnixMrMzMwsR5xYmZmZmeWIEyszMzOzHFFEFDoGJO0EVndx8hHAjhxPm495AowFNhdw+Y61sLHmY526O1/HWjyx9sdjAIor1q5OW0z7lWPNT6zTI2JYm2MiouB/wNJuTHtTrqfNxzy7s155XL5jLWCs+Vgnx9qvY+13x0ARxtrV/2sx7VeONeNYi7Eq8Dd5mDYf8+yOfC3fsRZ22nysU3fn61hzv/zuTPtaPwa6oy/EWizr1V+Pge7os7H2larApRHxxkLHkWvFtF6OtbCKaZ0ca+EV03oVU6xdVUzr5Fjzo6NY+0qJ1U2FDiBPimm9HGthFdM6OdbCK6b1KqZYu6qY1smx5ke7sfaJEiszMzOz/qCvlFiZmZmZFT0nVmZmZmY5kmliJak+y+Xlm6QmSU+0+pvcwbSzJf02u+gOWnZIuq3V5zJJdYWKpyskXZzGfWyhY+mtYtz+UJzHa2cxS1okqc83ji2m/V/SVyStlLQ8PQ+eXuiYckHSkZJ+LekZSc9JukbSgA6m/4ykIVnGmC43JH2n1eerJP1T1nF0ptX1cqWkJyV9TlK/LNzplyuVod0RcVKrv+cLHVA7XgWOlzQ4/fw24KXuzEBSWc6j6thlwIPApd35kqTS/ITTK73e/vaa06P9P2uSzgAuBE6JiBOAc4AXCxtV70kS8CvgfyNiGlANVAD/1sHXPgNknlgBDcC7JI0twLK7o+V6OYPkHHgB8PUCx5QXmSdWkiok3SfpMUkrJL0zHT5Z0ipJN6cZ7b2tLkRFQ1KppP+U9Gj6C+4jrUYPl3SXpKck3ZBxtj4X+Iv0/WXA7a1iPk3SEkmPp6/T0+FXSPqlpN8A92YVqKQK4CzgQ6QXlrTE7/62tp+keknfkPQIcEZWcXZTT7b/A5JOajXdQ5JOyDLoQ0taJV0n6Yr0/fOS/rnVsdwnSlc6irkYdLD/t/d/uEDS05IelHRtxiWh44HNEdEAEBGbI+JlSTMlLZa0TNJ8SePTWBdJ+n66n9dKOi3DWLvjLcCeiPgxQEQ0AZ8FPihpqKRvp/v8ckmfkvRpYAKwUNLCjGNtJLlD7bOHjpA0Kb3eLk9fj5I0Ij12W86fQyS9KKk8q4AjYhNwJfBJJdq9bkr6h3RbPynp6qxi7I1ClFjtAS6OiFOAOcB30l8HANOA69OMdjvwlwWIrzsG60A14F3psA8BOyLiVOBU4MOSjk7HnQb8PfAG4BjgXRnG+nPgUkmDgBOAR1qNexqYFREnA18Dvtlq3BnA5RHxlswihYuAeRGxBtgq6ZR0eHvbbyhQGxGnR8SDGcbZHT3Z/rcAVwBIqgYGRsTyzCLums3psfxfwFWFDqafaG//P0y6P90InB8RZwOVGcXY4l5goqQ1kn4oqSa9QP8AeHdEzAR+xMElPUMj4kzg4+m4vmgGsKz1gIh4BXgB+FvgaODktJTufyLiWuBlYE5EzMk6WOB64H2SRhwy/Drgpy1xAtdGxA7gSaAmneYdwPyI2JdZtEBErCXJQapo57op6XyS4+H0iDgR+FaWMfZUIRIrAd+UtBz4HfA6YFw6bl1EPJG+XwZMzj68bmldFXhxOuxc4P2SniC5eI4hSRgB/hgRa9NfP7cDZ2cVaHpBnkxSWnLPIaNHAL+UVAt8j+Sk0mJBRGzNJMgDLiNJREhfL0vft7f9moA7sw2xe3q4/X8JXJheqD4I/CSTYLvnV+lrMRyvxaK9/b8txwJrI2Jd+vn2DqbNuYioB2aSlD7UAb8APgIcDyxIz4NfBY5s9bXb0+/eT1KKPzLLmLtIQFt9EQmYBdwQEY0ABTg/HiZN+n4KfPqQUWcAP0vf38aBc+YvgEvS95emnwuhpVClvevmOcCPI2IX9I1t3RVZt5sBeB/Jr6qZEbFP0vPAoHRcQ6vpmoCiqwok2VE+FRHzDxoozebwAzXrTsTuBr4NzCbZcVv8C7AwIi5W0gB/Uatxr2YUGwCSxpAUwx8vKYBSku10D+1vvz1pstXXdWv7R8QuSQuAdwJ/BRSi0XUjB/8AG3TI+JZjtonCnE/a0lnMfVYH+//dtL1OosDSY28RsEjSCuATwMqIaK9avtDnwa5YySE1JpKGAxOBtfTNmL8PPAb8uINpWuK+G/h3SaNJEuPf5zm2w0iaQnLe2ET7183z6JvbukOFKLEaAWxKk6o5wKQCxJBP84GPtdRXS6qWNDQdd1pavFlC8msh62qrHwHfiIgVhwwfwYHG1FdkGtHh3k1SdD0pIiZHxERgHckvrUJvv97qyfa/BbgWeLRAv9b+BBwnaWBazfDWAsTQXcUYc4v29n9oe52eBqbowB3Jl5AhSdMlTWs16CRgFVCppGE7ksoltS4FvyQdfjZJ9c+OzALuuvuAIZLeD/tvivkOSanxvcBHld7QkyYnADuBYdmHmkjPD3eQVKu1WMKBGyDeR3rOTEsa/whcA/w26x+mkiqBG4DrIumlvL3r5r0k7dqGpMNHtzfPviSzX5jpTthAUs/7G0lLgSdITgz9yS0kVSKPpW3H6kjqiAH+AFxN0kbofuCutmaQLxHxZ5ID6VDfAm6V9DkK8MvlEJeRbKPW7gQ+RoG3X2/1ZPtHxDJJr9Dxr9CcazleI+JFSXcAy4FngMezjKM7ijHmNrS3/7+X5KJ50DpFxG5JHwfmSdpMcrHMUgXwg7Q6rxF4lqRa8Cbg2jQJLCMpTVmZfmebpCXAcJIq7j4nIkLSxcAPJf0jSSHEPcCXSUpZqoHlkvYBN5O0ZboJmCtpfYHaWUGS/H2y1edPAz+S9HmSa9EHWo37BUlzg9kZxTY4reorJ9lXbgO+m45r87oZEfOU3MCzVNJeDvwP+rTMHmkj6UTg5ojoq3eBWB+WVqVeFREXFjqWLEmaQFLNcmxENGe43KI7Xosx5lyQVBER9ekF6XrgmYj4XqHjaoukRSTH8dJCx2KWL5lUBUr6KEmDxa9msTyz/iCthngE+ErGSVXRHa/FGHMOfTgtCVhJUq18Y4HjMXtN80OYzczMzHLEPa+bmZmZ5UheEitJEyUtVNKT+kpJf5cOHy1pgZJnLy2QNCodfqykP0hqkHRVZ/MxMzMz64vyUhWo5PEF4yPiMUnDSDoPvIjkVvKtEXG1pC8CoyLiC5KqSLpduAjYFhHf7mg+EfFUzoM2MzMz66W8lFhFxPqIeCx9v5OkX5PXkXR0eGs62a2k3RBExKaIeBTY18X5mJmZmfU5eW9jlXZcdzLJ3U3jImI9JEkTyTOCejIfMzMzsz4nr4mVkqe03wl8Jn2WUUHnY2ZmZpZPeUus0q7p7yR58nfLg1o3pu2mWtpPberhfMzMzMz6nHzdFSjgv4FVEfHdVqPuBi5P318O/LqH8zEzMzPrc/J1V+DZwAPACqClx+gvk7SPugM4CngBeE9EbJV0BLCU5NlRzUA9cBxwQlvziYh7ch60mZmZWS+553UzMzOzHHHP62ZmZmY54sTKzMzMLEecWJmZmZnliBMrMzMzsxxxYmVmZmaWI06szKyoSGqS9ISklZKelPQ5SR2eyyRNlvTerGI0s9cuJ1ZmVmx2R8RJETEDeBtwAfD1Tr4zGXBiZWZ5536szKyoSKqPiIpWn6cAjwJjgUnAbcDQdPQnI2KJpIeB1wPrgFuBa4GrgdnAQOD6iLgxs5Uws37LiZWZFZVDE6t02DbgWGAn0BwReyRNA26PiDdKmg1cFREXptNfCVRFxL9KGgg8RPIkiHWZroyZ9TtlhQ7AzCwHlL6WA9dJOgloAqrbmf5c4ARJ704/jwCmkZRomZn1mBMrMytqaVVgE7CJpK3VRuBEkjake9r7GvCpiJifSZBm9prhxutmVrQkVQI3ANdF0q5hBLA+IpqBvwFK00l3AsNafXU+8DFJ5el8qiUNxcysl1xiZWbFZrCkJ0iq/RpJGqt/Nx33Q+BOSe8BFgKvpsOXA42SngR+AlxDcqfgY5IE1AEXZbUCZtZ/ufG6mZmZWY64KtDMzMwsR5xYmZmZmeWIEyszMzOzHHFiZWZmZpYjTqzMzMzMcsSJlZmZmVmOOLEyMzMzy5H/BzSflgj47CJ+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Convert the date index to datetime\n", "diet.index = pd.to_datetime(diet.index)\n", "\n", "# Plot the entire time series diet and show gridlines\n", "diet.plot(grid=True);\n", "plt.title('Seasonal trend of \"Diet\" keywords');\n", "\n", "# Slice the dataset to keep only 2012\n", "diet2012 = diet[diet.index.year == 2012]\n", "\n", "# Plot 2012 data\n", "diet2012.plot(grid=True);\n", "plt.title('2012 trend of \"Diet\" keywords');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Merging Time Series With Different Dates\n", "Stock and bond markets in the U.S. are closed on different days. For example, although the bond market is closed on Columbus Day (around Oct 12) and Veterans Day (around Nov 11), the stock market is open on those days. One way to see the dates that the stock market is open and the bond market is closed is to convert both indexes of dates into sets and take the difference in sets.\n", "\n", "The pandas ```.join()``` method is a convenient tool to merge the stock and bond DataFrames on dates when both markets are open.\n", "Stock prices and 10-year US Government bond yields is downloaded from [FRED](https://fred.stlouisfed.org/)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "stocks = pd.read_csv('./dataset/stocks.csv', index_col=0)\n", "bonds = pd.read_csv('./dataset/bonds.csv', index_col=0)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "stocks.index = pd.to_datetime(stocks.index)\n", "bonds.index = pd.to_datetime(bonds.index)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{Timestamp('2016-11-11 00:00:00'), Timestamp('2013-11-11 00:00:00'), Timestamp('2010-11-11 00:00:00'), Timestamp('2007-11-12 00:00:00'), Timestamp('2011-10-10 00:00:00'), Timestamp('2009-10-12 00:00:00'), Timestamp('2009-11-11 00:00:00'), Timestamp('2017-06-09 00:00:00'), Timestamp('2010-10-11 00:00:00'), Timestamp('2012-10-08 00:00:00'), Timestamp('2011-11-11 00:00:00'), Timestamp('2007-10-08 00:00:00'), Timestamp('2014-10-13 00:00:00'), Timestamp('2008-11-11 00:00:00'), Timestamp('2015-11-11 00:00:00'), Timestamp('2012-11-12 00:00:00'), Timestamp('2008-10-13 00:00:00'), Timestamp('2013-10-14 00:00:00'), Timestamp('2016-10-10 00:00:00'), Timestamp('2015-10-12 00:00:00'), Timestamp('2014-11-11 00:00:00')}\n" ] } ], "source": [ "# Convert the stock index and bond index into sets\n", "set_stock_dates = set(stocks.index)\n", "set_bond_dates = set(bonds.index)\n", "\n", "# Take the difference between the sets and print\n", "print(set_stock_dates - set_bond_dates)\n", "\n", "# Merge stocks and bonds DataFrame using join()\n", "stocks_and_bonds = stocks.join(bonds, how='inner')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Correlation of Two Time Series\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Correlation of Stocks and Bonds\n", "Investors are often interested in the correlation between the returns of two different assets for asset allocation and hedging purposes. In this exercise, you'll try to answer the question of whether stocks are positively or negatively correlated with bonds. Scatter plots are also useful for visualizing the correlation between the two variables.\n", "\n", "Keep in mind that you should compute the correlations on the percentage changes rather than the levels." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Correlation of stocks and interest rates: 0.4119448886249272\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAEvCAYAAADmeK3JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df5Ac5X3n8c93R4OYxY5WsmUb1siSHSLKKoJ0bIBElVTABjnBhj3AET7iIndOqFRd/oA4W1nKXBCEhHVtpXCq4tQVcZwjB7FlwLcWJhUZI3zl0kWYlVcyUYIOAbbQiLNlpCU2WsNq9dwfO72ane2f0z3TPTPvV5VKu/Oj59nununvPM/3+T7mnBMAAADary/vBgAAAPQqAjEAAICcEIgBAADkhEAMAAAgJwRiAAAAOSEQAwAAyMmyvBvQjHe+851u7dq1eTcDAAAg0t69e3/snFvtd19HBmJr167V5ORk3s0AAACIZGY/CLqPoUkAAICcEIgBAADkhEAMAAAgJwRiAAAAOSEQAwAAyAmBGAAAQE4IxAAAAHJCIAYAAJATAjEAAICcEIgBAADkhEAMAAAgJwRiAAAAOSEQAwAAyAmBGAAAQE4IxAAAAHJCIAYAAJATAjEAAICcZBKImdlHzOygmR0ys1Gf+3/NzL5rZqfM7MaG+24xsxdq/27Joj0A0KyJqao2j+3SutEntHlslyamqnk3CUAXW5Z2A2ZWkvR5SVdJOiLpWTPb4Zz717qHHZb0O5L+qOG5qyTdJWlIkpO0t/bcE2nbBQBJTUxVdcdXn9PM7JwkqTo9ozu++pwkaXjTYJ5NA9ClsugRu1TSIefcS865tyR9WdJ19Q9wzn3fOfc9SacbnrtF0pPOueO14OtJSR/JoE0AkNj4zoMLQZhnZnZO4zsP5tQiAN0ui0BsUNIrdb8fqd3W6ucCQKaOTs8kuh0A0soiEDOf21zWzzWzW81s0swmjx07FrtxABDXeQOVRLcDQFpZBGJHJJ1f9/t7JR3N+rnOuQecc0POuaHVq1c31VAACDOyZb0q5dKi2yrlkka2rM+pRQC6XepkfUnPSrrAzNZJqkq6SdJ/ivncnZL+3MxW1n6/WtIdGbQJABLzEvLHdx7U0ekZnTdQ0ciW9R2XqD8xVe34vwHoFakDMefcKTP7A80HVSVJX3TOHTCzeyRNOud2mNkvSfpfklZK+piZ3e2c2+CcO25mf6r5YE6S7nHOHU/bJgBo1vCmwY4OWpj5CXQWcy5uOldxDA0NucnJybybAQCFs3lsl6o+kwsGByraPXplDi0CYGZ7nXNDfvdlMTQJAPCRxxAhMz+BzsISRwDQAt4QYXV6Rk5nhghbXamfmZ9AZyEQA4AWyKs4LDM/gc7C0CQAtEBeQ4TdMvMT6BUEYgDQAucNVHyT5tsxRBg285PSFkCxMDQJAC1QxCHCvPLWAASjRwwAlH1PURGHCMPy1ugVA/JBIAag57WqCGrRisNS2gIoHoYmAfS8vGY4thulLYDiIRAD0PN6paeoiHlrQK9jaBJAz8tzhmM75ZW3xkxNIBiBGICeN7Jl/aIcMal7e4ranbfGIuRAOIYmAfS84U2Duu/6izQ4UJFpfoHs+66/iEAhA72Sfwc0ix4xAF0jzRBY0WY4doteyb8DmkWPGICuQLHSYmKmJhCOQAxAV8hiCGxiqqrNY7u0bvQJbR7bRRCXAWZqAuEYmgTQFdIOgZFU3hpFXGEAKBICMQCFlDTfK6gExUB/WRvv/oamZ2YXblvZX9ZdH9uwaHss/9M65N8BwQjEAATKq/5TM71TfiUoyiXT6ydndbrhsSdOzmrk0f2LtlfEpHLqbwHdj0AMgK88h+qCeqfufvxAYGDiNwT2xpunFvWE1Zudc4t6u1pV1LXZYKpoQ6UEhUBrEIgB8JXnUF1QL9SJk7M6cXI+sPILTBqHwNaNPhH7deIUda0PRgb6y3JOen1mNjAwSRNMJdn/rQ6S4vwd7QrUCAjRbQjEAPhq51Bd48V1RaUc2JNVLyowDOrlqr/fE5ZUPjFV1d2PH1gIAiUt+jkowEoTzMbd/+3oOYv6O9rVe1e0XkIgC5SvAOCrXfWf/Op/vfHWKZX7LNbzwwLDkS3rA7dTLtmSEgrDmwa1e/RKvTx2jXaPXrkoyKgPvPzMzM7ptu37FpW9SBPMxt3/7ahcH/V3tKt6PlX60Y0IxAD4iqr/lFXNLb+L6+yc09vOXrZoyaFK2f/jKiwwHN40qPGPX6yBSnnR7Sv7yxq/8eJYvSh+7QtTX0g2TTAbt/5WO3ouo/6OdvWeFnFCBZAWQ5MAfA1vGtTkD47rS8+8ojnnVDLTDZcMZj4UFXQRnT45q6k/uVrSfNDnzXKsV+5b2qvl93ekGbZq5iLv9dKkWUw8bv2tVk0yqBf1d7SjDe18HaCd6BEDekzcnqyJqaoe21vVnHOSpDnn9Nje6kI+V1ZDRHF6jcZ3HtTsnFvyGK9trdTsRb46PaPxnQd1wyWDTS8m7jdU2qgdleujFkVvV/V8qvSjG5lrwwdZ1oaGhtzk5GTezQASKcJsr8aeLGn+QuYXHGwe2+Xb+7Cyv6zpk7Py++QwSS+PXZN5m9aNPuH7et5r3nz5Gt07fFGi103TviRMktN88NLNMwmZNQkEM7O9zrkh3/sIxIDWSxIAtVJQcDU4UNHu0SsX3RYW/AwEzGr0204cfhdX6cywXJ9ZaO+XSbp/68bY9bmSXsi95wTNwOyTlhSN9ZPHMQeQv7BAjBwxoA2KsnxOkmTnsNIPZvNBRTO5T34a87gaA9eoIUgnxdqXzea2ee0LCmRPKzg4rVc/fFsfDF5x4Wo9/fwxenmAHkSOGNAGRZntlWQWX1hQNX1yNjRnKEpUnlrSmYpSvH2ZNrct7DXOWT4/yzOKF/zVl+t4aM/hRb97sy4BdD8CMaAN2lWTK0qSZOfhTYNLyj54VlTKsRLJ/fjVDWsMPMICnqDqYnH2ZdqAOOw1jk7P+O7fRiWzyCCT2lhA7yAQA9qgKLO9oma/Ndp27QbfgqhvvHVqIXBKWk8sTq9UUMAzOFDRzZevWRKM+e1Lv3YFbbfPLHT26OaxXVo7+oRefT28Sn/9/pWWBo2Vcin2TE9qYwG9gRwxoA3i1oRqV1uSlE9oXNpHOrNgtqTEOVdxeqXC6lYNbxrU0PtWhe7LoFywGy4Z1GN7q0sCwTnnfNvduJ3TATFUfSBYv3/9JgaEJf3X84JDcsWA7pbJrEkz+4ikv5RUkvQF59xYw/3LJf29pEskvSZpq3Pu+2a2VtK/SfK+Cu9xzv1+1OsxaxJon6DZk6bghP6V/eWFYqyN4s7cTFOmIOw1Rras16e/sj+wZ6q+zETQdoIeH0eSchjMsgS6Q0tnTZpZSdLnJV0l6YikZ81sh3PuX+se9ilJJ5xzP29mN0n6rKSttftedM5tTNsOAM0LC3rCqpkH9W6dODkb2JsTt9p8sxXxJ6aqgcHT0ekZDW8a1O3b9wU+v75XL2p40KRE5Trqi+GWaiU5BmuzJr0VDOrlMbMWQHtlMTR5qaRDzrmXJMnMvizpOkn1gdh1krbVfn5U0l+ZWbwVfQG0VFRJh7DAKWyYLSiAaGaYNqrOWP1tXtv9eMN9YaU5pPkA6O7HD0Q+LijnLKi9jSU56odbH95z2Hdb5IoB0Tq50G8WgdigpFfqfj8i6bKgxzjnTpnZ65LeUbtvnZlNSfp3SXc6576dQZsAxBRV4ywqcLotoHcpLIBI0tvlFyiOPLJfMi0se+QFj8uX9YUO+Xm5YP9hzYrIIccTJ2f1wXPfruNvvOW7zUq5pCsuXK3NY7tCAy6vbWeXl7atfj/nuY5iJ1/EgCzXvs1DFoGYX89WY/JF0GNelbTGOfeamV0iacLMNjjn/n3Ji5jdKulWSVqzZk3KJgPwxEmeDwqchjcNatuOA/6FTE1aO/qEpPlip9uu3ZD4Q3FiquqbzzXrkzU/MzsXK+9qZnZOe146Eev1/8+Lx/UrH1ilPS+dWNQGbzixPvE/KuAKapu3n9MsEB5HULDV6RexViAw7SxFKZjdrCzKVxyRdH7d7++VdDToMWa2TNIKScedc286516TJOfcXkkvSvoFvxdxzj3gnBtyzg2tXr06g2YDkNLXONt27Qbf2ln1sdP0zKz+cPu+WEVK68tF3L59X0sW9o67TSdp94vHFz3eC46efv6Y74d/4wzTKN5+biwtsrK/rOXL+nT79n2xyoKECavdluUC7t0gTp07FEtRCmY3K4tA7FlJF5jZOjM7S9JNknY0PGaHpFtqP98oaZdzzpnZ6lqyv8zs/ZIukPRSBm0CEFPaGmeNAUQpIP3ztKRtOw6Ebqv+Iigt7VrPSlAb4/CClKQf8iZF7mevSO7Nl6/R9MlZTc/MRgYDceq4hQVbnX4RyxqBaecpSsHsZqUOxJxzpyT9gaSdmi9F8RXn3AEzu8fMrq097G8lvcPMDkn6Q0mjtdt/TdL3zGy/5pP4f985dzxtmwDEl7TIa9A2vCr7p0N6m6LWYrz78QOxhhd9aszGVimX9InLzo+sgB+mOj2jFQGrDgRxUqz9PDFV1cN7Di8JQv2Cgbi9N2HBVqdfxLJGYNp5ilIwu1mZFHR1zv2jpH9suO1P6n7+maSP+zzvMUmPZdEGAM3zcsC8oarbt+/T+M6DTeXGRM00DDIxVY09rBdUWDVKyWwh+KkvClsp9+nk7OlE2/rJm6d8b+8P2NZgrfJ+1P4c33kwsCfQCwa84+S3n/1yY8ImAqTJTevGXKo8J02gOUUqmN0MKusDkBQ+80jSoqT8PpsPhvyKmY5sWR84k3Jlfznw4t2OoZ/6XK/6oGjz2C6dTBg8zgVEg0EB3RUXxsttDet5OW+gEqsgbP02JqaqOvnW0qCxvnSGpIXAzlsL0zseQRczv/Pl9u37dNv2fYmL3BZJqydNoDWarTtYBARiACQF58bc/fgB/fRnpxbNVPR+9JthN7xpUJM/OK6HGupilUuma37x3MBgr11DP34zAtvx2tu/84qG3rfK92JRH5z21Qq9NjJpoXZb1PDtQH95Ybt+QVvjLFbv/ySzJ/3a4bW6k2dednrvCjoPi34DkBQcjJw4OetbLsLjl7t07/BF+tzWjYvyocZvvDhwpuH4zoNtG/rxa287Xnv2tPPt9ZuYqmrkkf0LeV5BQdjNl6/R8KbBWEGjt4mwoG1858FFCf5Jk9Sj2tHJCe71OY+7R68kCENLEYgBHSrObLkk0gQjfhdlv4tZUO5YdXpGI1vW+xYcbIXq9Iw+cMc/6s6J+V6bdg07+e2nbTsOhAa6gwMV3b91o+4dvkhSvOPkDSEHBUvTM7NLEvzDjo3f+RWnHc3kCgK9hkAMaJGsA6XGbWdd6yho5tFAjNmBURfliamqNt79jdDH3LZ9nyrl9n0kzTmnh/Yc1s1/889t6/Hw209hM0kb87gk/+PUyKSFpZzi8Na+DOJ3fsVpR5oyIUCvIBADWqDVRSH9yjykHQoKKmOx7doNKofUizAF95pIZ/ZFVOkKaT7RvdxnbesZk+YLtt458ZxaHTOU+yxxz5vfMR3eNKgbLhkM3UdOWpj1GrdMx5xzodtsbEv9+RK2zU7Ryi9OQBiS9YEWaOWSG2FlHtImnQfNPPJLvvdEJWjHSS6vFzZM1ypBf1tWTNLWS89fKA1SnwB+zlklvfFW8P7xgtwrLlytp58/tpDQH7WXjk7P+Caen3zrVOD5E2eb9bzzZfPYLt9hSK9nrug5VizzhDwRiHWRbqzp06laWRQyrNerVUnnTz9/LNbj/IJNCmHOBzh+61JO/uC43joVXb+sOj2zKFiM09NUv3RS/fGIU/4iapuNRras1+3b9y0J5LyeuaJ/DoX1MBe97eh8DE12CdZHK5ZWVisPC2xalXSeJJhqfCyFMOf5Xei/9MwrLekBDKt7FWdIMUjYNqOK0BZVK3uYgTgIxLoE66MVSyuX3AgKbAYq5Uy/vdfnzPQlSKBqbF+SPKVe04ocqjhLVHkzWpMEYyv7w8+voG0VPRDPo4cZqEcg1iVYH61Ysli/MUhQkLft2g2pt+1p7GH1CxjKJVuSxO8XbHr7ghl0SwXtk2b31eBAJVHdK79zqdxnKpf8Xz+sh71T1/vLo4cZqEeOWJdgfbTiadWSG+2o/B2UYF8y02nnFl4zbjuGNw3q9oBlj3pVpVzSDZcMLsod8yxfZpo9Lc3Oxe8xayboCTqXpMVLWknzhX3DEtg7tSJ90Gdn1j3MQBACsS7B+mi9pdXrqgX1Epx2Ti+PXbOkLXGsqJRjlbDoBY1rMT78zGHVdzqenD2tPpPM5qvkl8x0+ftX6vuvzSwEOfWzKNMEPUHn0vjOg0uOV1QCeyeu9xf02ZllDzOy1W0T0wjEukSnfhtFMQ30l30TmL01DJOamKrqDZ+Fp3vdxFRVj+2tyi9VrD6Hf845fffw66HD215OX1bv/15Jd+Czs7N0Y6kRArEu0onfRlFMbwaUNvALGIK+ncZZyLpXVadndNv2fTJF1+7yhPVGJbk4xe1N6KV0hzSfnd3WO1N0razRmBcCMQCLTExVdXLWv7aVN1TlXXyq0zOLggkvAHhk8rB2v3h84Xm9GoQt6zO9++fODlxzMeleCeqNintxShKwke4QrRt7Z4quG3tqmTUJYJGw6fwm6c6J5xYtEt0YTMzMzi0KwnrZ25Yv0+7RKzPbXmNvlDccGRToNV6ckpS5aeXM325B2aD2a2WNxrzQIwZgkbBvlk7Sw3sOJ+7J6VWvz8zqzonnEj+vv9yn2Tm3qNhrY2/UnRPPRR6LxotT0t4E0h3CdWPvTNF1Y08tPWIAFon6ZkkQFt9Af1kPN7GO5Z9f/4sa//jFgb1RE1PVyCDM7+LUjb0JeWJ/tl839tSa68DcjaGhITc5OZl3M4CulGYtQiw20GTJDq9sRaOV/WXd9bENC/l5QRrLY3j8jm2lXOr4C1le2J+Iy8z2OueGfO8jEEOnYHZS+0xMVZcU9EQyfba4BEVWyiULLfTqBWFesFaqzVj1bpco1ZAlPpcQB4EYOh7fPNNr5oLR+JyjtSWPEE+pRWU7grZrkm6+fI1vtX6J9wyQl7BAjBwxdARmJzVvYqqqTfd8Q7dt37ewdmR1eka3b9+ntaNPaPPYrtA1BE++dWrhOcv4xEhkzjm1YoXNoODuVz6wSk8/fyxwWJn3DFA8zJpERyja7KSiDUeEFVUNyvdqrP0laUnNqZFH9y8aBgsoL4YQ7exB9JZACsOMPqBY+H6LjlCk2UlecFPfu3THV58L7VXKqz1Bi3c3auwpmZiq6tNf2Z9o0WnEVyn7f/T2pew+8wLxMMzoA4qFQAwdYWTLelXKpUW35VU7pmjDpGHtSdL74T3WC+x6tRp+O5xdLqnsE3WlTe73ekMb3yueTq+31Am8IrvrYgz7AxJDk+gQRVqYt2jDpGHtCVov0M95A5WFnjCCsNY6cXJW5VJ099dgrffK7xg2rlPpBVn17xW/WZMk6rcOSx6hGQRi6BhFqfKdxWLIWeaYhbXHrwq1n0q5pCsuXK2RRwnC2qFk4SUoPEenZ3T/1o2+M4ZvuGRQTz9/zPccKsp7pdd044LUaD0CMSChtEtsZP2tOaw93vbufvyATpycrwk2UCnroxefu+QifvfjB8gJa4OoOmD1zhuoFKY3uGgTVIqoaL3l6AwEYshVJ364p70wZv2tOU57fvqzUws/T8/Mavt3XtH4xy9e9Jjbtu9L/NpI7tK1K7XnpROxeh6vuHC1pPx7uBhyiyeL3nL0HgIx5CbLD/d2B3RpLoyt+NYc1p5tOw4sWjxakmZPO23bcYCLaA52v3g89mO/vv9V3Tt8Uehj2nHuM+QWTzcuSI3WY9YkcpPV7MOilZOIEvTtuM+sJTOtgpYparx9oFLO7DWRjemZ2dBzoV3nPkNu8XTjgtRoPQIx5CarD/eilZOIElReYM653ALJiamqrBUl4JFa2HncrnO/SHX8im5406B2j16pl8eu0e7RKwnCECmTQMzMPmJmB83skJmN+ty/3My21+5/xszW1t13R+32g2a2JYv2oDNk9eHead/WG781l3wioCwvpkFFQr3bvV4VL5kfxRJWfqRd536R6vgB3SZ1jpiZlSR9XtJVko5IetbMdjjn/rXuYZ+SdMI59/NmdpOkz0raamYflHSTpA2SzpP0TTP7BedcdClwdLys8imKmiAblrtTn9O1bvQJ3+c3czGdmKpq244DC8OOK/vLgUVCT7szr81cyeIK66hs17lflJmbQDfKIln/UkmHnHMvSZKZfVnSdZLqA7HrJG2r/fyopL8yM6vd/mXn3JuSXjazQ7Xt/XMG7ULBZfXhXsQE2SQTEbK6mE5MVTXyyP5FiflRvVwEYMXnNH9s/d4XV1y4Wg/tOex7e9bynrkJdKssArFBSa/U/X5E0mVBj3HOnTKz1yW9o3b7nobn8k7vIVl8uBfx23qSWWZZBZLjOw8umR2J7hA0O/Hp54/5Pj7odgDFk0Ug5tdz3ng1CHpMnOfOb8DsVkm3StKaNWuStA89oGjf1pPk7mQVSBY1Jw7pVadntHls15LzotPyIwEslUUgdkTS+XW/v1fS0YDHHDGzZZJWSDoe87mSJOfcA5IekKShoSG+9qPQkg43ZhFIJllXEsVikgb6y6FDyX7D20XNjwQQXxazJp+VdIGZrTOzszSffL+j4TE7JN1S+/lGSbucc652+021WZXrJF0g6TsZtAnIVR6zzEa2rFc5aIokCs1pvmZY1Ady42zapOfZxFRVm8d2taReHYDmpO4Rq+V8/YGknZJKkr7onDtgZvdImnTO7ZD0t5L+Zy0Z/7jmgzXVHvcVzSf2n5L0X5kxiW7Qzry1+tmZlXIfeWIFUzLpPSsqOjo9E9rr5Zy0rGRa3meamT0duL36Ycck5xnLFAHFZC7GemdFMzQ05CYnJ/NuBpCrxlIVKK7Pbd24EOxsHtsVOoQ8OFDR7tErAx/n3Z9U1tsDEJ+Z7XXODfndR2V9oEDiDh15vRsEYZ2hfqWEoJUVPF5ifnV6ZslspjTD2yT2A8XEot8ZaPeC0+gcSc6NOyee08N7Di9MG/YbOvK2R1J+Z6kvXeIdy09/Zb/mfEYkTGeq6XtTy53me67SfLaQ2A8UEz1iKXXagtNonyTnxsRUdVEQ5qlPzq7fXhJ9ks45K7gHBu3RmNv1F791sW/PWOM54AVhadctZJkioJgIxFLqtAWn0T5Jzo3xnQcDq9xXp2c0MVXVp7+yf8n24iiVTH/2Hy/S57ZuXFjfkrmV7dfY89S45ujK/nLgc7MYPmx8vcGBiu67/qLUvffMxATSYWgyJfIuOlsrh5WTnBtR58vII/7DWHHMzjndtn3fwhAX2s8k356n+qHKzWO7AmdUZjV8mHXhY2ZiAunRI5ZS0AckeRfF1+ph5STnRtT5kkVJijhbqJT5SMiaSbr58jWRgUlYMJ738GFQrxcjAkB6fOqmRN5F52r1RSTJuVGU8+XNU8H1q5Dcyv6y7t+6UfcOXxT52KBgfKBSzrV3KewLCyMCQHoMTaZUxAWnEU87LiJnl/sWgr2BSlnbrt3ge24MbxrUI5OHtfvF47G3XTLTz1WWhS6LkxS1YLOz+QOr9PDv/XKsx05MVXXyrVNLbq+US9p27Yasm5ZI2BeWZmZiMsscWIxALANFW3A6CB+Ai7VyOn9j7ox0prepsRDrOWeV5JzTyZBq6o36pMyDMGSjZKZPXHZ+rF4wyf9ckcID93YK+8Jy/9aNS9oetcQSOWXAYgRiPaKXPwCDAtCRLesTXUTCttUoqBfh7scP6Kc/O7Uo5+uNt5LPhDwtEYQVUDNV6v3OFUk6Z/myQrw3g76w9Nn83Nv7rr8o9he8sN61IvytQB4IxHpEt3wAJu3VixOAxt1ekmA2qBeB4Km7RQ1r+52/Rc+z8vvCIklzzumOrz6n+66/KHbwWfS/FcgDgViP6IYPwGZ69aIC0CTDykmC2aBeBHS3FZXgWmBB5++KStl3qaqizLwOWwkg6Zc5qvsDSzFrskd0Q5mNZmY5ZhmAJtlW0IzJgZALNTqfhVTKDTp/zVT4mdfDmwZ1OqCOXZL3ErPMgaUIxHpEN3wANhNUZRmAJtlWUBXzbdduULmPuvbdajpk6DnoPJ0+OduSivdZy+K91Krq/kAnY2iyR3RDmY1mhjWaScjPalthw571sybjVrynMn7xhZ2LYedvJ8y8zuq91Al/K9BOBGI9pNM/AJu5EGQZgGa1Le84BJUtCEIQVmxR52KWXwry0A1f5oAiMtfk+nV5GhoacpOTk3k3Aznoplpom8d2+faQlMyaXlcyroFKWR+9+Fw9tOdwS1+nV3jLGEXVDuum8xdAfGa21zk35HcfPWJoqawvPHn06rXq4hk0q/K0cxps8axLr7gsw53xlftMWy893zd4dZKe+N6revr5Y6HnSaf3SgPIHsn6aJlWL6rdDq36G8KeP9Bf9p1ckaWZ2Tk9tOcwQVhMlXKfxj9+cehjTpyczew8CVpkG0D3IRBDy7R6Ue1W8i6Et23f15K/Iez5zi2dXVYKq4uAllrZX9a//elvaHjToL70zCuxn9fsedINX2AAxEcghpbp1CKy9RfCINXpmVS9FWH74PXabMrhTYPaPXqlXh67Rn/xWxeLUKw1VvaXZZrPmyuXFu/lSrmkuz52ZtHtpLl7zZzrnfwFBkBy5IihZTqtiraXCxY3N6u+t0JKtmZnWOV9b/805qYxjJi9Ppuv43XeQEVXXLhaX9//6kJZkZX9Zd31scWLbiedSNHMud6pX2AANIceMbRMJxWRjdMLFqSZ3oqRLeuX9L5I8wnhI1vW+w5PIXun3ZmA+qE9hxctNfSz2dNLHv+Jy8733c7mD6zK7FzvhlUwAMRHIIaWKVIV7ajkZ7/hoCSS9lYMbxrU+I0Xa2X/mSWPBiplbb30fI3vPOibm4b28guw7x2+SL99+ZqFnL2SmX778jV6+Pd+ObNzvZO+wABIj6FJtFQRpuvHWSw8KpCqlEu67/qLAocum+mtaNw3SQu8ovXqz4uoMiZZnetFL5xKLTQgWwRi6FInHXEAABUZSURBVHphyc/eBSQsZ2uw4WLTTHX0oItX/e19bSjkimTq8/WigvksteMLTDMBVbv3A9ALCMTQ9eIkPwctP9M4vNRMb0XQxWvyB8f12N7qwu1FD8L6JMnm86p6QX2AHSeY7yTNBlTdth+AIiAQQ9cL6u1aUSlr89iuhYDqhksGIyujS0uDMS+PKOhCFHTx+tIzr8QOvopQAf+0CtCIGPrLfVp5zvJUExz6bHGOWLfNZGw2oOq2/QAUAYEYWqYouSR+vV3lPtMbb51amCVXnZ7RY3ursRKsk/YmBF2k4gRhXq+cpESlNXrZWcvme7JGHt2v2bkz+7jUZ1peMp30mQ3ZyOv1847tQH9ZJ07OLnlcp85kbDag6rSSNEAnYNYkWqJI1cH9Zm++7exliy7SUvwyFEkLbgZdpIKq5ZfMlsy884q7hhV1rZT7ltzv/e691uBARb99+ZqWLp+UN68gbmPvXZ/mg7SkZmbn5Jy6aiZjsyUymNEJZI8eMbRE0XJJGpOf140+4fu4OEMsSXsTgvLPbrhkcFGOmDTfU/e2s5dp2qf3RQqfVDBT6+nxio42TjKoN/S+Vfr0V/a3JS9tZX9Zr8/Mti237LyBisZ3HtRswwvOnnaL6oQl8frMrO7furEQPbxZCDonowKqos/oBDoRgRhaoui5JGmGWJI+N+ziNfS+VQu3r6iU9cZbpxaGwPyGPEe2rNft2/eFpmrNObdwUQ27QLY6CKsfVh15ZL9O171en6QVAcN9aZjO7KMsnTdQyXQmY97D9mkCqiKUpAG6CUOTaImiVwdPM8TSzHPr140c2bJe4zsPat3oExrfeVAjW9br5bFrdM7y6OHS4U2DuvnyNZHrToYNlXrDxq3gN6zq1zt1WtKJk7O+6zs2Dqcm4TS/j4LOs5X95cTDslkPvRVl2L7+nNw9eiXBFZATAjG0RNFzSdJU/fd77g2XDC4EV2ELgYddhIN6C6vTM4tWBRh63yrdv3XjwusHCdpe2lUEglTKJX3isvN13kBlYTZp2N8laX6o0J1ZeHtwoKL7t27U98eu0Yv3/aYGEwbu3uODzr+7PrZh4dhJ8t1/lXLfovZkvRoEi3oDqGcuxfCEma2StF3SWknfl/RbzrkTPo+7RdKdtV/vdc49WLv9W5LOleR9Ul/tnPtR1OsODQ25ycnJptuN9sh7+KVd/Cri+9Ugk6TNY7t8hzW9wMDvvsbSFY3bDtvm7tErF9oYZ9blyv6ypv7kam28+xuJ8qlKZvrEZecvyXmrlEtavqwvclv1ba3nt2/LJdOyPlvIiat/rfr9Euf8y+McXTf6hO/Qskl6eeyalr42gHyY2V7n3JDffWlzxEYlPeWcGzOz0drvf9zw4qsk3SVpSPPXk71mtqMuYLvZOUdU1YV6JZckycSEsNy5+7duXBJ0+NUPa9x2VOJ1kqWTvEkC267doJFH9i8ZUgxy2jk9/fwx3/1wdrlPlXIp9PWD9kt9LlN1ekYlM83OOb3r7WfrigtXh9Z9i3P+5XGOUgICQL20Q5PXSXqw9vODkoZ9HrNF0pPOueO14OtJSR9J+bpAYSSZmBCWO+c35BkUBtVvO2qYNclQpNe+4U2DGv/4xQvb9Mvlanxe0H6YPjm7aDgw7HX9DG8aXBhq9CYYeHXfvPy6TspxKvqwPYD2Stsj9m7n3KuS5Jx71cze5fOYQUmv1P1+pHab5+/MbE7SY5oftuyA2t3AGUl6OKJ6rxp7aIKGHRu3HdazE3emamMwUL/NzWO7AocXvefd/fiBwKKn3raChnGjgpCilUNJwm/401tAvtuH7QFEiwzEzOybkt7jc9dnYr6G39doL9i62TlXNbO3az4Q+6Skvw9ox62SbpWkNWvWxHxpoPWS1GRKWjag2XpP0pkAIO43m7Ck9LDcMq9ExU9/dmrJfeWSLRoi9QKqOLXO6hWhHEqWi2Tfd/1FvjlxAHpPZCDmnPtw0H1m9kMzO7fWG3auJL9E+yOSfr3u9/dK+lZt29Xa/z8xs3+QdKkCAjHn3AOSHpDmk/Wj2o3elEfyddLgKkleUrP1npLkhUnzw5lB25yYqgaudek9b/PYLt98snPOWubbE+ZX6yzs2OWdV8Ui2QBaJe3Q5A5Jt0gaq/3/NZ/H7JT052a2svb71ZLuMLNlkgaccz82s7Kkj0r6Zsr2oIc1e7HMQlBwlUVgGBW4+b1GkrywqB62oF41r3iqFNwz5S03FBWQRB27ND2DWWCRbACtkjZZf0zSVWb2gqSrar/LzIbM7AuS5Jw7LulPJT1b+3dP7bblknaa2fck7ZNUlfQ3KduDHla0+kztKNwZ9BpBQ4km6XN1Ncji1MkKChq84qlSdAHfqIAk6tilqfuWhTSLZCe5HUDvSdUj5px7TdKHfG6flPS7db9/UdIXGx7zhqRL0rw+UK9ovQ/tGJYKeg0vB6tR0qV6Jqaq6gvY1sr+sjaP7dLR6RkN9JdV7rNFw5P1PVZRQ4txjl2e5VCaHRrNuycPQPFRWR9dI4veh4mp6qIq9ml6r1oZGHrtDOr58nKw6iUNALzeNr8grFwy/fRnpxZ64k6cnJVsvsyFX49VVMmGovYc1e/nxllHcRfJzrMnD0Dxseg3ukba3oesc8xalWAeJxF/sC5XrNn8tKA8s5KZzjlr2ZJyFrNzTucsX6Z9d13tu72zy30L2xuolLXt2g2xi9LmoXE/O50psBt3tqfUO4WNATSHQKyFemWJn6JodoahJ+uhxCxKT/j9HVGJ+PWzEdOcb0E9d6edW0jCj/Mcv8DxzVOLlydKe+xawW8/e0EYpScAZIVArEXynMHXy9IEH1kPJWZVeqLx3AlrT5KemihRPXpxe/viBrhF6zkqWs5hL+FLLHoJgViLUD8of0k/zFsxlNhMcBF17gS106+nJs0F7YoLV+uhPYd9bx9636rYvX2dGtCsqJR9VxNYUSnn0JrewZdY9BqS9VukUy8+3aKZ0hFFWQMw6tyJ28605TOefv5Y4O1JktCLmogfxQKW1gy6HdkoWhkaoNXoEWuRvCuB97pmeiSLkqcUde7EbWfaXtmogDBub18RE/HjmPZZNzPsdmSDL7HoNQRiLdKpF59u0eyHeRHylOKcO3HamfaCltWXiaIEuEnxZSof7Hf0GgKxFunUi0+QTkue7eQP86zOnah9EHVMs/wyUYQANym+TOWD/Y5eY86nWGPRDQ0NucnJybyb0TP8yg9UyqVCF6bsxDZnLWwfSIq1fzotAM9ar//9eWG/o9uY2V7n3JDvfQRi2erGD5CgCu5Fr6fkHYvq9MzCkj9ZlnfoBEHnYyuOaZHP/SK3DUD3CwvEGJrMULdOu+7U5Flvn3fjMZHiBRdBQ4JZH9Min/tFbhsAUL4iQ9067bpTyw9InX1Mwta9TFuaIutjWuT9XOS2AQCBWIY6tecoSlHqazWjU49JVKCVNrjI+pgWeT8XuW0AQCCWoU7uOQqTpHhn0XTqMYkKtPzyu8Jub5T1MS3yfi5y2wCAHLEMdfO0604sPyB17jGJ6sXxJh80KiUo+57lMS3yfi5y2wCAQCxD3VY7rBt06jGJqgHmF4SF3d5qRd7PRW4bAFC+AiigqDponVpSBAB6UVj5CnLEgAKKyuHq5AkUAIAzGJpEJIph5iMsh4vhNgDoDgRiCEUxzOLq1AkU6F18qQOWIhBDqLAyCnyANo8LEnoNX+oAfwRiCNWNxTDzDoK4IKEX8aUO8EeyPkJ1WzHMtEsDZYEld9CLuvFLHZAFAjGE6rbZeUUIgrggoRd125c6ICsEYgjVycsb+SlCEMQFCb2o277UAVkhRwyRuml2XlTF+nZgyR30IkquAP4IxNBTihAEcUFCr+qmL3VAVgjE0FOKEgRxQQIASARi6EEEQQCAoiBZHwAAICcEYgAAADlhaBLIUN5V+wEAnSVVj5iZrTKzJ83shdr/KwMe909mNm1mX2+4fZ2ZPVN7/nYzOytNe4A8FaFqPwCgs6QdmhyV9JRz7gJJT9V+9zMu6ZM+t39W0v2155+Q9KmU7QFyU4Sq/QCAzpI2ELtO0oO1nx+UNOz3IOfcU5J+Un+bmZmkKyU9GvV8oBMUoWo/AKCzpA3E3u2ce1WSav+/K8Fz3yFp2jl3qvb7EUkk06BjsXQRACCpyEDMzL5pZv/i8++6lK9tPre5kHbcamaTZjZ57NixlC8NZI+19AAASUXOmnTOfTjoPjP7oZmd65x71czOlfSjBK/9Y0kDZras1iv2XklHQ9rxgKQHJGloaCgwYAPyUpSq/QCAzpG2fMUOSbdIGqv9/7W4T3TOOTN7WtKNkr6c9PlAEVG1HwCQRNocsTFJV5nZC5Kuqv0uMxsysy94DzKzb0t6RNKHzOyImW2p3fXHkv7QzA5pPmfsb1O2BwAAoGOk6hFzzr0m6UM+t09K+t2633814PkvSbo0TRsAAAA6FUscAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnBCIAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnBCIAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnBCIAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnBCIAQAA5CRVIGZmq8zsSTN7ofb/yoDH/ZOZTZvZ1xtu/x9m9rKZ7av925imPQAAAJ0kbY/YqKSnnHMXSHqq9rufcUmfDLhvxDm3sfZvX8r2AAAAdIy0gdh1kh6s/fygpGG/BznnnpL0k5SvBQAA0FXSBmLvds69Kkm1/9/VxDb+zMy+Z2b3m9nylO0BAADoGMuiHmBm35T0Hp+7PpPB698h6f9JOkvSA5L+WNI9Ae24VdKtkrRmzZoMXhoAACBfkYGYc+7DQfeZ2Q/N7Fzn3Ktmdq6kHyV5ca83TdKbZvZ3kv4o5LEPaD5Y09DQkEvyOgAAAEWUdmhyh6Rbaj/fIulrSZ5cC95kZqb5/LJ/SdkeAACAjpE2EBuTdJWZvSDpqtrvMrMhM/uC9yAz+7akRyR9yMyOmNmW2l0Pm9lzkp6T9E5J96ZsDwAAQMeIHJoM45x7TdKHfG6flPS7db//asDzr0zz+gAAAJ2MyvoAAAA5IRADAADICYEYAABATgjEAAAAckIgBgAAkBMCMQAAgJwQiAEAAOSEQAwAACAnqQq6AgCSmZiqanznQR2dntF5AxWNbFmv4U2DeTcLQE4IxACgTSamqrrjq89pZnZOklSdntEdX31OkgjGgB7F0CQAtMn4zoMLQZhnZnZO4zsP5tQiAHkjEAOANjk6PZPodgDdj0AMANrkvIFKotsBdD8CMQBok5Et61UplxbdVimXNLJlfU4tApA3kvUBoE28hHxmTQLwEIgBQBsNbxok8AKwgKFJAACAnBCIAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnBCIAQAA5IRADAAAICcEYgAAADkhEAMAAMgJgRgAAEBOCMQAAAByQiAGAACQEwIxAACAnJhzLu82JGZmxyT9oMmnv1PSjzNsDoqF49vdOL7dj2Pc3Xr1+L7PObfa746ODMTSMLNJ59xQ3u1Aa3B8uxvHt/txjLsbx3cphiYBAAByQiAGAACQk14MxB7IuwFoKY5vd+P4dj+OcXfj+DbouRwxAACAoujFHjEAAIBC6MpAzMxWmdmTZvZC7f+VAY/7JzObNrOvN9y+zsyeqT1/u5md1Z6WI44Ex/eW2mNeMLNb6m7/lpkdNLN9tX/val/rEcTMPlI7LofMbNTn/uW19+Oh2vtzbd19d9RuP2hmW9rZbsTT7PE1s7VmNlP3fv3v7W47osU4vr9mZt81s1NmdmPDfb6f1b2iKwMxSaOSnnLOXSDpqdrvfsYlfdLn9s9Kur/2/BOSPtWSVqJZkcfXzFZJukvSZZIulXRXQ8B2s3NuY+3fj9rRaAQzs5Kkz0v6DUkflPQJM/tgw8M+JemEc+7nJd2v+fepao+7SdIGSR+R9Ne17aEg0hzfmhfr3q+/35ZGI7aYx/ewpN+R9A8Nz436rO563RqIXSfpwdrPD0oa9nuQc+4pST+pv83MTNKVkh6Nej5yE+f4bpH0pHPuuHPuhKQnNX+RRjFdKumQc+4l59xbkr6s+eNcr/64PyrpQ7X363WSvuyce9M597KkQ7XtoTjSHF8UX+Txdc593zn3PUmnG57b85/V3RqIvds596ok1f5PMvT0DknTzrlTtd+PSBrMuH1IJ87xHZT0St3vjcfx72rDHP+ND/tCiDpeix5Te3++rvn3a5znIl9pjq8krTOzKTP732b2q61uLBJL8x7s+ffvsrwb0Cwz+6ak9/jc9Zm0m/a5jamlbZbB8Q07jjc756pm9nZJj2l+ePrvk7cSGYrzvgt6DO/Z4ktzfF+VtMY595qZXSJpwsw2OOf+PetGomlp3oM9//7t2EDMOffhoPvM7Idmdq5z7lUzO1dSkhygH0saMLNltW9l75V0NGVzkVAGx/eIpF+v+/29kr5V23a19v9PzOwfNN+tTiCWryOSzq/73e995z3miJktk7RC0vGYz0W+mj6+br7G0puS5Jzba2YvSvoFSZMtbzXiSvMeDPys7hXdOjS5Q5I38+IWSV+L+8Tam/5pSd6sjkTPR1vEOb47JV1tZitriZ9XS9ppZsvM7J2SZGZlSR+V9C9taDPCPSvpgtqM5bM0n3y/o+Ex9cf9Rkm7au/XHZJuqs26WyfpAknfaVO7EU/Tx9fMVnuTL8zs/Zo/vi+1qd2IJ87xDeL7Wd2idhaTc67r/mk+r+ApSS/U/l9Vu31I0hfqHvdtScckzWg+Kt9Su/39mv8gPyTpEUnL8/6b+NfU8f0vtWN4SNJ/rt12jqS9kr4n6YCkv5RUyvtv4p+TpN+U9H8lvSjpM7Xb7pF0be3ns2vvx0O19+f76577mdrzDkr6jbz/Fv5ld3wl3VB7r+6X9F1JH8v7b+FfU8f3l2rX2TckvSbpQN1zl3xW99I/KusDAADkpFuHJgEAAAqPQAwAACAnBGIAAAA5IRADAADICYEYAABATgjEAAAAckIgBgAAkBMCMQAAgJz8f0nMj23zqwo1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Compute percent change using pct_change()\n", "returns = stocks_and_bonds.pct_change()\n", "\n", "# Compute correlation using corr()\n", "correlation = returns['SP500'].corr(returns['US10Y'])\n", "print(\"Correlation of stocks and interest rates: \", correlation)\n", "\n", "# Make scatter plot\n", "plt.scatter(returns['SP500'], returns['US10Y']);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The positive correlation means that when interest rates go down, stock prices go down. For example, during crises like 9/11, investors sold stocks and moved their money to less risky bonds (this is sometimes referred to as a 'flight to quality'). During these periods, stocks drop and interest rates drop as well. Of course, there are times when the opposite relationship holds too." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Flying Saucers Aren't Correlated to Flying Markets\n", "Two trending series may show a strong correlation even if they are completely unrelated. This is referred to as \"spurious correlation\". That's why when you look at the correlation of say, two stocks, you should look at the correlation of their returns and not their levels.\n", "\n", "To illustrate this point, calculate the correlation between the levels of the stock market and the annual sightings of UFOs. Both of those time series have trended up over the last several decades, and the correlation of their levels is very high. Then calculate the correlation of their percent changes. This will be close to zero, since there is no relationship between those two series.\n", "\n", "UFO data was downloaded from [www.nuforc.org](www.nuforc.org)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DJI
Date
1941110.96
1942119.40
1943135.89
1944152.32
1945192.91
\n", "
" ], "text/plain": [ " DJI\n", "Date \n", "1941 110.96\n", "1942 119.40\n", "1943 135.89\n", "1944 152.32\n", "1945 192.91" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DJI = pd.read_csv('./dataset/DJI.csv', index_col=0)\n", "DJI.columns = ['DJI']\n", "DJI.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UFO
Date
19411
19422
19439
19449
19459
\n", "
" ], "text/plain": [ " UFO\n", "Date \n", "1941 1\n", "1942 2\n", "1943 9\n", "1944 9\n", "1945 9" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "UFO = pd.read_csv('./dataset/UFO.csv', index_col=0)\n", "UFO.columns = ['UFO']\n", "UFO.head()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "UFO.index = pd.to_datetime(UFO.index, format=\"%Y\")\n", "DJI.index = pd.to_datetime(DJI.index, format=\"%Y\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UFODJI
Date
1941-01-011110.96
1942-01-012119.40
1943-01-019135.89
1944-01-019152.32
1945-01-019192.91
\n", "
" ], "text/plain": [ " UFO DJI\n", "Date \n", "1941-01-01 1 110.96\n", "1942-01-01 2 119.40\n", "1943-01-01 9 135.89\n", "1944-01-01 9 152.32\n", "1945-01-01 9 192.91" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "levels = UFO.join(DJI, how='inner')\n", "levels.head()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAE9CAYAAABk/zSyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3jV9fn/8edNCBvClBX2XoKAuBX3rnXv0eLXDm1rrba1ttVa/f7sV2tbq1L3rLNaJ0MccaDIki2EMEIiyAgzrJDk/v3x+UQDJifnnJyTk5DX47rO9Tnn/Vl33tir9/We5u6IiIiISN3SINUBiIiIiEjslMSJiIiI1EFK4kRERETqICVxIiIiInWQkjgRERGROkhJnIiIiEgd1DDVAdS09u3be8+ePVMdRq2zfft2mjdvnuow6hTVWXxUb7FTncVH9RY71Vl8kllvs2bN2uDuHSo6V++SuJ49ezJz5sxUh1HrZGVlMXbs2FSHUaeozuKjeoud6iw+qrfYqc7ik8x6M7Pcys6pO1VERESkDlISJyIiIlIHKYkTERERqYPq3Zg4ERERqXv27NlDfn4+u3btSnUo35GRkcGXX35ZrWc0adKEzMxM0tPTo75HSZyIiIjUevn5+bRs2ZKePXtiZqkOZy/btm2jZcuWcd/v7hQUFJCfn0+vXr2ivk/dqSIiIlLr7dq1i3bt2tW6BC4RzIx27drF3MqoJE5ERETqhP0xgSsTz9+mJE5EREQkCitXrmTo0KF7ld12223cd999XHXVVfTq1YsRI0YwYsQI7rvvPgC2bNnCFVdcQZ8+fejTpw9XXHEFW7ZsSUg8SuJEREREEuDuu+9mzpw5zJkzh5///OcAjBs3jt69e7Ns2TKWLVtGr169uPrqqxPyPk1sEBEREUmCnJwcZs2axYsvvvhN2R//+Ef69u3LsmXL6NOnT+QHfPHviKfVEiciIiKSADfddNM33anz589n0aJFjBgxgrS0tG+uSUtLY8SIESxcuDDyw9xhwo0RL1FLnIiIiNQpf3pzIYtWb03oMwd3acWtZw6JeE1lkw/Kyu+++27OO++8b8qXL19e4T3uXvVEhm1rYM+OiJeoJU5EREQkCu3atWPTpk17lW3cuJG2bdtWeP2QIUP44osvKC0t/aastLSUuXPnMmjQoMgv27C0ynjUEiciIiJ1SlUtZsnSokULOnfuzHvvvcfxxx/Pxo0bmTRpEuPGjWPatGnfub5v374cdNBB3HHHHfzxj38E4I477mDkyJH07ds38ssKcqqMRy1xIiIiIlF6+umnueOOOxgxYgTHHXcct956K7179670+scee4zs7Gz69u1Lnz59yM7O5rHHHqv6RQXLoGHTiJeoJU5EREQkSoMHD+aDDz7Yq2zbtm08+eSTFV7fpk0bnn322dhfVLAU2vUF1lZ6iVriRERERGqbghxoH7nLVUmciIiISG1SXASbcsOWuMopiRMRERGpTTatBC9REiciIiJSp5TNTG3XL+JlSuJEREREapNvkrjKZ72CkjgRERGR2qVgKTRrD03bRLxMSZyIiIhIFMr2PR0yZAjDhw/n3nvv/WY3hqysLM444wwAnnzySa677rr4X1SwDNpH7koFrRMnIiIiEpWmTZsyZ84cANatW8cll1zCli1buPHGyBvVx6wgB/qdWOVlaokTERERidEBBxzAww8/zP3334+7J+7Bu7ZC4doqZ6aCkjgRERGRuPTu3ZvS0lLWr1+fuIdGOTMV1J0qIiIidc3E38LX8xP7zE7D4NS7Yr4toa1wEIyHA7XEiYiIiCTL8uXLSUtLo0OHDol7aMFSsAbQtleVl6olTkREROqWOFrMEm39+vX8+Mc/5rrrrsPMEvfgghxo3R0aNq7yUiVxIiIiIlHYuXMnI0aMYM+ePTRs2JDLL7+cG264ge3bt1NcXEzjxlUnXlUqyImqKxWSmMSZ2ePAGcA6dx8alt0G/A9QNgLwd+4+ITx3MzAOKAF+7u6Tw/JTgH8AacCj7n5XWN4LeAFoC8wGLnf3omT9PSIiIlK/lZSUVHpu4cKF9OnTB4CrrrqKq666Kr6XFCyD7odFdWkyx8Q9CZxSQfnf3H1E+ClL4AYDFwFDwnseNLM0M0sDHgBOBQYDF4fXAvwlfFY/YBNBAigiIiJSo6699lqee+45rr322uo9qLQEigpT3xLn7h+ZWc8oLz8LeMHddwMrzCwHGBOey3H35QBm9gJwlpl9CRwHXBJe8xRwGzA+MdGLiIiIROeBBx6gZcuW1X9Q6Z7gGGUSl4rZqdeZ2Twze9zMyjYF6wrklbsmPyyrrLwdsNndi/cpFxEREambSsK0JlEtcWZ2PjDJ3beZ2e+BkcAd7j47jvDGA38GPDz+FfghUNG0DqfiJNMjXF8hM7sGuAagY8eOZGVlxRR0fVBYWKh6iZHqLD6qt9ipzuKjeotdba6zjIwMtm7dmtiZoAlSUlLCtm3bqvUMd6e4aCclDRrx8RdLwZZVeU803al/cPeXzexI4GTgHoJk7JA4Alxb9t3MHgHeCn/mA93KXZoJrA6/V1S+AWhtZg3D1rjy11f03oeBhwFGjx7tY8eOjTX0/V5WVhaql9iozuKjeoud6iw+qrfY1eY6W7FiBUVFRbRr167WJXLbtm2rVnequ1NQUECLonWkdejP2GOPi+q+aJK4sqkYpwPj3f31cJZpzMyss7uvCX+eDSwIv78BPGdm9wJdgH7AdIIWt37hTNSvCCY/XOLubmYfAOcRzFC9Eng9nphERESk9svMzCQ/Pz+xW1wlyK5du2jSpEm1ntGkSRMy5/8T2vWJ+p5okrivzOwh4ATgL2bWmCjG0pnZ88BYoL2Z5QO3AmPNbARB1+dK4EcA7r7QzF4CFgHFwLXuXhI+5zpgMsESI4+7+8LwFb8BXjCzO4AvgMei+otFRESkzklPT6dXr6p3MUiFrKwsDjrooOo9pGQPrJsP/Y+P+pZokrgLCJb9uMfdN5tZZ+Cmqm5y94srKK400XL3O4E7KyifAEyooHw5385gFREREam7NuWCl0S18X2ZaJK4JkAWgJm1BXYDH8QTn4iIiIhUoGBpcIxyZipEt8TIbIIdFrKBpeH3FWY228xGxRykiIiIiOytICc4xjAmLpokbhJwmru3d/d2BLsnvAT8FHgw5iBFREREZG8FOdCsHTRrG/Ut0SRxo8v2MQVw93eAo919GpCAnV5FRERE6rkN0W98XyaaJG6jmf3GzHqEn18Dm8J9TUvjiVNEREREyilIThJ3CcFiuq8RrMXWPSxLI5i5KiIiIiLx2r0NCr+OOYmrcnaqu28AflbJ6ZyY3iYiIiIieysIt9hKdBJnZv2BG4Ge5a939+j2hBARERGRyn0zMzXBSRzwMvAv4FG+3YJLRERERBKhIAcwaNs7ptuiSeKK3X18XEGJiIiISGQFOdC6G6THtv9qNBMb3jSzn5pZZzNrW/aJL0oRERER2cuGpTF3pUJ0LXFXhsfy+6U6EFubn4iIiIjszT2Y2NDtkJhvjWZ2aq+4ghIRERGRyArXQdG2xLbEmdlx7v6+mZ1T0Xl3fzXmt4mIiIjIt77Z+D76PVPLRGqJOwZ4HzizgnMOKIkTERERqY6y5UXa94v51kqTOHe/Nfx6u7uvKH/OzNTFKiIiIlJdBTmQ1hhaZcZ8azSzU1+poOw/Mb9JRERERPa2ISfoSm0QTUq2t0hj4gYCQ4CMfcbFtQJiW8hERERERL6rIAcOGBTXrZHGxA0AzgBas/e4uG3A/8T1NhEREREJlBTDphUwqKLpB1WLNCbudeB1MzvM3T+LNz4RERGRlHIHs1RH8V2bc6G0OK7lRSC6xX5zzOx3QM/y17v7D+N6o4iIiEhNmfUkZP0FfjYLGjVLdTR7q8bMVIguiXsd+Bh4FyiJ6y0iIiIiNW1TLkz6HezZHrR6xTn2LGnKkrgktsQ1c/ffxPV0ERERkVRwh7euDxI4gC35tS+J25ANTdtAs/i2pI9mPutbZnZaXE8XERERSYW5z8Oy9+HIXwa/t+SlNp59Fa6HBf+F7ofH/YhKkzgz22ZmW4FfECRyO81sa7lyERERkdpn21qYdDN0OxSOvQUsDbZ8leqo9vb+7UEr4Qm3xf2ISLNTW8b9VBEREZFUmXgT7NkJZ90PaenQqkvQnVpbfDUbZj8Dh10LHfrH/Zgqx8SZ2cgKircAue5eHPebRURERBJt0Ruw6HU4/o/fzvrMyKw9SVxpKUz8NTTvAMdUb8pBNBMbHgRGAvPD38OAuUA7M/uxu79TrQhEREREEmHnJphwI3QaBof//NvyVl3hq5mpi6u8eS9C/gw460Fo0qpaj4pmYsNK4CB3H+Xuo4ARwALgBOD/KrvJzB43s3VmtqBc2d1mttjM5pnZf82sdVjeMxxzNyf8/KvcPaPMbL6Z5ZjZfWbBan1m1tbMppjZ0vDYJq4aEBERkf3DO7+H7Rvge2E3apmMzGBMXGlp6mID2LUV3r0Vuo6C4RdX+3HRJHED3X1h2Q93X0SQ1C2v4r4ngVP2KZsCDHX3A4Fs4OZy55a5+4jw8+Ny5eOBa4B+4afsmb8F3nP3fsB74W8RERGpj5Z9AF88C0f8HLqM2PtcRiaU7oHt61MTW5mP7obCtXDq3XFteL+vaJ6wxMzGm9kx4edBINvMGgN7KrvJ3T8CNu5T9k65cXTTgMxILzazzkArd//M3R14Gvh+ePos4Knw+1PlykVERKQ+KdoOb/48WDT3mAradDLCdCOV4+I2LIVp42HEZZA5KiGPjCaJuwrIAa4HfgksD8v2AMdW490/BCaW+93LzL4wsw/N7KiwrCtQvsbzwzKAju6+BiA8HlCNWERERKSuev8O2Lwq6EZNb/Ld898kcSlaK84dJv0W0pvCCbcm7LFVTmxw953AX8PPvgrjeamZ3QIUA/8Oi9YA3d29wMxGAa+Z2RCgot1qPY73XUPQJUvHjh3JysqKJ+z9WmFhoeolRqqz+KjeYqc6i4/qLXZ1sc6a7ljNmOnjWd3lVJau2A0rsr5zTcM92zgSyJn9IfnrWyc8hqrqrd2GGQzLeZecPj8kf+YiYFFC3ltpEmdmL7n7BWY2nwoSp3BcW8zM7ErgDOD4sIsUd98N7A6/zzKzZUB/gpa38l2umcDq8PtaM+vs7mvCbtd1lb3T3R8GHgYYPXq0jx07Np7Q92tZWVmoXmKjOouP6i12qrP4qN5iVyfrbOo/AKfrhffQNaOSUVruML05fTs0oW8S/r6I9Va8Gx64HtoPoO8l/0ff8hMuqilSS9wvwuMZiXqZmZ0C/AY4xt13lCvvAGx09xIz600wgWG5u28Md4g4FPgcuAL4Z3jbG8CVwF3h8fVExSkiIiJ1RPZk6Djs2y7TipiFM1RT0J362QOwaQVc/t+9Z8wmQKVj4sqNN8t191yCrtORQPvwd0Rm9jzwGTDAzPLNbBxwP9ASmLLPUiJHA/PMbC7wH+DH7l42KeInwKME4/KW8e04uruAE81sKXBi+FtERETqix0bYdU0GLDvYhgVyOha81tvbV0NH90DA8+APscl/PGRulPfAn7r7gvC7srZwEygj5k97O5/j/Rgd69oAZTHKrn2FeCVSs7NBIZWUF4AHB8pBhEREdmP5bwHXgL9o0niMuHrBVVflyjFRfCfceClcNIdSXlFpNmpvdy97K/9ATDF3c8EDiGYWSoiIiKSOtmToFl76FLRDqH7yOgG29cFY9RqwqTfwKpPg/1b2/ZKyisiJXHl14A7HpgA4O7bgBQveSwiIiL1Wkkx5EyB/idHt3Buq3CFsq010KU64zGY+TgccT0MOy9pr4k0sSHPzH5GMEN0JDAJwMyaAokdmSciIiISi7zPYdeW6LpSYe8Ff9v2Tl5cuZ8GG9z3PRGO/2Py3kPklrhxwBCChX0vdPfNYfmhwBNJjUpEREQkkuxJ0CAd+kS570BN7NqwOQ9evBza9IRzH4UGacl7FxFa4tx9HfDjCso/AD5IZlAiIiIiEWVPgp5HQuOW0V1f1p2arBmqRTvghUugpAgueh6aJn5R4X1Vf/dVERERkZpUsAw2ZEfflQrBdlzNOyRnrTh3eOM6+Hp+0ALXoX/i31GBKrfdEhEREalVlr4THPufHNt9rbomZWJDt7xXYfkrcPytscdUDZW2xJnZX8Lj+TUWjYiIiEhVsidBh4GxL92RkZn4MXHZ79B7+TMw5Bw48peJfXYVInWnnmZm6cDNNRWMiIiISES7tsLKqfG1eGV0C5I4/86W8PHZugZeGUdhi15w1gPB9l41KFISNwnYABxoZlvDPUy/OdZQfCIiIpII67Nh8i01t9htsix7H0r3xDYerkxGVygqDJYmSYTPx0NRIYsG3wSNmiXmmTGItHfqTe6eAbzt7q3cvWX5Yw3GKCIiItX1xdPw2f0w5dZUR1I92ZOhSWvIHBP7vYlcZmT3Npj5JAz6Hjubdan+8+JQ5exUdz/LzDqa2Rnhp0NNBCYiIiIJlDcDsKD1aMnEVEcTn9KSYFJDv5MgLY65mRndgmMikrjZz8DuLXD4z6r/rDhVmcSFExumA+cDFwDTzSx5e0iIiIhIYhUXweov4OCrodOB8NpPk7deWjJ9NRt2bIh/Bug3W29VM4krKYZpD0L3wyFzdPWeVQ3RrBP3e+Bgd7/S3a8AxgB/SG5YIiIikjBfz4OS3dDrKDjviWBc3KvXBC1bdUn2RLA06Ht8fPe36Bjs8lDdlrhFrwXrzaWwFQ6iS+IahLs3lCmI8j4RERGpDfI+D46ZY6B9Xzj9r5D7CXx0T2rjilX2ZOh+GDRtE9/9DRpAqy7VS+Lc4dN/Qru+8U2uSKBokrFJZjbZzK4ys6uAt4EJyQ1LREREEiZvOmR0h1adg98jLoYDL4QP7wo2bK8LNufB2gUwoJqJU0Zm9bqSc6fCmjlw2LVBUphC0UxsuAl4CDgQGA487O6/SXZgIiIikiB506HbwXuXnf7XYKP2V66GHRtTElZMlk4OjtVt/arugr+f/hOatYPhF1cvjgSIKoV091fd/QZ3/6W7/zfZQYmIiEiCbMmHbauh2yF7lzduCec9DoXr4PXrErcAbrIsmQRtewfdmNWRkRlsvRXPeMD1S4LdIsZcA+lNqxdHAmhsm4iIyP7sm/FwB3/3XJeD4MQ/wZK3YfojNRtXLIq2w4qPgla46u6K0KoreAkUro393s/uh4ZNglm+tYCSOBERkf1Z3gxo2BQ6Dav4/KE/hX4nwzu/p3nhipqNrbxILYHLPwxm1yZiIkG8a8UVroO5L8KIS6B5++rHkQARV8ozszTgKXe/rIbiERERkUTK+xy6joS09IrPm8H3H4TxRzB40T1w8kU121W4Zi689UtYMy/o6mzdHdr0CI6tw+PCV6Fxq2BmanV9s2tDHnSLYdeH6Y9ASREcem31Y0iQiEmcu5eYWQcza+TuRTUVlIiIiCTAnp3BGnFVrWfWvD2cPZ7mz5wN798BJ9+Z/NiKtkPWXfDZA8FEgUN+BNvWwKbcYPzb9nV7Xz/4+9CwUfXfmxEu+BvLDNWiHTDjERhwWrBESy0RzZ4VK4GpZvYGsL2s0N3vTVZQIiIikgCrv4DS4uj2Ge1zHF91OZWunz0AA0+HHocnL66cd+GtG2BzLoy8MhiXt+/ab0U7gtayzauCrs94F/jdV5OMoFUvlu7UOf+GnZtSvrjvvqJJ4laHnwZAy+SGIyIiIgmTNz04RtltuLz3lXTd+SW89hP48VRo3CKx8RSuh8m/g/kvQbt+cNUE6HlExdc2agYdBgSfRGvVNZihGo3SkqC1sOto6H5o4mOphiqTOHf/E4CZNXf37VVdLyIiIrVE3vRgWY4oB+KXNGwK3x8PT5wGU/4IZySo080d5jwH79wCuwvhmN/CUTdAw8aJeX6sMjKDVr5oLJkAm1bACbdVf2ZsglU5O9XMDjOzRcCX4e/hZvZg0iMTERGR+LlD/vTvrg9XlR6HB7sRzHwMct5LTCxzn4fXfwodBsJPpsKxN6cugYPYFvz99P5ggsWgM5MbUxyiWWLk78DJBHum4u5zgaOTGZSIiIhU06YVsH19xevDVeW4P0D7AfDGz2Dn5urHkj0ZWmUG3afJ6B6NVUZX2FEQTPyIZPMqyJsGo38ADdJqJrYYRLtjw75tjnEscywiIiI1Jm9GcIxlGY0y6U3g7PGw7WuYdHP14nAP9hvteUTK9xr9xjdrxVUxLm7x28Fx0PeSG0+coqnNPDM7HHAza2RmNxJ2rYqIiEgtlfc5NGoBBwyO7/6uo4Jxa3Of+zaZiceGpUGLYI9KJjCkQvm14iL58i3oMAja9Ul+THGIJon7MXAt0BX4ChgR/q6SmT1uZuvMbEG5srZmNsXMlobHNmG5mdl9ZpZjZvPMbGS5e64Mr19qZleWKx9lZvPDe+4zq2UjDkVERFIlf3qQiFWnG/DoX0PHYfDmL2B7QXzPWPlxcOx5ZPxxJFqrcK24SDNUtxfAqk9h0Bk1E1Mcqkzi3H2Du1/q7h3dvYO7X+bu0f5LPgnsu0fGb4H33L0f8F74G+BUoF/4uQYYD0HSB9wKHAKMAW4tS/zCa64pd18C9uMQERGp43Zvg7ULY5/UsK+GjeDsfwXj4t7+ZeStsSqTOxVadApmydYWrboAFnlyQ/ZE8FIYWIeTODPrbWZvmtn6sFXtdTOL6l/C3T8CNu5TfBbwVPj9KeD75cqf9sA0oLWZdSaYVDHF3Te6+yZgCnBKeK6Vu3/m7g48Xe5ZIiIi9ddXs4MEJJ7xcPvqNDSYTbrodVj0Wmz3usPKcDxcbeosa9gYWnSM3J26+O1g7Fzn4TUXV4yiWez3OeAB4Ozw90XA8wQtY/Ho6O5rANx9jZkdEJZ3BcrXZn5YFqk8v4Ly7zCzawha7OjYsSNZWVlxhr7/KiwsVL3ESHUWH9Vb7FRn8anP9dY99yV6A5+s3E3xV1lR31dZnVnpCA5u2oXdU+5h7vo2372xEk13rOaQwq/J3t2B1bXs32KktaR45QLmVRBXg5JdHLH0XdZ0PomcDz+s8lmp+m8tmiTO3P2Zcr+fNbPrkhBLRSm6x1H+3UL3h4GHAUaPHu1jx46NM8T9V1ZWFqqX2KjO4qN6i53qLD71ut7+/QC0H8CRJ8bWFRixzkovotnUfzB2zIHQrG10D5wVdLz1P+mH9K8NS4uUt24wrF1U8d+76HUoLSLzhB+R2avqVdVS9d9apd2p4QSEtsAHZvZbM+tpZj3M7NdANaapsDbsCiU8lu1wmw90K3ddJsF2X5HKMysoFxERqb9KSyF/RmK6UssbeAZ4CSx9J/p7cqdC8w7Qvn9iY0mEjG7BmLiKxvktfhuatoXuSdw/NgEijYmbBcwELgR+BHwAZAE/AX5QjXe+AZTNML0SeL1c+RXhLNVDgS1ht+tk4CQzaxNOaDgJmBye22Zmh4azUq8o9ywREZH6qSAn2Kw90Ulcl4OCCQrRLjdSNh6ux+G1azxcmVZdoXhnUFflleyB7Ekw4FRIi6bDMnUqjc7de1X34Wb2PDAWaG9m+QSzTO8CXjKzccAq4Pzw8gnAaUAOsIMwUXT3jWb2ZyBctZDb3b1sssRPCGbANgUmhh8REZH6K79s0/tqzkzdV4MGQWIz7yXYsytYEDiSzbmwNR96/CKxcSRK+bXiyncPr/wEdm2BgaenJq4YVJlimlkacDrQs/z17l7lrrjufnElp46v4FqnkvXn3P1x4PEKymcCQ6uKQ0REpN7I+xyaZEC7fol/9sDTYdYTsOJD6H9y5GtXTg2OPWvRIr/lZYRzIbfk7z0DdfFbkN4M+hyXmrhiEM1iv28CVwHtgJblPiIiIlLb5M2AzDHJ2eKq19HBLhDRdKnmToWmbYIdD2qjirbeKi0N/rY+x0F609TEFYNoOnsz3f3ApEciIiIi1bNzM6z/Eoaek5znN2wMfU8IxoyVlkZOFFd+Emy1VVv2S91Xs/aQ1njvteJWfwHb1sCgM1MXVwyiqdmJZnZS0iMRERGR6vlqZnBM9KSG8gaeDoVr4atZlV+zJT8YE1eb9kvdV4MGwc4N5bfeWvwmWFrVXcW1RDRJ3DTgv2a208y2mtk2M9ua7MBEREQkRnnTwRoEe6YmS78Tg0RnSYQu1do+Hq5MRubeW28tfjvY47Vp9Asap1I0SdxfgcOAZu7eyt1bunurJMclIiIiscqbDgcMhsZJHLretE2Q6EQaF5f7CTTOgI61fO5h2VpxAOuzYUN2nelKheiSuKXAgnD2qIiIiNRGpSWQPzO5XallBp4eJDwbcio+v3Iq9DgMGqQlP5bqyOgajIErKQ66UgEGnJbamGIQTRK3Bsgys5vN7IayT7IDExERkRis/gKKtiV+fbiKDDg1OFbUpbrta9i4rHaPhyuTkQleGiRyi9+GLiO/XXqkDogmiVsBvAc0QkuMiIiI1E6zngzWNytLsJKpdXfoNAwWT/juuZWfBMfaPh4Ovl3wN396MFFjUGx7zaZalUuMuPufaiIQERERidPOzTD/P3Dg+cFCvzVh4BmQdRcUrocWHb4tz50KjVpCp+GV31tbtAqTuOmPBMeBdSuJq7Ilzsw+MLP39/3URHAiIiIShXkvBvuAjv5hzb1zwGmAQ/Y+O16unArdD6n1+44C33adrvos2OGiw4DUxhOjaGr4xnLfmwDnAsXJCUdERERi4g4zHgvGc3U5qObe22kYZHQPulRHXhGUFa6HDUtg+EU1F0d1NG4JTVrDrs11Yq/UfUXTnbrvan5TzezDJMUjIiIiscj9NEicvnd/zb7XLBh/N/spKNoOjZoHXakQLEFSV2RkBklcHVpapEw03alty33am9nJQKcaiE1ERESqMvOxYE22oefW/LsHngbFu2DZB8Hv3KnB5IqabBGsrjY9oWWXoCWzjommO3UW4IARdKOuAMYlMygRERGJQuF6WPQGHDwOGjWr+ff3OCKYSLFkQjCzc+XUYJ26tPSajyVep9wVtCTW1j1eI4imO7VXTQQiIiIiMfriGSjdU7MTGspLS4d+J8OSiUFCuW4hDPl9amKJV+tuqY4gbpUmcWZ2dKQb3f2jxIcjIiIiUcpig3oAACAASURBVCkthVlPQI8jUzurcuBpMP8lmPr34HddWB9uPxGpJe6mCsocGA5kArV8Lw0REZH92LL3YPMqOOG21MbR9wRIawSfPwQNm0DXUamNpx6pNIlz972maZjZkcAtBNtwXZfkuERERCSSmY9D8w4wMMWzKhu3hF7HQM4U6H4oNGyc2njqkWhmpx5vZlnAn4F73f1Qd38z6ZGJiIhIxTbnQfYkOOhyaNgo1dEEXapQN/ZL3Y9EGhN3OkHL2xbgFnefWmNRiYiISOVmPx0s8jvqqlRHEhh0Fix4FYaek+pI6pVIY+LeBPKBAuA3ZrbXSXf/XhLjEhERkYqU7AmSuH4nQpseqY4m0LwdXPVWqqOodyIlccfWWBQiIiISnSUToPBrGP2PVEciKRYpibsUmAi86+7baigeERERiWTGY5DRLWiJk3ot0sSGxwmWE5lgZu+Z2W/MbHgNxSUiIiL72pADKz6EUVdCA630Vd9FWmJkGjANuM3M2gEnAb8ys2HAF8Akd3+pZsIUERERZj0BDRrCQVekOhKpBaLZOxV3LwCeDz+Y2SjglCTGJSIiIuUVF8Gc52Dg6dCyY6qjkVogmnXiOprZY2Y2Mfw9GBjh7ncmPToREREJ5LwLOzfCiEtTHYnUElUmccCTwGSgS/g7G7g+WQGJiIhIBea/BM3aQZ/jUh2J1BLRJHHtw7FvpQDuXgyUxPtCMxtgZnPKfbaa2fVmdpuZfVWu/LRy99xsZjlmtsTMTi5XfkpYlmNmv403JhERkVpt11ZYMhGGnANp6amORmqJaMbEbQ8nNjiAmR1KsItDXNx9CTAifFYa8BXwX+AHwN/c/Z7y14fdtxcBQwhaA981s/7h6QeAEwkWJZ5hZm+4+6J4YxMREamVFr8FxbvgwAtSHYnUItEkcTcAbwB9zGwq0AE4L0HvPx5Y5u65++4IUc5ZwAvuvhtYYWY5wJjwXI67LwcwsxfCa5XEiYjI/mXei9CmJ2QenOpIpBapsjvV3WcDxwCHAz8Chrj7vAS9/yLCGa+h68xsnpk9bmZtwrKuQF65a/LDssrKRURE9h/bvoYVH8Gw86HyBg+ph8zdI19gVtFutluA+e6+Lu4XmzUCVhMkhWvNrCOwgaDb9s9AZ3f/oZk9AHzm7s+G9z0GTCBIQE9296vD8suBMe7+swredQ1wDUDHjh1HvfDCC/GGvd8qLCykRYsWqQ6jTlGdxUf1FjvVWXz2l3rLzHudvsseZ/rBD7CjeWZS37W/1FlNS2a9HXvssbPcfXRF56LpTh0HHAZ8EP4eS7AIcH8zu93dn4kzrlOB2e6+FqDsCGBmjwBlO+nmA93K3ZdJkPwRoXwv7v4w8DDA6NGjfezYsXGGvP/KyspC9RIb1Vl8VG+xU53FZ7+pt4duhc4jGHP6ZUl/1X5TZzUs3nr7x7tL+TB7HbecPphRPdpUfcM+opmdWgoMcvdz3f1cYDCwGzgE+E3Mb/zWxZTrSjWzzuXOnQ0sCL+/AVxkZo3NrBfQD5gOzAD6mVmvsFXvovBaERGR/cP6bFgzRxMa9lOvzM5n9qrNnDv+U25+dT6bdxTFdH80LXE9y7eSAeuA/u6+0cz2xPS2kJk1I5hV+qNyxf9nZiMIulNXlp1z94Vm9hLBhIVi4Fp3Lwmfcx3BGnZpwOPuvjCeeERERGql+S+BNYCh56Y6Ekmwddt2sWrjDq4/oR+Fu4p54tOVvLPwa3532iDOGdmVCBM+vxFNEvexmb0FvBz+Phf4yMyaA5vjCdzddwDt9im7PML1dwLf2SHC3ScQjI8TERHZv7jD/Jeh19HQslOqo5EEm7VyEwBH9+/AyO5tOGdkJre8Np9fvTyXl2bmcefZQ+l7QMuIz4imO/Vagl0bRgAHAU8TtIZtd/djq/UXiIiISMXyZ8CmlTBMXan7o5m5m2jcsAFDu2QAMLhLK1758eH8v3OGsfjrbZz6j4+5e/LiiM+osiXOg+mr/wk/IiIiUhPmvQQNm8CgM1MdiSTBzJUbGd6tNY0aftue1qCBcfGY7pw4uCP/O+FLHvhgWcRnVNkSZ2aHmtkMMys0syIzKzGzrdUPX0RERCpUsgcWvgoDToUmrVIdjSTYzqISFq7eyuhKZqS2b9GYey8YwfP/c2jE50TTnXo/wUzSpUBT4Grgn7GFKyIiIlFb9gHsKFBX6n5qTt5mikud0T0jLytyWJ92Ec9HM7EBd88xs7RwVugTZvZp1JGKiIhIbOa9CE3bQN8TUh2JJMGs3I0AjOwe+9pw5UWTxO0I12GbY2b/B6wBmlfrrSIiIlKx3YWwZAIceCE0bJTqaCQJZuZuot8BLWjdrHr/vtF0p14eXncdsJ1glwQtWCMiIpIMi9+GPTu0wO9+qrTUmZW7qcqu1GhEbIkzszTgTne/DNgF/KnabxQREZHKzX8JMrpDt8iD2qVuyl63jW27ihnVo221nxWxJS4cA9ch7E4VERGRZCpcF0xqGHYeNIims0zqmpnhIr8HJ7slLrQSmGpmbxB0pwLg7vdW++0iIiLyrQWvgpeoK3U/Nit3E+1bNKZ722bVflY0Sdzq8NMAiLz/g4iIiMRv7vPQaRgcMCjVkUiSzMzdyOgebaLaG7Uq0ezY8CcAM2vu7turul5ERETisGYurJkDp96d6kgkSdZt3UXexp1ceVjPhDwvmh0bDjOzRcCX4e/hZvZgQt4uIiIigdnPQFpjOPD8VEciSTIzNxgPN6qSnRpiFc2oyb8DJwMFAO4+Fzg6IW8XERER2LMz2Ct18FnBIr+yX5q5Mtj0fki46X11RTX1xd3z9ikqScjbRUREBBa9Abu3wMgrUh2JJNHM3I2M2GfT++qI5il5ZnY44GbWyMxuJOxaFRERkQSY/TS06QU9j0x1JJIkO4qKg03vE7C0SJlokrgfA9cCXYF8YET4W0RERKprQw7kfgIjL4cEzFiU2mlO3mZKSp3RCVjkt0w0S4yYu1+asDeKiIjIt754BiwNhl+S6kgkiWaFi/xWd9P78qJpifvUzN4xs3Fm1jphbxYREanvSvbAnOeg/8nQqnOqo5Ekmpm7if4dW5DRLD1hz6wyiXP3fsDvgSHAbDN7y8wuS1gEIiIi9VX2ZNi+ThMa9nMlpc7sVZsSsl9qedHOTp3u7jcAY4CNwFMJjUJERKQ+mv00tOgEfU9MdSSSRNlrg03vE7FfannRLPbbysyuNLOJwKfAGoJkTkREROK15SvImQIHXQpp0QxRl7qqbJHfRE5qgOgmNswFXgNud/fPEvp2ERGR+mrOc+ClcJBGKO3vZq3cSIeWjenWtmlCnxtNEtfb3b3sh5k1Ac5095cTGomIiEh9UVoKXzwNvY6Gtr1THY0k2czcTQnb9L68aCY2uJmlmdmpZvY0kAtcmNAoRERE6pMVH8LmVTDyylRHIkm2dusu8jftTNh+qeVFbIkzs6OBS4DTgenAEUAvd9+R8EhERETqiy+egSatYeAZqY5EkmxmuD7c6J6JHQ8HEVrizCwfuAuYCgx293OBnUrgREREqmHHRvjyTRh+EaQ3SXU0kmQzVm6kSXoDhnRplfBnR+pOfYVgq60LgTPNrDngEa4XERGRqsx7EUqK4KDLUx2J1IBZuZsY0a016WmJ2fS+vEqf6O6/AHoC9wLHAtlABzO7wMxaVPfFZrbSzOab2RwzmxmWtTWzKWa2NDy2CcvNzO4zsxwzm2dmI8s958rw+qVmpsEFIiJSe7kHa8N1HQWdhqY6Gkmy7buLWbRma8KXFikTMS30wPvu/j8ECd0lwPeBlQl6/7HuPsLdR4e/fwu8F+4S8V74G+BUoF/4uQYYD0HSB9wKHEKwdt2tZYmfiIhIrfPVLFi3SDs01BNzw03vRyV4kd8yUbftufsed3/T3S8BuiUlGjiLb3eDeIogYSwrfzpMKqcBrc2sM3AyMMXdN7r7JmAKcEqSYhMREamemU9AenMYck6qI5Ea8My0XBo3bJDQTe/Li6uD1t13JuDdDrxjZrPM7JqwrKO7rwnfsQY4ICzvCuSVuzc/LKusXEREpHbZuRkWvAIHng9NEj/IXWqXKYvWMnHB1/z8+H5kNE3cpvflpXKfjyPcfbWZHQBMMbPFEa6taHU8j1C+981BkngNQMeOHcnKyooj3P1bYWGh6iVGqrP4qN5ipzqLT22rt675b9GveCczOZDCWhRXebWtzuqKfettZ7Fzyyc7yWxhDPA8srLyk/LemJI4M2sAtHD3rdV9sbuvDo/rzOy/BGPa1ppZZ3dfE3aXrgsvz2fvLtxMYHVYPnaf8qwK3vUw8DDA6NGjfezYsfteUu9lZWWheomN6iw+qrfYqc7iU6vqzR0e/A10GcnoM8elOppK1ao6qyFFxaUUl5bSrFH87Vr71tttbyxk0+6VPPKDw5OyyG+ZKrtTzew5M2sVLjGyCFhiZjdV56Vm1tzMWpZ9B04CFgBvAGUzTK8EXg+/vwFcEc5SPRTYEna3TgZOMrM24YSGk8IyERGR2mPVZ7B+MYz+YaojkXK27trDef/6lEPufI/731/KjqLiaj9zTt5mnvpsJZcd0iOpCRxENyZucNjy9n1gAtAdqO7iNh2BT8xsLsFOEG+7+ySCxYVPNLOlwInhb8L3LgdygEeAnwK4+0bgz8CM8HN7WCYiIlJ7zHwcGmfAUE1oqC12FpUw7skZLFq9leHdWnPPO9kcc3cWz07LZU9JaVzP3FNSys2vzueAlo256ZQBCY74u6JpO0w3s3SCJO5+d99jZtVa9NfdlwPDKygvAI6voNyBayt51uPA49WJR0REJGm2F8Ci12HUD6BR81RHI8Du4hJ+9OwsZuVu4r6LD+KMA7swc+VG/jJpMb9/bQGPfbKCG08awGnDOsW0af3jn6zgyzVb+ddlI2nVJDmTGcqLpiXuIYJ14ZoDH5lZD6DaY+JERETqhTn/DnZoGP2DVEciQHFJKde/MIePstdz1zkHcsaBXYBgb9OXfnQYj14xmvQ049rnZnPWA1P5NGdDVM/N27iDv72bzQmDOnLykE7J/BO+UWUS5+73uXtXdz8tXKctl2AHBxEREYmktBRmPQHdD4MDBqU6mnqvtNT5zSvzmbjga/5wxmAuOHjvZW/NjBMGd2TiL47mnvOHU1BYxCWPfs4lj0zj8+UFlT7X3bnltQWkmXH7WUNiar2rjmgmNnQ0s8fMbGL4ezDfTj4QERGRyqz4EDYu14SGWsDduf2tRbwyO59fntCfcUf2qvTatAbGeaMyee9Xx/D70weRvbaQCx+exkUPf8Zny76bzE1bU8JH2eu58eQBdGndNJl/xl6i6U59kmDGZ5fwdzZwfbICEhER2W/MegKatoVB30t1JPXeX9/J5slPV3L1kb34+fF9o7qnSXoaVx/Vm49/fSx/OGMwy9Zv5+JHpnHhQ5/x6bINuDubdxTx3OLdDM/M4IrDeib3j9hHNBMb2rv7S2Z2M4C7F5tZSZLjEhERqdu2fQ2L34ZDfwLpTVIdTb32rw+Xcf8HOVx0cDduOX1QzN2dTRulMe7IXlx6SHeen76K8VnLuOSRzxnTsy0tmjRk+x74f+ccSFqDmulGLRNNErfdzNoR7oRQtk5bUqMSERGp6754BkqLg1mpUqmtu/bw0IfLWLNlFycN7sTYAR1okp6WsOc/Oy2XuyYu5owDO3Pn2cOqNV6tSXoaPziiFxeP6c6LM/IYn7WMr7fu4rRe6QzuUvNbqUWTxN1AsNhuHzObCnQAzktqVCIiInVZaQnMegp6HQPt+qQ6mlqpuKSUF2bk8bcp2WzcUUTLxg15dfZXNG+UxgmDO3LasM4c0796Cd2rs/P5/WsLOH7gAfztwhEJaylrkp7GlYf35MKDu/H5io3syV+QkOfGqsokzt1nm9kxwACCvUqXuPuepEcmIiJSV+W8C1vy4KQ7Uh1JrfRR9nrueHsR2WsLGdOrLU+dMZgBnVoybXkBb89bw6SFX/P6nNW0aNyQEwYdwGnDOjN2wAE0ahjNUP7ApAVruPHluRzepx0PXDqS9LTo741Wk/Q0junfgazVNduNWibajcLGAD3D60eaGe7+dNKiEhERqctmPgEtOsLA01MdSa2Ss66Q/53wJe8vXke3tk0Zf+lIThn67YK6R/XrwFH9OvDn7w/ls2XfJnSvzVnNwE4t+duFIxjUuepuy6wl6/jZ818woltrHrlidEK7Z2uTKpM4M3sG6APMAcomNDigJE5ERGRfm/Ng6WQ48gZIS/6q/XVB4e5i7pm8hGen5dIkPY2bTx3IVUf0pHHDipOr9LQGHN2/A0f378AdZw9lyqK13PrGQs66fyq/Oqk/Vx/Vu9Ku0c+XF/CjZ2bR74CWPPGDMTRvHP/G9rVdNH/ZaIL9U6u11ZaIiEi9MPtpcIdRWlIVgvXZbnp5LpMXfs1FY7pzw4n9ad+icdT3p6c14LRhnTm0dztufnUe/2/iYt5bvI57LxhOZptme107N28z456aSWabpjwzbgwZTffvJDqaDuIFQM3sHyEiIlIXlRRDwTLInhwkcf1OhNbdUx1VrfDSzDwmLviaX58ykP89e1hMCVx5bZs34l+XjeLu8w5k0eqtnPr3j3llVj5lbUyLv97KFY9Pp03zdP599aG0i/M9dUlU68QBi8xsOrC7rNDdtXKhiIjUPwXLIG86bMiGgqWwYWmwK0NJUXC+QToc/rPUxlhLLF9fyG1vLOLwPu245qje1X6emXH+6G4c2rsdN7w0h1+9PJd3v1zL1Uf15kfPzKJJegOeu/pQOmXUj3X5oknibkt2ECIiInXCvJfh9Z8GCVuDhtCmF7TvD/1PDo7t+kH7ftCsbaojTbmi4lJ+8cIcGqc34N4LRtAggQvhdmvbjBeuOYyHP1rOvVOWMHHB17Rt3ogXrj6Ubm2bVf2A/UQ0S4x8aGYdgYPDounuvi65YYmIiNQi7vDJvfDe7dDjSDj9r8H6b5q4UKl7p2Qz/6stPHT5qKS0jKU1MH4ytg9H92/Pvz5czo+P6U3fA1om/D21WTSzUy8A7gayCNaJ+6eZ3eTu/0lybCIiIqlXUgxv3wCzn4Jh58NZD0DD/X+8VXV8umwDD320jIvHdOfkIckdVj+kSwb/vPigpL6jtoqmO/UW4OCy1jcz6wC8CyiJExGR/dvubfDyVcHivUfdCMf9HqqxbVN9sGl7ETe8OJde7ZvzhzMGpTqc/Vo0SVyDfbpPC4huVquIiEjdtXUNPHc+rF0EZ96nJUOi4O789tV5FGzfzaNXHkGzRvvvGm21QTS1O8nMJgPPh78vBCYkLyQREZEUW7sQ/n0+7NoCl74EfU9IdUR1wgsz8pi8cC2/O20gQ7tmpDqc/V40ExtuMrNzgSMIxsQ97O7/TXpkIiIiNW1TLix7D6bcCo1awA8nQadhqY6qTli2vpDb31zEkX3bc/WR1V9ORKoWVTunu78CvJLkWERERGrWlq9g5cew4mNY+RFsXhWUdxoGF78IGV1TG18dsKFwN3NWbeavU7Jpkt6Av14wPKHLiUjlKk3izGwbwR6pFdkNLANucff3khGYiIhIUmzKhU/+Bis+go3LgrImraHnkXDYddDraOgwUBMYKrC7uIRFq7cyJ28zX6zazBd5m8jbuBOARg0bMP7SkXRsVT8W2q0NKk3i3L3SxVbMLA0YCvw7PIqIiNR+m1fBk6fDjoIgWTt4HPQ8CjoOhQaas1eZ3ILt3PrGQj7NKaCopBSATq2acFD31lx+aA8O6t6GoV0yaNqo4g3tJTnimjbi7iXAXDP7Z4LjERERSY6tq+GpM2HXVvjBROgyItUR1Xqlpc6zn+fy/yYspmGaceXhPRjZvQ0juremc0bTVIdX71Vr7q+7P5SoQERERJJm29oggdteAFe8pgQuCnkbd/Dr/8zjs+UFHNO/A3edO0yJWy2jBVxERGT/tn0DPP29YN23y16BzNGpjqhWc3eem76K/337S8yMv5w7jAtGd8M0RrDWiWbbrR8CH7v70hqIR0REJHF2bISnvw+bVsKlL0OPw1IdUcq4O5t37KFpozSapFc8dq1gZylXPD6dj5du4Ii+7fjLuQeS2ab+bChf10TTEtcTuMzMegCzgI8Jkro5yQxMRESkUhtyoGgbdBwGaRX/X1la8XZ49hzYsAQufiGYyFCPPTMtlz++vhAIZpK2apJORtOGtGqaTqsm6bRo0pD3F+3EGhRxx/eHcukh3dX6VstFs9jvHwHMrCnwP8BNwN+BuKagmFk34GmgE1BKsHjwP8zstvD568NLf+fuE8J7bgbGASXAz919clh+CvCPMJZH3f2ueGISEZE6JOc9eO4CKC2G9OaQOQq6HQrdD4HMg6FJBuzexoHz/gSFy+HCZ6Hv8amOOqV2FpVw33s5DM/M4OShndiycw9bdxazddcetu7cw+YdRazauIN+bdK4/6qj6d5OrW91QTTdqb8n2K2hBfAFcCNBa1y8ioFfuftsM2sJzDKzKeG5v7n7Pfu8fzBwETAE6AK8a2b9w9MPACcC+cAMM3vD3RdVIzYREanNVs+Bl66ADoPgiF9A/nRYNQ0+vge8FDA4YDDgtNq6FC58GgackuqoU+7fn+eyoXA3D146kjG92lZ6XVZWlhK4OiSa7tRzCBKvt4EPgWnuviveF7r7GmBN+H2bmX0JRFoS+yzgBXffDawwsxxgTHgux92XA5jZC+G1SuJERPZHm1YG+5k2bROMb2vVGQ48Pzi3exvkz4S8z4OkbtMKFg2+gSGDzkxpyLXBzqIS/vXhco7o2y5iAid1TzTdqSPDFrMjCVq9HjGzte5+ZHVfbmY9gYOAzwla+64zsyuAmQStdZsIErxp5W7L59ukL2+f8kOqG5OIiNRC2wvg2XOhpAiueitI4Mpr3BL6HBt8Quuzsmo2xlqqrBVu/AkjUx2KJFg03alDgaOAY4DRBIlTdbpTy57bgmA/1uvdfauZjQf+TLDV15+BvwI/BCoaVelARUtrV7hNmJldA1wD0LFjR7L0P+zvKCwsVL3ESHUWH9Vb7Op7nTUo2c3wuX+g5bZc5g6/nS0Lv+nQiai+1xvA7hLnvg93MKRdA7avnEfWysjXq87ik6p6i6Y79S/AR8B9wAx331Pdl5pZOkEC9293fxXA3deWO/8I8Fb4Mx/oVu72TGB1+L2y8r24+8PAwwCjR4/2sWPHVvdP2O9kZWWheomN6iw+qrfY1es6KymGly6HrdlwwdMcNPh7Ud9ar+st9OjHy9la9CW3nX8IB/esuitVdRafVNVblRvFufvpwN+ArcCAMAGLmwXzlR8DvnT3e8uVl28bPxtYEH5/A7jIzBqbWS+gHzAdmAH0M7NeZtaIYPLDG9WJTUREahF3mHAjLJkAp/4fxJDACewoKuZfHy7jyL7to0rgpO6Jpjv1GIIlQVYSdG12M7Mr3f2jON95BHA5MN/Mytaa+x1wsZmNIOgSXQn8CMDdF5rZSwQTFoqBa8O9WzGz64DJBEuMPO7uC+OMSUREapuP74FZT8AR18Mh16Q6mjrn39NWsaGwiOtP6JfqUCRJoulOvRc4yd2XAITLezwPjIrnhe7+CRWPc5sQ4Z47gTsrKJ8Q6T4REamDdm2Fz/8FH9wJwy6A429NdUR1zo6iYh76aBlH9WvPaLXC7beiSeLSyxI4AHfPrm6XqoiIyHdsyoXPH4LZTwe7MQw4Hc56ABpUOfJH9lHWCveL49UKtz+LJombaWaPAc+Evy8l2H5LRESketwhbzp8dj8sfgswGHI2HPZT6BpXh0+9VzYWTq1w+79okrifANcCPyfoBv0IeDCZQYmIyH7KHYq2w/b18NUsmPZgcGySAYf/DMZcAxmZqY6yTnt2Wi4F29UKVx9Es9jvbjN7BnjG3ddXdb2IiAjbC+Dz8bB5FWzfADs2BGU7NkBxuU1/2vaG0+6B4RdD4xapi3c/saOomIc+XK5WuHqi0iQuXArkVuA6ghY4M7MS4J/ufnsNxSciInXNl2/CW7+EHRuhVVdo3g5adIQDhgTfm7WH5u2hdXfocaTGvCVQWSucZqTWD5Fa4q4nWA7kYHdfAWBmvYHxZvZLd/9bTQQoIiJ1xI6NMPHXMP9l6HQgXP4adBqa6qjqjc07ir5phRvVQ61w9UGkJO4K4ER331BW4O7Lzewy4B2CBYBFRERgyUR48xewowDG/g6OugHStJBBTdm4vYjLHv2cbbuKufGkAakOR2pIpCQuvXwCV8bd12uJERERAWDnZph0M8x9LuguvfRl6Dw81VHVKwWFu7n00c9ZvmE7j1w5muHdWqc6JKkhkZK4ojjPiYhIfbB0CrzxMyhcB0f/Go6+CRo2SnVU9cr6bbu59NFp5Bbs4PErD+bIfu1THZLUoEhJ3HAz21pBuQFNkhSPiIjUdtsLYPLNMO9F6DAILn4euhyU6qjqnXVbd3HxI9NYvXkXT1x1MIf3VQJX31SaxLl7Wk0GIiIitZw7/7+9M4+O66rz/Of3Xm0q7d7tWF5jJ3YW4lhxHGfBARJCGggcOkDYMiQQ5gzrNGGGmaH7DM30GeAwPTCBBjINHMISaGCmk/TQSQjEToc4dGziEC/xoiS2FC+yrbUkVamq3p0/fq+ksi3ZkmypXK7f55x77n233nt1369e1fvW7/7uvWz7lQ5eSHeH3rd7IRIvdcsqjkPdad73v5/lUE+aH3z4KtYumV7qJhklYCyT/RqGYRiVTncb/NNfwJ7HdCWFt98Hsy8pdasqkoPdA9xx/7Mc6c3ww7vWcJXNB1exmIgzDMOoZHKDp45jCwLY/D144r+CC+DN/x2u/hh41llTCl7rUgHX0TfIA3dfzeqFjaVuklFCTMQZhmFUGtkB2P5/YfP3oe05iFZDzUyongU1YaqepRPybvsV7N8ES26Et30dGheVuvUVy/YD3dzzwBZ60ll+dPcaVi0wAVfpKiWiGgAAG0tJREFUmIgzDMOoFI7ugc0/gK0/gXQXzFgO198L2X4dYdrXDsdaYN8zMNChxyQa4B3f1mWxRErb/grmkRcO8LlfvkBDVYwHP7qWSy+oL3WTjHMAE3GGYRjnM/ksvPT/tEv0lafAi8KKt0HzXbDoutGFWT6ra57Ga21N07NIXybHln2dXLN0OlH/9MuN5QPH/3h8F3+3oYXmhY383QeuZFatTRBhKCbiDMM49+ncB68+rTFZy2/Rrr8pff9XVdTMKJP1KIO8etN2PKSprx3qF8Ab/wpWfVC7S0+HH4W6uZPf1goiHzj+3U/+yMbdR5jfWMU9Nyzh9tVNVMVGji/sSWf59IPP8+SuI9yxZgFffPslxCK2zqwxjIk4wyh3ggA6X4FDL8LhbdC+U+OWLrtdZ84/ky6w3KB2q/V3DOfxWliwFqJVZ+0SjsM56ApFWyF1tw6/Lh4svBZWvB1WvBXq5p39NuSzGge2+zHY8zgc3a31My+Gle+AS94Jsy4+++9bTH8H7H8W9v2e5a/ugcRLMGsFzFo5sojN52Df0yradj4CfUcgUgXLblLhduEbbTBCifn6E7vZuPsId127mK2tnfzVQ9v5xhN7+PC1i/jg2kXUJ4cXQ9rbnuKeBzazv6Of//aOS/nA2oUlbLlxrmIizjDKiVxGxdqB51WwHdoG7Ts0pglAfJi2WMXHpm9qzNNlt8Nlfw7Tlox8Tuc0Vqr1WWj9g56zINoGUyMfE0mokFr6BhUHMy8en1gMAug/Cr0HofcwpA5pfmwv7Pv9sGhLTtcuv2s/rXmQgx0Pw86H4Z8/p2n+Glh5m3YRNp7Bgy7VrisQ7HkMWp6ETA/4Mb3O5rvAi8D2f4SNX4GNX9ZrvuSdKurOhqDrOQj7n1EP2r5n9HMF8GPMlDg8+tjwvskZoaBboZ/xoRfhpX/SdUujSVj+ZrXJspshVn3mbTPOmMe2H+K+3+3lPc1N/OVbVwDw3KudfHvDXr72+G6+vaGF969dyN3XLWbba9185mdbiUU8fvKRq7na5oAzRkGcc6Vuw5TS3NzsNm/eXOpmnHNs2LCB9evXl7oZZcWk28w5DTJ/bQu8thnaNuvDOsjq64kGmHMZzL5U5+uac6nOnh9NqAjb8RC8+Ev1zgBc0KyC7uJbdc6v1j/A/j9oXghir5oG867QkYnJabqdbAzzcDt1GPb+Flp+O+yhqp0XCro3aLsGOlVQFHvwwjxzbD/xbDe4/MnXXD0LFl4Di65X0XYqcXhkVyjoHlK7gB637pNw4U3gjaHbyTkVjc/cp8IXB7VzVfwsuxmWrD85Hqz3kHq6tv+jHovTds6+VPeNham4HEvCYJ+uM5ru1kEF6a7h7e5W7bIF3b9pDSxcpwJy3pVseHoT65tXqrBr3wlHdmrevlOFdrQaLrpFBeWFb9L3M86Z37WWIylu++bvWTqzmp9/7BoS0eM9ojsO9PDdp1p45IUDRDyPbBBwybw6vvvBZi5omCSP9yicKzYrNybTbiKyxTnXPNJr5okzjLNNoTswkoCa2WP3UPUdDQXbFhVsr23RBz3og33eKrjm4zC/Wct1F4x+7uQ0aP6wpu42FXMv/hIe/Y+aCkxfBhfdCguuhqa1GvM1lvYuu0nzrlZo+Z0Kupcega0/PnnfRL2Kv6pGqJ5Bh5vO3GVXQM0cqA1TzWxN0XEEbM+8CF7/OU0dL+uUGc99D376bphxkdrq8veMfM58Tr15z9wHB/6oHr8b7tUu2jmXndoGtXNgzUc1FQTdzof1PJmUiqqCZ3Q0okkVu4l6qGqAOZfDVR9V4TbncvBP+GkWgdrZmpbeOFzvHPS8pu2frO5t44xIZXJ87EdbiEc8vv2B1ScJOICV8+r4xntX8dmbLuLvn34Z5+A/37pi1Fg5wyhgIs4winFOPU2HtkHvAfUwNTRBfdPo3o1MSh/gbc9B63Oa9x/V1+J1MH2piqUZy4bL9fPVi1Us2Lr26THiadzTyttUsF3QrIJlovFM9fPhus9oat+poqtxMTRdDdVn2E3T0ASr79QU5OHgVo0nK3juEg0nCZJdGzYw92z/Y522BK7/LKz7lIq5Z+6DRz4Fv/sSrLkHmu/Wa82k4Pkfw7Pfgq79MG0pvPV/6vQZExFBxYKumCCvYq5Y1MVqVbQl6s/eIvEi+vka5yTOOe79hxd45WgfP7p7DfNO41VbMD3JX9926RS1zjgfMBFnVC75rAqpQ9vg0J+GY8wKAuxEkjOGBV3DApbta4GXvgCHt+uoSVCBtvzNuixRkIdjezTebP8mePEfRj5v3XyYvxqu+ogeN++KyYtjKsRRTQaer+0vJX4ULn+3dhu/8pTGBT75N/AvfwvLb4aXN6p3s2mtrjxw0VsmJ9jf84cFm1GxfHtjC49uP8QX/mwF65ba4vTG2cdEnFE5FGLM9v4G9j6hox5zaX3Nj6u4uegWmH2ZxpfVz9fusq5W9ZJ1t2r5yEuw53FmO4GFV+tkqfOvUq9Z8hRrGA72Q0eLirruVph+oYqe2jlTc/2VhAgseb2m9pdUzO14SLfXfUpjzgxjEnlq9xG+9tgu3va6edx93eJSN8c4TzERZ5xbBIEKnKO7VSx1tUI+o16zfBbygzpCsVCOVg15xmgI8/oFKqZENJj81ad11OHe3wwHj0+/EFb/G+2qnHOpetBOjEMCnapjwdqT653j6Q1Psv7GN4z92mJJjbeac9kEDGNMmFkXw23f1GQYU0BrRz+ffPB5ls+u5SvvugyxlS6MScJEnFE6Uu3Q+q860u5IKNqO7T0+KDxeD5G4TvXgRzT3otpt5kc1fu2Vf4HB3uPPHa3W+cO69qsIjCZh8Q1wzSd09N60M/xnLKKxa4ZhGGj8275j/Wxt7eI7G1twzvHdD64mGbPHrDF52N1lTA3O6YS0+zaFc2Ft0q7FAvVNOt/Vous0iH/GRZqfqnuy+NzpLhVsXa2ad7dqWnYzLHsTLFg3vpGPRkXhnGMwHxCPnN34uHQ2T1vnAO09aS5orKKpMYnnmVfmfKC7P8vWti627u9ia2snW1u76OzX6X9q4xHue98qFk63OfqMycVEnHE8QaBerePms+pR79hgSuO6sv3aTVnIg5x6xbxo6DGL6sSofkwDvNt36szzqUP6HokGWHCNjmhccI2OxDyTtRlFdPqKqkZdocAw0CWOOvsHOZrKcKQ3w9FUhmOpQY6kMhzt1fpjfVo+1pchm3ckoh7TkjEaq2M0hvm0ZJSGZIzaRISo7xHxhajvEQ3ziKflY6lBWjv7ae3op7VzgNaOftp7M8e1qSrqs3x2Dctn13LRnDDNrmVmbdy63MZBPnDkgiDMHfl8mBfV5wNHRzqgeyBLdcwnMoZ1SmFY0Hf3ZznYneZgd5pD3QNF5TQHugdo6xwA9Odn2awablo5myuaGrmiqYHls2vG/H6GcSaYiJtsggAy3TrZqXPaNRhJhHnYTXi2fryDAHIDKqyGRFYovjI9OgHrQGGS0eJyF1d3HoJn07pfYaTlqfBj2kUZq1GhFuQ0Rq0QuxaEMWug85ktuk4ncV2wTidGHctErMaE6MvkSGVy5ANH4BxBAIFz5J3DOUfgwBMQETwRfBFEwPd02+HoTefoGcjSk84WlXP0pLP4IsxvTDK/sYr5jVXMa6gace6rySQIHEdSGVo7+tnf0U9rxwCtnf0c7kmHgm2Qjr4MwQhzmcd8jxk1MWbUxplZE2fFnDqm18Spift0D2Tp7M/S2TdIR/8gbZ39dPZn6R7IjqldnsDcerXLDctn0tSYpGlaFbNqE7zW1c9Lh3rZfbiXJ3cd4Rdb2oaOq4r6+J5QmHy90OzCXOwxL2DF7k1cOKuGpTM1XTirhrn1idOKvyBwE/b+pbN5etJZegZyJ9wLWtebzuJ7QnU8QnXMJxmLaDmu5aqoz0A2R2+6OGVJZbScyuQYyObJZPNkcgHpbJ50NsxzeQZzAbm8I5sPyAVOy0HAuOao3/A4APGIN9S26liEeMQ7/j1zedJhO0Y6f8z3mFOfYE59gisXNHLHmgWsamrgsvn11CaiJx9gGFNA2Ys4EbkF+AbgA3/vnPvymA8OAhUfxSmX0RGLQylzmryonOkdnqW+/9hweaSZ6YuJJHR0JKiAGinhwhisMBbruCTa9tNNMFrAi6jXKtGgec0sevL1VC1crhOPFk9CmmiARJ2KtWhSg/Oj1SMPAjgR53SaDc8/e0LVOI6jqQzbD/Sw/UA321/T/NVjY7wPJkA84g15P4qZVRsPRV2S2kSEiCf4nnqtPJFwW/O2/Vn2xV4lEfWIR/yhPB7x8D2hb1Af8H2ZPKlMllQ6R28mRyqd42gqw/6Ofto6B8jkhv9siMDsWn3Azm9MsmpBAzNq4syoiTOzNh6WVbjVxiPj9nrl8gF9g3lyoZgYzBVERcBgXoVGQzLKvIYqomP0wBxLZdh1uJfdh3pp6xwYEm6FlhWaKCLsaNlPXy7goa0H6E3nhs6RjPksmVlNIuKHIqQgSobLucARi3jUJSLUJqLUJiLUxCPUhtvxiKfiLK1itSDYuweyDOZO/YfO94TAufGJKlTs1sS1HYmoTzyq90Ei4jOjRusSUZ9Ykecz4gmR0APqe8N1hfvKL2yL1nkevLBtJ/MXLaUvk6d/MEffYI7+TJ5UJhd2nw/fg4X3TEQ84lGfukSEufVVzKlPMLc+wbTqmHlLjXOOshZxIuID3wJuAtqA50TkYefcjlEPOvgCfGmmip6xeJzG1BBPhVisWucSS07X+K7k9KI0TfcbSQzmM5oPCbQRhBoALhR1rkjghWXP1/ePJo/PC+VE3bBwi1WfJKp2btjA7AlMwOrCH/AR/+mLjCr2gsCRzuXJZANiEf0B9SfgLXDOkc4G9Gay9GXyQ16oVFp/sIe9BBGSMf+4f+JVUR+R0IThuQIHDr2mfPiwzuQCMqFXoFDOZAN2HMtTu68jfAioCElEhx8IubwjlcnpwyOTp28wR19muDyYC8jmNQ3mAgZDj4N6H4KwTcPtKWyDo70nw7YD3RzuGe6ua5pWxSVz63nXlfOZXhPHE/1cPBF8D7zQ81a45sANe+oKXrp8oB9bXfiwr6uKHvfwT0R98oHjcE+ats4B2jr7j8u3tnbRP5gnHwRF3VtuqHtriF3bx/wZS/jAr41HaKyOsXx2LW9cMZumaUmaGqtYMC3JBY1VZz2erZiI71FfdXa9x9Nr4qyriY9p/rANGw6zfv21OKceyJb2PvYeSdHSnqLlSIpc3lFXFR0SQomYr3nUIxbxGBjM05sZ9oT1pnMcPdpHKp0jkwuKPusoc+sT1IflwudfN7QdGaqvTeh3CCCdDUa819PZPImoT21Cz1MT3kvVMX9KBFFj917WXz/KmsGGcR5Q1iIOWAPsdc69DCAiPwNuA0YVcYPxaby87EM48QkkghMf50XCbZ+cFycnMbJhynkxshIlK1qf8+Lk/Th5L0be09xJ5NSeJgcuNUI3iQcuVth29A/qP8RURn8AU2F3Q+GBXx0f/get/2Kj4b/pCLGIRy4fPjT73dBDNAgfoioWusnmO8Oyxn1kQ49Cx7E0D7ZuJuJ5Q/9svTAHjuv+KLSr0C0SOIj6QjziE4t44b9bb2g7HzjS2TwDhTSYP86LUiAe8aiK+SSj+hBKxnyivl5XQfBkwrzQ9nQuOF4cTDXPbTqrp4sVeRo8TxDUE6M5gIqwhqoo65bO4JJ5daycV8clc+upT05Nl47vCfMatBt1zeIxDDwJcU7vxSee3MiateuGurIyoThOZ/PkA0dNXLvkCvd5cooe+OWAiDCrNsGs2gTXLD13FkWvivnhElHxUjfFMCoKceP1g59DiMifA7c45z4Sbn8QuNo594kT9rsHuAcgNufC1XPv/PqUt3WsxDxIRCAREaoiQsLXcsSDTA76c450zjGQg4GcI32anloAX8D3ICIQ8Qi7HIbLnkA+nwfxCBzkHcflDqjyoSoiVEUJ2yUko9o2XyAXQDbvyDrI5iEbOLIBZAN9/5gHMV+I+WHuQdzX9885RyYHgwEM5h2Z/HCeC5x2owy1PyyH21FfqArtlQjbmIiI2tAXHbiad6RzhVzPW8gLeENdVwwJJg89f9QjTELUHy4PDAzgxxIMhteZzbvwGvT6IwLxos8w7heX9TzF1+OHcWrnO6lUipqaMxjIUoGYzSaG2W38mM0mxmTa7cYbb9zinGse6bVy98SN9MQ7SZU65+4H7ge45HWr3M8/ed1wvEl4isK2H8ZYFOIqCkm7os7sIXtSrAtDBUQgGR37CKoCQeBIhZ66qOfh+8PxR77ImAOaN2zYwPqzvZ7leY7ZbGKY3caP2WximN3Gj9lsYpTKbuUu4tqApqLt+cCBUx1QFfW59ILzZz1DzxPqbGSUYRiGYVQc5T7Pw3PAMhFZLCIx4L3AwyVuk2EYhmEYxqRT1p4451xORD4BPIZOMfJ959zYh70ZhmEYhmGUKWUt4gCcc78Gfl3qdhiGYRiGYUwl5d6dahiGYRiGUZGYiDMMwzAMwyhDTMQZhmEYhmGUISbiDMMwDMMwyhATcYZhGIZhGGWIiTjDMAzDMIwyxEScYRiGYRhGGSLOnbTU6HmNiBwB9pXo7euB7hK99+mYARwtdSNGwGw2Mcxu48dsNjHMbuPHbDYxKtVuC51zM0d6oeJEXCkRkfudc/eUuh0jISKbnXPNpW7HiZjNJobZbfyYzSaG2W38mM0mhtntZKw7dWp5pNQNKEPMZhPD7DZ+zGYTw+w2fsxmE8PsdgIm4qYQ55zdgOPEbDYxzG7jx2w2Mcxu48dsNjHMbidjIs4ocH+pG1CGmM0mhtlt/JjNJobZbfyYzSZGSexmMXGGYRiGYRhliHniDMMwDMMwyhATcecpIvJ9EWkXkW1Fda8TkU0i8qKIPCIidWH9IhEZEJGtYfpO0TGrw/33isj/EhEpxfVMFeOxW/ja5eFr28PXE2F9xdhtnPfa+4vus60iEojIFeFrFWMzGLfdoiLyw7B+p4j8p6JjbhGRXaHdPl+Ka5kqxmmzmIj8IKx/QUTWFx1TMfeaiDSJyJPhfbNdRD4d1k8Tkd+IyJ4wbwzrJbTJXhH5k4hcWXSuO8P994jInaW6pqlgAna7OLwPMyJy7wnnmrzvqHPO0nmYgBuAK4FtRXXPAa8Py3cBXwrLi4r3O+E8/wpcAwjwz8BbSn1t55DdIsCfgNeF29MBv9LsNh6bnXDcZcDLdq+N6V57H/CzsJwEXg2/tz7QAiwBYsALwMpSX9s5YrOPAz8Iy7OALYBXafcaMBe4MizXAruBlcBXgc+H9Z8HvhKWbw1tIsBa4A9h/TTg5TBvDMuNpb6+c8hus4CrgL8B7i06z6R+R80Td57inHsK6Dih+iLgqbD8G+BdpzqHiMwF6pxzm5zejQ8A7zjbbT2XGKfdbgb+5Jx7ITz2mHMuX2l2O4N77Q7gQbB7rYjR7OaAahGJAFXAINADrAH2Oudeds4NAj8DbpvstpeKcdpsJfDb8Lh2oAtorrR7zTl30Dn3x7DcC+wELkDvkx+Gu/2QYRvcBjzglGeBhtBmbwZ+45zrcM51ora+ZQovZUoZr92cc+3OueeA7AmnmtTvqIm4ymIb8PawfDvQVPTaYhF5XkQ2isj1Yd0FQFvRPm1hXaUxmt2WA05EHhORP4rIfwjrzW6nvtcKvIdQxGE2KzCa3X4J9AEHgf3A15xzHaiNWouOr0S7jWazF4DbRCQiIouB1eFrFXuvicgiYBXwB2C2c+4gqGBBPUkw+j1VsffaGO02GpNqNxNxlcVdwMdFZAvqHh4M6w8CC5xzq4C/AH4axpWMFCdSicOZR7NbBLgOeH+Yv1NE3ojZDUa3GQAicjXQ75wrxDaZzZTR7LYGyAPzgMXAZ0VkCWY3GN1m30cfmJuBrwPPADkq1GYiUgP8CviMc67nVLuOUOdOUX9eMw67jXqKEerOmt0iZ+tExrmPc+4ltAsQEVkO/FlYnwEyYXmLiLSgXqY2YH7RKeYDB6ayzecCo9kNtc9G59zR8LVfo/E6P6bC7XYKmxV4L8NeOLB7DTil3d4HPOqcywLtIvJ7oBn9h1/s5aw4u53idy0H/PvCfiLyDLAH6KTC7jURiaJC5CfOuf8TVh8WkbnOuYNhd2l7WN/GyPdUG7D+hPoNk9nuUjNOu43GaPY8K5gnroIQkVlh7gFfAL4Tbs8UET8sLwGWoQHnB4FeEVkbjt76EPBQSRpfQkazG/AYcLmIJMNYpdcDO8xup7RZoe52NDYEGOqWqGibwSntth94QzhysBoNOH8JDepfJiKLRSSGiuOHp77lpeMUv2vJ0FaIyE1AzjlXcd/P8Bq/B+x0zv1t0UsPA4URpncybIOHgQ+F99paoDu02WPAzSLSGI7IvDmsOy+ZgN1GY3K/o6UeAWJpchLq5TiIBlm2AXcDn0ZH2OwGvszwZM/vArajMSR/BN5WdJ5mNOakBfhm4ZjzNY3HbuH+Hwhttw34aiXabQI2Ww88O8J5KsZm47UbUAP8IrzXdgCfKzrPreH+LcB/KfV1nUM2WwTsQgPSnwAWVuK9hoZ6OHQk/dYw3YqOpv8t6p38LTAt3F+Ab4W2eRFoLjrXXcDeMH241Nd2jtltTnhP9qCDaNrQATST+h21FRsMwzAMwzDKEOtONQzDMAzDKENMxBmGYRiGYZQhJuIMwzAMwzDKEBNxhmEYhmEYZYiJOMMwDMMwjDLERJxhGMYohHNlPS0ibymqe7eIPFrKdhmGYQA2xYhhGMapEJFL0TnaVgE+Ol/ULc65ljM4Z8TpigKGYRgTxkScYRjGaRCRr6IL0FcDvc65L4nIncDHgRi6LucnnHOBiNyPLr9WBfzcOffX4TnagO8CtwBfd879ogSXYhjGeYStnWoYhnF6voiuZjIINIfeuXcC65xzuVC4vRf4KfB551xHuBTbkyLyS+fcjvA8fc65a0txAYZhnH+YiDMMwzgNzrk+Efk5kHLOZUTkTcBVwGZdYpEqdDF6gDtE5G7093UesBJdKgvg51PbcsMwzmdMxBmGYYyNIEyg60t+3zn3l8U7iMgydC3PNc65LhH5MZAo2qVvSlpqGEZFYKNTDcMwxs8TwLtFZAaAiEwXkQVAHdAL9IjIXODNJWyjYRjnOeaJMwzDGCfOuRdF5IvAEyLiAVng3wKb0a7TbcDLwO9L10rDMM53bHSqYRiGYRhGGWLdqYZhGIZhGGWIiTjDMAzDMIwyxEScYRiGYRhGGWIizjAMwzAMowwxEWcYhmEYhlGGmIgzDMMwDMMoQ0zEGYZhGIZhlCEm4gzDMAzDMMqQ/w+bf+r2flvbhQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "levels.plot(grid=True);\n", "plt.xlabel('Year');\n", "plt.ylabel('Dow Jones Average/Number of Sightings')\n", "plt.savefig('../images/dji_ufo.png')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Correlation of levels: 0.9399762210726428\n", "Correlation of changes: 0.06026935462405373\n" ] } ], "source": [ "# Compute correlation o f levels\n", "correlation1 = levels['DJI'].corr(levels['UFO'])\n", "print(\"Correlation of levels: \", correlation1)\n", "\n", "# Compute correlation fo percent changes\n", "changes = levels.pct_change()\n", "correlation2 = changes['DJI'].corr(changes['UFO'])\n", "print(\"Correlation of changes: \", correlation2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple Linear Regression\n", "- What is a Regression?