{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fitting the Future with time series analysis\n",
"> What lies ahead in this chapter is you predicting what lies ahead in your data. You'll learn how to use the elegant statsmodels package to fit ARMA, ARIMA and ARMAX models. Then you'll use your models to predict the uncertain future of stock prices! This is the Summary of lecture \"ARIMA Models in Python\", via datacamp.\n",
"\n",
"- toc: true \n",
"- badges: true\n",
"- comments: true\n",
"- author: Chanseok Kang\n",
"- categories: [Python, Datacamp, Time_Series_Analysis]\n",
"- image: images/arima_forecast.png"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"plt.rcParams['figure.figsize'] = (10, 5)\n",
"plt.style.use('fivethirtyeight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fitting time series models\n",
"- Introduction to ARMAX models\n",
" - Exogenous ARMA\n",
" - Use external variables as well as time series\n",
" - ARMAX = ARMA + linear regression\n",
"- ARMAX equation\n",
" - ARMA(1, 1) model:\n",
"$$ y_t = a_1 y_{t-1} + m_1 \\epsilon_{t-1} + \\epsilon_t $$\n",
" - ARMAX(1, 1) model:\n",
"$$ y_t = x_1 z_t + a_1 + y_{t-1} + m_1 \\epsilon_{t-1} + \\epsilon_t $$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fitting AR and MA models\n",
"In this exercise you will fit an AR and an MA model to some data. The data here has been generated using the ```arma_generate_sample()``` function we used before.\n",
"\n",
"You know the real AR and MA parameters used to create this data so it is a really good way to gain some confidence with ARMA models and know you are doing it right. In the next exercise you'll move onto some real world data with confidence."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
timeseries_1
\n",
"
timeseries_2
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
-0.183108
\n",
"
-0.183108
\n",
"
\n",
"
\n",
"
1
\n",
"
-0.245540
\n",
"
-0.117365
\n",
"
\n",
"
\n",
"
2
\n",
"
-0.258830
\n",
"
-0.218789
\n",
"
\n",
"
\n",
"
3
\n",
"
-0.279635
\n",
"
-0.169041
\n",
"
\n",
"
\n",
"
4
\n",
"
-0.384736
\n",
"
-0.282374
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" timeseries_1 timeseries_2\n",
"0 -0.183108 -0.183108\n",
"1 -0.245540 -0.117365\n",
"2 -0.258830 -0.218789\n",
"3 -0.279635 -0.169041\n",
"4 -0.384736 -0.282374"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample = pd.read_csv('./dataset/sample.csv', index_col=0)\n",
"sample.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### AR(2) model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ARMA Model Results \n",
"==============================================================================\n",
"Dep. Variable: timeseries_1 No. Observations: 1000\n",
"Model: ARMA(2, 0) Log Likelihood 148.855\n",
"Method: css-mle S.D. of innovations 0.208\n",
"Date: Mon, 15 Jun 2020 AIC -289.709\n",
"Time: 18:46:18 BIC -270.078\n",
"Sample: 0 HQIC -282.248\n",
" \n",
"======================================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"--------------------------------------------------------------------------------------\n",
"const -0.0027 0.018 -0.151 0.880 -0.037 0.032\n",
"ar.L1.timeseries_1 0.8980 0.030 29.510 0.000 0.838 0.958\n",
"ar.L2.timeseries_1 -0.2704 0.030 -8.884 0.000 -0.330 -0.211\n",
" Roots \n",
"=============================================================================\n",
" Real Imaginary Modulus Frequency\n",
"-----------------------------------------------------------------------------\n",
"AR.1 1.6603 -0.9702j 1.9230 -0.0842\n",
"AR.2 1.6603 +0.9702j 1.9230 0.0842\n",
"-----------------------------------------------------------------------------\n"
]
}
],
"source": [
"from statsmodels.tsa.arima_model import ARMA\n",
"\n",
"# Instantiate the model\n",
"model = ARMA(sample['timeseries_1'], order=(2, 0))\n",
"\n",
"# Fit the model\n",
"results = model.fit()\n",
"\n",
"# Print summary\n",
"print(results.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### MA(3) model"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ARMA Model Results \n",
"==============================================================================\n",
"Dep. Variable: timeseries_2 No. Observations: 1000\n",
"Model: ARMA(0, 3) Log Likelihood 149.007\n",
"Method: css-mle S.D. of innovations 0.208\n",
"Date: Mon, 15 Jun 2020 AIC -288.014\n",
"Time: 18:46:19 BIC -263.475\n",
"Sample: 0 HQIC -278.687\n",
" \n",
"======================================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"--------------------------------------------------------------------------------------\n",
"const -0.0018 0.012 -0.159 0.874 -0.024 0.021\n",
"ma.L1.timeseries_2 0.1995 0.031 6.352 0.000 0.138 0.261\n",
"ma.L2.timeseries_2 0.6359 0.028 22.718 0.000 0.581 0.691\n",
"ma.L3.timeseries_2 -0.0833 0.029 -2.872 0.004 -0.140 -0.026\n",
" Roots \n",
"=============================================================================\n",
" Real Imaginary Modulus Frequency\n",
"-----------------------------------------------------------------------------\n",
"MA.1 -0.2389 -1.1928j 1.2165 -0.2815\n",
"MA.2 -0.2389 +1.1928j 1.2165 0.2815\n",
"MA.3 8.1089 -0.0000j 8.1089 -0.0000\n",
"-----------------------------------------------------------------------------\n"
]
}
],
"source": [
"# Instantiate the model\n",
"model = ARMA(sample['timeseries_2'], order=(0, 3))\n",
"\n",
"# Fit the model\n",
"results = model.fit()\n",
"\n",
"# Print summary\n",
"print(results.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fitting an ARMA model\n",
"n this exercise you will fit an ARMA model to the earthquakes dataset. You saw before that the earthquakes dataset is stationary so you don't need to transform it at all. It comes ready for modeling straight out the ground. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
earthquakes_per_year
\n",
"
\n",
"
\n",
"
date
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1900-01-01
\n",
"
13.0
\n",
"
\n",
"
\n",
"
1901-01-01
\n",
"
14.0
\n",
"
\n",
"
\n",
"
1902-01-01
\n",
"
8.0
\n",
"
\n",
"
\n",
"
1903-01-01
\n",
"
10.0
\n",
"
\n",
"
\n",
"
1904-01-01
\n",
"
16.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" earthquakes_per_year\n",
"date \n",
"1900-01-01 13.0\n",
"1901-01-01 14.0\n",
"1902-01-01 8.0\n",
"1903-01-01 10.0\n",
"1904-01-01 16.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"earthquake = pd.read_csv('./dataset/earthquakes.csv', index_col='date', parse_dates=True)\n",
"earthquake.drop(['Year'], axis=1, inplace=True)\n",
"earthquake.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ARMA(3, 1) model"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ARMA Model Results \n",
"================================================================================\n",
"Dep. Variable: earthquakes_per_year No. Observations: 99\n",
"Model: ARMA(3, 1) Log Likelihood -315.673\n",
"Method: css-mle S.D. of innovations 5.853\n",
"Date: Mon, 15 Jun 2020 AIC 643.345\n",
"Time: 18:46:20 BIC 658.916\n",
"Sample: 01-01-1900 HQIC 649.645\n",
" - 01-01-1998 \n",
"==============================================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"----------------------------------------------------------------------------------------------\n",
"const 19.6452 1.929 10.183 0.000 15.864 23.426\n",
"ar.L1.earthquakes_per_year 0.5794 0.416 1.393 0.164 -0.236 1.394\n",
"ar.L2.earthquakes_per_year 0.0251 0.208 0.121 0.904 -0.382 0.433\n",
"ar.L3.earthquakes_per_year 0.1519 0.131 1.162 0.245 -0.104 0.408\n",
"ma.L1.earthquakes_per_year -0.1720 0.416 -0.413 0.679 -0.988 0.644\n",
" Roots \n",
"=============================================================================\n",
" Real Imaginary Modulus Frequency\n",
"-----------------------------------------------------------------------------\n",
"AR.1 1.2047 -0.0000j 1.2047 -0.0000\n",
"AR.2 -0.6850 -2.2352j 2.3378 -0.2973\n",
"AR.3 -0.6850 +2.2352j 2.3378 0.2973\n",
"MA.1 5.8139 +0.0000j 5.8139 0.0000\n",
"-----------------------------------------------------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/chanseok/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred frequency AS-JAN will be used.\n",
" % freq, ValueWarning)\n"
]
}
],
"source": [
"# Instantiate the model\n",
"model = ARMA(earthquake['earthquakes_per_year'], order=(3, 1))\n",
"\n",
"# Fit the model\n",
"results = model.fit()\n",
"\n",
"# Print model fit summary\n",
"print(results.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fitting an ARMAX model\n",
"In this exercise you will fit an ARMAX model to a time series which represents the wait times at an accident and emergency room for urgent medical care.\n",
"\n",
"The variable you would like to model is the wait times to be seen by a medical professional ```wait_times_hrs```. This may be related to an exogenous variable that you measured ```nurse_count``` which is the number of nurses on shift at any given time. These can be seen below.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"hospital.plot(subplots=True);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a particularly interesting case of time series modeling as, if the number of nurses has an effect, you could change this to affect the wait times."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ARMAX(2, 1) model to train on the ```wait_times_hrs``` using ```nurse_count``` "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ARMA Model Results \n",
"==============================================================================\n",
"Dep. Variable: wait_times_hrs No. Observations: 168\n",
"Model: ARMA(2, 1) Log Likelihood -11.834\n",
"Method: css-mle S.D. of innovations 0.259\n",
"Date: Mon, 15 Jun 2020 AIC 35.668\n",
"Time: 18:46:22 BIC 54.411\n",
"Sample: 03-04-2019 HQIC 43.275\n",
" - 03-10-2019 \n",
"========================================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"----------------------------------------------------------------------------------------\n",
"const 2.1000 0.086 24.293 0.000 1.931 2.269\n",
"nurse_count -0.1171 0.013 -9.054 0.000 -0.142 -0.092\n",
"ar.L1.wait_times_hrs 0.5693 0.164 3.468 0.001 0.248 0.891\n",
"ar.L2.wait_times_hrs -0.1612 0.131 -1.226 0.220 -0.419 0.096\n",
"ma.L1.wait_times_hrs 0.3728 0.157 2.375 0.018 0.065 0.680\n",
" Roots \n",
"=============================================================================\n",
" Real Imaginary Modulus Frequency\n",
"-----------------------------------------------------------------------------\n",
"AR.1 1.7656 -1.7566j 2.4906 -0.1246\n",
"AR.2 1.7656 +1.7566j 2.4906 0.1246\n",
"MA.1 -2.6827 +0.0000j 2.6827 0.5000\n",
"-----------------------------------------------------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/chanseok/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
" % freq, ValueWarning)\n"
]
}
],
"source": [
"# Instantiate the model\n",
"model = ARMA(hospital['wait_times_hrs'], order=(2, 1), exog=hospital['nurse_count'])\n",
"\n",
"# Fit the model\n",
"results = model.fit()\n",
"\n",
"# Print model fit summary\n",
"print(results.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generating one-step-ahead predictions\n",
"It is very hard to forecast stock prices. Classic economics actually tells us that this should be impossible because of market clearing.\n",
"\n",
"Your task in this exercise is to attempt the impossible and predict the Amazon stock price anyway.\n",
"\n",
"In this exercise you will generate one-step-ahead predictions for the stock price as well as the uncertainty of these predictions."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"amazon = pd.read_csv('./dataset/amazon_close.csv', parse_dates=True, index_col='date')\n",
"amazon = amazon.iloc[::-1] "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/chanseok/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:218: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n",
" ' ignored when e.g. forecasting.', ValueWarning)\n",
"/home/chanseok/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:218: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n",
" ' ignored when e.g. forecasting.', ValueWarning)\n",
"/home/chanseok/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:568: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n",
" \"Check mle_retvals\", ConvergenceWarning)\n"
]
}
],
"source": [
"from statsmodels.tsa.statespace.sarimax import SARIMAX\n",
"\n",
"model = SARIMAX(amazon.loc['2018-01-01':'2019-02-08'], order=(3, 1, 3), seasonal_order=(1, 0, 1, 7),\n",
" enforce_invertibility=False,\n",
" enforce_stationarity=False,\n",
" simple_differencing=False, \n",
" measurement_error=False,\n",
" k_trend=0)\n",
"results = model.fit()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
SARIMAX Results
\n",
"
\n",
"
Dep. Variable:
close
No. Observations:
278
\n",
"
\n",
"
\n",
"
Model:
SARIMAX(3, 1, 3)x(1, 0, [1], 7)
Log Likelihood
-1338.384
\n",
"
\n",
"
\n",
"
Date:
Mon, 15 Jun 2020
AIC
2694.769
\n",
"
\n",
"
\n",
"
Time:
18:46:24
BIC
2727.020
\n",
"
\n",
"
\n",
"
Sample:
0
HQIC
2707.726
\n",
"
\n",
"
\n",
"
- 278
\n",
"
\n",
"
\n",
"
Covariance Type:
opg
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
ar.L1
0.1074
0.048
2.258
0.024
0.014
0.201
\n",
"
\n",
"
\n",
"
ar.L2
0.0521
0.038
1.359
0.174
-0.023
0.127
\n",
"
\n",
"
\n",
"
ar.L3
-0.8974
0.042
-21.606
0.000
-0.979
-0.816
\n",
"
\n",
"
\n",
"
ma.L1
-0.1125
0.036
-3.113
0.002
-0.183
-0.042
\n",
"
\n",
"
\n",
"
ma.L2
-0.1496
0.041
-3.671
0.000
-0.229
-0.070
\n",
"
\n",
"
\n",
"
ma.L3
0.9763
0.032
30.611
0.000
0.914
1.039
\n",
"
\n",
"
\n",
"
ar.S.L7
0.1821
0.675
0.270
0.787
-1.141
1.506
\n",
"
\n",
"
\n",
"
ma.S.L7
-0.2247
0.666
-0.337
0.736
-1.531
1.081
\n",
"
\n",
"
\n",
"
sigma2
1319.0972
99.104
13.310
0.000
1124.858
1513.337
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
Ljung-Box (Q):
28.84
Jarque-Bera (JB):
22.02
\n",
"
\n",
"
\n",
"
Prob(Q):
0.91
Prob(JB):
0.00
\n",
"
\n",
"
\n",
"
Heteroskedasticity (H):
3.10
Skew:
-0.35
\n",
"
\n",
"
\n",
"
Prob(H) (two-sided):
0.00
Kurtosis:
4.23
\n",
"
\n",
"
Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step)."
],
"text/plain": [
"\n",
"\"\"\"\n",
" SARIMAX Results \n",
"===========================================================================================\n",
"Dep. Variable: close No. Observations: 278\n",
"Model: SARIMAX(3, 1, 3)x(1, 0, [1], 7) Log Likelihood -1338.384\n",
"Date: Mon, 15 Jun 2020 AIC 2694.769\n",
"Time: 18:46:24 BIC 2727.020\n",
"Sample: 0 HQIC 2707.726\n",
" - 278 \n",
"Covariance Type: opg \n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"ar.L1 0.1074 0.048 2.258 0.024 0.014 0.201\n",
"ar.L2 0.0521 0.038 1.359 0.174 -0.023 0.127\n",
"ar.L3 -0.8974 0.042 -21.606 0.000 -0.979 -0.816\n",
"ma.L1 -0.1125 0.036 -3.113 0.002 -0.183 -0.042\n",
"ma.L2 -0.1496 0.041 -3.671 0.000 -0.229 -0.070\n",
"ma.L3 0.9763 0.032 30.611 0.000 0.914 1.039\n",
"ar.S.L7 0.1821 0.675 0.270 0.787 -1.141 1.506\n",
"ma.S.L7 -0.2247 0.666 -0.337 0.736 -1.531 1.081\n",
"sigma2 1319.0972 99.104 13.310 0.000 1124.858 1513.337\n",
"===================================================================================\n",
"Ljung-Box (Q): 28.84 Jarque-Bera (JB): 22.02\n",
"Prob(Q): 0.91 Prob(JB): 0.00\n",
"Heteroskedasticity (H): 3.10 Skew: -0.35\n",
"Prob(H) (two-sided): 0.00 Kurtosis: 4.23\n",
"===================================================================================\n",
"\n",
"Warnings:\n",
"[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n",
"\"\"\""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results.summary()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1475.3973982 1462.84752096 1470.99540557 1498.12115484 1537.51838107\n",
" 1508.09054892 1581.14926322 1627.24259216 1650.12797834 1649.53776158\n",
" 1657.7163931 1648.12485235 1625.78085085 1671.04311494 1672.23342965\n",
" 1683.43565237 1693.6949342 1642.5733451 1657.25345019 1652.28661236\n",
" 1661.06421713 1620.90897063 1594.76080937 1679.5496602 1724.90278402\n",
" 1629.30624018 1638.13065893 1647.51124676 1636.55265666 1606.68029738]\n"
]
}
],
"source": [
"# Generate predictions\n",
"one_step_forecast = results.get_prediction(start=-30)\n",
"\n",
"# Extract prediction mean\n",
"mean_forecast = one_step_forecast.predicted_mean\n",
"\n",
"# Get confidence intervals of predictions\n",
"confidence_intervals = one_step_forecast.conf_int()\n",
"\n",
"# Select lower and upper confidence limits\n",
"lower_limits = confidence_intervals.loc[:,'lower close']\n",
"upper_limits = confidence_intervals.loc[:,'upper close']\n",
"\n",
"# Print best estimate predictions\n",
"print(mean_forecast.values)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plotting one-step-ahead predictions\n",
"Now that you have your predictions on the Amazon stock, you should plot these predictions to see how you've done.\n",
"\n",
"You made predictions over the latest 30 days of data available, always forecasting just one day ahead. By evaluating these predictions you can judge how the model performs in making predictions for just the next day, where you don't know the answer."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAFZCAYAAACVGZfRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3RU1fbA8e9kksyk94QWEgMRCF2QjtKkSlUEVFQQUVDxwY8nIoii+IKKDwsIYnuIPFpEER5KkSrSFDAIGCIdDKSQnkzKzP39ERkymZJJSB32Zy3WYu45c2dnbljsObPvPqq0tDQFIYQQQgghHJhTdQcghBBCCCFEZZOkVwghhBBCODxJeoUQQgghhMOTpFcIIYQQQjg8SXqFEEIIIYTDk6RXCCGEEEI4PEl6hRBCCCGEw5OkVwghhBBCODxJeitYfHx8dYcgKoBcR8cg19ExyHV0DHIdHUNtvo6S9AohhBBCCIcnSa8QQgghhHB4kvQKIYQQQgiHJ0mvEEIIIYRweM7VHUBtU1hYSHZ2ttVxrVZLenp6FUYkysrZ2RkPD4/qDkMIIYQQVUiS3jIoLCwkMzMTX19fVCqVxTkajQatVlvFkYmyyM7OJi8vD41GU92hCCGEEKKKSHlDGWRnZ9tMeEXt4O7ujk6nq+4whBBCCFGFJOktI0l4az+5hkIIIWo6RVGqOwSHI0mvEEIIIUQNcigxj9Yx1whb+RcrTlu/j0iUTZlqerOysrh48SJZWVl4enoSFhYmNwQJIYQQQlSgf/ycxsUsPQAvHUznwQh33JzlW8pbZddK7/bt2xkwYADh4eF069aN/v37061bN8LDwxk4cCA7d+6s7DhFJdq7dy++vr6kpKRUdygVZtSoUUyaNKm6wxBCCCHKJD69gJOphcbH2YUKCTn6aozIcZS60rt48WJeeeUV1Go13bp1o1mzZnh4eJCdnc3Jkyf5+eefeeCBB4iOjubpp5+uipiFEEIIIRzS5ovmN1pnFhiqIRLHY3OlNy4ujldffZW7776bo0eP8u233xIdHc3s2bOJjo5mw4YNHDlyhLvvvptXXnmF06dPl+nF//3vf9OzZ09CQ0Np1KgRo0aN4uTJkyZzFEUhOjqapk2bUqdOHQYNGsSpU6dM5qSlpTFx4kQaNmxIw4YNmThxImlpaSZzTpw4wcCBA6lTpw7NmjXjrbfekiLxamQwGNDr5ZOrEEIIUZylpDer4Ga+cimrkD6bEmmw4i/mHcmoytBqPZtJ7xdffIGnpydr1qyhQYMGFueEhoayevVq3N3dWb58eZle/KeffuLJJ59ky5YtfPfddzg7OzNs2DBSU1ONc95//30WL17MW2+9xY4dOwgKCmL48OFkZmYa50yYMIHY2FjWrVtHTEwMsbGxJqvOGRkZDB8+nODgYHbs2MH8+fP58MMPWbRoUZnitcb3iyvGP3VWpZg8row/5ZGXl8dLL71EZGQkISEh9OnTh/3795vMOXz4MN26dSMkJIR7772XY8eOGcfS09OZOHEijRs3JiQkhNatW/PRRx+ZjL/wwgs0btyYBg0aMHDgQI4ePWocX7lyJfXr12fr1q107tyZoKAgli1bRlBQENevXzeJ4/XXX6dr167GxwcPHmTgwIHUrVuXZs2aMW3aNDIybv5Dz8nJYdKkSdSvX5/IyEjefffdcr1HQgghRHW6rtNzKDHf7HjxpPeD41n8klRAVqHCgt8y+ef+NFnEs5PNpPfAgQMMGzYMX19fmyfx8/Nj2LBh7Nu3r0wvvn79eh599FGioqJo3rw5H3/8McnJyRw4cAAoWuVdsmQJ//jHPxg6dChRUVEsWbKErKwsYmJigKLV6O3bt/Pee+/RsWNHOnTowMKFC9myZQvx8fEArFu3jtzcXJYsWUJUVBRDhw7lhRde4KOPPrptflHmzJnDN998w6JFi9izZw9RUVE8+OCDXL161TjnlVdeYe7cuezcuZPw8HAeeughcnJyAJg3bx4nT55kzZo1HDp0iEWLFlGvXj2g6DqNGjWKhIQE1qxZw549e+jSpQtDhgwxOb9Op2PBggUsXLiQgwcP8vDDD+Pv78+3335rnKMoCjExMYwaNQooWqEfMWIEAwYM4KeffmLFihUcP36c5557ziTuXbt28eWXX7JhwwZiY2P5+eefK/X9FEIIISra0ZQCLGUlWcXKGz75w7Sbwyd/ZPPDJek9bw+bSe+FCxdo0aKFXSdq0aIFFy5cuKVgsrKyMBgMxiT7woULXLt2jV69ehnnuLm50aVLFw4ePAjAoUOH8PT0pGPHjsY5nTp1wsPDw2RO586dcXNzM87p3bs3CQkJtxxzbZCdnc3nn3/Oa6+9Rr9+/WjSpAkLFy4kKCiITz/91Djvn//8J7179yYqKorFixej0+mMHy4uXbpEq1ataNeuHWFhYXTv3p1hw4YBsGfPHo4fP87y5ctp164dERERzJ49m7CwMNasWWM8v16v5+2336ZTp040btwYHx8fRowYwbp164xzDhw4wOXLl3nwwQcB+OCDDxg+fDjPP/88jRo1on379rz77rt89913JCUlkZWVxYoVK5g7d65J7NKLVwghRG3zvwuWk9fZh9NZHpdNvt7yQt2ehLzKDMth2LyRLTMzE29vb7tO5OXlZVJyUB4vvfQSLVu2pEOHDgBcu3YNgKCgIJN5QUFBJCQkAJCYmEhAQIBJkqNSqQgMDCQxMdE458aqZPFz3BgLDw83i+XGKnFxWq22RmxdW9bdxOLi4igoKKBt27Ymz23Xrh0nT56kc+fOALRu3do47uzsTLNmzThx4gQ6nY6xY8cyYcIEjh07xj333EPfvn3p0qULAL/88gs5OTk0atTI5HXz8vL4888/0el0FBQU4OzsTGRkpEkMw4YNY+nSpcTHxxMaGsqqVavo0qUL/v7+6HQ6jh49yvnz51m/fr3xOTdW5+Pi4nBzcyM/P99i7Hq93up7lZGRYfz9sMbS74CofeQ6Oga5jo5BrqNth//SAGqz4wk5Bl74OY1dZ5PwVDuTpTdd2LmUnE58fFIVRVmzr2NkZKTVMZtJr16vt3vFTKVSYTCU/+7Cl19+mQMHDvDDDz+gVpte8JIxKIpiluSWVNqcG4mTtZ/P0puWnp6OVqs1O542rr7x7zqdzuKc6uTi4gIUJe3FY1Or1ajValxdXQHQaDQm405OTqjVarRaLYMGDeL3339n27Zt7N69m7FjxzJ06FA++ugj1Go1wcHBfP/992av7eXlhVarxcXFBY1GY9bXuWPHjtx5551s3LiR559/nk2bNvH666+bxPHYY48xefJks3PXrVvX+A/PVuyWeHt7ExoaavU9i4+Pt/kPR9QOch0dg1xHxyDXsXSqk4lAgdXxXamueLiqyMo1zbcUrSeRkQGVHF2R2nwdS21ZtnLlSmONrS1nzpwpdxAzZ85k/fr1bNy40WTVNSQkBChajS1+I11ycrJxpTY4OJjk5GSTJFdRFFJSUkzmlFzVS05OBsxXkR1RREQErq6u7N+/3/j+6vV6Dh06ZCwjgKIb2W6M32hJN3r0aON4QEAAo0ePZvTo0dx33308+eSTLFy4kNatW5OYmIiTk5PFVfPSjBw5knXr1tGsWTNycnIYMmSIcax169acOnWKiIgIqz+bi4uLxdjLE4sQQghRXfKslC/ckJqngIWq3/R8aWlmj1KT3t27d7N79267TlaeOsoZM2awfv16Nm3axJ133mkyFhYWRkhICDt37uSuu+4CilZS9+/fz+uvvw5Ahw4dyMrK4tChQ8a63kOHDpGdnW183KFDB1577TWTVdidO3dSt25dwsLCyhxzbePh4cH48eOZO3cuAQEBhIWF8dFHH5GUlMSECROMq6ULFiwgMDCQOnXq8Pbbb+Pq6mpMit98801at25Ns2bNKCwsNH5A0Wg09OjRg06dOvHwww8zd+5cIiMjSUxMZPv27fTo0cNYBmHNQw89xJtvvsmbb77JgAEDTEpqXnjhBe677z6mTp3KE088gZeXF6dPn+aHH37gvffew9PTk7Fjx/Laa6+ZxH4r3zoIIYQQ1UFXStJrTXr+7XFT/q2ymfQWbx1WGaZPn86aNWv46quv8PX1Ndbwenh44OnpiUqlYtKkSbz77rtERkbSuHFjFixYgIeHhzEZa9KkCX369GHq1Km8//77KIrC1KlT6devn3H5/cEHH+Stt95i8uTJTJ8+nT///JP33nuPF1988ba54Wnu3LkAPPvss6Snp9OqVStiYmKoU6eOMel99dVXmTVrFn/++SdNmzZlzZo1xnIEjUbDvHnzuHDhAhqNhrvvvpvVq1cDRR921q5dy7x583jhhRdISkoiODiYjh07MmbMmFJja9iwIZ06dWL//v3MmjXLZKxFixZs3ryZefPmcf/996PX6wkPD2fQoEHGOW+88QbZ2dk8+uijuLm5MXHiRGPXCSGEEKK2KG2l15pknfS9t4cqLS2t2j4eWGuFNmPGDGbOnAkUlSrMnz+f//znP6SlpdGuXTsWLFhAVFSUcX5qaiozZsww1pQOGDCAt99+2+T8J06cYPr06Rw5cgRfX1/GjRvHjBkzypT0pqen4+PjY3NOTazpFeZKu5a1uWZJ3CTX0THIdXQMch1LF77yL9LKsWrrpILEx+rh7FT5C3m1+TqWWt5gTWpqKlu3buXq1atERkbSv39/nJxsdkAzU3LXNEtUKhUzZ840JsGW+Pn5sWzZMpvnad68ucUbrYQQQgghaoK8ci7YGhS4mqOngWe507rbgs13JyYmhi+//JJPPvnEeFMZFLWoGj16NNevXzfeQHb33XfzzTff4O7uXulBCyGEEEI4EkVRyl3TC3A9z0ADzwoMyAHZXJpdv349GRkZJgkvwDPPPENqairTp09n9erVjBs3jkOHDvHhhx9WarBCCCGEEI6owGCpL4P9sgvlZrbS2FzpPX78OA899JDJsV9++YUzZ84wbtw4Xn75ZQD69evH5cuX+e6775gxY0blRSuEEEII4YByLCStziqwN5fNLpCktzQ2V3qTk5PNWnrt2LEDlUrF8OHDTY737NmT8+fPV3iAQgghhBCOxqAozDuSQedvrvHP/WnsvWq6lfAdXmo+6u5n9/lkpbd0Nld6vby8yMjIMDl28OBBnJ2dad++vclxT09P4y5nQgghhBDCul1/5bHgt0wATqUVsiI+22S8Zz0tDzVy5966GpqsuVrq+bIKpD99aWyu9N7YHvaG1NRUDhw4QLt27XBzczOZe+nSJYKDgysnSiGEEEIIB/LyoXSTxyVb7fYPLWp/GuxmX2esLClvKJXNld7nnnuOMWPGMGTIEDp16sSWLVvIzc1l/PjxZnO3b99Oq1atKi1QIYQQQghH8Fe2nj/SCq2OuzuruKeuBrC+223nEFf2X8s3Ps6UpLdUNj8+9O/fn7lz53Ls2DHeeecd4uPjmTFjBiNHjjSZd/DgQY4cOULfvn0rNVghhBBCiNpu/K7rNsfvqatB63wz2R3dyPTb9YWdfRnU0HQjrGs5sitbaUrtYjxlyhSeffZZUlJSCAoKsviJo1WrVpw5c6bU3cpE9TAYDEybNo0NGzaQmprKxo0b6d69e3WHJYQQQtx2UnR6DiTm25wzvbWXyeO57X0wKHAt18D01l50r6th/dkckzl/SdJbKru27lCr1Tbrdd3c3MxqfEXNsXXrVlauXMmmTZsIDw/Hz8/+u0Frkr179zJ48GDOnDlDQEBAdYcjhBBClNkpG2UNN7QPcjV5HOKuZtm9/ibH6nqoTR6fzSj9vLc7m0nvN998Y3VMpVKh0Who2LAhUVFRVmtORPU7e/YsISEhdOzYsdznKCgowMXFpQKjEkIIIW4/l7Nsr8h2CXG1OX5DM18XVNzc0OJUWiGJuXqC3dS2nnZbs5n0jh8/HpVKZbMVmUqlon79+syfP59BgwZVeIC1gY+v782/V8Hrpael2T130qRJrFq1CgBfX19CQ0P55ZdfePXVV/n666/JyMigZcuWvPHGG3Tu3Bm4uaK6du1a5s+fz/Hjx1mxYgX9+/fn+++/Z/78+fzxxx+EhIQwcuRIZsyYgatr0T/S/Px85s+fz9q1a0lMTKRu3bpMmjSJZ555Br1ezwsvvMCePXtITEykXr16PP744zz//PM4ORWVl584cYKZM2dy9OhRFEUhLCyM6OhowsLCGDx4MACNGjUCYMyYMSxZsqTC3lchhBCiMsSm5HM6vZA+9bUklWzTUMJdgfYlvb4aJ5r7u/D79YKbz425xuWx9W4pVkdmM+kt3q7MktzcXOLi4li5ciWPP/44GzZsoGvXrhUaoLg18+fPJzQ0lJUrV7Jjxw7UajVz5szh22+/ZdGiRYSHh7N48WIefPBBfv31V+rUqWN87muvvca8efOIiIjA09OTH3/8kYkTJxIdHU3Xrl25dOkS06ZNIy8vj3nz5gFFSfb+/fuJjo6mdevWXLx4kStXrgBFtcV169blP//5DwEBARw5coQXXngBPz8/HnvsMQCeeuopWrRowY8//oizszMnTpxAq9XSoEEDvvzySx577DEOHDiAn58fWq3W/AcWQgghapCtl3SM/jEFgwJhnmoGNLT+f5eHs4rxTT3sPvddgaZJb1ahQr5ewVUt375bYjPp7datW6knuO+++xg3bhz33nsv7733niS9NYyPjw9eXl44OTkREhJCdnY2n3/+OR988AH9+vUDYOHChezZs4dPP/2U2bNnG587Y8YMevXqZXy8YMECnn/+eR599FEA7rjjDl577TWefvpp3njjDc6ePcvXX39NTEwMffr0ASA8PNz4fBcXF2bNmmV8HBYWxm+//cbXX39tTHovXbrEc889x5133glARESEcf6NWuSgoCCp6RVCCFErPLcvFcPfX5hfyNKz7JTpJhTvdfHlTh9nfrqaR79QLRHedt1uBcB9DbR8edr0hjadJL1W2f/O2uDh4cHIkSNZunRpRZxOVKJz585RUFBAp06djMfUajUdOnTgjz/+MJnbtm1bk8e//fYbR44c4f333zceMxgM5Obmcu3aNWJjY3FycrLZGeLzzz/nyy+/5NKlS+h0OgoKCggNDTWOT548mSlTprBq1SruvfdehgwZYkyAhRBCiNpCV6jw3YVcEnNNd0ozlKgYbeChpksdDV3qaMr8Gv0amK8aF5Z8AWFUIUkvQEhICDk5OaVPdEDFa2x1Ol2N/tr9Rn22pRsPSx7z8DD9isVgMDBjxgyGDRtm9tzAwMBSt6Fev349M2fO5I033qBDhw54e3vzySefsGnTJuOcmTNn8tBDD7Ft2zZ27NjBW2+9xb///W/Gjh1r988ohBBCVCdFURj8QxKHkwpKnVuWld2SXNUq3NQqcvU3//+V3Yits29vOzv88ccfsg1xLRAREYGrqyv79+83HtPr9Rw6dIgmTZrYfG7r1q05ffo0ERERZn+cnZ1p3bo1BoOBvXv3Wnz+/v37adeuHRMnTqRNmzZERERw7tw5s3mNGjXimWeeYe3atYwdO5YVK1YAGG+W0+ulF6EQQoia61RaoV0Jr5taRajnrXVb8NWYLljNOpzOj1d0t3ROR1UhSe/Ro0f58ssvue+++yridKISeXh4MH78eObOncvWrVuJi4tj2rRpJCUlMWHCBJvPffHFF4mJieHNN9/k5MmTnD59mg0bNjBnzhygKFkdPnw4U6ZMYcOGDZw/f56ff/6Z1atXA9C4cWNiY2PZtm0bZ86c4e233+bnn382nj83N5fp06ezd+9eLly4wC+//MKBAweMyXhoaCgqlYotW7aQnJxMVlZWJb1LQgghRPmV1pbsho4hrrg43Vr9rXOJ58eczeWBrSnsu5p3S+d1RDbX1P/v//7P5pNzc3P5888/OXLkCCEhIcyYMaNCgxOVY+7cuQA8++yzpKen06pVK2JiYkw6N1jSu3dv1q5dyzvvvMOiRYtwdnamUaNGPPzww8Y5S5cu5c033+Sll14iJSWFevXqMXnyZADGjRvH8ePHmTBhAoqiMGTIEJ599lm++uoroKi2OC0tjUmTJpGYmIi/vz/9+vXjjTfeAKBevXrMnDmTefPmMWXKFEaPHi0ty4QQQtQ4V7LtS3q7laOOtyRnKznzslNZdK2A8zsSVVpamtVCzNJ27tJoNISGhnLfffcxbdo0AgMDKzzAmiQ9Pb3UrZZrek2vKFLatYyPjycyMrIKIxKVQa6jY5Dr6Bhul+uoKAqDvk/m52u2txoG2DwgsFw3sBXXYf01Tqeb78bm7aLi4qMV37O3Nl9Hmyu9qampVRWHEEIIIUSt99PVfLsSXoAOwfZtRGGLs5VC1XoesjNbSRV2I5sQQgghxO1u/zX7amnvqasxq8ctD2cL3ZgAKuDUDkeSXiGEEEKICnLBzpvYmvtVTNdYFyuZXFKu9C4rSZJeIYQQQogKYm/nBk9r2WoZWVstTtIZePNIRoW8RrmU0ru/OkjSK4QQQghRQTJK7A7xVFMPi/NC3ComBbNVxvDOb5l8eqp62ntqrqZUy+vaIklvGZW265io+eQaCiGEqCxZBab/xzzZzIM1fQLM5tVxr5gbzUrbdnj6gXT0pcwpNCh8eiqL135J50KmeSeI8lDn1rw+wZL0loGHhwdpaWmSNNVyOTk50lZOCCFEpcgusdLr6awiykL9bv0K6q6gtyMlySywPemd3zKZfiCd945n0fd/SaUm0vZwyq+Y5LkilauK+vLlyyQnJ9O4cWM8PT3L/eL79u3jww8/5LfffiMhIYHFixfzyCOPGMd9fX0tPm/ChAksWLAAgEmTJrFq1SqT8fbt27N9+3bj47y8PGbPns3XX3+NTqfjnnvu4d1336V+/fplitfZ2RkvLy8yMqzXyGRkZODt7V2m84qq5ezsjEYjDbuFEEJUvJIrvZ4uTvhqnBjYUMvmi0XbAzf0VNPS36VCXs+epPcGRVFQWej28NaxTOPfr+Ua2HElj76ht7Y4pCq0r7a5KpUp6d20aRNz5szh/PnzAHzzzTfce++9pKSkMHjwYGbOnMngwYPtPl92djZRUVGMGTOGZ555xmw8Li7O5PHRo0cZPXo0w4YNMzneo0cPPv74Y+NjV1fTvnczZ85k8+bNfPbZZ/j5+TFr1ixGjRrF7t27UavL9knL2dnZ5qYGiYmJhIaGlumcQgghhKhd0vIMXMrW09TX2biVsKIoZBWWTHqLxr7o4c/qP3NIyNHzeBOPCmlXBvYlvbsT8pi+P43reQaejvJg3t0+OFlpdQaQml+Ozg+KgqqgEMXVpejvtTnp3bJlC4899hjt27dn1KhRzJ8/3zgWEBBAgwYN+O9//1umpLdv37707dsXwLhVbXEhISEmjzdv3kzjxo3p1q2byXGNRmM294b09HRWrFjB4sWL6dmzJwAff/wxLVu2ZNeuXfTu3dvueIUQQgghTqcVMOj7ZJJ0Blr5u7B1UBBaZxU5hQrFKwO06pvdFTRqFY83sXxT260w2FGKMOdwOkm6okT2oxPZDAh1o3td6994ermUPSHXJKSg1uWTE1EPDAqoVGAwgFPNqaS1O5K3336bjh07snXrVp566imz8bvvvpvjx49XaHDFZWVlsX79eh5//HGzsf3799O4cWPatWvHlClTSEpKMo4dO3aMgoICevXqZTzWoEEDmjRpwsGDBystXiGEEEI4po9PZRuTyNjrBXx/KReAs5mmq5uB2srfFc3Ggq1Ryd7BuxNu3mSWU2i+qqtVly3pddLl43o9HShKwFUGA6hUqPQ1q1ew3Su9J0+e5PXXX7c6HhISQnJycoUEZUlMTAx5eXmMGTPG5HifPn0YPHgwYWFhXLx4kXnz5jFkyBB27dqFRqMhMTERtVpNQIDpnZNBQUEkJiZafb34+Phyx3orzxU1h1xHxyDX0THIdXQMjnIdP/vD3eTxO78k06IwjzWXnYGbJZZhrvmV/jMrBRqgbMn11eTrxMdfK/p7ngpwMxm/cPkK8TnWE9aSP1NIPngVQkZWDn/Gx+NqgCgDXDx7Dl0VL/RGRkZaHbM76XV1dSUvz3r7iUuXLlXqDVzLly9n0KBBBAYGmhx/4IEHjH9v3rw5bdq0oWXLlmzZsoUhQ4ZYPZ+1Yu4bbL1ptsTHx5f7uaLmkOvoGOQ6Oga5jo7BUa5jer4BfkowOebp5kZkZEOOxCcB+cbjfSL8iIz0qtR4fOKTICu/9InFuHn7EhlZ1CwgNyUfSDIZD6pTj8gwNwvPtHwdPU5fhII8PNzdiAyvg+s3G1CnZBL+6EPoPd0tnqc62J1/d+rUiW+++cbiWEZGBitXrqR79+4VFlhxsbGxHD161GJpQ0l169alXr16nD17FoDg4GD0ej0pKaZNkpOTkwkKCqqUeIUQQgjheK7l6GmyOsHsuNqpqNft0eQCk+PD77CcOFYk13LcEJdX7O631DzzFV0LFQ82qf6uK1YpCsq4Cbg99SSql/6B6xvWKwSqg91J70svvcSJEycYNmwY33//PVCUjH7++efce++9ZGRk8OKLL1ZKkMuXL6dhw4b06NGj1LkpKSkkJCQYb2xr06YNLi4u7Ny50zjnypUrxMXF0bFjx0qJVwghhBCOZ93ZHHQWmhKcyShk0PfJ5BZLJoPdnAjzrPyaXk05XkJXLM7rFpLeAjv79LokpaFOzzJuOZx2NQXfjd8ax10/Xlr24CqR3eUNbdu2JSYmhqlTp/Lcc88BMGfOHAAaNWpETEwMTZo0KdOLZ2VlGVdkDQYDly9fJjY2Fj8/P2Pbr5ycHNatW8eUKVPMyhGysrKYP38+Q4YMISQkhIsXL/L6668TFBTE/fffD4CPjw9jx45lzpw5BAUFGVuWNW/e3K4kWgghhBAC4Iu4bIvHE3MNJOaalhi0D3K1WUZZUQY2dGPr5bLtfpZbrK1ais486c23J+lVFDRJqShOTjfuX+OTc7nMNDtZPpRoJVtdytSnt1u3bhw+fJjjx49z5swZDAYDd9xxB23atCnXhT169KhJi7Po6Giio6MZM2YMS5YsAWD9+vVkZ2ebbFpxg1qt5uTJk6xevZr09HRCQkLo3r07X3zxBV5eN2to/vWvf6FWq1SpuJsAACAASURBVBk3bpxxc4qlS5eWuUevEEIIIW5PmQUGPF2cAPv6z94dVDWJ3pjG7nz4eyZnMvS4qVVEeKs5kWp7N7SMfNsrvUm5pdc3qPR6VAYFlb6QPEWFRoHYNPPaYtfzV8i/8w47fpLKV64d2Vq2bEnLli1v+cW7d+9OWlqazTmPPvoojz76qMUxNzc31q9fX+rraLVa3nnnHd55551yxSmEEEKI25OiKDy3L42V8Tllel7bwIrZca00GrWKPUOC2Xc1n0gfZz46kVVq0ptSLNG1lPS+9msGL7T0tLmgqSrQk5Vv4JFzrlz440/m7/2cyWkpZvPU1xKhhiS9dtf07tu3j6VLTWsz1q1bR/v27WncuDEzZszAYKhZ/diEEEIIIW7FbykFZU54AVpV0DbD9vBwcaJvqJY7vJ3Bji/eU4oVJl+3UN4AcDrdduKsKijkravOXDwVz/73H2HggU10/2O/2TyndNuLm1XJ7qT3rbfeMtnM4fTp00yePBknJyfatm3LJ598YpYUCyGEEELUZn9m2E7+LBkarsW/CjamsMSeYtNknQHl75vPrlkpZcgusF3X61RQyHsXCzi8cBQe+bnWJ6Zn2BFR1bA76f3jjz9o166d8fHatWtxc3Nj+/btrFu3jlGjRvHVV19VSpBCCCGEENUhzcLX/wB13CynUG0DXXi3s29lhnTLCgyQUaCQr1dMdmcriwydnlHHfsBVX8qKcEZ6uc5fGexOejMyMvD1vXkRf/zxR3r27GnckKJz585cvHix4iMUQgghhKgmafnmK55dQlyZ087yhlxbBgZVyfbD1tjbViBFZ7CZ8GYU2C5ZPXK9kDe+/7D0F8qohSu9ISEhxMXFAZCQkEBsbCy9evUyjmdkZEg3BCGEEEI4lJIrvfXcnfi2XyAR3pZ7AbiqK79NmS32NtNK1um5km29E8WwLSmsjLfcoi1Zp2f+wQTqpyeW+jqFNai8we7uDYMHD+aTTz4hLy+PI0eOoNFoGDBggHH8999/Jzw8vDJiFEIIIYSoFpeyTb++n9HGG1e1ijruNXOhr66dcSXrDKWuCk/bn8aAUNP65JR8mLr0AHtfG2TX66w6m8kwRamSnsWlsXuld+bMmQwZMoS1a9dy7do1Fi1aRHBwMFC0yrtx40Z69uxZaYEKIYQQQlQlg6KwN8G092yLv7syNLSw29qTTT2qJC5bnmhiXwzJOkOpO6/l6eFAounPvznR2e6EF+DBHf81O0d1sXul18PDg2XLllkc8/T05OTJk7i7u1dYYEIIIYQQ1en36wUmfWy9XVW0DihKep1UKtb3DWDE1pu9aZ9v4VnlMZbk4+pEfXc1V3Jsb6KRojOgsaMUI7NEF4eCs2W7f8szP5fU7XvgkfvK9LzKYPdKb0mZmZlkZmYWncTJCR8fH1xcqq4nnRBCCCFEZdpT4kavriEanJ1uJoq96mu5OrYeu4cEcf7huoR7lWvPrwp3d3Dpu8El6wwU2rHdcJ7edI7/xXNljqfDf+y44a0KlCnpvXjxIk8//TQRERGEhYURFhZGREQEzzzzjHRuEEIIIYRDiU0pMHncva7GbI7WWUXrAFd8NeVeR6xw9jSPuJhVSL4de4rpCk2TXk3q9TLH0+jwnjI/pzLY/ZEkPj6efv36kZ6eTo8ePWjSpAmKohAfH8+6devYtm0bW7ZsoXHjxpUZrxBCCCFEpVMUhcNJprWorQJqxzfa3q6lJ+AbL+iI8iv95ym50uuRar7VcGkyvf3L/JzKYHfSO3fuXBRFYefOnbRq1cpk7Pjx4wwdOpS5c+eyYsWKCg9SCCGEEKIqxV4v4FzmzbpYZxW0sCNJrAl87Eh6AXZc0ZU6R1ci6dVY2WzivF89wlP/sjimGOxYUq4Cdq/F//TTTzz99NNmCS9Ay5Yteeqpp9i7d2+FBieEEEIIUZlyCxWm/ZxGm5irTNqbSr5e4VRqAfd+l2Qy7566mhpVwmCLt6t97cEOJxWUOiev2P1wGfkGNDrLWw4/+8Bsq+fwzE6HGpD42r3Sm5+fb9x9zRIfHx/y82tGSwohhBBCOL4r2Xqu5ehpG+hS7j6wT+y6zpZLRSue5zNzWPVnDgEWktvm/rVjlRfsX+kt6V8dfCg0KMz55eaGEsVXeq9k6/HIzzF5zi8NmvN/Q//J7CF3waeWz+ukKEU7s/lW7/bMdr8rUVFRrFmzhtxc8ww/Ly+PNWvWEBUVVaHBCSGEEEJYsuF8Ls3XXqXXpiRG/1j2m6sAEnL0xoS3uJQ881XJ0Y1qT1tWbxfz9M7LpfQPBS5OmLUxyyvW4eFyth7PPNOk99uhE3m6dysah1tOaJ966DXGTXgPNOY3AVY1u1d6p02bxqOPPkrPnj158skniYyMBOD06dN8/vnnxMfH89VXX1VaoEIIIYQQUHST2csHb9aWbrmko/M311jQ2ZeudexPrr6Is7zNbkk/Dwu266avmsLHQnmDRq0y67lbkquT+fPySqz0tsw3XfycF+GMPhiSfMw/FHzceSSfdh6Jkwre1Wip7j3s7F7pHThwIMuWLSMtLY0XX3yRESNGMGLECGbMmEFaWhrLli0z2ZZYCCGEEKIy/JZSYLb5wqm0Qu7/PpnvzluuOS1pw/lc3j6WWeq83vU1tSrhBcvdG7RqFbPaetl8nrOFld7cwhIrvSXKG9C6YdC6otWo2dKki8nQqrsGAmBQIN2e/miVrExdlB988EGGDRvGsWPHjH15GzZsSJs2bXB2rhkNmYUQQgjh2DZdsNx1QAEe23mdtHH1bT7/WHI+j++0ryTivgbasoZX7SzdyKZRw7RWXrx51Hqi7+qkMkuYU3Q3k9XLWYV45JX4UOHmBk5OqFQq4p6aRuu5cdTJTGFvi27M6teSdz0KcW/aoEbcBFjmTNXZ2Zn27dvTvn37yohHCCGEEMKmfdfybI4rimL1xrYLmYX02JhkccySZr61b1HPUk2vRq1C7aTCX+NksrVycYFaJ7PkNLFY0nslW4+PLstkXO/lhfL3W/18+zB++c+3/JWeSvuuzdEkpqG4QJZHdRc2FLF6JS9dulSuE4aGhpY7GCGEEEKI0iTl2v6qPFev4O5sOen938XSe9MWZ2kXtprOUnnDjbKFIK31pLdziIYknWnZSHLuzcepeQaCs0w3pygMrY9TsVLhO3s2x+vEOXJdi7ZCVumrv6zhBqtJb6tWrcrV/uP69fLdQSmEEEIIYQ9rSdsN/7c/nQ+6+uJS7MasH6/oeO6nVBJyLD/343v8eHpPqvFxtzqubOwfWO5WaNXJ0jbEN5owBGidwML+EuFearTOKoJKPPlqrgGDouCkUqHJysBVX2gc07u5ow/wwym9aPU3NzQYnJwAFYqLMyqD4eYL1wBWk95FixbVygsthBBCCMelNyiklpL0rvozhz71NTwQcbOjwEsH060mvNNbeTGqkTujGrlzJr2QHL1Ccz/nWpsHWYo7/+8uDIFay7W1QX8f1zqr8HZRkVGs08PyuBzGNfXAM810lVfv71+U3CpFcwsCfP4OAFCpUClQVGldM1hNeh955JGqjEMIIYQQolRXcvR2pVGvHE43Jr35eoX49EKL88ZGujO73c3Ntxr51L4aXnvkGZNey/W1/sWOl+xcNnV/GuOaeuCSkmxyXB8QhOKiRlGbn1NRqcgJDcb9UuItRl5xSr2VLiEhgYSEhFLnXL16tcKCEkIIIYSwZMcV2zex3XCtWN2vrXKIDsGutxxTbXCjY1igm+XUr/gudGn55h8r0nR6Zm78wOSYEhSI3sONnDvqmp/QqdjKbw1hM+k9duwYLVq0ICYmxuZJYmJiaNGiBSdPnqzQ4IQQQgghitv1l2nSG2Tl63q/Yklc8bZbJVm74c3RpP2d+AdaaR0WUOx9tPSefPZrIr3+PGRyTAkKLPqLpTKQGlgaYjPp/fTTT4mIiOC5556zeZJnn32WiIgIli1bVqHBCSGEEEIAHE7M56nd1/m2xOYTX/T0tzjfJOm1sdKrVde85Kwi+JdIboP/XuG1VtNbfKXX0pbFh3YeNTumCgyy+vrK30mv3q3mdL+wmfTu3buXoUOHllrI7eTkxNChQ9m1a1dFxiaEEEIIQVqegTE/prDurPlua839XBjVyM3suG+xDRqu34Yrvcvu8TN5PKGZJwCBbtZqem+mhCV3ZQNILTQ/pgq0/IEDRTGu9GY1aWhXvFXBZtKbkJBAeHi4XScKCwsrtfa3pH379jF69GiaNWuGr68vK1euNBmfNGkSvr6+Jn/69OljMicvL49//vOfREREUK9ePUaPHs2VK1dM5ly6dIlRo0ZRr149IiIiePHFF8nPzy9TrEIIIYSoHuvP5ZJsIXENcXPCT+OEc8k7rwBPl+IrvXqz8Ru0Dpr09q6vYWpLTxp4qHngDjfG3ll0U589K70PN3Y3G3fPt7C9s8byKm6Bv7dxpbcmsZn0urm5kZlZ+r7UAJmZmWi1ZduqLzs7m6ioKObPn4+bm/mnNIAePXoQFxdn/LNu3TqT8ZkzZ7Jx40Y+++wzNm/eTGZmJqNGjUKvL/oF1+v1jBo1iqysLDZv3sxnn33Gd999x6xZs8oUqxBCCCGqx54Eyzev3fP3xhFZBeYJcX6x/rC2anrdHLS8QaVS8Wp7H35/qA6f9fDHy6WU8oZix5+O8jQb99Zlmz/J2XKnC139IHCuGbuwFWcz6W3atCk7d+6060S7du2iadOmZXrxvn37MmfOHIYOHYqTk+VQNBoNISEhxj9+fjeX69PT01mxYgWvv/46PXv2pE2bNnz88cecOHHCWGqxY8cOTp06xccff0ybNm3o2bMnc+fO5csvvyQjI6NM8QohhBCiahkUhb1Wkt576xUlvZkWug3caNEFpSS9DrrSa03JWl9Lx/00Tni7mr4vXnnmSW9hhw4VG1wls5n0jhgxgu3bt7NhwwabJ9mwYQPbtm3jgQceqNDgAPbv30/jxo1p164dU6ZMISnp5n7Zx44do6CggF69ehmPNWjQgCZNmnDw4EEADh06RJMmTWjQoIFxTu/evcnLy+PYsWMVHq8QQgghKs6f6YVWb0S79++V3gwLK725hTeT3qxC6519HfVGNmsslYIA1PUwXZmt72762Edn/s2/oXXrigusCtjswDxu3DjWrFnD+PHjGTt2LKNGjaJ58+Z4eXmRmZnJyZMnWb16NV999RVt27Zl3LhxFRpcnz59GDx4MGFhYVy8eJF58+YxZMgQdu3ahUajITExEbVaTUBAgMnzgoKCSEwsaoacmJhIUJDp3YUBAQGo1WrjHEvi4+PLHfetPFfUHHIdHYNcR8cg19ExlOc6bk1SA5ZrR3UJ54gHRvir+SXJdE6mLt/4eslprlhLea5ePEf+7dGq1+gOdy3ncm6uew4MKuTq+TMU33FBVagBbia+ESmXTc6xdcRE/Gvgv8vIyEirYzaTXldXV2JiYnjmmWdYvnw5X375pdkcRVHo27cvS5YswcXF5dajLab4ynHz5s1p06YNLVu2ZMuWLQwZMsTq8xRFMek4Ya37hK2uFLbeNFvi4+PL/VxRc8h1dAxyHR2DXEfHUN7ruPBqKpBjdvyjbr5ERtYHoMEdCu9dvEpisQ0pDE4uREaGAuB8MQXQWTx/1J2NjPWut4s3XHOZsPs6Oj30baDhv/fVN5sTfDaZk1k3y0qaJJ43Ge/VrjHZtezfZal77fn7+7N27Vp+/fVXvv/+e+Li4sjMzMTLy4smTZowYMAA2rVrVxWxUrduXerVq8fZs2cBCA4ORq/Xk5KSQmBgoHFecnIyXbp0Mc65UepwQ0pKCnq93mwFWAghhBA1yy9Jpt2Wovycmdveh/sa3Lx53s1Zxc7BwTRfe3OtUlesprd4fW9Jjnojmy33h7kRO7IO2QUKd3hbTgV9StT0Rl09Y/JYiYiotPgqi90bTLdr167KkltrUlJSSEhIICQkBIA2bdrg4uLCzp07GTlyJABXrlwhLi6Ojh07AtChQwcWLFjAlStXqF+/6JPMzp070Wg0tGnTpnp+ECGEEELYpCgKK+JzOJ1eaHL8fwOCTDaeuMGzxIYKumJ1vLk2kl5rNa6OLthNDZYbZwHg/ffqd930RNYun0bEddPyBoMjJ72VISsry7hqazAYuHz5MrGxsfj5+eHn58f8+fMZMmQIISEhXLx4kddff52goCDuv/9+AHx8fBg7dixz5swhKCgIPz8/Zs2aRfPmzenRowcAvXr1olmzZjzzzDPMmzeP1NRU5syZw2OPPYa3t3d1/ehCCCGEsGH1mVym7EszORakdbKY8IL5im2uXiGzwICbWmVzpVdY5uNa9D676gvodq7EbmyNIjH4+lZDVLemWpPeo0ePMnjwYOPj6OhooqOjGTNmDP/+97+NN8qlp6cTEhJC9+7d+eKLL/Dy8jI+51//+hdqtZpx48ah0+m45557WLp0KWp1UfG1Wq1mzZo1TJ8+nf79+6PVannwwQeZN29elf+8QgghhLBs3q8ZfBaXRQs/Fz6515/5R83big5oaH0/ABcnUAE30lu9AqFfJeCmVtlc6RWWef1d3nDRty5JHn4EZacax5SJz2Jwrdj7uKpCtSa93bt3Jy0tzer4+vXrSz2HVqvlnXfe4Z133rE6JzQ0lDVr1pQrRiGEEEJUrmPJ+SyILWqJtfdqPk3XXLU4b0JTD6vnUKlUWEptbSW8T9xpvvOYKHKjlZvi5MSLg/+PJTGvozYY2PDwNB7o2BXFtVpTyHKpfRELIYQQwqFEHyt991cPZxWtAiqmt9iwcDc6hbgyron1JPp251Ks1vk/HYfzbcteKCoVa1q4AgYMVnZjq8lqX8RCCCGEcCh/ZetLnbPsHr9S59jrvS6++FqpDRZFNCV2EU5z9wHAzUlXVEZSA7cZLo1ccSGEEEJUq6Tc0pPePg2s1/OWRZSfsyS8dnCx0tVCqwK9qzPUwq4X5b7qiYmJ+Pv7s3v37oqMRwghhBC3mUSd5W2Gb/B2UaGxo59uA4/SVx8/6lZxK8aOzNVa0uukkB/oBzY2+KqpbumjjqLI3ZBCCCGEKL9Cg4KhlHQiQGtfulJaCcTgMC1tAm+zPYfLqWR5ww1aFRg0tbM6Vtb3hRBCCFFttl+xvD1wcYF2Jr0dg12xtSC8vKe/vWHd9qyVNzg7gV6rqeJoKoYkvUIIIYSoNl+dzil1ToDWvpum1E4q6rhZnuvrqsKpFn4lX12slTe4OCm1sl0Z3ELS6+3tzeLFi2nWrFlFxiOEEEKI28ihpPxS59i70gtQz8Py3L4VdCPc7cLVyucMFydqZT0v3ELLMq1Wy8MPP1yRsQghhBDiNqI3KCSXchMblDXpVUNSgcmxIWFa5nXwKXN8tzNrK71K7duIzUjKG4QQQghRLVLyDKXexAb238gG4G+hHdkXPfwJtlL2ICxztVAcrVbBX7WznBeQpFcIIYQQ1eRabumrvAD13e1PWFVYSNZqYU/Z6uZiIUN0U6tQavFbKUmvEEIIIarF5axCk8ct/C1/dx7uZX81ZqCbpDYVwdfV/H20tPpbm8hvhhBCCCGqxT8PpJs8DvVQW6zfDfeyf6X3kcbuJmu9k5t7lDe821qop/l7fj3PvpX5mkqSXiGEEEJUi8vZptsPZxUYyMg3T6z8yrBtcJiXMwu7+NLU15nBYVqmtvS65ThvR04qVZluIKwNyty94dKlS+zbt4+kpCSGDx9OgwYNKCwsJDU1FT8/P5yda2fvNiGEEEJUr251Ney9atrCTKsGVRlbZD3RxIMnmsgK762K9HEmWVd6S7naokwp/Msvv0zbtm2ZNGkSr776KmfOnAEgJyeHu+66i48//rhSghRCCCGE4yl5f9l4C4mqcy3tCesIGns71kKm3UnvBx98wJIlS3j22Wf59ttvUZSbPUa8vb0ZNGgQmzZtqpQghRBCCOFYCg2KSbsyFUWtyRqWqCVtH+xatYEJownNTD+EDAt3q6ZIKobdSe/y5ct56KGHmDt3Li1btjQbb968uXHlVwghhBDClswC0wa9Xn9vE/zG3aabSDzb3LMqwxLFtA5w5ammRYlvkNaJKS1q97Wwe9368uXLTJkyxeq4l5cX6enpVseFEEIIIW5I0ZnexOb9d2PYwWFa5rTzZucVHX0baOldvxbvhuAA3unsy8y2Xni6OOGqVhGfVt0RlZ/dSa+/vz9Xr161On7ixAnq1q1bIUEJIYQQwrGdSDXt0Rv2d1syJ5WKaa28mNZKui7UFP5ax9jNzu7yhr59+7J8+XJSUlLMxn777Te++uorBg0aVKHBCSGEEMKxLPo9k6arE3h853WT462sbEwhREWxO+l9+eWXcXJyokuXLrz22muoVCpWrlzJ+PHjue+++6hXrx7//Oc/KzNWIYQQQtRiFzILmX04g6sWth9uFSA3rInKZXfSGxISwq5du+jfvz8bN25EURTWrVvH9u3bGTVqFFu3bsXX17cyYxVCCCFELXYitcDqWEtZ6RWVrEwN2AIDA3n//fd5//33SU5OxmAwEBgYiJOTY+3YIYQQQoiKl6yzvI2tixM08XWsnrCi5in3b1hgYGBFxiGEEEIIB5diJekdEKrFpeROFUJUMLuXaGfOnMldd91ldbxdu3a88sorFRKUEEIIIRyPpZXeZ5t7sqibXzVEI243die9W7duZcSIEVbHhw8fzg8//FCmF9+3bx+jR4+mWbNm+Pr6snLlSuNYQUEBr776Kl26dKFevXo0adKECRMmcOnSJZNzDBo0CF9fX5M/48ePN5mTlpbGxIkTadiwIQ0bNmTixImkpdXiRnNCCCFELVSyN+8HXX15s4MP3q5SJikqn92/ZVeuXKFhw4ZWxxs2bMiVK1fK9OLZ2dlERUUxf/583NxMt7bLycnht99+Y/r06ezevZv//ve/XLlyhQcffJDCQtPefo888ghxcXHGPwsXLjQZnzBhArGxsaxbt46YmBhiY2N5+umnyxSrEEIIIW5NyfKGQK0ku6Lq2F3T6+Xlxfnz562Onzt3Dq1WW6YX79u3L3379gVg8uTJJmM+Pj58++23JscWLlxIp06diIuLo3nz5sbj7u7uhISEWHyNuLg4tm/fzg8//EDHjh2N5xkwYADx8fFERkaWKWYhhBBClM/P1/JNHgdoJOkVVcfu37Z77rmHzz//3GLie/78eb744gvuueeeiozNTGZmJoBZa7Svv/6aiIgIOnXqxOzZs43zAA4dOoSnp6cx4QXo1KkTHh4eHDx4sFLjFUIIIUSRi7kqsgsVk2OBDrLTl6gd7F7pffnll9m2bRtdu3bl4YcfJioqCpVKxYkTJ1i1ahVqtZpZs2ZVWqD5+fnMnj2b/v37U79+fePxkSNHEhoaSp06dfjjjz+YO3cuv//+u3GVODExkYCAAFSqm3eFqlQqAgMDSUxMtPp68fHx5Y71Vp4rag65jo5BrqNjkOtY+/2QaNqH189FoeDaOeKt/1csaqia/O/R1jf4die9jRo1YsuWLUyfPp1PP/3UZKxr1668/fbblVYqUFhYyMSJE0lPT2fVqlUmY0888YTx782bNyc8PJzevXtz7Ngx2rRpA2CS8N6gKIrF4zeU92eRkgnHINfRMch1dAxyHWs/RVHY8stlk2PT2vjQ9M4G1RSRKK/a/O+xTH16mzVrxv/+9z9SUlI4f/48iqIQERGBv79/ZcVHYWEhTz75JCdPnmTTpk2lvlbbtm1Rq9WcPXuWNm3aEBwcTHJyskmSqygKKSkpBAUFVVrcQgghhChyLKWAi7qbFZUuTjA20qMaIxK3o3JtThEQEEBAQEBFx2KmoKCA8ePHc+rUKTZt2mT1ZrXiTpw4gV6vN87t0KEDWVlZHDp0yFjXe+jQIbKzs03qfIUQQghROfZdzTN53Ke+Fl+5iU1UMatJ7759+4Ci0oXij0tzY749srKyOHv2LAAGg4HLly8TGxuLn58fdevW5fHHH+fo0aOsWrUKlUrFtWvXAPD29sbNzY1z586xdu1a+vbti7+/P3FxccyePZtWrVrRqVMnAJo0aUKfPn2YOnUq77//PoqiMHXqVPr161drl+eFEEKI2uRKtml/3g7BrtUUibidWU1677//flQqFVevXsXV1dX42Job5QPXr1+3+8WPHj3K4MGDjY+jo6OJjo5mzJgxvPTSS2zevBmAHj16mDxv8eLFPPLII7i4uLB7926WLl1KdnY29evXp2/fvrz00kuo1TfvCP3kk0+YMWOGcXONAQMG8Pbbb9sdpxBCCCHKLyHHtD9vPQ/p2iCqntWkd+PGjQC4uhZ9Gvvuu+9sJr3l0b17d5s7o5W2a1qDBg2MibEtfn5+LFu2rMzxCSGEEMKyuLQCjl8voHd9LX42ShUUReFQoml5Qz13SXpF1bOa9Hbr1s3kcffu3Ss9GCGEEELUfDuu6BjzYwp5+qINJn4cHES4V1FKcTVHz7JTWWjVKiY39yQtz8BfxVZ63dQq2ga6WDu1EJXGriry3Nxc/P39WbBgQWXHI4QQQogaLCPfwHM/pZL3d5luSp6BpSezACgwKIzYmsy/Y7P419FM2sZco8W6aybPb+rnjKeL3MQmqp5dv3Vubm4EBQXh7e1d2fEIIYQQogb77585Jiu3AFsu6QBYHpfNydRC4/Eknek8gDu8ytU4SohbZvdHreHDh/PNN99gMJj/AgshhBDi9nAkOd/s2LlMPUm5eqYfSC/1+d3raCojLCFKZffHrUGDBrFnzx769+/PY489Rnh4OG5ubmbz2rVrV6EBCiGEEKLmOJdRaPF45Oqrdj1/ZCPz3EGIqmB30jtkyBDj3w8fPmzWyaE8LcuEEEIIUbucy9SXPsmKYeFuUs8rqo3dSe+iRYsqvGWZEEIIIWqPjHwDyRbqdO3h46wwt73cGySqj91J7yOPPFKZcQghhBCihjuXabm0oSR/jROP3enOdXqWhwAAIABJREFU9TwDrfxdyClUaGq4RpjcxCaqUam/fXl5eWzevJnz58/j7+9Pv379qFOnTlXEJoQQQogaYttlHSO3pZQ6b2pLT15s442bs+m3w/Hx9tX8ClFZbCa9165dY+DAgZw7dw5FUQBwd3dn7dq1dO3atUoCFEIIIUT1KDQozDqUzsensu1+zkttvdGopRxS1Dw2q8nnzZvH+fPnmTx5MmvWrCE6OhqtVsuLL75YVfEJIYQQopr898+cMiW8Tiok4RU1ls2V3h07djBmzBjmzZtnPBYcHMyECRO4cuUK9evXr/QAhRBCCFE9vj6ba3P8qWYefFIsKY7u4FPZIQlRbqWWN3Ts2NHkWKdOnVAUhcuXL0vSK4QQQjigE9cLeOHnVH5JKrA6x1kFU1t6EaBx4utzudxTV8OEph5VGKUQZWMz6dXr9Wi1WpNjNx7rdLrKi0oIIYQQ1eJUagF9/5dEdqFic96cdt7U81DzUltvXmorrchEzVdq94bz58/z66+/Gh9nZGQAEB8fj6enp9l82ZFNCCGEqJ0URWHqz2kWE97P7/Vj+B1uqFQqCg0Kzk5Suytql1KT3ujoaKKjo82Ol7yZTXZkE0IIIWq3E6mFHEjMtzg2IsLd+HdJeEVtZDPpXbx4cVXFIYQQQohqdjHL8uYTdd1l62BR+9lMeh9++OGqikMIIYQQ1azQyg7DU1t6VW0gQlQC+egmhBBCCAD0inkt75jG7jwS6W5hthC1i2yCLYQQQgjAfKV3ZIQbS7r7VU8wQlQwWekVQgghBAAFBtOVXtlcTTgSSXqFEEKIGup/F3J5aFsybx7JQG+w3Te3IpTsVCZdGoQjkfIGIYQQoga6kFnIE7uuU2CArZfzcHdWMbVV5d5Qpi9R3uAsOa9wIHav9KalpZU65/jx47cUjBBCCCGKLDuVTUGxJHTurxmV/pqFJW5kc5GVXuFA7E56R4wYQVZWltXxw4cPM3jw4AoJSgghhLidKYrC4hPm/+cWVnKJQ8kb2dRSBCkciN2/zgkJCYwcOZLc3Fyzsb179zJ8+HAiIyMrNDghhBDidlNoULh7faLFset5VhrpVtRrl1jpdVbJSq9wHHYnvRs2bODMmTOMGTOGvLw84/Ft27bx0EMP0bp1a7755ptKCVIIIYS4XSw+kcWfGZZ3RkvRVW7Sa1bTKyu9woHY/et85513sn79en777Tcee+wxCgsL2bBhA4888ghdunTh66+/xtPTs0wvvm/fPkaPHk2zZs3w9fVl5cqVJuOKohAdHU3Tpk2pU6cOgwYN4tSpUyZz0tLSmDhxIg0bNqRhw4ZMnDjRrP74xIkTDBw4kDp16tCsWTPeeustFAsNuIUQQoiKlJCjZ/7RDP5vfxpnrSSyJa04nWN1LLmSkl69QeFKtp4cvaz0CsdVps9wLVq04Ouvv2b//v3079+fCRMm0LdvX1avXo1Wqy3zi2dnZxMVFcX8+fNxc3MzG3///fdZvHgxb731Fjt27CAoKIjhw4eTmZlpnDNhwgRiY2NZt24dMTExxMbG8vTTTxvHMzIyGD58OMHBwezYsYP58+fz4YcfsmjRojLHK4QQQtjrfxdyabbmKvOPZfLZH9nc9fU1dv9V9E3p79cL2HZZR3r+zSQ2t1DhlcPpVld5Ac7YmTiXxdmMQvpvTqL52qu8fSzTZExqeoUjKXPLsrvuuou1a9fywAMPMHz4cJYuXYqTU/n+VfTt25e+ffsCMHnyZJMxRVFYsmQJ//jHPxg6dCgAS5YsITIykpiYGMaNG0dcXBzbt2/nhx9+oGPHjgAsXLiQAQMGEB8fT2RkJOvWrSM3N5clS5bg5uZGVFQUp0+f5qOPPuK5555DJZ9ihRBCVCBFUTiclM8jO66bjX0Vn82yU1n876IOgMbezmweGEiwm5rFJ7L48HfrN4wD7LuaxxNNPOyK43xmIe/FZqJRF7U6q+OuNpuz+688Hv4xheySDXr/Ji3LhCOxmq3WqVOHunXrWvwzfPhwdDod3333HfXr1zcer1evXoUFduHCBa5du0avXr2Mx9zc3OjSpQsHDx4E4NChQ3h6ehoTXoBOnTrh4eFhMqdz584mK8m9e/cmISHh/9u77+ioqq6Bw787qZM66aEloYTee5OOAelFEcGCoIigWGixoL76iiB8YEGsoK+CUkQFlCqRogEsdBBD72mk98zc74+YgWEmySTMhCTsZ62sldx77p1zOUyyc7LPPpw7d85m/RVCCCHS8gzcszGBu39MsHh+9eksY8ALcDI1nwEbE8jVq7zxl3lJskCt6Y/p1aezaL3mKruu5Ji1vZGqqkzcmcTn/2Ty0fEMHt+ZZNbmSqaeIZsTigx4QTanEFVLkTO9w4YNu62zoLGxsQAEBASYHA8ICODKlSsAxMXF4efnZ9JPRVHw9/cnLi7O2ObmYLzwnnFxcYSFhVl8/ZiYmDL3/VauFRWHjGPVIONYNVSWcfz0vCPRsc6luiYmJZ8aX14CzH/m/l+DDMYeME3/O52mZ9CmBCaG5DI0OB9/Cy+XnAd749yMX++8ksPWgycJcysIcHckOjDtuEuJfUtKTCAm5mqpnqc4lWUcRfEq8jgWV0msyKB3yZIldulMad0ceKuqahbk3qykNoWL2IoL6stafq0wrUJUbjKOVYOMY9VQmcbxUEw8kFvq6/JU859HOwYH0NzXCQ5ctnjNR+edWXrRmfe6+HB/PTd+u5rD63+lojfAxYx8wHTR2x+GQPqGewHw4JFYoOT84GqBAYSHl26RelEq0ziKolXmcaywKepBQUEAxhnbQgkJCcaZ2sDAQBISEkwqMaiqSmJiokkbS/cA81lkIYQQoqxUVWVfXOkDXkteau1FCz9nFEVhRG3zhd6F8gwwa28yqbkGHv3lGtGxueyLz+VypnmVh7kH0vj1ag4J2Xr+TrZuQZyULBNVidX/nRcuXEhERESR5/v168d7771nk04BhIaGEhQURFRUlPFYdnY20dHRxhze9u3bk56ezr59+4xt9u3bR0ZGhkmb6OhosrOv51BFRUVRrVo1QkNDbdZfIYQQd67157IIXXGFGyt+uTkqxD1UHYdSZgo20jkyrYWn8euX23gV2z45VyVk+RWuZpVczmzAxgQOJuZZ3RcpWSaqEquD3tWrV9OuXbsiz7dv355vvvmmVC+enp7OoUOHOHToEAaDgYsXL3Lo0CEuXLiAoihMmjSJRYsWsW7dOo4dO8aTTz6Ju7s7I0eOBKBBgwb06dOHZ599lt9//519+/bx7LPPEhERYZx6HzlyJFqtlieffJJjx46xbt06Fi1axJNPPimVG4QQQtySyxl6an55mQe3XyM113RBWBt/J5wdFLpVKzl39kY+LqY/msM8HUkeV4MLY6vdcn8BRmxJNPm6dw0XrjxoeSH6zX0RojKz+n/z2bNni83hqFu3bqmrIezfv59u3brRrVs3srKymDNnDt26dePNN98EYOrUqTz55JNMnz6dnj17cvXqVdauXYun5/XfgD/55BOaNm3K8OHDGTFiBE2bNuWjjz4ynvf29ua7777jypUr9OzZk+nTpzN58mSmTJlSqr4KIYQQNzKoKo1XXSW9iOoHD9UvKC02uYnlnNiRdSynLQwMtXzc08k+AWgzXye0jgoP13czO9ezRukCdiEqMqvr9Lq4uBirJlhy+fLlUtfrveuuu8x2T7uRoihERkYSGRlZZBsfHx8+/vjjYl+nSZMmbNy4sVR9E0IIISz5+mQmc/ancj5dX2SbiFqu3Fu3IIjsXcOFu2u6sOXi9TJjjzdy5+U2Xqw5nWV27f11i87hrenuwMWMol/XkqFhWr4/a/46hdoEFJR/mNXKi00Xson9N03i2H3BeDvLTK+oOqz+39y+fXu+/PJLkpLMa/0lJSWxfPlyk3q5QgghRFVzJVPPM78lFRvwArzTWWf8XFEUvujpx5z23jTxcWROe2/+294bTycNTzQ23WhialMPfF3NN5EodGOub3GGhLnyUTcfzo2pxuxicoIDXDX0qF4wm1vNzYEDI4OJGhRA/MPVqe5edD+EqIysnumdNWsW/fv3p0uXLkyaNInGjRujKApHjx7lww8/JCEhgc8//9yOXRVCCCFur20Xs8mxYqL15t3PtI4Kk5p4MOmmVIeZLb3YeTmHY8n5NPN1YkbL4oPah+q7kaNX2Z+QS0QtV+YfTONokmklBlcH+PAuX7T/bqfm7ayhQ6Aze2+qLNHU14mPu/mYpE1oHRVaWSr8K0QVYHXQ26pVK1auXMnUqVOZPXu2cRGYqqqEhYWxcuVK2rZta7eOCiGEELfbjhJ2QgN4uXXx1RZu5OOi4dehgVzM0FPT3aHEBdYaRWFi4+uB89AwLRE/JrAv/npA+0wzT2PAW2hcA3eToFcBfurvj5ekL4g7iNVBL0D37t3Zv38/Bw8e5MyZM6iqSp06dWjRooVUQhBCCFGlGVSVXy5bDnp/HhjAnrhcqmk1DCumrq4liqJQy6NUP45Nrt14jz/rz2UTl6WnbYAzrQPMZ2pH1NHyzalMY/9H1dVKwCvuOKV+lymKQsuWLWnZsqU9+iOEEELcdoZ/Nz3S3DChcywpn4Rs01q4CvBme2/aBDgbF4SVNweNwtASAm0njcLXvf3YfimbPAMMDHUtp94JUXGUKujV6/WsWLGCLVu2cP78eQBCQkKIiIhg9OjRODhI0rsQQojKK9+gMnNvCp/9nQFASz8nXm/nTaBWw4w9ptWGelZ34fOevpWmwoHWUWFAEeXQhLgTWB30pqamMnz4cP766y88PDwICwtDVVV27NjBjz/+yBdffGFWQ1cIIYSoTNaczjIGvAAHEvMYtCnBYtu+NV0rTcArhChFybI33niD/fv38+abb3Ly5El27tzJrl27OHXqFHPmzOGvv/7ijTfesGdfhRBCCLv6+Hi6Ve2cNNC/lqQICFGZWB30btiwgXHjxvHEE0/g7Hw9b8nJyYmJEyfyyCOPsH79ert0UgghhLC39DwDfyXkWdX2lTZe1PYq2+IzIcTtYXXQm5iYSKNGjYo837hxYxITE4s8L4QQQlRkM/emWNXuxVaeTGkqqXxCVDZWB721atUiKiqqyPNRUVHUqlXLJp0SQgghypOqqnxzMrPEdqv7+jG9pfV1eIUQFYfVQe/YsWP58ccfmTRpEsePHycvL4+8vDyOHTvG5MmT+emnn3jooYfs2VchhBDCLnZeyUGvmh67r+71Sgc13R04+0A1+taUPF4hKiurE5KmTp3KuXPn+Pzzz1m5cqXJjmyqqjJu3Diefvppu3VUCCGEKC3133q7xW2glJit5+dLpptO9KruwntdfOgY6MLlTD1j6rmhc5FKDUJUZlYHvYqisHDhQh5//HE2b95sUqf37rvvpnHjxnbrpBBCCFFaJ5LzeCTqGjEp+bT0d6JrsAu1PBzwddHww9ls9sblcCXTYPHa7tVdcHFQeLShezn3WghhL1YHvRcuXMDf359GjRpZXNCWlZVFQkKC5PUKIUQVdyI5D3dHhZpl3Dq3PKTmGhi9LZHTaXoA/ojP44946yozADTzdbJX14QQt4nVf6tp0aIFGzZsKPL8xo0badGihU06JYQQouLJyDMwZFMCHb6Lo+nqWHTLLrHwUBqqqmJQVfbG5nAmNb9c+7T9UjYrT2Xy9clMXv8zhaPX8kjKMdB3Q7wx4C2LOlKOTIgqx+p3dWFeVFHy8/OLzZkSQghReR25lkfXH+LMjr/2Zyrezhq2Xsxm44VsHBR4t4uOMeH2Twt45fcU3jliupnEB0czyLp5RVopBWk1hHo43NI9hBAVT6my8osKalNSUti2bRsBAQE26ZQQQoiKpds684C30HPRyWy8kA2AXoXIfSlk5lvOlbWVxGw9i4+a7552qwEvwHPNPWUSR4gqqNiZ3rfeeot58+YBBQHv448/zuOPP15k+4kTJ9q2d0IIIW67M6n5GEoRS6bmqhxLyqdtgHPJjUspz6CSma9y5Foe+Vb2aWZLT7ZfysbdScOQUC0qBTm77QKdOZiYy1O7kzl0LY8RtbU81dSDlv6277cQ4vYrNuht1aoVjzzyCKqq8vnnn9OtWzfq1q1r0kZRFNzc3GjVqhVDhw61a2eFEEKUv19jc0pudJM9sTk2D3q3XMjmkV+ukWdQrQ7CP+rmw6i6bkS2sryhRAs/Z3YOCbRhL4UQFVWxQW9ERAQREREA5OTk8Oijj9K2bdty6ZgQQojbz6CqLI8x36ns2WYeLDxsnl5Q6JfLOTbdqjcrX+XxndfItHZ6F5jcxINRdd1s1gchROVm9UK2Dz74wJ79EEIIUQFN2JFEdGyuybH3uugYG+7GkWt5bL1keRY4Idu2Ob1/JuSSnFu6fN2nmnrYtA9CiMqt2IVssbGx/Prrr6SlpZkcz8/P56233qJVq1ZUq1aN7t27s2nTJrt2VAghRPk6nZrP2jNZZsfreDmiKApvd9IVeW163q0vKCsUnaRh4MaEIs/fuF1woUGhrgS7SQUGIcR1xQa9CxcuZPTo0Tg6mk4Iz549m3nz5pGUlETDhg2JiYlh7Nix7Nmzx66dFUIIYT9bLmRz94Z4Rm5JIDZTz9/JljdzKKxhG+bpyKF7g6jjaR5cnkzN56ndSTy5K4nvzmQaa/nui8vhZIr1m0TkGVRejyk6N3hkHS0fdPVhTntvPBwLKi54OyvMbmM5h1cIcecqNr0hOjqae+65B632+m/R165d4+OPP6ZevXps2bIFnU7H+fPnufvuu3n//ffp2LGj3TsthBDCts6n5/NgVCI5/+7n0GDlVe6tYz6D2jnImWo3zKCGeDjy18hgknMMhK24YtL2y39zgVeczCSovwPLTmSw+nTBzHGnIGd+7O+PpoTSYOfT9MTnms/PzGrpyZAwLQ11BbPOk5p48GB9N44n5dNA54iXc6kqcgoh7gDFfle4ePEiTZo0MTm2ZcsW9Ho9U6ZMQacr+NNWSEgIDzzwAL///rv9eiqEEOKW5BtUdlzOIepSNnk3lD9IzTUwaVeSMeAtVBigFqrmpuGbPn4W7+3uVHzw+vbBNJP7Rcfm8t+/UgHI1at8fyaL56OTibqUzamUfNLyDOxPyOW7s+bpFa+28WJWKy8a+TiZ1NP1cNLQLtBZAl4hhEXFzvRmZWXh7e1tcmzPnj0oikL37t1NjteuXZukpCTb91AIIUSZFW7Tez5dzx/xueT9u77My1lh7d3+LI/JYNkJ8+oMlizt4VtkQOmkKT7ojbpsvuBt0eF0tl/OYX/C9XSHz/7OKPY+A0Jceaa57apCCCHuHMX+OlyzZk2OHTtmcmz37t0EBQURGhpqctxSgHyrmjVrhk6nM/u47777AJgzZ47Zufr165vcQ1VV5syZQ8OGDQkODmbAgAEcP37cpv0UQoiK6OdL2QzfksjKU1lEx14PeKFgA4k+G+KtDngDtZoS6+62DXAqVf/0KiYBrzVqyfbAQogyKjbo7d27NytWrGD37t0YDAa+/PJLTp06xYABA8zaHjhwgFq1atm0c1FRUZw4ccL4sWPHDhRFMdkEIzw83KTNb7/9ZnKPd955h8WLFzN37ly2b99OQEAAw4YNM6tIIYQQlVV2vspHx9JZfDSd5JyCyDYtz8DEnbb769v8jroSZ3PfaGfbiQ9LakhFBiFEGRWb3jBt2jTWr1/P4MGDURQFg8GAv78/zz77rEm79PR0NmzYwPjx423aOX9/f5Ovv/zySzw9PU2CXkdHR4KCgixer6oqS5Ys4ZlnnmHIkCEALFmyhPDwcNasWcO4ceNs2l8hhChveQaVkVsT2H21oJbu5gvZTGvhyeIjaTarlftOZx2Dw8wXtd2sY5ALB0YG0XJNrE1e15Jq7hL0CiHKptiZXj8/P3bv3s2rr77Kww8/zCuvvMKePXuoUaOGSbu///6bUaNGGdMO7EFVVb788ktGjRqFm9v1HXbOnj1Lo0aNaN68OY8++ihnz541njt37hyxsbH06tXLeEyr1dK5c2f27t1rt74KIUR5mX8wzRjwAuy8ksPgTQlsvmh504hRFmraFjo+KphGOtO5kJZ+TjwQbv2uZmGejniWsKjtVjTzLV0KhRBCFFKSk5NtV0HcjrZv387w4cPZuXMnzZs3B2Dr1q2kp6cTHh5OQkICb7/9NjExMezZswdfX1/27t1LREQEhw8fNkm9mDx5MleuXGHt2rVFvl5MTIzdn0kIIW5FRj702GN9QNrdN595jXJJyFWYe8qJndcKAtyOOj2z6uVSw1UlSw8/JziQnKdQ38NAa28DjqWMYf9K0fDcMRcy9OYXKqgMC85n7VXT4LWNt54LWQo1XFV6+OnJNsCSc6Y5xIOD8nk53HR3OCGEuFF4eHiR56zehvh2++KLL2jdurUx4AXo27evSZu2bdvSsmVLVqxYwZQpU4zHlZvqQKqqanbsZsX9oxUnJiamzNeKikPGsWqorON4IjmP946k88PZLPxdNYyo48aTjd3xdb3+p31VVYn4MQGwLghc0duXfrVc0SgKDYB1TYtu27zoU1YJB/o21dN8dSzp+abzKi39nXmsdQBrf7q+w5oCfNWvhkn9X4DAQ2m8cziNAEc9k1r48kgDtxLr+oqKq7K+H4WpyjyOlaKYYXx8PD/99BMPP/xwse08PDxo2LAhp0+fBjDm+sbFxZm0S0hIICAgwD6dFUIIK6mqalx4VuhShp4O38XxVUwmaXkqZ9L0zD+YRp2vr3IxPZ9Fh9IYvS2R0OVX2BdvXcAb4KohoqZruQaMvq4OvNDafFe09gHOdAx0ZkiYq/HY2HA3s4AX4NnmnpwdU50VrbN5tKG7BLxCiFtSKYLeFStW4OLiwvDhw4ttl52dTUxMjDHYDQ0NJSgoiKioKJM20dHRdOjQwa59FkKI4pxJzafZ6lhqr7jCk7uSUFWVXy5n02TV1SKvabo6llf/TGXjhWxS86zLTPNwVFjYWYdDCZUX7GFYbfP8YYNa8Ne3z7r78kXPgo//66wr974JIe48FT69QVVV/ve//zF8+HA8PU0Lkr/00kv069ePmjVrGnN6MzMzGT16NFDwjXXSpEksWLCA8PBw6tWrx/z583F3d2fkyJG343GEEAKA56OTuZhRsAXaipOZrDhpXb3cogwN0/Jpdx9Op+YTqHVA56LhcoYef1cNzg63Z4bU0uxt/X8XyjlqFIZYURFCCCFspcIHvbt27eLUqVN8/PHHZucuX77MhAkTSExMxN/fn7Zt27J161ZCQkKMbaZOnUpWVhbTp08nOTmZNm3asHbtWrMAWgghyktanoHtFnYoK6sQDweW9fBBURTq664vEKteAcp7fdzNh8f/rRfsrIFBoRLoCiFujwof9Hbr1o3k5GSL55YuXVri9YqiEBkZSWRkpK27JoSogFRV5afz2VzLMdAo/3b3xrLDidbtQvZuFx1743JZHlP8LPD6fv4lLs69Xe6r60a+QeWP+Dzur6clWDaXEELcJqUKevV6Pdu3b+fs2bMkJRXkoN1IURRmzJhh0w4KIURpLDyczn/+TAWgmacL2xuqJe4kVt7OppUcjf85PIi63o48VN+de+toGbo50WK76m4aQj0r9vzFA+HuPFA5F3sLIaoQq79THjp0iLFjx3Lx4kWzYLeQBL1CCHtQVZVz6XpcHBQ8nBTOp+mp6+WIq4UCsitumBU9nObAD2ezGFnH+lq29nQ2LZ8ndyXxW2zxVReGhmmp633923OP6q5svseflaeyWHoiw6RtQ51s1iCEENawOuidNm0a6enpfPnll3Tp0gWdTlbbCiHs55/kPK5mGegY6Mzrf6Xy3pF0i+06BTlTz8sRFZjS1IOTqaazqNGxuRUm6J25J7nEgLehzpGXLZT66hDkQocgF5r4OvJ8dIrxeOdgF5v3UwghqqJSzfRGRkYyYMAAe/ZHCCH45mQmT+wqWPzk7qiQkV90ea7o2Fyi/w0kv7KQ+3r53woJt1tmvqHIrYEnNXZnUhMPQjxK/pY8vqEHDorC//7JoJmvExMbu9u6q0IIUSVZHfQGBgbi6Fix88aEEJVfdr5qDHiBYgNeaxy+Zt2iMXvbW8QMr4MCjzWyLuAt9EgDdx5pIMGuEEKUhtWbUzz++ON888035OVVjB8gQoiqJznHwF3r4kpuWAoXM/Rczbz9s727rhY1y+tBHS+ZUBBCCHuz+jtt9erVcXR0pFOnTowdO5aaNWvi4GBeembYsGE27aAQ4s7x/tF0YlJsX2fsz/hcBtzm+rB/JVieMLi3rtStFUKI8mB10Dt+/Hjj56+99prFNoqiSNArhCizX4uYDS10f10tJ1Ly2V9EAFmUvxJuf9CbmmswO1bLw4EmPlJ9QQghyoPVQe/69evt2Q8hhCixfu2Lrb2o9W/ua8SP8eyNM82TjRoUgEYpyOOdsvv6pjb74szzabdfymbLxWx6VHehXy37BMSnU/N593AaqXkqCdmmQW9jnSOf9vDFsYLVEBZCiKrK6qC3a9eu9uyHEOIO92d8LlcyzWdDC/m4KCa7efWt6WoS9FZz09DK3xkoqPhwo11Xczl8LY9mvgWzqgcSchm+pWCzhw+PZfBTf3+bl/66mqmn9bexRZ7/spefSS1eIYQQ9mX1QrYbHT16lI0bN7Jx40aOHj1q6z4JIe4wy/7OoPeG+GLbvNbW22RntaFhrhR+pVHg0+6+xnN1vRwJcDX99rb07+t1fl/+PcXk3Iy9pl/bwnPRlrdPL6S1sLGGEEII+ynVNMOPP/5IZGQkFy9eBAp2SVIUhVq1avHmm29KDV8hRKmpqsrbB1PNjncNdua/7b3xc9Ggc9Hg4WQaxNbzdmLrwAA2nMuiezUXutwwU6soCt2ru7DmdJbx2LITmSRmG1hylw9/xJvmBB+xcVmzv5Pz+Ol8drFtJOgVQojyZXXQu23bNh566CGqV69xi8C/AAAgAElEQVTOyy+/TIMGDVBVlX/++Ydly5bx8MMPs3LlSnr37m3P/gohqphz6XouW0hr6FHdlRZ+zsVe2zbAmbYBlttMauxhEvQCrDuXTa8aWSh2jje/OWm+ScbNXB0k6BVCiPJkddA7b948GjRowObNm/H09DQeHzBgABMmTCAiIoK3335bgl4hRKlY2l54XAO3W95pzM/VcvbWieQ8Mm9xwwtLsvNVsvUqn5/IYNFhy1sm38jVvOKjEEIIO7I66D1y5AgvvviiScBbyNPTkzFjxvDf//7Xpp0TQlRtOy5n89nfGSbH3urgzRONPW753oFaDRpUDJjOqC63sFXxrVp0KI1X/zRP0SiOYu/pZiGEECasXsjm5OREZmbRPywyMjJwcpJ6k0II690c8Nb2dODBcDeb3NvNUUMPP/Od2FLzbDvLeyY1v9iAN8BVw9YBASbHarrLNK8QQpQ3q4PeTp068cknn3Dq1Cmzc6dPn+bTTz+lc+fONu2cEKJqO5NmGpTO66jD3alMRWUseqNBLn1r3Hopsn+S89gXl4NBNQ2YL2foaVVMWTKA7tVdaBfobBLMT2h4a6kbQgghSs/q9IZXXnmFiIgIOnXqRP/+/QkPDwfgn3/+YfPmzbi6uvLKK6/YraNCiKpFVVWOJZlWTajrZdu6tU4amNLUg62Xit/pDSA5x4DOxTzgnv17Cu/+m3fcv5YrS+7y4eXfU7icqWe7Ffd9tllBStiizjpG13PD2UEpcvGdEEII+7H6J0yjRo2Iioritdde4+eff2bdunUAuLu7069fP15++WXq1atnt44KIaqOo9fyeHJ3EvqbMg28nG2f51rDylSCj4+nM6Oll8mxK5l6Y8ALsPFCNmErrlj92v/cH0ygtuD1HTSKzTfAEEIIYb1STavUrVuX//3vfxgMBhISEgDw9/dHo7HdnyOFEFXfpF1JHLJQG9fLhqkNhaydPf75Ug4zWl7/Wm9QLW5fXJJu1VxoF+DEM8098bTD8wghhCgbq4PeX3/9FV9fXxo1aoRGoyEwMNDkfEJCAidOnKBLly4276QQouq4lKG3GPACONuhdq2iKLzYypP/7k8rtt2VzOv5xWfT8un3YzxXs4reFtmSLQP8aR8os7lCCFERWT0NMXDgQLp27cqCBQssnt++fTuDBg2yWceEEJVb1KVsPvs7naQc08Dxxu2Ay8v4hu400l3/Hd/FAVb18TNpE5elR/13odqb+1NLHfC+0sZLAl4hhKjASpXe0LRpU9544w0OHDjAkiVL8PC49VqaQoiq5+0DqcaZ1feOpLNvWBDrz2UxfkdSkdfcW0drt/74ujqwe0ggVzL1VHd3QKMoqKqK1kEh69/E4mw9pOSqeDvDqlNZJdzR3F3VJOAVQoiKrFQJZ1OmTOHjjz/m559/pk+fPpw8edJe/RJC3EZRl7J5OCqRgC8uoVt2iYWH0lBVlR2Xc3j3cBp7YouuWrD6VKZJKsHZND0v7kspNuB10sAzzcw3vrElB41CTQ9HNP9uCqEoCoFa02+BVzL1HEvKL/Ie3s4KjXXmcwVNfZ1o7S91yoUQoiIrdX2ge++9l/r16zN27Fh69erFRx99RP/+/e3RNyFEObucoeeJXUnsvGIa1L72Zyqv3bQBw8fdfLiv7vXasxl5Bj45nmFxo4ZPbtqE4kaPNnBnRktPgt3Kf8OGm6tHzD+YxrdnzGd52/g70bemK9NbeOKgUTiRnMfUX5OJz9ZzV7ALM1p6GYNpIYQQFVOZimK2aNGCHTt28PDDDzN27FimTZtG7dq1bd03IUQ5Mqgq/X6K53y6+S5mlsw9kGoS9EbuS+F//5Rui98Hw92Y38n7tgWMNy5eAywGvK+28eKZ5qaz0A10Tmy6aZc1IYQQFVuZK8H7+vry/fff89JLLzFv3jyCg4Nt2S8hRDn7Oznf6oAX4FSqntorLtMx0IXHGrmXOuD9qJsPo+raZsvhsupWzYWoy8VvMNEhSDaSEEKIqsDqnN5atWrh7m66daaDgwNz5szhww8/JDk52eadmzNnDjqdzuSjfv36xvOqqjJnzhwaNmxIcHAwAwYM4Pjx4yb3SE5O5vHHHyckJISQkBAef/xxu/RViMouNbd01QoAknJUNl7IZviWxFJd93pbL+6z48I1az3bvOQ84hZ+kqsrhBBVgdUzvYcOHSry3KhRo7j77rtJSyu+DmZZhIeHs2HDBuPXDg7X8/7eeecdFi9ezOLFiwkPD2fevHkMGzaM33//HU/Pgh9mEyZM4OLFi6xevRpFUXj66aeZOHEiK1eutHlfhajMMvNVs2Njwt1YHlO6GdyS/DIogJb+FWP2tKSNK55u6oGbo2wwIYQQVYHNNrr38fHBx8fHVrczcnR0JCgoyOy4qqosWbKEZ555hiFDhgCwZMkSwsPDWbNmDePGjePEiRNs27aNTZs20aFDBwAWLlxI//79iYmJITw83Ob9FaKyyrgp6O1fy5XFXX2Y0NCdc2l6mvs58cofKaw/l13ivaY19+SRBm50+SGOlFzT+zbyqTgzp97FbHs8JMyV/7TzLsfeCCGEsKdSBb05OTmsX7+eAwcOkJKSgsFg+udQRVF4//33bdrBs2fP0qhRI5ycnGjbti2zZ88mLCyMc+fOERsbS69evYxttVotnTt3Zu/evYwbN459+/bh4eFhDHgBOnbsiLu7O3v37pWgV4gbxN+0GYO7U0FA2MrfmVb+BceqW1Fh4YOuOh4IL0iFaqRzYs9NW/m62GHXtbJyd1Rw1sDNmR1ujgr/lYBXCCGqFKuD3kuXLjF48GBOnz6Nt7c3qamp+Pj4kJycjMFgwM/Pzyzn91a1bduWDz74gPDwcBISEnj77be5++672bNnD7GxsQAEBJiuoA4ICODKlSsAxMXF4efnh3LDynBFUfD39ycuLq7Y146JiSlzv2/lWlFx3EnjuCdJw3NHXU2O5WakERNjmqvrnOUIFJ2aEOhsoJV6mcJ/ugE6B/bEXd+0ob1OX+7/riW9XisvF/YmmwbzzT3yybpyhjvnf0DFdye9H6syGceqoSKPY3ETmlYHva+88grx8fFs2rSJevXqUa9ePZYuXUrHjh1ZvHgxy5Yt44cffrBJhwv17dvX5Ou2bdvSsmVLVqxYQbt27QBMAlooSHu4Oci92c1tLCnrLLCkTVQNd9I4XsrQ88LeWMA0DeF8vpbw8FCTYx2ds3jv7LUi77W6XxCN/K4HxWF1VX5IiueP+DwU4Lm2AYTXKr8FbNaM45NOWeyNMn2mZsFehIfr7Nk1UQp30vuxKpNxrBoq8zhavULjl19+Yfz48XTo0AGN5vplLi4uPPfcc3Tu3JnIyEi7dLKQh4cHDRs25PTp08Y835tnbBMSEoyzv4GBgSQkJKCq13+Yq6pKYmKi2QyxEHeq1acyScszX8TWr5ar2bGiFqBFDQogeVwNWviZnnfSKHwf4c83fXz5fXgg/cox4LXWPSGu+LuafivsHFwxFtoJIYSwHauD3vT0dOMGFM7OBT8QbqzW0KlTJ3799Vcbd89UdnY2MTExBAUFERoaSlBQEFFRUSbno6OjjTm87du3Jz09nX379hnb7Nu3j4yMDJM8XyHuZJZ2UHPWFASDN6vuZvlbRqtiqjF4OGnoV0tLPe+Ks4DtRk4ahdltvIxfh3o4EGEh4BdCCFG5WZ3eUK1aNS5fvgyAu7s7Pj4+HD58mIEDBwJw4cIFnJxs+0PtpZdeol+/ftSsWdOY05uZmcno0aNRFIVJkyaxYMECwsPDqVevHvPnz8fd3Z2RI0cC0KBBA/r06cOzzz7LO++8g6qqPPvss0RERFTaqXkhbOl4Up7ZsRG1tTzdzIPmfuaBrKIoNPd14tA18+sqs4fqu1PdzYF/UvIZXlsrZcqEEKIKsjro7dSpE9u3b2fWrFkADB48mPfeew9HR0cMBgMffvghERERNu3c5cuXmTBhAomJifj7+9O2bVu2bt1KSEgIAFOnTiUrK4vp06eTnJxMmzZtWLt2rbFGL8Ann3zCzJkzGT58OAD9+/dn3rx5Nu2nEJWBpVz2bZfMy48t6KRD51J00Nc/xNUk6B1Ru+KlLJRFn5qu9Kl5u3shhBDCXpTk5GTzZD4Ljh49SlRUFBMmTMDV1ZXk5GQeffRRY3pB165d+eyzzwgMDLRrhyu6ypzgLa6rCOOYo1d59Y8UomNzGVZby1NNPdCUsACzKEev5TFpVxLXcgxEtvJkTLg7eoNK5+/jOJGSb9I2eVyNYu91JVNP5+9jScpRCXDVsK6ff4WqvXujijCO4tbJOFYNMo5VQ2UeR6tneps0aUKTJk2MX+t0OtauXUtKSgoajcZkdlUIceu+OZnJkmMZABxIzONyhp65HXVcy9YD4OtqXjM3PkvPVzGZeDkrjKnnjosDzNibwifHM4xtJu9OZvJuy1tx/9Tfv8R+VXNzYP+IYP6Iz6WFnxMB2pJr9wohhBC32y3vyObtLQXchbCHvxJMN3X46HgGe+NyOZBomk/bPsCZg9dyydGbXv98dEqpXm9UXS2dg11KbgjoXDT0qSmLvYQQQlQepQ56Dx48yNmzZ0lOTjYpBVbokUcesUW/hLjjZeWbv79uDngB9sXnmh0ri7Hhtt1cRgghhKhIrA56Y2JiGD9+PEeOHLEY7ELBym4JeoWwjSy9Ven2NuHppNA2QGrTCiGEqLqsDnonT57MqVOnePXVV2nTpg1eXl4lXySEKDNLM723ykkDeQbz45GtvNA6lm2RnBBCCFEZWB30Hjp0iOnTp/P000/bsz9CiH+VdaZX4eYNhQv8Xycd4xq4seNKDnoVOgQ6s/lCNoFaB7rKDmRCCCGqOKuD3pCQEFxdZeGKEOXl5pleFwdwd9SgUeCl1l6MDXfj3SPpxGXpebSBOyEejrj+O1t7MT2fg4l5tA1w5vC1PMK9HQn1LHi796h+/X08oo5b+T2QEEIIcRtZHfQ+99xzLFiwgDFjxqDT6ezZJyGqlCuZerycFNydrN/ly6Cq/JVgumht+8BAGvs4ooKxXu9zzS2XCqzp4UhNj4K3d5CblBQTQgghrA5677//fvLz82ndujX33HMP1atXx8HB9IepoijMmDHD5p0UoqLLzDdwODEPdycNq05l8unfGWTeNFO7ob8/XYspCXYlU8/SvzN4+2CaxfNaRwVFUZDMWyGEEKL0rA56Dx48yBtvvEFSUhLLly+32EaCXvvZfCGbJcfS8XJS+E87b8I8b7nEsrCBrHyVE8l5jN9xjVOp+mLbDtyYwLaBASz9O4O9cTmMrOPGE409SMjWczwpn4eirhV7vbezhLtCCCFEWZUqvSE3N5clS5bQtm1bqd5gZ1suZPPWgVSuZOq5kmm63D4h28BP9wTcpp6JQlsuZPP4zmsk51q/4KzPhnjj53MPpDH3gOVZ3Zv1qO6Cn4Ud2IQQQghhHauD3mPHjvHCCy9w//3327M/dxRVVTmbpkdRMJm5/Ts5j/u2JRZ53W+xuZxKyaeud8WZ7c3Rq+hVFTdH6/NWK7P0PEOxY2RL1dw0LO/lWy6vJYQQQlRVVkdNtWvXRq8v/s+3onRyDdDq21gAArUatg8MYNHhdD79O6PEaz84ls6CTrd3QaFBVXnvSDqv/JFqcjzm/mACtFV3VlJVVUZsKZ+AN1ir4dchgaVaBCeEEEIIc1YHvS+++CIzZ85k2LBhhIaG2rNPd4y4LP0NnxtoujrW6ms/+zcwvl2Bb45eZezPiWy9lGN2bsaeFJb1rLozkz+czWZvnOWtf4O1GrycNTzfwpOImq7oXDSsPJXJxJ1JVt3b3VFhdV8//knJ51xaPqPrueEraQ1CCCHELbM66N2+fTs6nY727dvTrVs3atSoYbF6w/z5823eyaqqmZVBbrsAJwaEaHntz1STTQc++zuDxj6ODArVEljOM6tv7U+1GPAC7ImzfLzQP8l5RMfmEpel57/70/B2VhjXwJ0ZLT0rRXrEF/+Yz8Q/1sidN9p54+Jgvtjs3jpajlzL470j6QB808eXbtVceOX3VA5dy6OulyPdq7swIMQVj39ndDsXU+VBCCGEEKVnddC7dOlS4+fbtm2z2EaC3tJp4O3IiZT8YtvMbuNlrMVqAP7zp2kqwfPRKbzxVyqb7gmggc7JePzP+Fx2XcmhVw0XmvuVbret9DwDZ9P0NNA5kq1X8fw3EFNVlW/PZPHr1RyWncgs8vpUCwu7svNVjiTlsfJkJp/clL6Rkquy6HA6v13NZdMAf2MNWls5nZrPWwdSic8yMDhUy7iG7rd0v4sZpmk+b3f05rFGHkW21ygKr7fz5j9tCxZ/Kv8+39u3OT1FCCGEuJNYHfQmJVn351lhvaebeTB5d7LFc5GtPJnRwtMYIAFMbephFvQCJOWodPgujpktPXmqqQfLTmTw8u8F7d7cD78ODSTc28nsupvlGVQWH0nn1Zteo7HOkTV3+/PCvhS+P5tV4n0y8lXyDCpOGoXsfJWnf01i7Zks8ksocrAvPpf+PyXQSOdIA50Tg8O01HAv2wx2vkElLsvAi/tS+O6GPkddzsHVUWF0vbLvRJaeZ1pNo38t63YqVGwczAshhBDCejZd/n/s2DEaN25sy1tWaaPrueHuqOHQtVw+P5HJtZyCYOrN9t5MauxuFiQ5aBQ+6+7D+B2WfwGxVAIr1wDLTmTwZvviZxVVVWXMz4lsuWiemnAsOZ/Gq64WeW2P6i78GZ9LWt71qPbItTxa+Tvz0fF0Vp0uOVAutDcu15gvG7kvBYA57b3xcFLIylcZXkeLfwk5rntjc3go6hqxWQaL5yftSqJLsDMhHmX775+RZxq9e8giMyGEEKLCu+Wg9+rVq6xevZpVq1Zx9OhRrl0rvsC+uE6jKAytrWVobS2z23hbdc2QMC0rTmbycxH5tJZsuZDDm+2Lb3MwMc9iwGuNxj6OnEzJJy3v+p/9e66PZ14Hb7PKDmVRGPwCzNibwt5hgYR7O/J3cj7V3RzQuZgGnbP/SC0y4C00LuoaPw8KLHVfVFUl/aYpa3cnmcEVQgghKroyBb3p6emsW7eOVatWsXv3bvR6PY0aNeKZZ56xdf/ETRw1Cmv6+vFnQp7JRgfF0Siw5nQmPi4aelV3QVEUVFXl4+MZrDqVyZ8JebfUpw6BLkTH5prlus7Ym1LEFVDPy5F3u+hwcVDo+2M8Buv3d+CxHUm4OMDv8QX9jmzlycyWBfmy17L1RVZWuNGfCXl0XxfHsh6+1PEqeBucSM5j6d8ZnE3Lp6GjI5G1VVwdrwe0/yTnMfuPVJO+ujiAk0aCXiGEEKKiszro1ev1bNu2jVWrVrFx40aysrJQFIUJEyYwefJkKWNWjhRFoW2AM6+38zLm7hbnn5R8JvybEtHCz4lu1VyIzdKz6pT1aQdF0TooDAxxJT5Lz/6EooNcKKhCsaCTDmcHhQbejsb0jZ2DA+n3Y7zZDGpRDl0zDdLn7E/jp/PZuGgU9sWbB7xBWg1f9fKj74+mvyQcTMyj9bex1HR3MAvYN+PMT0lxfHu3HyEejmTlqwzZnGC2O557Jag2IYQQQggrgt4//viDlStX8t1335GYmEijRo14/vnnadu2LUOHDqVHjx4S8N4mTzT24GRKPl/8U3QlhZsdTMzjYGLJM7vzO3ozJExLdGwu59PzUQFnjUJ9b0faBjqz9UI2fq4a7qrmgkZRmNDIg2A3B8ZuLzq95T/tvC1Wkmjq68TFB6vzT3Iecw+kUdvLkahL2aWagS7umX4bGoifqwPdq7mw44p5CsfNAW+hmJR8mq+O5YnG7rTxdzYLeAHcHGWWVwghhKgMig1627Rpw5kzZ6hZsyYPPvggI0eOpEmTJgCcP3++XDooiuakUXiniw/9Q1y5f1tBsOnjojC8tptx84qyUICe1V0J0DowOExrsc3wOubVDwaGapncxIPFR9NNjns5KxwaGWyWe3uz+jonPutRsKnFS60L0hVOpeTzR0IuX5/M5JfLpc85/mN4QcAL8E0fP6p9ebnU9/jwWAZg+d+zS3DpysEJIYQQ4vYoNug9ffo0oaGhvPTSS9xzzz24uZW9zJOwn361tFwYW42/k/Jp4eeEowZ+uZzNqVTrt42+K9iZy5l64rIMTG3mSV3vsq1xfLG1J6dT8/kjPpfq7g682MqLXjVccCxj3mtdb0fqejsyqq4b357OLLJyhSWz23hR74ZSbVpHhSsPVmfo5gSr8n5LogATi6nPK4QQQoiKo9jIZvHixaxevZqJEyei1WqJiIhgxIgR9O3bt7z6J6zk6aShXeD1WcelPXwZ8FOCVXmy/9wfbNzRTVXVW6on6+ao4es+fmW+vjgj6rjRr5YrS45lMP9gKtnFxPQvtb6+qceNtI4KmwcEkKNXGbElgd1XTYPfr3r50tjHidbfFr9b3viG7oxv6E5jn5LrHwshhBDi9is26H3ggQd44IEHiI2NZdWqVaxatYoxY8bg5eVF165dURRFCu5XUC38nIkeFsiKk5n4umh47Y9UkwDY31XDwBBXnm3uabKFcUUfT3cnDdNaeNIuwIkhmxNNzgVqNdxbx40Ogc5FpmUUcnFQ+LS7L9Oik9l8MZsFnXQ8VP/6Tm3/1zibV09qLe4u18THkbc7ett85zghhBBC2I+SnJxcimJRcPz4cVauXMmaNWu4dOkSvr6+3H333fTv35/evXvj7n5rW7xWdjExMYSHh9/ubpjZcTmbBYfSCdJqeKuDtzHPtbJSVZUZe1JYeSqT+jpHprXwpF+t4gPd0igcx6QcA41XXiVLX/A2GdfAjWktvMq8U5woXxX1/ShKR8axapBxrBoq8ziWOui90a5du1i5ciXr1q0jLS0NV1dXrly5YrPO/d///R/r16/n5MmTODs707ZtW1555RWTXd8mTZrE119/bXJd27Zt2bZtm/HrnJwcXnrpJb799luys7Pp1q0bCxYsoEaNGjbra6HK/J9BXHfzOBpUVWZ2KyF5P1YNMo5Vg4xj1VCZx/GWiozeddddvP/++8TExLB06VJ69Ohho24V2L17N+PHj2fz5s2sW7cOR0dHhg4dSlKS6WKmHj16cOLECePH6tWrTc5HRkayfv16PvvsM3766SfS0tIYNWoUer31C73EnU0CXiGEEKJyu+VtiAFcXFwYNmwYw4YNs8XtjNauXWvy9UcffURISAh79uyhf//+Jq8fFBRk8R4pKSl8+eWXLF68mJ49exrv06xZM3755Rd69+5t0z4LIYQQQoiKp1JtJ5Weno7BYECn05kcj46Opl69erRp04ann36a+PjrO28dOHCAvLw8evXqZTxWs2ZNGjRowN69e8ut70IIIYQQ4va5pZze8vbII49w6tQpfvnlFxwcChYSffvtt2i1WkJDQzl//jxvvPEGBoOBX375BRcXF1avXs0TTzxBQkKCSWWCQYMGUbduXRYtWmTxtWJiYsrlmYQQQgghhG0Ul29sk/SG8vDCCy+wZ88eNm3aZAx4AUaMGGH8vEmTJrRs2ZJmzZqxefNmBg8eXOT9SqpHW9Yk7cqc4C2uk3GsGmQcqwYZx6pBxrFqqMzjWCnSGyIjI/n2229Zt24dYWFhxbatVq0a1atX5/Tp0wAEBgai1+tJTDSt6ZqQkEBAQIC9uiyEEEIIISqQCh/0zpw5kzVr1rBu3Trq169fYvvExESuXLliXNjWsmVLnJyciIqKMra5dOkSJ06coEOHDnbrtxBCCCGEqDgqdHrDtGnTWLlyJV999RU6nY7Y2IKtYd3d3fHw8CA9PZ233nqLwYMHExQUxPnz5/nPf/5DQEAAAwcOBMDb25sHH3yQ2bNnExAQgI+PDy+++CJNmjSxeYk1IYQQQghRMVXooPfTTz8FYMiQISbHZ86cSWRkJA4ODhw7doxvvvmGlJQUgoKCuOuuu1i2bBmenp7G9m+++SYODg6MGzfOuDnFhx9+aJIbLIQQQgghqq5KVb1BCCGEEEKIsqjwOb1CCCGEEELcKgl6hRBCCCFElSdBrxBCCCGEqPIk6BVCCCGEEFWeBL1CCCGEEKLKk6D3Bv/3f/9Hz549qVWrFnXr1mXUqFEcO3bMpI2qqsyZM4eGDRsSHBzMgAEDOH78uEmb+fPnExERQfXq1dHpdMW+ZmJiIo0aNUKn05ntGifKpjzHUafTmX0sXbrUbs92Jynv9+PKlSvp2rUrQUFB1KlTh4kTJ9rlue5E5TWWy5cvt/ie1Ol0/PXXX3Z9xjtBeb4n//rrL4YMGUJoaCghISEMHjyYP//8027Pdicpz3HcsWMHd999NzVr1qRBgwa88sor5Ofn2+3ZSiJB7w12797N+PHj2bx5M+vWrcPR0ZGhQ4eSlJRkbPPOO++wePFi5s6dy/bt2wkICGDYsGGkpaUZ2+Tk5DBw4EAmTZpU4ms++eSTNGvWzC7Pc6cq73F89913OXHihPFj9OjRdnu2O0l5juOHH37I7Nmzeeqpp4iOjmb9+vXcc889dn2+O0l5jeXw4cNN3osnTpzgvvvuIzQ0lFatWtn9Oau68hrH9PR0RowYQXBwMFu2bGHr1q0EBwczfPhwk/uIsimvcTxy5Aj33nsvPXv2ZOfOnXz22Wds3LiRV1991d6PWCSp01uM9PR0QkJCWL58Of3790dVVRo2bMhjjz3GtGnTAMjKyiI8PJzXX3+dcePGmVz/ww8/8PDDD5OcnGzx/kuWLGHjxo08//zzDBkyhFOnTuHn52f357rT2HMcdTodX3zxhdkGKsL27DWOycnJNG7cmOXLl9OzZ89ye547mb2/txbKzMykYcOGTJ06leeff95uz3Onstc47t+/n549e3LgwAHCwsIAOHv2LC1btiQqKkp+gbExe43jf/7zH7Zu3cquXbuMxzZu3Mi4ceOIiYkx2USsvMhMbzHS09MxGAzGaftz584RGxtLr169jG20WhRF1WcAAApRSURBVC2dO3dm7969pbr3wYMHeeedd/jwww/RaGQY7Mme4wgwa9Ys6tSpQ8+ePVm6dCkGg8FmfRfX2Wsco6Ki0Ov1xMXF0aFDBxo1asSYMWM4e/asrR9B/Mve78lC3333HZmZmYwZM+aW+yzM2Wsc69Wrh7+/P1999RU5OTnk5OTwv//9j5o1a9KwYUObP8edzl7jmJOTg6urq8kxrVZLdnY2Bw4csE3nS0mirWLMmjWLZs2a0b59ewBiY2MBCAgIMGkXEBBAXFyc1ffNyMhgwoQJzJ07l+rVq9uuw8Iie40jwAsvvMDSpUv5/vvvGT58OC+99BILFiywTceFCXuN49mzZzEYDMyfP5///ve/fPXVV+Tn5zNw4EAyMzNt9wDCyJ7vyRt98cUXREREEBwcXPbOiiLZaxw9PT3ZsGEDa9eupVq1alSrVo21a9fy/fffo9VqbfcAArDfOPbu3Zs//viDb775hvz8fC5fvszcuXNNXqO8Od6WV60EXnjhBfbs2cOmTZtwcHAwOacoisnXqqqaHSvOzJkz6dChg/xJvBzYcxwBZsyYYfy8efPmGAwGFixYwPTp08veaWHGnuNoMBjIy8tj7ty5xpmNjz/+mAYNGrBp0yaGDx9+6w8gjOz9nix0/Phx9u3bx6pVq8rcV1E0e45jVlYWU6ZMoV27dnz66afo9Xree+89HnjgAaKionB3d7fJMwj7jmOvXr14/fXXmTFjBpMnT8bFxYXp06cTHR1t9lrlRWZ6LYiMjOTbb79l3bp1xnwigKCgIACz33QSEhLMfiMqzo4dO1ixYgV+fn74+fkZg9/69evz+uuv3/oDCMD+42hJmzZtSE1NvaXZKWHK3uNYeJ8GDRoYj3l7exMcHMzFixdvoefiZuX5nvz888+pWbMmffr0KXN/hWX2HsfVq1dz5swZPvjgA1q3bm0Mfi9evMiGDRts8gyifN6PU6ZM4dy5cxw5coRTp04ZFwiHhobeWufLSILem8ycOZM1a9awbt066tevb3IuNDSUoKAgoqKijMeys7OJjo6mQ4cOVr/Gd999x+7du9m1axe7du3i3XffBWDDhg1SJslGymMcLTl8+DCurq54e3vf0n1EgfIYx44dOwJw8uRJ47H09HRiY2OpVavWLT6BKFSe78ns7GxWrlzJmDFjZM2EjZXHOGZlZaEoisnYaTQaFEWRNRM2Up7vR0VRqFatGlqtljVr1lCzZk1atGhxy89QFpLecINp06axcuVKvvrqK3Q6nTHnxN3dHQ8PDxRFYdKkSSxYsIDw8HDq1avH/PnzcXd3Z+TIkcb7XLhwgaSkJM6fPw/AoUOHAKhTpw4eHh7Uq1fP5HUL6/PWr19fqjfYQHmN48aNG4mLi6Ndu3ZotVp27drFnDlzePjhh3FxcSn/B69iyvP9eM899zBr1iwWLlyITqdjzpw5+Pv7ExERUf4PXgWV11gW+uGHH0hNTWXs2LHl+JRVX3mNY8+ePZk9ezbPP/88EydOxGAwsHDhQhwcHOjWrVv5P3gVU57vx3fffZfevXuj0WhYv349ixYtYtmyZbctvUFKlt2gqOLKM2fOJDIyEijIaXnrrbf4/PPPSU5Opk2bNsyfP5/GjRsb20+aNImvv/7a7D7r16/nrrvuMju+a9cuBg0aJCXLbKS8xnHbtm289tprnDlzBoPBQFhYGA8++CCPPfYYjo7y++StKs/3Y1paGi+88ALr169HVVU6duzIW2+9Re3ate3wZHee8v7ees899+Du7s7q1att/CR3tvIcx6ioKObOncuxY8dQFIVmzZrx8ssv3/Jf40T5juOgQYM4ePAgubm5NG3alJkzZ9K3b187PJV1JOgVQgghhBBVniQ7CSGEEEKIKk+CXiGEEEIIUeVJ0CuEEEIIIao8CXqFEEIIIUSVJ0GvEEIIIYSo8iToFUIIIYQQVZ4EvUIIIYQQosqToFcIISqB5cuXo9PpjB9BQUE0bNiQ4cOH8+GHH5KWllam+x47dow5c+Zw7tw5G/dYCCEqFtk2SgghKpFZs2ZRu3Zt8vLyiIuLY/fu3URGRrJ48WK+/vprmjZtWqr7HT9+nLlz59K1a1dCQ0Pt1GshhLj9JOgVQohKpHfv3rRr18749XPPPceOHTu4//77GT16NPv27UOr1d7GHgohRMUk6Q1CCFHJde/enenTp3PhwgVWrVoFwJEjR5g0aRItW7YkKCiIunXrMn78eC5evGi8bvny5YwfPx6AQYMGGVMnli9fbmyzf/9+Ro0aRUhICMHBwfTq1YtNmzaV7wMKIYQNSNArhBBVwKhRowDYvn07AFFRUcTExHDfffcxb948xo4dy9atWxk0aBBZWVkAdOnShcceewyA559/no8++oiPPvqILl26ALB792769etHXFwc06dP57XXXsPZ2ZnRo0ezbt262/CUQghRdkpycrJ6uzshhBCieMuXL2fy5Mls3brVJL3hRiEhIYSFhbFz504yMzNxc3MzOR8dHU3//v35+OOPue+++wD49ttvGT9+POvXr+euu+4ytlVVlfbt2xMcHMwPP/yARlMwR2IwGIiIiCA+Pp4DBw7Y6WmFEML2ZKZXCCGqCA8PD9LT0wFMAt709HSuXbtG/fr18fb2tipYPXz4sHGmOCkpicTERBITE0lKSqJPnz6cPXuW8+fP2+1ZhBDC1mQhmxBCVBHp6en4+/sDkJyczKuvvsoPP/xAUlKSSbuUlJQS73Xq1CkAnnrqKZ566imLbRISEggJCbnFXgshRPmQoFcIIaqAS5cukZqaSp06dQB49NFH+e2335gyZQrNmzfH09MTRVF49NFHMRgMJd6vsM2rr75Ky5YtLbapV6+e7R5ACCHsTIJeIYSoAlauXAlAr169SE5OZvv27cyaNYtZs2YZ22RnZ5OcnGxynaIoFu9Xu3ZtoCBlokePHvbptBBClCPJ6RVCiEpux44dvP3224SGhnLfffcZF52pquk65Q8++MBslrcw9/fmYLhly5bUrVuX9957z2I6REJCgi0fQQgh7E5meoUQohL5+eefOX36NPn5+cTHx7Nz506ioqKoVasWX3/9Na6urri6utK1a1feffdd8vLyqFWrFtHR0fz222/4+vqa3K9FixZoNBoWLlxISkoKWq2WNm3aEBYWxvvvv8+IESPo2LEjY8aMISQkhKtXr/L7779z4cIF9uzZc5v+FYQQovQk6BVCiErkrbfeAsDZ2RkfHx8aN27MnDlzGDNmDJ6ensZ2n376KbNmzWLZsmXk5+fTuXNn1q1bx5AhQ0zuV61aNRYtWsSiRYuYOnUqer2exYsXExYWRqdOnfj555+ZN28en3/+OampqQQEBNC0aVMiIyPL9bmFEOJWSZ1eIYQQQghR5UlOrxBCCCGEqPIk6BVCCCGEEFWeBL1CCCGEEKLKk6BXCCGEEEJUeRL0CiGEEEKIKk+CXiGEEEIIUeVJ0CuEEEIIIao8CXqFEEIIIUSVJ0GvEEIIIYSo8iToFUIIIYQQVd7/A6T9LerZu1uEAAAAAElFTkSuQmCC\n",
"text/plain": [
"