\n", " - Simple linear regression: $y_t = \\alpha + \\beta x_t + \\epsilon_t$\n", "- Relationship between R-Squared and Correlation\n", " - $[corr(x, y)]^2 = R^2$\n", " - $sign(corr) = sign(\\text{regression slope})$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Looking at a Regression's R-Squared\n", "R-squared measures how closely the data fit the regression line, so the R-squared in a simple regression is related to the correlation between the two variables. In particular, the magnitude of the correlation is the square root of the R-squared and the sign of the correlation is the sign of the regression coefficient.\n", "\n", "In this exercise, you will start using the statistical package ```statsmodels```, which performs much of the statistical modeling and testing that is found in R and software packages like SAS and MATLAB.\n", "\n", "You will take two series, ```x``` and ```y```, compute their correlation, and then regress ```y``` on ```x``` using the function ```OLS(y,x)``` in the ```statsmodels.api``` library (note that the dependent, or right-hand side variable y is the first argument). Most linear regressions contain a constant term which is the intercept (the $\\alpha$ in the regression $y_t = \\alpha + \\beta x_t + \\epsilon_t$). To include a constant using the function ```OLS()```, you need to add a column of 1's to the right hand side of the regression." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "df_x = pd.read_csv('./dataset/x.csv', index_col=0, header=None)\n", "df_y = pd.read_csv('./dataset/y.csv', index_col=0, header=None)\n", "\n", "df_x.columns = ['x']\n", "df_y.columns = ['y']\n", "\n", "x = df_x.reset_index(drop=True)['x']\n", "y = df_y.reset_index(drop=True)['y']" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 -0.835129\n", "1 -0.061004\n", "2 -0.194677\n", "3 -2.461142\n", "4 1.040073\n", " ... \n", "995 -1.017080\n", "996 -0.430943\n", "997 1.989779\n", "998 -1.171907\n", "999 -1.565902\n", "Name: y, Length: 1000, dtype: float64" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The correlation between x and y is -0.90\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: y R-squared: 0.818\n", "Model: OLS Adj. R-squared: 0.817\n", "Method: Least Squares F-statistic: 4471.\n", "Date: Sun, 07 Jun 2020 Prob (F-statistic): 0.00\n", "Time: 20:39:54 Log-Likelihood: -560.10\n", "No. Observations: 1000 AIC: 1124.\n", "Df Residuals: 998 BIC: 1134.\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "const -0.0052 0.013 -0.391 0.696 -0.032 0.021\n", "x -0.9080 0.014 -66.869 0.000 -0.935 -0.881\n", "==============================================================================\n", "Omnibus: 0.048 Durbin-Watson: 2.066\n", "Prob(Omnibus): 0.976 Jarque-Bera (JB): 0.103\n", "Skew: -0.003 Prob(JB): 0.950\n", "Kurtosis: 2.951 Cond. No. 1.03\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "import statsmodels.api as sm\n", "\n", "# Compute correlation of x and y\n", "correlation = x.corr(y)\n", "print(\"The correlation between x and y is %4.2f\" % (correlation))\n", "\n", "# Convert the Series x to a DataFrame and name the column x\n", "dfx = pd.DataFrame(x, columns=['x'])\n", "\n", "# Add a constant to the DataFrame dfx\n", "dfx1 = sm.add_constant(dfx)\n", "\n", "# Regress y on dfx1\n", "result = sm.OLS(y, dfx1).fit()\n", "\n", "# Print out the results and look at the relationship between R-squared and the correlation above\n", "print(result.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Autocorrelation\n", "- Correlation of a time series with a lagged copy of itself\n", "- Lag-one autocorrelation\n", "- Also called **serial correlation**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A Popular Strategy Using Autocorrelation\n", "One puzzling anomaly with stocks is that investors tend to overreact to news. Following large jumps, either up or down, stock prices tend to reverse. This is described as mean reversion in stock prices: prices tend to bounce back, or revert, towards previous levels after large moves, which are observed over time horizons of about a week. A more mathematical way to describe mean reversion is to say that stock returns are negatively autocorrelated.\n", "\n", "This simple idea is actually the basis for a popular hedge fund strategy. If you're curious to learn more about this hedge fund strategy (although it's not necessary reading for anything else later in the course), see [here](https://www.quantopian.com/posts/enhancing-short-term-mean-reversion-strategies-1).\n", "\n", "You'll look at the autocorrelation of weekly returns of MSFT stock from 2012 to 2017. You'll start with a DataFrame ```MSFT``` of daily prices. You should use the ```.resample()``` method to get weekly prices and then compute returns from prices. Use the pandas method ```.autocorr()``` to get the autocorrelation and show that the autocorrelation is negative. Note that the ```.autocorr()``` method only works on Series, not DataFrames (even DataFrames with one column), so you will have to select the column in the DataFrame." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Adj Close
Date
2012-08-0626.107651
2012-08-0726.377876
2012-08-0826.438896
2012-08-0926.587088
2012-08-1026.517351
\n", "
" ], "text/plain": [ " Adj Close\n", "Date \n", "2012-08-06 26.107651\n", "2012-08-07 26.377876\n", "2012-08-08 26.438896\n", "2012-08-09 26.587088\n", "2012-08-10 26.517351" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "MSFT = pd.read_csv('./dataset/MSFT.csv', index_col=0)\n", "MSFT.index = pd.to_datetime(MSFT.index, format=\"%m/%d/%Y\")\n", "MSFT.head()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The auto correlation of weekly returns is -0.16\n" ] } ], "source": [ "# Convert the daily data to weekly data\n", "MSFT = MSFT.resample(rule='W').last()\n", "\n", "# Compute the percentage change of prices\n", "returns = MSFT.pct_change()\n", "\n", "# Compute and print the autocorrelation of returns\n", "autocorrelation = returns['Adj Close'].autocorr()\n", "print('The auto correlation of weekly returns is %4.2f' % (autocorrelation))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Are Interest Rates Autocorrelated?\n", "When you look at daily changes in interest rates, the autocorrelation is close to zero. However, if you resample the data and look at annual changes, the autocorrelation is negative. This implies that while short term changes in interest rates may be uncorrelated, long term changes in interest rates are negatively autocorrelated. A daily move up or down in interest rates is unlikely to tell you anything about interest rates tomorrow, but a move in interest rates over a year can tell you something about where interest rates are going over the next year. And this makes some economic sense: over long horizons, when interest rates go up, the economy tends to slow down, which consequently causes interest rates to fall, and vice versa." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Preprocess" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
US10Y
DATE
1962-01-024.06
1962-01-034.03
1962-01-043.99
1962-01-054.02
1962-01-084.03
\n", "
" ], "text/plain": [ " US10Y\n", "DATE \n", "1962-01-02 4.06\n", "1962-01-03 4.03\n", "1962-01-04 3.99\n", "1962-01-05 4.02\n", "1962-01-08 4.03" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily_rates = pd.read_csv('./dataset/daily_rates.csv', index_col=0, parse_dates=['DATE'])\n", "daily_rates.head()" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autocorrelation of daily interest rate changes is 0.07\n", "The autocorrelation of annual interest rate changes is -0.22\n" ] } ], "source": [ "# Compute the daily change in interest rates\n", "daily_diff = daily_rates.diff()\n", "\n", "# Compute and print the autocorrelation of daily changes\n", "autocorrelation_daily = daily_diff['US10Y'].autocorr()\n", "print(\"The autocorrelation of daily interest rate changes is %4.2f\" %(autocorrelation_daily))\n", "\n", "# Convert the daily data to annual data\n", "yearly_rates = daily_rates.resample(rule='A').last()\n", "\n", "# Repeat above for annual data\n", "yearly_diff = yearly_rates.diff()\n", "autocorrelation_yearly = yearly_diff['US10Y'].autocorr()\n", "print(\"The autocorrelation of annual interest rate changes is %4.2f\" %(autocorrelation_yearly))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }