{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
" "
]
},
{
"cell_type": "markdown",
"id": "a6be4a95",
"metadata": {
"id": "a6be4a95"
},
"source": [
"# Running the First Regression in Python"
]
},
{
"cell_type": "markdown",
"id": "b7890b49",
"metadata": {
"id": "b7890b49"
},
"source": [
"Suppose this is your first time to write the code. Perhaps, you want to run a simple regression using two series of asset prices to fin the equity beta. Let's use a step-by-step approach to complete the task.\n",
"\n",
" Step 1: Download two assets' prices from the web\n",
" Step 2: Put them onto a matrix form\n",
" Step 3: Run the OLS\n",
" Step 4: Plot data"
]
},
{
"cell_type": "markdown",
"id": "d844db66",
"metadata": {
"id": "d844db66"
},
"source": [
"### Step 1: Download data\n",
"We will use yahoo finance package (https://pypi.org/project/yfinance/) to download Yahoo Finance data from the web. We need to (1) install and (2) import this package."
]
},
{
"cell_type": "code",
"source": [
"!pip install yfinance -q # to install, remove # and run the cell"
],
"metadata": {
"id": "6I0gK2-tfCtd"
},
"id": "6I0gK2-tfCtd",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import yfinance as yf\n",
"from requests import Session\n",
"\n",
"# As a note: In your homework, as yfinance has updated resently, you will need to install and include the 'requests' package and use this session.headers line. You can just copy this for the homework and adjust the following\n",
"# Ticker -> TSLA | ['Adj Close'] -> ['Close] | These two updates, plus adjusting the dates, will allow the code to work.\n",
"\n",
"session = Session()\n",
"session.headers.update({'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}) # required for the moment unfortunately\n",
"\n",
"data = yf.download('AAPL', start='2020-01-01', end='2021-01-01')['Close'] # without ['Close'] we can get OHLC + Volume data, we stick to close for now.\n",
"data.columns = ['Close']\n",
"data.index.name = 'Date'\n",
"display(data.tail())\n",
"\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 272
},
"id": "PyXKlJfvLELH",
"outputId": "e1b27e1a-e472-4178-f594-bbe6f1d9f6e9"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"YF.download() has changed argument auto_adjust default to True\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\r[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" Close\n",
"Date \n",
"2020-12-24 128.905807\n",
"2020-12-28 133.516205\n",
"2020-12-29 131.738480\n",
"2020-12-30 130.615128\n",
"2020-12-31 129.609100"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Close \n",
" \n",
" \n",
" Date \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2020-12-24 \n",
" 128.905807 \n",
" \n",
" \n",
" 2020-12-28 \n",
" 133.516205 \n",
" \n",
" \n",
" 2020-12-29 \n",
" 131.738480 \n",
" \n",
" \n",
" 2020-12-30 \n",
" 130.615128 \n",
" \n",
" \n",
" 2020-12-31 \n",
" 129.609100 \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"display(data\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-12-24 00:00:00\",\n \"max\": \"2020-12-31 00:00:00\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2020-12-28 00:00:00\",\n \"2020-12-31 00:00:00\",\n \"2020-12-29 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.8213522362107655,\n \"min\": 128.9058074951172,\n \"max\": 133.51620483398438,\n \"num_unique_values\": 5,\n \"samples\": [\n 133.51620483398438,\n 129.60910034179688,\n 131.7384796142578\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {}
}
],
"id": "PyXKlJfvLELH"
},
{
"cell_type": "code",
"execution_count": null,
"id": "479eb94a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 492
},
"id": "479eb94a",
"outputId": "1b29b146-b62f-4f69-a8c0-82225bf8ea45"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" TSLA\n",
"Date \n",
"2022-01-01 312.239990\n",
"2022-02-01 290.143341\n",
"2022-03-01 359.200012\n",
"2022-04-01 290.253326\n",
"2022-05-01 252.753326"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TSLA \n",
" \n",
" \n",
" Date \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2022-01-01 \n",
" 312.239990 \n",
" \n",
" \n",
" 2022-02-01 \n",
" 290.143341 \n",
" \n",
" \n",
" 2022-03-01 \n",
" 359.200012 \n",
" \n",
" \n",
" 2022-04-01 \n",
" 290.253326 \n",
" \n",
" \n",
" 2022-05-01 \n",
" 252.753326 \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"display(mystock\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2022-01-01 00:00:00\",\n \"max\": \"2022-05-01 00:00:00\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2022-02-01 00:00:00\",\n \"2022-05-01 00:00:00\",\n \"2022-03-01 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TSLA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 38.970003621535234,\n \"min\": 252.75332641601562,\n \"max\": 359.20001220703125,\n \"num_unique_values\": 5,\n \"samples\": [\n 290.1433410644531,\n 252.75332641601562,\n 359.20001220703125\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" SPY\n",
"Date \n",
"2022-01-01 430.576294\n",
"2022-02-01 417.866943\n",
"2022-03-01 432.231934\n",
"2022-04-01 395.520233\n",
"2022-05-01 396.413055"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" SPY \n",
" \n",
" \n",
" Date \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2022-01-01 \n",
" 430.576294 \n",
" \n",
" \n",
" 2022-02-01 \n",
" 417.866943 \n",
" \n",
" \n",
" 2022-03-01 \n",
" 432.231934 \n",
" \n",
" \n",
" 2022-04-01 \n",
" 395.520233 \n",
" \n",
" \n",
" 2022-05-01 \n",
" 396.413055 \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"display(mystock\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2022-01-01 00:00:00\",\n \"max\": \"2022-05-01 00:00:00\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2022-02-01 00:00:00\",\n \"2022-05-01 00:00:00\",\n \"2022-03-01 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SPY\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17.82955246664311,\n \"min\": 395.5202331542969,\n \"max\": 432.23193359375,\n \"num_unique_values\": 5,\n \"samples\": [\n 417.866943359375,\n 396.4130554199219,\n 432.23193359375\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {}
}
],
"source": [
"# download\n",
"mystock = yf.download(\"TSLA\", start=\"2011-01-01\", end=\"2022-05-31\", interval='1mo')['Close']\n",
"index = yf.download(\"SPY\", start=\"2011-01-01\", end=\"2022-05-31\", interval='1mo')['Close']\n",
"mystock.columns = ['TSLA']; index.columns = ['SPY']\n",
"mystock.index.name = 'Date'; index.index.name = 'Date'\n",
"display(mystock.tail()); display(index.tail())"
]
},
{
"cell_type": "markdown",
"id": "9621734b",
"metadata": {
"id": "9621734b"
},
"source": [
"### Step 2: Put two time series onto a matrix\n",
"We need pandas module, so let's install and import it. https://pandas.pydata.org/"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6b7ec623",
"metadata": {
"id": "6b7ec623"
},
"outputs": [],
"source": [
"#!pip install pandas # Actually, you have this alread when you isntalled Anaconda.\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d16cf519",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 455
},
"id": "d16cf519",
"outputId": "2accc0a5-060c-43c7-8dfe-926fc8921682"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" TSLA SPY\n",
"Date \n",
"2011-02-01 -0.008714 0.034737\n",
"2011-03-01 0.161574 -0.004205\n",
"2011-04-01 -0.005405 0.033431\n",
"2011-05-01 0.092029 -0.011215\n",
"2011-06-01 -0.033510 -0.021720\n",
"... ... ...\n",
"2022-01-01 -0.113609 -0.049413\n",
"2022-02-01 -0.070768 -0.029517\n",
"2022-03-01 0.238009 0.034377\n",
"2022-04-01 -0.191945 -0.084935\n",
"2022-05-01 -0.129197 0.002257\n",
"\n",
"[136 rows x 2 columns]"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" TSLA \n",
" SPY \n",
" \n",
" \n",
" Date \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2011-02-01 \n",
" -0.008714 \n",
" 0.034737 \n",
" \n",
" \n",
" 2011-03-01 \n",
" 0.161574 \n",
" -0.004205 \n",
" \n",
" \n",
" 2011-04-01 \n",
" -0.005405 \n",
" 0.033431 \n",
" \n",
" \n",
" 2011-05-01 \n",
" 0.092029 \n",
" -0.011215 \n",
" \n",
" \n",
" 2011-06-01 \n",
" -0.033510 \n",
" -0.021720 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 2022-01-01 \n",
" -0.113609 \n",
" -0.049413 \n",
" \n",
" \n",
" 2022-02-01 \n",
" -0.070768 \n",
" -0.029517 \n",
" \n",
" \n",
" 2022-03-01 \n",
" 0.238009 \n",
" 0.034377 \n",
" \n",
" \n",
" 2022-04-01 \n",
" -0.191945 \n",
" -0.084935 \n",
" \n",
" \n",
" 2022-05-01 \n",
" -0.129197 \n",
" 0.002257 \n",
" \n",
" \n",
"
\n",
"
136 rows × 2 columns
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "data3",
"summary": "{\n \"name\": \"data3\",\n \"rows\": 136,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2011-02-01 00:00:00\",\n \"max\": \"2022-05-01 00:00:00\",\n \"num_unique_values\": 136,\n \"samples\": [\n \"2017-03-01 00:00:00\",\n \"2014-11-01 00:00:00\",\n \"2016-02-01 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TSLA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1772389896653605,\n \"min\": -0.22426582233190806,\n \"max\": 0.8107057457667728,\n \"num_unique_values\": 136,\n \"samples\": [\n 0.11324450226739402,\n 0.011667339604856775,\n 0.003817939286909544\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SPY\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.040274982122481956,\n \"min\": -0.1299873427622643,\n \"max\": 0.13361061844737354,\n \"num_unique_values\": 136,\n \"samples\": [\n -0.0030871150646353263,\n 0.02747207318472422,\n -0.0008257097484639653\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 15
}
],
"source": [
"# combine two asset prices onto one matrix called pandas dataframe\n",
"data = pd.concat([mystock, index], axis=1)\n",
"\n",
"# drop missing observations\n",
"data2 = data.dropna()\n",
"\n",
"# compute monthly returns and drop the first observation\n",
"data3 = data2.pct_change().dropna()\n",
"data3"
]
},
{
"cell_type": "markdown",
"id": "68175734",
"metadata": {
"id": "68175734"
},
"source": [
"### Step 3: Run OLS\n",
"We need to install and import statsmodels module. https://www.statsmodels.org/stable/index.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5dcb73ad",
"metadata": {
"id": "5dcb73ad"
},
"outputs": [],
"source": [
"#!pip install statsmodels\n",
"import statsmodels.formula.api as smf\n",
"import statsmodels.api as sm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddfd0025",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ddfd0025",
"outputId": "997b3aa1-1499-4905-eb88-9e980a61b81f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: TSLA R-squared: 0.159\n",
"Model: OLS Adj. R-squared: 0.153\n",
"Method: Least Squares F-statistic: 25.35\n",
"Date: Mon, 10 Mar 2025 Prob (F-statistic): 1.51e-06\n",
"Time: 01:41:29 Log-Likelihood: 54.624\n",
"No. Observations: 136 AIC: -105.2\n",
"Df Residuals: 134 BIC: -99.42\n",
"Df Model: 1 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 0.0319 0.015 2.198 0.030 0.003 0.061\n",
"SPY 1.7553 0.349 5.035 0.000 1.066 2.445\n",
"==============================================================================\n",
"Omnibus: 43.834 Durbin-Watson: 1.592\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 109.883\n",
"Skew: 1.285 Prob(JB): 1.38e-24\n",
"Kurtosis: 6.576 Cond. No. 24.9\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"# run OLS\n",
"formula = 'TSLA ~ SPY' # set dep var and indep var\n",
"results = smf.ols(formula, data3).fit() # run OLS\n",
"print(results.summary()) # print"
]
},
{
"cell_type": "markdown",
"id": "6839b273",
"metadata": {
"id": "6839b273"
},
"source": [
"### beta of TSLA = 1.7553"
]
},
{
"cell_type": "markdown",
"id": "a3f1572a",
"metadata": {
"id": "a3f1572a"
},
"source": [
"### Step 4: Plot the result\n",
"We need to install and import matplotlib module. https://matplotlib.org/"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b0e60bb",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 586
},
"id": "0b0e60bb",
"outputId": "d124fe06-c3b2-4a23-beb9-c0ca2ee70c23"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA74AAAI5CAYAAACGvObVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAy1RJREFUeJzs3XlcVOX+B/DPDKsojCKyqJRmmhEpLqGkthguaZZd65pLmpWlZtdEU8kFcUPcvWlapHXLXH62m0Yp5k0LoytaIWpquMbggg4Isjgzvz9oJgZmOTNzZjkzn/frxesVh3PmPDMYz/k+z/f5PjKtVqsFERERERERkYeSu7oBRERERERERI7EwJeIiIiIiIg8GgNfIiIiIiIi8mgMfImIiIiIiMijMfAlIiIiIiIij8bAl4iIiIiIiDwaA18iIiIiIiLyaAx8iYiIiIiIyKMx8CUiIiIiIiKPxsCXiIhEM3fuXMhkMpuufeihh/DQQw+J2yAPJpPJMHfuXFc3w6T3338fMpkMZ86ccXVTiIiIGPgSEXkKXaCh+woMDES7du0wceJEFBUViXaf8vJyzJ07F/v27RPtNa3RqlUrg/fZsGFDxMfH44MPPnBJe7yNbnBD9xUUFISYmBjMmjULJSUlotxj8+bNWLVqlSivRUREBAC+rm4AERGJa968eWjdujUqKipw4MABrFu3Drt27UJeXh6CgoLsfv3y8nKkpqYCQL0Z2lmzZmHGjBl238OSuLg4TJkyBQBQWFiId999F6NHj0ZlZSXGjh3r8Pu7g5s3b8LX13Xd+Lp169CoUSPcuHED3377LRYuXIi9e/fihx9+sHnWX2fz5s3Iy8vDa6+9Jk5jiYjI6zHwJSLyMI8++ii6du0KAHjxxRfRtGlTrFixAl988QWGDRtm8+tqNBpUVVWZPcfX19cpwViLFi0wcuRI/ffPPfcc7rjjDqxcudLpgW9ZWRkaNmzo1HsCQGBgoNPvWdtTTz2FsLAwAMC4ceMwZMgQfPrppzh48CASEhJc2jYiIqK6mOpMROThevfuDQAoKCgAACxbtgz3338/mjZtigYNGqBLly74+OOP610nk8kwceJEfPTRR7jnnnsQEBCA9evXo1mzZgCA1NRUfbqrbq2psTW+7733Hnr37o3w8HAEBAQgJiYG69atE/U9NmvWDO3bt8fp06cNjms0GqxatQr33HMPAgMDERERgZdffhnXrl2rd97cuXPRvHlzBAUF4eGHH0Z+fj5atWqF5557Tn+eLp38v//9LyZMmIDw8HC0bNlS//Ovv/4avXr1QsOGDREcHIyBAwfi6NGjBvdSKpUYM2YMWrZsiYCAAERFReGJJ54wWAv7v//9D/369UNYWBgaNGiA1q1b4/nnnzd4HWNrfA8fPoxHH30UISEhaNSoER555BEcPHjQ4Bzde/jhhx+QlJSEZs2aoWHDhnjyySdx+fJloR95PXX/nZny1ltv6f89NW/eHK+88gquX7+u//lDDz2EnTt34uzZs/p/X61atbK5XURERABnfImIPJ4uGGzatCkAYPXq1Xj88ccxYsQIVFVVYevWrXj66afx1VdfYeDAgQbX7t27F//3f/+HiRMnIiwsDB07dsS6deswfvx4PPnkk/jHP/4BAOjQoYPJ+69btw733HMPHn/8cfj6+mLHjh2YMGECNBoNXnnlFVHe461bt3DhwgU0adLE4PjLL7+M999/H2PGjMG//vUvFBQUYM2aNTh8+DB++OEH+Pn5AQCSk5OxZMkSDBo0CP369cMvv/yCfv36oaKiwuj9JkyYgGbNmmHOnDkoKysDAHz44YcYPXo0+vXrh/T0dJSXl2PdunXo2bMnDh8+rA/ehgwZgqNHj+LVV19Fq1atcOnSJezevRvnzp3Tf9+3b180a9YMM2bMQOPGjXHmzBl8+umnZj+Do0ePolevXggJCcG0adPg5+eHt99+Gw899BD++9//olu3bgbnv/rqq2jSpAlSUlJw5swZrFq1ChMnTsS2bdts+RXU+3dmzNy5c5GamorExESMHz8eJ06cwLp16/Dzzz/rfx8zZ86ESqXChQsXsHLlSgBAo0aNbGoTERGRnpaIiDzCe++9pwWg3bNnj/by5cva8+fPa7du3apt2rSptkGDBtoLFy5otVqttry83OC6qqoqbWxsrLZ3794GxwFo5XK59ujRowbHL1++rAWgTUlJqdeGlJQUbd2upe79tFqttl+/fto77rjD4NiDDz6offDBBy2+z9tvv13bt29f7eXLl7WXL1/W/vbbb9pnn31WC0D7yiuv6M/bv3+/FoD2o48+Mrg+MzPT4LhSqdT6+vpqBw8ebHDe3LlztQC0o0eP1h/TfcY9e/bU3rp1S3+8tLRU27hxY+3YsWMNXkOpVGoVCoX++LVr17QAtEuXLjX5/j777DMtAO3PP/9s9nOo+zsYPHiw1t/fX3v69Gn9sT///FMbHBysfeCBB+q9h8TERK1Go9Efnzx5stbHx0d7/fp1s/fV/Y5PnDihvXz5sragoED79ttvawMCArQRERHasrIyg/sUFBRotVqt9tKlS1p/f39t3759tWq1Wv96a9as0QLQbty4UX9s4MCB2ttvv91sO4iIiKzBVGciIg+TmJiIZs2aITo6Gs888wwaNWqEzz77DC1atAAANGjQQH/utWvXoFKp0KtXL+Tm5tZ7rQcffBAxMTF2taf2/VQqFa5cuYIHH3wQf/zxB1QqlU2v+e2336JZs2Zo1qwZ7r33Xnz44YcYM2YMli5dqj9n+/btUCgU6NOnD65cuaL/6tKlCxo1aoTvvvsOAJCVlYVbt25hwoQJBvd49dVXTd5/7Nix8PHx0X+/e/duXL9+HcOGDTO4l4+PD7p166a/V4MGDeDv7499+/bVS7fWady4MQDgq6++QnV1taDPQ61W49tvv8XgwYNxxx136I9HRUVh+PDhOHDgQL2Kyy+99JJBWnqvXr2gVqtx9uxZQfe866670KxZM7Ru3Rovv/wy7rzzTuzcudNkAbU9e/agqqoKr732GuTyvx8/xo4di5CQEOzcuVPQfYmIiGzBVGciIg+zdu1atGvXDr6+voiIiMBdd91lEGh89dVXWLBgAY4cOYLKykr9cWOVeFu3bm13e3744QekpKQgOzsb5eXlBj9TqVRQKBRWv2a3bt2wYMECqNVq5OXlYcGCBbh27Rr8/f3155w8eRIqlQrh4eFGX+PSpUsAoA/07rzzToOfh4aG1kud1qn7uZw8eRLA3+tc6woJCQEABAQEID09HVOmTEFERAS6d++Oxx57DKNGjUJkZCSAmsGGIUOGIDU1FStXrsRDDz2EwYMHY/jw4QgICDD6+pcvX0Z5eTnuuuuuej+7++67odFocP78edxzzz3647fddpvBebr3aiogr+uTTz5BSEgI/Pz80LJlS7Rp08bs+brPuW4b/f39cccddwgOuImIiGzBwJeIyMPEx8frqzrXtX//fjz++ON44IEH8NZbbyEqKgp+fn547733sHnz5nrn156ttcXp06fxyCOPoH379lixYgWio6Ph7++PXbt2YeXKldBoNDa9blhYGBITEwEA/fr1Q/v27fHYY49h9erVSEpKAlBTsCo8PBwfffSR0dfQFemyRd3PRfc+PvzwQ30AW1vtStevvfYaBg0ahM8//xzffPMNZs+ejbS0NOzduxedOnWCTCbDxx9/jIMHD2LHjh345ptv8Pzzz2P58uU4ePCgaOtda89Y16bVagVd/8ADD+irOhMREbk7Br5ERF7kk08+QWBgIL755huD2cP33ntP8GtYs0frjh07UFlZiS+//NJghlGX+iuWgQMH4sEHH8SiRYvw8ssvo2HDhmjTpg327NmDHj16mA3gb7/9dgDAqVOnDGZyr169Knj2UzfbGR4erg/ILZ0/ZcoUTJkyBSdPnkRcXByWL1+OTZs26c/p3r07unfvjoULF2Lz5s0YMWIEtm7dihdffLHe6zVr1gxBQUE4ceJEvZ8dP34ccrkc0dHRgt6Lo+g+5xMnThikY1dVVaGgoMDgc7N3H2AiIqK6uMaXiMiL+Pj4QCaTQa1W64+dOXMGn3/+ueDX0K3hrL0Fjbn7AYaziCqVyqpAW6jp06fj6tWryMjIAAD885//hFqtxvz58+ude+vWLX37H3nkEfj6+tbbYmnNmjWC792vXz+EhIRg0aJFRtfl6rYJKi8vr1cpuk2bNggODtannV+7dq3erGtcXBwAGKSm1+bj44O+ffviiy++MNgWqaioCJs3b0bPnj316daukpiYCH9/f/z73/82eH8bNmyASqUyqCjesGFDm9d/ExERGcMZXyIiLzJw4ECsWLEC/fv3x/Dhw3Hp0iWsXbsWd955J3799VdBr9GgQQPExMRg27ZtaNeuHUJDQxEbG4vY2Nh65/bt2xf+/v4YNGgQXn75Zdy4cQMZGRkIDw9HYWGhqO/t0UcfRWxsLFasWIFXXnkFDz74IF5++WWkpaXhyJEj6Nu3L/z8/HDy5Els374dq1evxlNPPYWIiAhMmjQJy5cvx+OPP47+/fvjl19+wddff42wsDBBs48hISFYt24dnn32WXTu3BnPPPMMmjVrhnPnzmHnzp3o0aMH1qxZg99//x2PPPII/vnPfyImJga+vr747LPPUFRUhGeeeQYA8J///AdvvfUWnnzySbRp0walpaXIyMhASEgIBgwYYLINCxYswO7du9GzZ09MmDABvr6+ePvtt1FZWYklS5aI9jnbqlmzZkhOTkZqair69++Pxx9/HCdOnMBbb72F++67DyNHjtSf26VLF2zbtg1JSUm477770KhRIwwaNMiFrSciIqlj4EtE5EV69+6NDRs2YPHixXjttdfQunVrpKen48yZM4IDXwB499138eqrr2Ly5MmoqqpCSkqK0cD3rrvuwscff4xZs2Zh6tSpiIyMxPjx49GsWTM8//zzYr41AMDUqVPx3HPP4aOPPsJzzz2H9evXo0uXLnj77bfxxhtvwNfXF61atcLIkSPRo0cP/XXp6ekICgpCRkYG9uzZg4SEBHz77bfo2bMnAgMDBd17+PDhaN68ORYvXoylS5eisrISLVq0QK9evTBmzBgAQHR0NIYNG4asrCx8+OGH8PX1Rfv27fF///d/GDJkCICa4lY5OTnYunUrioqKoFAoEB8fj48++shssbF77rkH+/fvR3JyMtLS0qDRaNCtWzds2rSp3h6+rjJ37lw0a9YMa9asweTJkxEaGoqXXnoJixYt0u+pDNTsk3zkyBG89957WLlyJW6//XYGvkREZBeZVmgVCzfw/fffY+nSpTh06BAKCwvx2WefYfDgwWav2bdvH5KSknD06FFER0dj1qxZeO6555zSXiIikq7r16+jSZMmWLBgAWbOnOnq5hAREZEdJLXGt6ysDB07dsTatWsFnV9QUICBAwfi4YcfxpEjR/Daa6/hxRdfxDfffOPglhIRkZTcvHmz3rFVq1YBAB566CHnNoaIiIhEJ6kZ39pkMpnFGd/p06dj586dyMvL0x975plncP36dWRmZjqhlUREJAXvv/8+3n//fQwYMACNGjXCgQMHsGXLFvTt25eDpURERB7Ao9f4Zmdn19tWol+/fnjttddMXlNZWWlQNfPWrVs4duwYoqOjIZdLaoKciIgEioiIgFqtxuLFi3Hjxg2EhYXhhRdewOuvv44LFy6YvE6r1eLGjRuIiopiH2EFjUaDwsJCNGrUiFsXERGRAY1Gg6KiInTq1Am+vuKFqx4d+CqVSkRERBgci4iIQElJCW7evGl0X8e0tDSkpqY6q4lEROSGCgsLsWHDBmzYsMHVTSEiIvJKOTk5uO+++0R7PY8OfG2RnJyMpKQk/ffnz59HbGwszp8/7/I9EImIyL2UlJQgOjoa586dg0KhcHVzbPbJJ59g3LhxWLlyJbp27Yq33noLn3/+OQ4dOoRmzZrVO3/79u145ZVXsHbtWsTHx+PUqVOYMGEChgwZgkWLFlm8n0qlwm233ca+lYiI6tH1rXUnMO3l0YFvZGQkioqKDI4VFRUhJCTE6GwvAAQEBCAgIED/ve5BJiQkhJ0zEREZpVAoJN1HrF+/HmPHjsWECRMAAF27dsXu3buxfft2zJgxo975hw8fRo8ePfDCCy8AAO69914cOHAAP/30k1WfA/tWIiIyRewlRJJbkLR27Vq0atUKADBt2jTk5OSYPDchIQHbtm3DXXfdhQYNGiA6Ohrp6emIj493UmuJiIjcW1VVFQ4dOmRQE0MulyMxMRHZ2dlGr7n//vtx6NAhfR/8xx9/YNeuXRgwYIBT2kxERGQtSQW+//nPfzB58mSMGTMGANC0aVMkJiYiNzcXQE2a8qhRo/TnR0VFQalUom3btvjqq68wePBgnDhxAsHBwS5pPxERkbu5cuUK1Gq10ZoYSqXS6DXDhw/HvHnz0LNnT/j5+aFNmzZ46KGH8MYbbxg9v7KyEiUlJQZfREREziSpwHfx4sWorq7G3LlzAQAHDx5EaWkpxo4dC6CmGMm5c+f05586dQqdOnXCxYsXMWDAAOzatQv9+vXDpUuXXNF8IiIij7Bv3z4sWrQIb731FnJzc/Hpp59i586dmD9/vtHz09LSoFAo9F/R0dFObjEREXk7yQS+VVVVOHnyJD777DNotVr916hRo9CyZUsANfsw7tu3T3/N/fffjz/++ANvv/02KisrsXv3bpw9e5apWERERH8JCwuDj4+P0ZoYkZGRRq+ZPXs2nn32Wbz44ou499578eSTT2LRokVIS0uDRqOpd35ycjJUKpX+6/z58w55L0RERKZIpriVuVSs48ePG71m+PDhuHLlCnr27AmtVotbt25h3LhxJlOxgPr7+JaWlorzBoiIiNyQv78/unTpgqysLAwePBhAzR6KWVlZmDhxotFrysvL6xUd8fHxAVCzt3FddQtHEhEROZtkZnxtYW0qFlA/HSsmJsaJLSYiInK+pKQkZGRk4D//+Q+OHTuG8ePHo6ysTF9TY9SoUUhOTtafP2jQIKxbtw5bt25FQUEBdu/ejdmzZ2PQoEH6AJiIiMidSGbG195ULKBmu4WysjK89NJLmDlzptES2XX38b148SKDXyIi8mhDhw7F5cuXMWfOHCiVSsTFxSEzM1OfZXXu3DmDPnPWrFmQyWSYNWsWLl68iGbNmmHQoEFYuHChq94CERGRWZIJfJ2RigXUT8di5UkiIvIGEydONNmf1q6fAQC+vr5ISUlBSkqKE1pGRERkP8kEvkBNKtbo0aPRtWtXxMfHY9WqVfVSsVq0aIG0tDQANalYK1asQKdOndCtWzecOnWKqVhEREREREReRlKBL1OxiIiIiIiIyFoyramcXwIAXLhwAdHR0VCpVAgJCXF1c4iIyI2UlJRAoVCwj7ASPzciIjJF10ecP39ev22tGDy6qjMRERERERERA18iIiIiIiLyaAx8iYiIiIiIyKNJqrgVEdVQa7TIKSjGpdIKhAcHIr51KHzkMlc3i4iIiCSAzxHkjRj4EklMZl4hUnfko1BVoT8WpQhEyqAY9I+NcmHLiIiIyN3xOYK8FVOdiSQkM68Q4zflGnRWAKBUVWD8plxk5hW6qGVERETk7vgcQd6MgS+RRKg1WqTuyIex/cd0x1J35EOt4Q5lREREZIjPEeTtGPgSSUROQXG9EdratAAKVRXIKSh2XqOIiIhIEvgcQd6OgS+RRFwqNd1Z2XIeEREReQ8+R5C3Y+BLJBHhwYGinkdERETeg88R5O0Y+BJJRHzrUEQpAmFqswEZaqoyxrcOdWaziIiISAL4HEHejoEvkUT4yGVIGRQDAPU6Ld33KYNiuA8fERER1cPnCPJ2DHyJJKR/bBTWjeyMSIVhGlKkIhDrRnbm/ntERERkEp8jyJv5uroBRGSd/rFR6BMTiZyCYlwqrUB4cE1aEkdoiYiIyBI+R5C3YuBLJEE+chkS2jR1dTOIiIhIgvgcQd6Iqc5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR2PgS0RERERERB6NgS8RERERERF5NAa+RERERERE5NEY+BIREREREZFHY+BLREREREREHo2BLxEREREREXk0Br5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR/N1dQOIiIiIiIicQa3RIqegGJdKKxAeHIj41qHwkctc3SxyAga+RERERETk8TLzCpG6Ix+Fqgr9sShFIFIGxaB/bJQLW0bOwFRnIiIiIiLyaJl5hRi/Kdcg6AUApaoC4zflIjOv0EUtI2dh4EtERERERB5LrdEidUc+tEZ+pjuWuiMfao2xM8hTMPAlIiIiIiKPlVNQXG+mtzYtgEJVBXIKip3XKHI6Br5EREREROSxLpWaDnptOY+kiYEvERERERF5rPDgQFHPI2li4EtERERERB4rvnUoohSBMLVpkQw11Z3jW4c6s1nkZAx8iYiIiIjIY/nIZUgZFAMA9YJf3fcpg2K4n6+HY+BLREREREQerX9sFNaN7IxIhWE6c6QiEOtGduY+vl7A19UNICIiIiIicrT+sVHoExOJnIJiXCqtQHhwTXozZ3q9AwNfIiIiIiLyCj5yGRLaNHV1M8gFmOpMREREREREHo2BLxEREREREXk0Br5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR2PgS0RERERERB6NgS8RERERERF5NAa+RERERERE5NEY+BIREREREZFHY+BLREREREREHo2BLxEREREREXk0Br5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR2PgS0RERERERB6NgS8RERERERF5NF9XN4DIHmqNFjkFxbhUWoHw4EDEtw6Fj1zm6mYREREREZEbYeBLkpWZV4jUHfkoVFXoj0UpApEyKAb9Y6Nc2DIiIiIiInInkkt1Xrt2LVq1aoXAwEB069YNOTk5Zs+/fv06XnnlFURFRSEgIADt2rXDrl27nNRacpTMvEKM35RrEPQCgFJVgfGbcpGZV+iilhERERERkbuRVOC7bds2JCUlISUlBbm5uejYsSP69euHS5cuGT2/qqoKffr0wZkzZ/Dxxx/jxIkTyMjIQIsWLZzcchKTWqNF6o58aI38THcsdUc+1BpjZxARERERkbeRVKrzihUrMHbsWIwZMwYAsH79euzcuRMbN27EjBkz6p2/ceNGFBcX48cff4Sfnx8AoFWrVs5sMjlATkFxvZne2rQAClUVyCkoRkKbps5rGBERERERuSXJzPhWVVXh0KFDSExM1B+Ty+VITExEdna20Wu+/PJLJCQk4JVXXkFERARiY2OxaNEiqNVqZzWbHOBSqemg15bziIiIS4mIiMizSWbG98qVK1Cr1YiIiDA4HhERgePHjxu95o8//sDevXsxYsQI7Nq1C6dOncKECRNQXV2NlJQUo9dUVlaisrJS/31paal4b4JEER4cKOp5RETeTreUaP369ejWrRtWrVqFfv364cSJEwgPD693vm4pUXh4OD7++GO0aNECZ8+eRePGjZ3feCIiIgEkE/jaQqPRIDw8HO+88w58fHzQpUsXXLx4EUuXLjUZ+KalpSE1NdXJLSVrxLcORZQiEEpVhdF1vjIAkYqarY2IiMgyLiUiIiJPJ5lU57CwMPj4+KCoqMjgeFFRESIjI41eExUVhXbt2sHHx0d/7O6774ZSqURVVZXRa5KTk6FSqfRf+fn54r0JEoWPXIaUQTEAaoLc2nTfpwyK4X6+REQCOGMpUWVlJUpKSgy+iIiInEkyga+/vz+6dOmCrKws/TGNRoOsrCwkJCQYvaZHjx44deoUNBqN/tjvv/+OqKgo+Pv7G70mICAAISEh+q/g4GBx3wiJon9sFNaN7IxIhWE6c6QiEOtGduY+vkREAplbSqRUKo1e88cff+Djjz+GWq3Grl27MHv2bCxfvhwLFiwwen5aWhoUCoX+Kzo6WvT3QUREZI6kUp2TkpIwevRodO3aFfHx8Vi1ahXKysr0qVmjRo1CixYtkJaWBgAYP3481qxZg0mTJuHVV1/FyZMnsWjRIvzrX/9y5dsgkfSPjUKfmEjkFBTjUmkFwoNr0ps500tE5FjWLiVKTk5GUlKS/vuSkhIGv0RE5FSSCnyHDh2Ky5cvY86cOVAqlYiLi0NmZqZ+lPrcuXOQy/+exI6OjsY333yDyZMno0OHDmjRogUmTZqE6dOnu+otkMh85DJuWUREZAdblxL5+fmZXEpUN6sqICAAAQEB4jeeiIhIIMmkOuvIZDL9l+57nX379uH99983OP+nn37CtWvXIJPJUFVVhcuXL6O6utqZTSYiInJbzlpKRERE5EqSCnx12y2kpKQgNzcXHTt2RL9+/XDp0iWj52/evBkzZsxASkoKjh07hg0bNmDbtm144403nNxyIiIi95WUlISMjAz85z//wbFjxzB+/Ph6S4mSk5P1548fPx7FxcWYNGkSfv/9d+zcuROLFi3CK6+84qq3QEREZJakUp2t3W7hxx9/RI8ePTB8+HAANVstDBs2DD/99JNT201EROTOuJSIiIg8nWQCX912C7VHnC1tt3D//fdj06ZNyMnJQXx8PP744w/s2rULzz77rMn7VFZWorKyUv99aWmpeG+CiIjITU2cOBETJ040+rN9+/bVO5aQkICDBw86uFVERETikEzga267hePHjxu9Zvjw4bhy5Qp69uwJrVaLW7duYdy4cWZTndPS0pCamipq24mIiIiIiMh1JLXG11r79u3DokWL8NZbbyE3Nxeffvopdu7cifnz55u8Jjk5GSqVSv+Vn5/vxBYTERERERGR2CQz42vLdguzZ8/Gs88+ixdffBEAcO+996KsrAwvvfQSZs6cabBeSafulgslJSUivgsiIiIiIiJyNsnM+Nqy3UJ5eXm94Fa356BWq3VcY4mIiIiIiMhtSGbGF6jZbmH06NHo2rUr4uPjsWrVqnrbLbRo0QJpaWkAgEGDBmHFihXo1KkTunXrhlOnTmH27NkYNGiQPgAmIiIiIiIizyapwNfa7RZmzZoFmUyGWbNm4eLFi2jWrBkGDRqEhQsXuuotEBERERERkZPJtMz5NevChQuIjo6GSqVCSEiIq5tDRERupKSkBAqFgn2Elfi5ERGRKbo+4vz582jZsqVoryupGV8ici61RoucgmJcKq1AeHAg4luHwkcuc3WziIiIiIiswsCXiIzKzCtE6o58FKoq9MeiFIFIGRSD/rFRLmwZEREREZF1JFPVmYicJzOvEOM35RoEvQCgVFVg/KZcZOYVuqhlRERERETWY+BLRAbUGi1Sd+TD2OJ/3bHUHflQa1gegIiIiIikgYEvERnIKSiuN9NbmxZAoaoCOQXFzmsUEREREZEdGPgSkYFLpaaDXlvOIyIiIiJyNQa+RGQgPDhQ1POIiIiIiFyNgS8RGYhvHYooRSBMbVokQ0115/jWoc5sFhERERGRzRj4EpEBH7kMKYNiAKBe8Kv7PmVQDPfzJSIiIiLJYOBLRPX0j43CupGdEakwTGeOVARi3cjO3MeXiIiIiCTF19UNICL31D82Cn1iIpFTUIxLpRUID65Jb+ZMLxERERFJDQNfIjLJRy5DQpumrm4GEREREZFdmOpMREREREREHo2BLxEREREREXk0Br5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR2PgS0RERERERB6NgS8RERERERF5NF9XN4CIiIiIiGqoNVrkFBTjUmkFwoMDEd86FD5ymaubRSR5DHyJiIiIiNxAZl4hUnfko1BVoT8WpQhEyqAY9I+NcmHLiKSPqc5ERERERC6WmVeI8ZtyDYJeAFCqKjB+Uy4y8wpd1DIiz8DAl4iIiIjIhdQaLVJ35ENr5Ge6Y6k78qHWGDuDiIRg4EtERERE5EI5BcX1Znpr0wIoVFUgp6DYeY0i8jAMfImIiIiIXOhSqemg15bziKg+Br5ERERERC4UHhwo6nlEVB8DXyIiIiIiF4pvHYooRSBMbVokQ0115/jWoc5sFpFHYeBLRERERORCPnIZUgbFAEC94Ff3fcqgGO7nS2QHBr5ERERERC7WPzYK60Z2RqTCMJ05UhGIdSM7cx9fIjv5uroBRERERERUE/z2iYlETkExLpVWIDy4Jr2ZM71E9mPgS0RERETkJnzkMiS0aerqZhB5HKY6ExERERERkUdj4EtEREREREQejYEvEREREREReTQGvkREREREROTRGPgSERERERGRR2PgS0RERERERB6NgS8RERERERF5NAa+RERERERE5NEY+BIREREREZFHY+BLREREREREHo2BLxEREREREXk0Br5ERERERETk0Rj4EhERERERkUdj4EtEREREREQejYEvEREREREReTRfVzeAiIiIiIiIpEut0SKnoBiXSisQHhyI+Nah8JHLXN0sAwx8iYiIiIiIyCaZeYVI3ZGPQlWF/liUIhApg2LQPzbKhS0zxFRnIiIiIiIislpmXiHGb8o1CHoBQKmqwPhNucjMK3RRy+pj4EtERERERERWUWu0SN2RD62Rn+mOpe7Ih1pj7AznY+BLREREREREVskpKK4301ubFkChqgI5BcXOa5QZDHyJiIiIiIjIKpdKTQe9tpznaAx8iYiIiIiIyCrhwYGinudoDHyJiIiIiIjIKvGtQxGlCISpTYtkqKnuHN861JnNMomBLxEREREREVnFRy5DyqAYAKgX/Oq+TxkU4zb7+TLwJSJyM2qNFtmnr+KLIxeRffqq21RDJCIiIqqtf2wU1o3sjEiFYTpzpCIQ60Z2dqt9fH1d3QBbrF27FkuXLoVSqUTHjh3x5ptvIj4+3uJ1W7duxbBhw/DEE0/g888/d3xDiYisJJVN4ImIiIiAmuC3T0wkcgqKcam0AuHBNenN7jLTqyO5Gd9t27YhKSkJKSkpyM3NRceOHdGvXz9cunTJ7HVnzpzB1KlT0atXLye1lIjIOlLaBJ6IiIhIx0cuQ0KbpngirgUS2jR1u6AXkGDgu2LFCowdOxZjxoxBTEwM1q9fj6CgIGzcuNHkNWq1GiNGjEBqairuuOMOJ7aWiEgYqW0CT0RERCQlkgp8q6qqcOjQISQmJuqPyeVyJCYmIjs72+R18+bNQ3h4OF544QVnNJOIyGpS2wSeiIiI3ANrgwgjqTW+V65cgVqtRkREhMHxiIgIHD9+3Og1Bw4cwIYNG3DkyBFB96isrERlZaX++9LSUpvbS0QklNQ2gSciIiLXY20Q4SQ142ut0tJSPPvss8jIyEBYWJiga9LS0qBQKPRfMTExDm4lEZH0NoEnIiIi12JtEOtIKvANCwuDj48PioqKDI4XFRUhMjKy3vmnT5/GmTNnMGjQIPj6+sLX1xcffPABvvzyS/j6+uL06dP1rklOToZKpdJ/5efnO+z9EBHpSG0TeCIiInId1gaxnqQCX39/f3Tp0gVZWVn6YxqNBllZWUhISKh3fvv27fHbb7/hyJEj+q/HH38cDz/8MI4cOYLo6Oh61wQEBCAkJET/FRwc7ND3REQESG8TeCIiInId1gaxnqTW+AJAUlISRo8eja5duyI+Ph6rVq1CWVkZxowZAwAYNWoUWrRogbS0NAQGBiI2Ntbg+saNGwNAveNEUqLWaN1+rzSynm4T+LprdSK5VoeIiIhqYW0Q60ku8B06dCguX76MOXPmQKlUIi4uDpmZmfqCV+fOnYNcLqmJbCKrsIiBZ5PKJvDkedauXYulS5dCqVSiY8eOePPNNxEfH2/xuq1bt2LYsGF44okn8Pnnnzu+oURExNogNpBptVomfptx4cIFREdHQ6VSISQkxNXNIS+nK2JQ939aXUi0bmRnBr9ETlRSUgKFQiH5PmLbtm0YNWoU1q9fj27dumHVqlXYvn07Tpw4gfDwcJPXnTlzBj179sQdd9yB0NBQwYGvp3xuRESuotZo0TN9L5SqCqPrfGWoyRg7ML235AbPdX3E+fPn0bJlS9Fel1OjRBLBIgZE5CgrVqzA2LFjMWbMGMTExGD9+vUICgrCxo0bTV6jVqsxYsQIpKam4o477nBia4mIiLVBrMfAl0giWMSAiByhqqoKhw4dQmJiov6YXC5HYmIisrOzTV43b948hIeH44UXXrB4j8rKSpSUlBh8ERGRfXS1QSIVhunMkYpAZgEaIbk1vkTeikUMiMgRrly5ArVara+VoRMREYHjx48bvebAgQPYsGEDjhw5IugeaWlpSE1NtbepRERUB2uDCMfAl0giWMSAiNxBaWkpnn32WWRkZCAsLEzQNcnJyUhKStJ/X1JSYnRLQSIiV5D6bhk+chkS2jR1dTPcHgNfIomIbx2KKEWgxSIG8a1Dnd00IpKwsLAw+Pj4oKioyOB4UVERIiMj651/+vRpnDlzBoMGDdIf02g0AABfX1+cOHECbdq0MbgmICAAAQEBDmg9EZF9uFuG9+AaXyKJYBEDInIEf39/dOnSBVlZWfpjGo0GWVlZSEhIqHd++/bt8dtvv+HIkSP6r8cffxwPP/wwjhw5wplcIpIM3W4ZdWuoKFUVGL8pF5l5hS5qGTkCZ3yJJERXxKDuyGQkRyaJyA5JSUkYPXo0unbtivj4eKxatQplZWUYM2YMAGDUqFFo0aIF0tLSEBgYiNjYWIPrGzduDAD1jhMRuStLu2XIULNbRp+YSE4qeAgGvkQSwyIGRCS2oUOH4vLly5gzZw6USiXi4uKQmZmpL3h17tw5yOVMEiMiz2HNbhlcP+sZGPgSSRCLGBCR2CZOnIiJEyca/dm+ffvMXvv++++L3yAiciipF3SyF3fL8D4MfImIiIiIvAgLOnG3DG/EvCUiIiIiIi/Bgk41dLtlmJrjlqFmMIC7ZXgOBr5ERERERF7AUkEnoKagk1pj7AzPwt0yvA8DXyIiIiIiL2BNQSdvoNstI1JhmM4cqQjEupGdvSbt21twjS8RERERkRdgQaf6uFuG92DgS0RERETkBVjQyTjuluEdmOpMREREROQFWNCJvJnkAt+1a9eiVatWCAwMRLdu3ZCTk2P2/OvXr+OVV15BVFQUAgIC0K5dO+zatctJrSUiIiIicg8s6ETeTFKB77Zt25CUlISUlBTk5uaiY8eO6NevHy5dumT0/KqqKvTp0wdnzpzBxx9/jBMnTiAjIwMtWrRwcsuJiIiIiFyPBZ3IW0lqje+KFSswduxYjBkzBgCwfv167Ny5Exs3bsSMGTPqnb9x40YUFxfjxx9/hJ+fHwCgVatWzmwyEREREZFbYUEn8kaSmfGtqqrCoUOHkJiYqD8ml8uRmJiI7Oxso9d8+eWXSEhIwCuvvIKIiAjExsZi0aJFUKvVzmo2EREREZHb0RV0eiKuBRLaNGXQSx5PMjO+V65cgVqtRkREhMHxiIgIHD9+3Og1f/zxB/bu3YsRI0Zg165dOHXqFCZMmIDq6mqkpKQYvaayshKVlZX670tLS8V7E0REREREROR0kpnxtYVGo0F4eDjeeecddOnSBUOHDsXMmTOxfv16k9ekpaVBoVDov2JiYpzYYiIiIiIiIhKbZALfsLAw+Pj4oKioyOB4UVERIiMjjV4TFRWFdu3awcfHR3/s7rvvhlKpRFVVldFrkpOToVKp9F/5+fnivQkichq1Rovs01fxxZGLyD59FWqN1tVNIiIiIiIXkUyqs7+/P7p06YKsrCwMHjwYQM2MblZWFiZOnGj0mh49emDz5s3QaDSQy2ti/N9//x1RUVHw9/c3ek1AQAACAgL035eUlIj7RojI4TLzCpG6Ix+Fqgr9sShFIFIGxbBaJREREZEXksyMLwAkJSUhIyMD//nPf3Ds2DGMHz8eZWVl+irPo0aNQnJysv788ePHo7i4GJMmTcLvv/+OnTt3YtGiRXjllVdc9RaIyMEy8woxflOuQdALAEpVBcZvykVmXqGLWkZEREREriKZGV8AGDp0KC5fvow5c+ZAqVQiLi4OmZmZ+oJX586d08/sAkB0dDS++eYbTJ48GR06dECLFi0wadIkTJ8+3VVvgYgcSK3RInVHPowlNWsByACk7shHn5hIVq8kIiIi8iIyrVbLhW9mXLhwAdHR0VCpVAgJCXF1c4jIjOzTVzEs46DF87aM7Y6ENk2d0CLydCUlJVAoFOwjrMTPjYiITNH1EefPn0fLli1Fe11JpToTEZlzqbTC8klWnEdEREREnoGBLxF5jPDgQFHPIyIiIiLPwMCXiDxGfOtQRCkCYWr1rgw11Z3jW4c6s1lERERE5GIMfInIY/jIZUgZFAMA9YJf3fcpg2JY2IqIiIjIyzDwJSKP0j82CutGdkakwjCdOVIRiHUjO3MfXyIiIiIvJKntjMh7qTVa5BQU41JpBcKDa1JVOWtHpvSPjUKfmEj+myEiIiIiAFYGvseOHcPWrVuxf/9+nD17FuXl5WjWrBk6deqEfv36YciQIQgICHBUW8lLZeYVInVHPgpVf1fijVIEImVQDGfvyCQfuYxbFpFksH8lIiJyLEH7+Obm5mLatGk4cOAAevTogfj4eDRv3hwNGjRAcXEx8vLysH//fpSUlGDatGl47bXXPKaD5j6+rpWZV4jxm3JR9x+pbt6OqatE5Er27kfrrf0r9/ElIiJTHLWPr6AZ3yFDhuD111/Hxx9/jMaNG5s8Lzs7G6tXr8by5cvxxhtviNVG8lJqjRapO/LrBb0AoEVN8Ju6Ix99YiKZwkpEksT+lYiIyDkEBb6///47/Pz8LJ6XkJCAhIQEVFdX290wopyCYoP05rq0AApVFcgpKGZKKxFJEvtXIiIi5xBU1VlIpwwAxcXFVp1PZM6lUtNBry3nERG5G/avREREziF4O6OHHnoIZ86cMfnzTz/9FPfcc48YbSICAIQHB1o+yYrziIjcEftXIiIixxMc+AYHB6NDhw54++23DY4XFxfjmWeewYgRI/Cvf/1L9AaS94pvHYooRSBMrd6Voaa6c3zrUGc2i4hIVOxfiYiIHE9w4Ltjxw6sWrUK06dPR//+/XHhwgV89tlniImJwalTp/Dzzz8jOTnZkW0lL+MjlyFlUAwA1At+dd+nDIphYSsikjT2r0TkLdQaLbJPX8UXRy4i+/RVqDUWN5chEo2g7YxqO3fuHEaNGoWcnBxoNBrMnDkTb7zxBnx8fBzVRpfidkaux318ichdibktjzf1r9zOiMj78HmOhHLpdka1HT9+HKdPn0azZs2gVCohl8shk3HGjRynf2wU+sREIqegGJdKKxAeXJPezJle66k1Wn6ORG6K/SsRearMvEKM35Rbb4tKpaoC4zflYt3Izgx+yeEEpzqXlZXhpZdewqBBg/Diiy/i9OnT+Oyzz7Bu3Tp069YNx44dc2Q7ycv5yGVIaNMUT8S1QEKbpgzWbJCZV4ie6XsxLOMgJm09gmEZB9EzfS8y8wpd3TSHYDoVSQX7VyLyZGqNFqk78usFvQD0x1J35LOfJocTHPjGxsbi4MGDyM7ORkpKCnx9fTFgwADk5eXhrrvuQufOnZGenu7IthK5HakEV7qR1rr7IutGWj0t+PW2IJ+kjf0rEXmynILies8ftWkBFKoqkFNQ7LxGkVcSHPgOHToU//vf/9C5c2eD440bN8amTZuwefNmrFy5UvQGErkrqQRX3jbS6m1BPkkf+1ci8mSXSk0HvbacR2QrwYHv4sWL4e/vb/LnTz75JI4ePSpKo4jcnZSCK28aafW2IJ88A/tXIvJk4cGBop5HZCvBga8QTZs2FfPliNySK4Ire1KqvWmk1ZuCfPIu7F+JSKriW4ciShFYb2tKHRlqqjvHtw51ZrPIC1ld1ZnI21kTXCW0sf9h1d7y/9400upNQT4REZEU+MhlSBkUg/GbciEDDCYOdMFwyqAYFi4lhxN1xpfcm1QKMbk7ZwZXYqRUe9NIqzcF+URERFLRPzYK60Z2RqTCsP+NVARyKyNyGs74egluGi4eZwVXllKqZahJqe4TE2l2lNSbRlp1Qb5SVWH0c5OhppP1hCCfiIhISvrHRqFPTCRyCopxqbQC4cE1/bEnPH+QNHDG1wtIqRCTFDhrBlXM9areMtKqC/IB1Pv9eFqQT0REJDU+chkS2jTFE3EtkNCmqej9MbMbyRxBM77nzp2z6cUbN26MkJAQm64lcYg1a0h/c9YMqtgp1d4y0qoL8utmOEQyw4HcEPtXIiJxMLuRLBEU+LZq1QoymQxarfBRE5lMhpSUFMyZM8fmxpH9nF2IyVs4I7hyREq1bqTV03lLkE/Sx/6ViMh+uuzGun9JddmNnpTdRrYTFPhqNBpHt4MchFVuHcfRwRXXq9rHW4J8kjb2r0RE9mF2IwnFNb4ejlVuHcuRa1W4XpWIiIjIPDFropBnY+DrBK5caO9NW9l4Im8pSkVERERkC2Y3klDczsjBXL3Q3pu2svFUXK9KREREZByzG0kozvg6kLtsI8RZQ+lzdPl/IiIi8m5S3QqI2Y0kFGd8HcTdFtpz1pCIiIiIjHF1hqI9mN1IQok243vs2DFMnTpVrJeTPHdcaM9ZQ88h1VFZIrIe+1ciciR3yVC0B7MbSQi7ZnzLysqwdetWbNiwAQcPHkRMTAyWLVsmVtskjQvtyVGkPCpLRMKwfyUiZ3C3DEV7MLuRLLFpxveHH37A888/j4iICLz00ku4//77kZ+fj7y8PLHbJ1lcaE+O4AmjskRkGvtXInImd8xQtAezG8kcwYHvpUuXsGTJErRv3x5PPfUUGjdujH379kEul+P5559H+/btHdlOyeFCexKbpVFZoGZUlmnPRNLC/pWIXIUZiuRNBKc633777XjqqaewevVq9OnTB3I5C0Kbw4X2JDZrRmUT2jR1XsOIyC7sX4nIVmqN1q7UXmYokjexKvA9cOAAbrvtNtx+++0cgRZAt9C+7nrMSK7HJBtwVJbIM7F/JSJbiFHzQ5ehqFRVGM0ok6HmuZUZiuQJBAe+x48fxw8//IANGzbgvvvuQ7t27TBy5EgAgEzGWUtTuNCexMJRWSLPxP6ViKylq/lRN1jV1fwQWsmYGYrkTazKp+rRowc2btyIwsJCjBs3Dtu3b4darcaECROQkZGBy5cvO6qdksaF9iQGrhsn8lzsX4lIKLFrfnArIPIWMq1Wa1clnGPHjmHDhg348MMPUVxcjOrqarHa5hYuXLiA6OhoqFQqhISEuLo5ZCV71764G90IL2B8VNbRHZSnfZ5E9iopKYFCoXBIH+HJ/asjPzciT5d9+iqGZRy0eN6Wsd2tqvnBPp7cha6POH/+PFq2bCna69pdQePuu+/GsmXLcPHiRWzbtk2MNlm0du1atGrVCoGBgejWrRtycnJMnpuRkYFevXqhSZMmaNKkCRITE82eT54jM68QPdP3YljGQUzaegTDMg6iZ/peSW/548pRWU/8PIncmSv6VyJyf46q+cEMRfJ0opWOPHXqFGbMmCHWy5m0bds2JCUlISUlBbm5uejYsSP69euHS5cuGT1/3759GDZsGL777jtkZ2cjOjoaffv2xcWLFx3eVnIdT97vtn9sFA5M740tY7tj9TNx2DK2Ow5M7+3woNdTP08id+es/pWIpIE1P8iT5eXlYciQIQ55bdEC38rKSpw+fVqslzNpxYoVGDt2LMaMGYOYmBisX78eQUFB2Lhxo9HzP/roI0yYMAFxcXFo37493n33XWg0GmRlZTm8reQa3rDfrTNHZb3h8yRyZ87qX4lIGljzgzxRYWEhxo4di44dO2LPnj0OuYekNgusqqrCoUOHkJiYqD8ml8uRmJiI7OxsQa9RXl6O6upqhIYa/2NQWVmJkpIS/VdpaakobSfnsWa/WzJOrdEi+/RVfHHkIt7/oYCfJxERkZvQVWIGUC/4ZSVmkpqysjKkpqaibdu2+gnKxx9/3CH3ErydkTu4cuUK1Go1IiIiDI5HRETg+PHjgl5j+vTpaN68uUHwXFtaWhpSU1Ptbiu5Dve7tY+xfQGF4OdJROQ5WOjIvelqftTtryOt3MeXyFXUajXef/99zJ49G4WFNUvmunfvjuXLlyM2NhYKhUL0e0oq8LXX4sWLsXXrVuzbtw+BgcbXPSQnJyMpKUn//cWLFxETE+OsJpIIuPbFdqb2BRSCnycRkWcwNgAaxYDK7fSPjUKfmEgOUJDkfPPNN3j99dfx22+/AQBat26N9PR0PPXUU5DJZCgpKXHIfQUHvk2aNIFMZvp/pFu3bonSIHPCwsLg4+ODoqIig+NFRUWIjIw0e+2yZcuwePFi7NmzBx06dDB5XkBAAAICAvTfO+qDJ8fRrX1RqiqMBnAy1IyIcu2LIXNrec3h50lkH3foX4l0TA2A6ooZcl9X96Kr+WELzuqTs/366694/fXX8e233wKo6f9mz56NCRMmGMRfjiI48F21apUDmyGMv78/unTpgqysLAwePBgA9IWqJk6caPK6JUuWYOHChfjmm2/QtWtXJ7WWXEW39mX8plzIYHy/W659qc/S2mhj+Hm6Pz7YuD936F+JAMvFDGWoKWbYJyaSf0ckjrP65Ex//vknZs+ejffeew9arRZ+fn549dVXMXPmTJN1lxxBcOA7evRoR7ZDsKSkJIwePRpdu3ZFfHw8Vq1ahbKyMowZMwYAMGrUKLRo0QJpaWkAgPT0dMyZMwebN29Gq1atoFQqAQCNGjVCo0aNXPY+yLGktvbFHYITW9bouuvnSTX4YCMN7tK/EllTHNLWWUZyPc7qk7PcuHEDS5cuxbJly1BeXg4AePrpp5GWloY2bdo4vT12rfGtqKjAtm3bUFZWhj59+qBt27ZitcukoUOH4vLly5gzZw6USiXi4uKQmZmpL3h17tw5yOV/F6tet24dqqqq8NRTTxm8TkpKCubOnevw9pLrSGXti7sEJ0LX6M4eeDfCggPc9vOkGnywkTZX9K9ELA7p+TirT86gVquxceNGfbwGAPfffz+WLVuGhIQEl7VLptVqBS3pS0pKQnV1Nd58800ANVsLdevWDUePHkVQUBBu3bqF3bt3u/TNOMKFCxcQHR0NlUqFkJAQVzeHPIyp4ETX1TgzOFFrtOiZvtfi2ugD03uzM3Rzut+lqZkb/i7FU1JSAoVCYVcf4Y39qxifG4kv+/RVDMs4aPG8LWO7u/2MrztkUrkjT/odk/vRarXIzMzEtGnTkJeXBwBo06YN0tPT8Y9//MNsPYvadH3E+fPn0bJlS9HaJ3gf32+//RZ9+vTRf//RRx/h7NmzOHnyJK5du4ann34aCxYsEK1hRJ5OrdFi7pdHTY66AjWjrmqNLTWWrcd9AT0H97KWFvav5C50xSFN/ZWXoSYjyd2LGWbmFaJn+l4MyziISVuPYFjGQfRM34vMvEJXN83lOKtPjvLLL7+gb9++GDBgAPLy8hAaGoqVK1ciPz8fQ4YMERz0OpLgwPfcuXMG2/p8++23eOqpp3D77bdDJpNh0qRJOHz4sEMaSeSJ1uw9BWVJpcmfix2cqDVaZJ++ii+OXET26atGA2rd2uhIhWHac6QiUNDss5B7kOPxwUZa2L+Su/CEAVBdJlXdwT/dMg9vD3655SOJ7eLFi3j++efRqVMn7NmzB/7+/pgyZQpOnTqF1157Df7+/q5uop7gNb5yuRy1s6IPHjyI2bNn679v3Lgxrl27Jm7riDxUZl4hVu75XdC5YgQn1qwjtnVttLusVSY+2EgN+1dyJ1IrDlkb169axi0fSSylpaVYsmQJli9fjps3bwIAnnnmGSxatAitW7d2ceuMEzzje/fdd2PHjh0AgKNHj+LcuXN4+OGH9T8/e/asvsAUEZmm65iFsjc4sWX0W7cv4BNxLZDQpqmgoJcj7O7DU9IVvYW79K9r165Fq1atEBgYiG7duiEnJ8fkuRkZGejVqxeaNGmCJk2aIDEx0ez5JC39Y6NwYHpvbBnbHauficOWsd1xYHpvtw56AS7zEELqs/rMLHO9W7du4e2330bbtm2xYMEC3Lx5Ez169MDBgwexZcsWtw16ASsC32nTpiE5ORmPPPIIHnnkEQwYMMDgje3atQvx8fEOaSSRJ7Fmv1x7gxNLo9+A/euInXEPso7UH2y8jTv0r9u2bUNSUhJSUlKQm5uLjh07ol+/frh06ZLR8/ft24dhw4bhu+++Q3Z2NqKjo9G3b19cvHjRoe0k57F2ANQdcJmHMPYua3IVrt12La1Wi127dqFjx44YN24cioqKcOedd+KTTz7B/v370a1bN1c30SLBge+TTz6JXbt2oUOHDpg8eTK2bdtm8POgoCBMmDBB9AYSeRprOlx7gxNnjH5zhN09SfXBxhu5Q/+6YsUKjB07FmPGjEFMTAzWr1+PoKAgbNy40ej5H330ESZMmIC4uDi0b98e7777LjQaDbKyshzaTiJzuMxDOKnN6jOzzLUOHz6MPn36YODAgcjPz0doaChWr16No0ePWlWt2dUEr/GdN28epk6dikceecToz1NSUkRrFJEnE9rhTk5sa3cH5IzRb46wuy+p7GXt7Vzdv1ZVVeHQoUNITk7WH5PL5UhMTER2drag1ygvL0d1dTVCQ41nqFRWVqKy8u9ifiUlJfY1msgIrl+1jm5WXyhXbRHFtduuc+HCBcycORMffvghtFot/P39MWnSJLzxxhto3Lixq5tnNcEzvqmpqbhx44Yj20LkFSytvwRqUpwn9m5r972cMfrNEXb3JsV0RW/j6v71ypUrUKvV9dYRR0REQKlUCnqN6dOno3nz5khMTDT687S0NCgUCv1XdHS03e0mqovLPBzHlWnGzCxzvpKSEsyaNQtt27bFBx98AK1Wi2HDhuHEiRNYsmSJJINewIrAt3bFSSKynaWOWQbxOmZnFDny9kJKLLRB9pJ6/7p48WJs3boVn332GQIDjQ9wJScnQ6VS6b/Onz/v5FaSt+AyD/GZSjMuVFVg3KZc7Pr1T4fen5llznPr1i2sX78ebdu2xcKFC1FRUYFevXrhp59+wubNm9GqVStXN9EuglOdAUgmf5vI3TlruwhdkD1+Uy5kgEGakFij3864h7viFk4kFlf2r2FhYfDx8UFRUZHB8aKiIkRGRpq9dtmyZVi8eDH27NmDDh06mDwvICAAAQEBorSXyBIu8xCPuTRjnYlbDmMNZBjQwTH9HjPLHE+r1WLnzp14/fXXcfz4cQBA27ZtsWTJEjzxxBMeEwNaFfi2a9fO4hsvLmaaAZEQzuqYnRFkS3nfR1vpRsDrPgzoCm1wZoGs4cr+1d/fH126dEFWVhYGDx4MAPpCVRMnTjR53ZIlS7Bw4UJ888036Nq1q0PaRmQra9evknFCdqLQaIEJm3OxXu6Yfo9rtx0rNzcXU6dOxXfffQcAaNq0KebOnYuXX34Zfn5+Lm6duKwKfFNTU6FQKBzVFiKv46yO2RlBtjeNsLPQBonN1f1rUlISRo8eja5duyI+Ph6rVq1CWVkZxowZAwAYNWoUWrRogbS0NABAeno65syZo099060FbtSoERo1auSy90FE4rImfdhR/Z43Z5Y50vnz5/WFq4CazJzXXnsNycnJHhvvWRX4PvPMMwgPD3dUW4jIDpaqLTojyPaWEXZrCm14w+dB9nN1/zp06FBcvnwZc+bMgVKpRFxcHDIzM/UFr86dOwe5/O+yIOvWrUNVVRWeeuopg9dJSUnB3Llzndl0InIga9KHHdnveWNmmaOUlJRg8eLFWLlyJSoqaj7LESNGYOHChbj99ttd3DrHEhz4ekpuN1FdrirPLyauNXUuFtogMblL/zpx4kSTqc379u0z+P7MmTOObxARuZwuzdhSurOOI/s9b8osc4Tq6mpkZGRg7ty5uHz5MgDgwQcfxLJly7xmuYrgwFfqVSeJjPGEgNEd15p6wmCCOSy0QWJi/0pE7kqXZjxuU66g8x3d73lLZpmYtFotduzYgWnTpuHEiRMAgLvuugtLlizBoEGD3Gbw1RkEB74ajcaR7SByOncMGK3ljmtNxRpMcOfg2ZsLbbjz70Wq2L8SkTvrHxuFt4Z3wsQth2Fqxz5P7vek7H//+x+mTp2K//73vwBqqvinpqZi7NixHle4SghBge+4ceMwa9YstGzZ0uK527Ztw61btzBixAi7G0fkKM4MGB0RKOhe84dTV9xqralYgwnuPhPvjoU2nBGQuvvvRYrYvxKRFAzo0BxrIMOEzfVnfllgyv2cPXsWM2fOxEcffQQACAwMxOTJkzF9+nSPLVwlhKDAt1mzZrjnnnvQo0cPDBo0CF27dkXz5s0RGBiIa9euIT8/HwcOHMDWrVvRvHlzvPPOO45uN5FdnFWcyBGBgrHXtMQZa03FGkyQyky8OxXacEZAKpXfi9SwfyUiqRjQIQrr5e7R75FxKpUKaWlpWLVqFSorKwEAzz77LBYsWIDbbrvNxa1zPZlW4OKioqIivPvuu9i6dSvy8/MNfhYcHIzExES8+OKL6N+/v0Ma6ioXLlxAdHQ0VCoVQkJCXN0cEskXRy5i0tYjFs9b/UwcnohrYdM9TAUKupDPlkDB1GtasmVsd4fP+GafvophGQftaotao0XP9L0mg3pdKtWB6b3dZlTZ1am/jvh3VpcUfy/OUlJSAoVCYVcf4Y39qxifGxG5hqv7Paqvuroab7/9NlJTU3HlyhUAwEMPPYTly5ejc+fOLm6d9XR9xPnz5wVlRAkleI1vREQEZs6ciZkzZ+LatWs4d+4cbt68ibCwMLRp08arFkaT9Dm6OJEjUqnNvaYpMgARIQHQaLX44shFh3ZQYlQ6luI2Qa4stOGslH0p/l6khP0rEUkJC0y5D61Wiy+++ALTpk3DyZMnAQDt27fH0qVLMXDgQPYfdVi1j69OkyZN0KRJE7HbQuQ0ji5O5IhAwdJr1qVbe1pxS4MR7/6kP+6oNZlnrpQJOs/cYAK3CbKOswJS/l6ch/0rEREJkZOTg6lTp2L//v0AapbOzJs3Dy+++CJ8fW0K8Tye3PIp9e3fvx8jR47E/fffj4sXLwIAPvzwQxw4cEDUxhE5iq44EfB3SqiOGEUaHBEoWBtUKIJqqvVdL682OK5bk5mZV2jV65mz69c/sXLPSbPnyFATdJsbTLB2Jl6t0SL79FV8ceQisk9fhdpUuUkP5ayAlNs3OQ/7VyKSMnfpl92lHY5w5swZDB8+HN26dcP+/fsRGBiImTNn4tSpUxg3bhyDXjOs/mQ++eQTPPvssxgxYgRyc3P1C6dVKhUWLVqEXbt2id5IIkdwZHEiRwQKQs+d+HAbJNwRhinbfwFQXe/nYlet3vVrISZuOSzoXEuDCdbMxLPCsPMCUm/evsmZ2L8SiUcq61Cl0k4h3KVfdpd2iO369etYtGgRVq9ejaqqKshkMowaNQrz589HdHS0q5snCYKLW+l06tQJkydPxqhRoxAcHIxffvkFd9xxBw4fPoxHH30USqXSUW11CRa38nyO2m6oZ/pei4GCNcWArHnNnIJiuwtNCZGZVyh4U/vJie0wKbGtxc9bV6wJML5N0LqRNUUaHF3QSQoc8e/MFCG/F2/4zOsSs0iTN/WvLG5FjiSVwMdcO/vEREoqIHZGoUUptUNMVVVVWL9+PVJTU1FcXAwA6N27N5YtW4ZOnToJeg2pDbC4vLiVzokTJ/DAAw/UO65QKHD9+nUx2kTkVI4o0uCIfV6teU1npMDqCisJ1SosSNDDiKWZ+D4xkeiZvtcpezC7O2fuJ+xO2zd5KvavRPaTytZr5to5blMuGgf5GSxVcsfAXcdZhRal0g6xaLVafPbZZ5g+fTpOnToFAIiJicHSpUvx6KOPCi5cJZWBIGeweo1vZGSk/sOv7cCBA7jjjjtEaRSRJ9AFCpEKwzTTSEWgzR2v0Nd0RgqstcW2zlwpw/hNufWuMbbmuH9sFA5M740tY7tj9TNx2DK2Ow5M743+sVFWFXTyBo74d2buXqZ+L2Q/9q9E9rEU+AA1gY+r13sKaae19TlcuabVXfpld2mHGH766Sf06tULQ4YMwalTpxAeHo63334bv/zyCwYMGGBV0Cv02csbWD3jO3bsWEyaNAkbN26ETCbDn3/+iezsbEydOhWzZ892RBuJJKt/bJTo6UpCXlPMNZmm0mOsmS2OUgRiS845q0ZhTc3Es8JwfY74d2YKt7FwHPavRPaRytZr1g4cA+ZnLF09o+cO/bJao8UPp664vB32KigoQHJyMrZt2wYAaNCgAaZOnYrXX38dwcHBVr2Wp82Ai8HqwHfGjBnQaDR45JFHUF5ejgceeAABAQGYOnUqXn31VUe0kUjSHJVKbe41xUqBNdeZWjNb/Mx9t2Hlnt9N/tyahxFWGDaOAan0sX8lso87BGCOvL+xvtIdUrtd3S8be1ZxRTvsce3aNSxcuBBvvvmmvnDVc889h/nz56NFixY2vaZUBoKcyepUZ5lMhpkzZ6K4uBh5eXk4ePAgLl++jPnz5zuifURkI1MpsA38fDCkcwv0bh9h9npL6THXyioRpQistx1UbXIZ8NbwTmgVFiSozUIeBnSz2abuK2TbJCJ3xP6VyD6uDsCEsvf+ur7SXVK7Xdkvm3pWcXY7bFVVVYVVq1ahTZs2WL58OaqqqpCYmIjDhw9j48aNNge9gHQGgpzJpn18AcDf3x8xMTGIj49Ho0aNxGwTEYlEtybzsQ5R+g6pvFqNj3Mvov3sr5G2y3hxKiGd6fydxzB7oPG9kHXWDOuMAR2ai/ow4ug9mIlcjf0rkW2kMjBqqZ2W6PpKd1nT6qp+2dyzSl3u9nyg1Wrx8ccfIyYmBpMnT8a1a9dwzz334Ouvv8a3336Ljh072n0PqQwEOZPNgS8RScOSzGP46tfCeh2DRgu8/X2B0eBXaGfapKG/0VnlKEUg1o/sjAEdatKrxH4YcWZBJyIikgapDIyaa6c5dftKd5rRc0W/bM1aaXd6PsjOzkaPHj3w9NNP4/Tp04iMjERGRgaOHDmC/v37Cy5cZYlUBoKcyeo1vkQkHVW3NMjYX2D2nIz9BZjStz38ff8eB7OmM30iroXFwkqO2HbHmQWdiIhIGqSy9ZqpdjYJ8sO18mpBfaW7zeg5u18W+qwy8eE2mNznLpc/H5w+fRrJycnYvn07ACAoKAivv/46pk6d6pDsHmdueSgVDHyJJMDWjcc/zD4DS0t7NNqa817o9fd2KdZ2pkIKKzniYYQFnYiIqC6pDIyaaufufKWgvtKaHRxsfY6wljP7ZaHPKj3ubObS331xcTEWLFiANWvWoLq6GjKZDM8//zzmzZuH5s2bO/TeUhkIchYGvkRuzp5tCs4Wlwu6R93zdJ2ppRSia2VVgl5fR4yHEWd13kREJF1SGRg11k6hfaXQGT1jgXSUIhCzB96NJg0DJNufirl1oyNUVlZi7dq1WLBgAa5duwYA6Nu3L5YuXYoOHTo4rR1SGQhyBkkGvmvXrsXSpUuhVCrRsWNHvPnmm4iPj7d43datWzFs2DA88cQT+Pzzzx3fUCI72btNwe2hwqopRzdpgOzTVw3+IM4eeDcmbD5s9rr5O/PRL9a6/d/seRhx9V6FREREziC0r7Q0owfA6HNEoaqiXh8vtf7UXVN5tVottm/fjhkzZqCgoGa5WWxsLJYtW4Z+/fo5tS06UhkIcjSZVqt1bI1zkW3btg2jRo3C+vXr0a1bN6xatQrbt2/HiRMnEB4ebvK6M2fOoGfPnrjjjjsQGhoqOPC9cOECoqOjoVKpEBISItK7ILJMrdGiZ/pek7OuupHMA9N7m/yjXnVLg/azvzab7iwDEBESCGWJYTBpae9dnS1juzvlj6mpQQDdO3eXohXkXUpKSqBQKNhHWImfG5G4jGVDATD7HFGXVPtTdxoU//HHHzFlyhQcPHiwph1RUZg/fz6ee+45+Pj4OLUtUqbrI86fP4+WLVuK9rqSm/FdsWIFxo4dizFjxgAA1q9fj507d2Ljxo2YMWOG0WvUajVGjBiB1NRU7N+/H9evX3dii8lVpJ4SK8bG4/6+cozt1Rpvf2+6wJUWMAh6gZoZZSFBL+CcapGWtleSoWavwj4x1s0+ExEReQJjM3rZp68KDnoB6fan7pDKe+rUKcyYMQOffPIJgJrCVdOmTcOUKVO4LZ0bkVTgW1VVhUOHDiE5OVl/TC6XIzExEdnZ2SavmzdvHsLDw/HCCy9g//79Zu9RWVmJyspK/felpaX2N5yczp1G/2wl1jYFyQNqUp3e2V8Aofkd1qSBOKNapBiDAERERN7EloFpqfanrkrlvXr1KubPn4+33noL1dXVkMvl+sJVUVHSeN70JpLax/fKlStQq9WIiIgwOB4REQGlUmn0mgMHDmDDhg3IyMgQdI+0tDQoFAr9V0xMjN3tJufSpcTWDZQKVRUYtykXq/echNpSqWM3IOY2BdP6343wRv72NsmAM/d/c6e9ComIiKTAnoFp9qfmVVZWYtmyZWjTpg1Wr16N6upq9O/fH0eOHEFGRgaDXjclqcDXWqWlpXj22WeRkZGBsLAwQdckJydDpVLpv/Lz8x3cShKTuZRYnZV7fkePxVnIzCt0WrtsIebG4zkFxSgqta4Cc917GfveWUUj3G2vQiIiIndn6TnCHPanxmm1WmzduhXt27fH66+/DpVKhQ4dOuCbb77B119/jXvvvdfVTSQzJBX4hoWFwcfHB0VFRQbHi4qKEBkZWe/806dP48yZMxg0aBB8fX3h6+uLDz74AF9++SV8fX1x+vTpetcEBAQgJCRE/xUcHOyw90Pis5QSq6MsqcT4TbluHfzqqhUC9gee9ozcTk5si0iFYQcYqQh0avELMQcBiIiIvIG55whT2J+aduDAAXTv3h3Dhg3DmTNn0Lx5c2zcuBG5ubno27evq5tHAkgq8PX390eXLl2QlZWlP6bRaJCVlYWEhIR657dv3x6//fYbjhw5ov96/PHH8fDDD+PIkSOIjo52ZvPJCawN8FJ35Lt12rNumwJ7A09bRm51nd/E3m1xYHpvbBnbHauficOWsd1xYHpvp66VFnMQgIiIyJnUGi2yT1/FF0cuIvv0Vac+d5h6jjCG/alxJ0+exJAhQ9CrVy/k5OSgYcOGmDdvHn7//XeMGTOG1ZolRFLFrQAgKSkJo0ePRteuXREfH49Vq1ahrKxMX+V51KhRaNGiBdLS0hAYGIjY2FiD6xs3bgwA9Y6TZ7AmwJNKAQcxqhVa2uS9LmOdn6s/I0t7FUqlaBkREXkPdyi2aew54lpZFebvZH9qzpUrVzBv3jysW7cOt27dglwux4svvojU1FSjmabk/iQX+A4dOhSXL1/GnDlzoFQqERcXh8zMTH3Bq3PnzkEul9RENonI2gAPEK+AgyO3T7K3WqG5Td6NcdfOzx22LCAiIhLC1P7zSlUFxm/KdciSIVPPIsaeI/rFsj81pqKiAm+++SYWLlwIlUoFABgwYACWLFmCe+65x8WtI3vItFqhG5x4pwsXLiA6OhoqlQohISGubg4JYKqjMWXL2O52z2Y6ckRXzIDaVDtnD7wbTRoGsPMjslJJSQkUCgX7CCvxcyNPp9Zo0TN9r8m6IzLUDDIfmN5btP7WHWaXpUyj0WDbtm1ITk7G2bNnAQAdO3bEsmXLkJiY6OLWeRddH3H+/Hm0bNlStNeV3IwvkSW6lNi5X+ZDWWJ6NlfX6dhbwMGRI7pidmJqjRaKBv6Y1r89im9UIrShPyIVDawKch05q01EROQpnL3/vCtmlz3J999/j6lTp+Lnn38GALRo0QILFy7EyJEjuYbXgzDwJY+kS4lds/ckVu45We/nYhVwMLd9kvav+6TuyEefmEir7yNmJ2YugBbaLimOJEshUJdCG4mIyDrO3H/ekc8iYnDnfu7333/H9OnT8fnnnwMAGjVqhBkzZmDy5MkICgpybeNIdAx8yWP5yGWYlNgOd0UGO6wgkqNGdMXsxMQIoKU4kiyFQF0KbSQiIus5c/95Z88uW8Nd+7nLly9j3rx5WL9+PW7dugUfHx+MHTsWc+fO1dcNIs/DwJc8niMLIjlqRNfWTqzuqGqX25vYHUC7+0iyMVII1KXQRm9QXV0NlUpl8HX9+nXB/339+nVXvwUickOWim2KtdwKEOdZxBGzsu7Yz928eRP//ve/sWjRIpSUlAAAHnvsMaSnpyMmJsapbSHnY+BLXsHeqsimOGpE15ZOzNioamhDfxSXVZm8XsgosDuPJBsjhUBdCm2UAo1Gg9LSUoOA1NrAtby83NVvg4g8kLndFMTeL9feZxFHzMq6Wz+n0WiwZcsWvPHGGzh37hwAoFOnTli2bBl69+7t8PuTe2DgS2QHR43oWtuJmRpVNRf01mYu0HbmOiUxSCFQl0IbHU2r1aK8vLxeQGpN4FpaWgqxNiZo2LAhFAoFGjduDIVCIfi/5XI594UnIqOctf+8Pc8ijpqVdad+bt++fZg6dSoOHToEAGjZsiUWLVqEESNGcAtUL8PAl8gOjhrRtaYTMzeqKpS5QNvekWRnF7WQQqAuhTZaUllZaTQgFRq4qlQq3Lp1S5S2BAQEWBWs1v5v3Zevr23doS5VjojIGGfsP2/rs4gjZ2Wd3c8Ze9Y4+fsJTJ8+HV9++SUAIDg4GMnJyXjttdfQoEEDUe5L0sLAl8hOjhjRtaYTyz591eyoqjlCZqTtHUl2dlELZxYUsZWr26hWq+1a16pSqVBRIc7Dio+Pj0EAakvgGhjout8lEZEljlpuVZstzyKOnJV1Zj9X91lDXXYd1T//Hy7/byc0ajV8fHzw8ssvIyUlBeHh4Xbfj6SLgS+RCBwxoiu0E7N1tFTojLStI8muKmohNFDvcnsTZJ++6pLtFewZTNBqtbhx44Zd61pv3Lgh2nsJCQmxK3Bt2LAhZDLnrmN25601iIhsZe2ziCNnZZ1V3Kv2s4amuhKl//sCqoPboa26CQDo/lBfvLduNdq3b2/XfcgzMPAlEokjRnSFdGJnrpTZ9NqKID8s/se9goJPa0eSXVnUQkig/njHKDy49Dunb6+g1WpRUVEBlUqF5+/xQ8rHv0BTWQZ1ZTk0FTegqSyHtrIMmsoytGkRiH88+e96gWtJSQk0Go0o7WnQoEG92VNrAtfg4GD4+PiI0hZncdetNYiIxGDNs4gjZ2WdUdxL96yh0WpQdnQfrn//IdSllwEA/pF3osnDzwP3xqNtu7tsvgd5Fga+RG7OXCem1mixJeecTa+rKq+26nxrRpJdXdTCXKD+eMcovPN9gU0z0bW3vrF1xrW6WtjnnpVr/ud+fn42z7I2btwYISEh8Pf3F9QWT+GOW2sQEYmh6pYGH2afwdnictweGoRnE1rB39d84SZHz8o6urhXTkExCn7NwbXvNqCq6DQAwCe4GRo/OAoNYx6ETCb3+EKRZB0GvkQSllNQDGVJpc3X62Zdda9lKaAVOpLsDsWb6gbqYQ390baJD/ovyUTllWJo/ppZ1c+yVtR8P3rvOjzYqiFKSuoHrmJtfSOTyQxmWeUBDeHXoBFCmzTGnS3D9UGqucA1MDDQ6SnCUuZuW2sQEYklbVc+MvYXQFPrD9zCXccwtldrJA8wvTetM2ZlHVXc69ixY/jXuH+h6Ps9Ne31D4Ii4Z8I7jIIcr8Ag3PduVAkORcDXyIJs+ePuW7Wdc3ek9j683lRUz/FTp/SbX1jz7pWoVvflADY/rP5cxo1amTXutZGjRpxCwUnc3UWAhF5F2fVEkjblY+3vy+od1yjhf64ueDXGVsuibkUrKioCHPnzkVGRgbUajUgkyO40wAoegyDT5DC6DWuLGZJ7oWBL5GEifHHfOWek/WO2Zv6WTd9SnurutYMaxm0leUIkVchb28hsr8oERS4qtVqu98rAMDHD/LAhpAHNIQ8IAhy/4b672UBQZAHNMTTCe3Q857bjQauISEhNm99Q67jDlkIROQdnFVLoOqWBhn76we9tWXsL8CUvu3Npj07Y8sle5WXl2PlypVYvHixvkDjE08Mxpk7noDKv5lDC2iR5+DTG5HIrB3ltWdU2NL6HFvVTv18uF0Yym6UWtyTte7P/rx8FYWXi6GpKAPU9de1FgF4aYt17aq99Y0t61qPXbmF0R8ctnif58d256yfh3H1FlJE5B2cWUvgw+wzBunNxmi0Nee90OsOs+c5Y8slW2g0Gnz44YeYOXMmLl68CADo2rUrli9fjgceeED/eTsqVZs8CwNfIhFZO8pr76iwufU5QE2KsLbqpsFs69+Vg/+uJFx3Nla33vVsVTkC37hp68dRj8w/CH4NGqJ5s6ZoGRlmdeAaFBRk17rWpmFaRCmOOXx7BXI/ztpag4i8l7NrCZwtFlZ3Quh57iYrKwtTp07FkSNHAAC333470tLSMHToUP1yIWekapPnYOBLJBJrR3ktnf/WiE546M4mgmZZ25xVIvfkRZSXldYEsBVlQFU5NFXl0Iq09U1QUJBN61obBYfg1HUNbmh8EdW4oUvTp5xRyIPcE3/3RORoQmsJHPzjKnrcGWb3/W4PDRL1PMA99jk/evQopk2bhl27dgEAFAoFZs6ciVdffRWBgfWzcqSQqk3uQaYVUu3Fi124cAHR0dFQqVQICQlxdXPIRo7+Q67WaNEzfa9Bh6dV3zKYRW3sW415/VujtLQE165fx8qdR6BSqf6eZa2sNftaUQZtVTm06luitE/m4wuZbk1rQEMENgxGq6hmOK3S/LXWtdaa18CGf51b8/Xuiw8gMa41/Pz8RGmLO+Bert5L7N99SUkJFAoF+wgr8XMjT/TFkYuYtPWIxfMaBvhg6ZAOGNChucFxa59Vqm5p0H7212bTneUy4Pj8Ry1ubQS4vm9UKpVISUnBu+++C41GA19fX0yYMAGzZ89GWJj9AwUkHbo+4vz582jZsqVor8sZX/J4tvwh12g0KCkxX3Sp9vdnC6/g8KmLNUFsVU2qsPaW4TZDhQCe3mB9++VyOUJCQgxmUq1d4+rnH4Cfz1wz6EwBoGf6Xoupn327tPW4UVOODnsv/u6JyFGE1ggoq1RjwubDePnCdX3FZVueVfx95XihZ2uzBa7G9motOOh11T7nZWVlWLFiBdLT01FWVgYA+Mc//oHFixejbdu2DrkneScGvuRxtFotysrKoFKp8NX/TmHu9p/rrXG9XlmGf24vR5cofzSUVdULaktKSkRrj8y/AeT+NTOpbVqEo3XzZrih8cfhoqpas6yNIA8IqjXTGqSfcZX5N0Dzxg3sHnE1VrTCm1M/3bWQBzkef/dE5AjWFpx8+/sCdGzZBHI5bAo6M/MK8dWvhUZfWy6DxX18dVy1z7larcYHH3yAWbNm4c8//wQA3HfffVi+fDl69eplsc0cwCRrMfAlt1NZWSlof1ZzPxO69c0+CwV+AwMDjc6k1v3+SpUv1mcX/hWwNtJviyMPCIJM7qN/vY1/VQvOPn0VwzIOCv5MHDXiKrWiEJ7W0Xna+yEi8ma1awkINeuLPPj7yAQFnQD0fcaZK2VGtyPU+ffQODwW10JQGxy1z7m5Pm737t2YOnUqfv31VwBAq1atkJaWhn/+858W97l3dUo2SRcDXxLVrVu3UFJSYlOwqvvvyspKyzcSwMfHB1r/v2dPZQYzqTUBqjwgCOP63Isu7VoaDWgDAgIE3Uut0WK3gLRhXYqxtaPCjhxxtTX109lBm6d1dJ72foiI6O8B5Rmf/IbrN+tv5VdXcVmV2Z/rgs41e09h68/nzAaoOjIAC78+jkc7NBfULztin3NTfdzo9nJ88c4SZGZmAqgpXDVr1iy8+uqrgp65XJmSTdLHwJf0NBoNbty4YfMs6/Xr1/VrM8RQd12rtWtcd/9+Da9t+8Xifbo9GocnBI6KmmJtxVhL2xAZI3TE1ZaA1NrUT2cHbZ7W0Xna+yEior/1j41CcIAfRmz4SbTXXLnnd8HnWjtDK/Y+58b6uFs3ipH39SaM/20PoNXAz89PX7iqaVNhzx+uSskmz8HA10NotVrcvHlT8Kyqqe/FKvKt2/rG1sA1ODjYYqqLJREhwkYmhf4ht8TatGFT51tibsTVGQGps4M2T+voPO39EBF5GjEymrq3aYrQhn4oLrM86+soQmdoxdznvG4fp6mqQEnOpyjJ+RTa6pr2hN7TCz9+ugF3tbOucJWjUrLJe0gy8F27di2WLl0KpVKJjh074s0330R8fLzJ87dv347Zs2fjzJkzaNu2LdLT0zFgwAAnttiyqqoqQbOq5n5WXS3OH1c/Pz99IGpLJWGFQuEWW9+I+YdcKGvThmuf/8Opy1jz3WmL9zAVqDsjIK26pcEbn+U5NWjztI7O094PEZEnEWsA2Ucuw4InYjFhs/liIo2D/HC93DHBsdCBfTH3Odf1cVqNGjd+y4LqwCaobxQDAPyj7kKT3i8gsGUMin2sf/ZyREo2eRfJBb7btm1DUlIS1q9fj27dumHVqlXo168fTpw4gfDw8Hrn//jjjxg2bBjS0tLw2GOPYfPmzRg8eDByc3MRGxsrSpvUajVKS0vtKsh08+ZNUdoil8tNBqpCA9fAwEDIZNKfaRLzD7m197UmYNGdH986FJ/kXrQpUHfGLGJmXiHe+Ow3s6PX9gRtpkbYPa2j87T3Q0TkKcQeQB7QoTlevnAdb39vershR7BlYF+sYpeXSitw849DuLbvPVRfPgMA8FVEoPGDzyGofU/986UtfZzYKdnkfSQX+K5YsQJjx47FmDFjAADr16/Hzp07sXHjRsyYMaPe+atXr0b//v3x+uuvAwDmz5+P3bt3Y82aNVi/fr3g+yYlJelTiesGrqWlpeK8OQCNGjWya11ro0aNPCJoFYu5P+SzB8ZA0cAfXxy56BYVde0J1MWcRTQWgO7OVxp9GDBFSIdW+z5nrpRhS845KEv+LmymG2H3tI7O094PEZEnsGUAWUhKdPKAGHRs2QSzvsgzKGQVpQjEM/dFm63MbAt7Bvbt3ef8119/xaJXX8OlA98BAOQBDaG4/xkEd34MMl/DTEBb+jhXZPKRZ5FU4FtVVYVDhw4hOTlZf0wulyMxMRHZ2dlGr8nOzkZSUpLBsX79+uHzzz83en5lZaVBVWFdULthwwaL7dNtfWNr4BoSEgIfHx+L9yHrGPtDfq2sEvN3uq6irqnO0tKIa5+YSGSfvuqwWVFjKV6RIYGouKUWHPQCljs0Y/epSzfCvnZ4Z4/q6NhxExG5H2sHkK1JiR7QIQr9YusHlF/9+qegtjVu4AfVzWpB/bC92xFayloz9vxSpCzE7Nmz8d5770Gr1ULm44vgTgMRcv8z8GkQbHC9PX2cqzL5yHNIKvC9cuUK1Go1IiIiDI5HRETg+PHjRq9RKpVGz1cqlUbPT0tLQ2pqar3j06dPR3h4uNmgVujWN+R8tf+QZ+YV4pXNh11WUddSZ2lqxHV3vhI90/cavU6MWUSTKV4lwtORhHRopu5Tl26Eff7OfMweeDde2XzYIzo6dtxERO7HmgFkW1KijQWUQvvuMT1aY9We3032Ga8ltsNtoQ1QXFaF0EYBUDTwh1qjhY9cJurWg3WfXzRVN6H55Utcyf4YlX8t2Xv66afRf8xkzP9vzbpesfs4sVKyyTtJKvB1huTkZIMZ4osXLyImJgZvvPEGQkJCXNgyEoOrK+oK7SzrdpCWrnuxVyvIZYDGRDRpKSA197lYy1yHZu19dCPsTRoGWNXROXuPYXOMtYUdNxGRexEahIY1CsDU7b+I8hwhNANoYu87cVdkI5N9Bv66Z92B8cc7RuHLXwpFyW6r/Ryi1ahx49fdUB34COqyawCAuzt2wYZ1byIhIQEA0DzaSAaZSH2cvSnZ5L0kFfiGhYXBx8cHRUVFBseLiooQGRlp9JrIyEirzg8ICDCYuS0pKbGz1eROXFlR19ag29J1AJCx/4zF+5sLSC19LkI0beiPhU/Gmu3QbL3PpdIKPBHXQlBH5+w9hs0F2Zbawo6biMg9CA1CoYVozxHWZACZywYzNjBeqKowWlSrUFWBcZty8dbwzhjQQVifqHsO0Wi1qNAVrrpyFgDg2zgSTR58DiHxjyC+W3f9NY7u46wtJEoESCzw9ff3R5cuXZCVlYXBgwcDADQaDbKysjBx4kSj1yQkJCArKwuvvfaa/tju3bv1I1LkXVxZUdfWoNveoFQuA9YMM5++be/7DW3oh+zkR+Dva37vZVvvoxuJt9TROXuPYXOBLQBBbWHHTUTkekKD0CtllUaurk9of2dNBlDdPtCebK2JW3KxBp0woENzi+fmFBTj7Ml8XNu7ERVnjwAA5IGNoLh/GII7D4DMxw/Kksp6zy8MTsndSCrwBWqqK48ePRpdu3ZFfHw8Vq1ahbKyMn2V51GjRqFFixZIS0sDAEyaNAkPPvggli9fjoEDB2Lr1q343//+h3feeceVb8Mh3Cm90125sqKu0E7wh1OXDX539galGi3QpKG/2XNsfb+6f12LnrzXYtBry32sKYLh7DR2S0G2IsjPZSn1RERkPSFBaPbpq4Jey5r+ztbZUXsGxjVaYMLmw1j/12yyKRcvXsTsKVNQ+MX/AdACPr4I6TwIIfcPhU9gI4NzuQ0fuTvJBb5Dhw7F5cuXMWfOHCiVSsTFxSEzM1NfwOrcuXOQy/9+AL///vuxefNmzJo1C2+88Qbatm2Lzz//XLQ9fN2Fs9M7pcqVFXWFdoJrvjuNT3Iv6n93YgThxjqj2gMlYQ0DEBkSiKIS059L4yA/BPjKDbYcsna9TnzrUIQ29DfY0sESoUUwnJnGLiT9/Hq5Y/Y7JiIix7EUhDrqOcKW2VExAk1Tg7ClpaVYsmQJli9fjpt/Fa4Kat8LjR8cDb/GxpcLchs+cneSC3wBYOLEiSZTm/ft21fv2NNPP42nn37awa1yHWend0qZWBV1bZldj28disZBfmYDIp3av7s+MZFmO1kh6nZGxgZKGv81Q2nqc0n7x712r9fxkcswOK45Nv5wxuK5jRv4YfGQewX/23VmGrsYa6LFaou9mClCRGTIXBDqTpX5xQg06w7C3rp1Cxs2bEBKSoq+Rs79PXpAde9QlCnu4DZ8JGmSDHzpb66uUixF9lbUtXV2fXe+UlDQC9T/3ZnqZC0x1hmZGihR/dU2RZ3gvO7nYmlE2lIg1ScmUlDgu3ZEZ/S4M8zieTrOTGMXK2B19eg4M0WIyNuIMdjnLpX5Lc0+C3WptAJarRZff/01Xn/9deTn5wMA7rzzTjw/eRbuTngEZ6+WY+Weky4P9onswcBX4lxZpVjKbF1PY+vsum6Awhq1f3emOlnddgXv/FW50VJnJGSgJNBXjo9e7IYrNyqtfigQEkjpOmpT/251wXr3O5rq2yzk9+TMNHZ7A1Z3GB1npggReRsxB/vcoTJ/7dlne1w/fxJ9po5GVlYWACA0NBT/fOk15Abdh7fPqYFzvwCoyQwDYHZw3BrMOCJnY+Arca6sUix11q6nsWd23Z7UWN3vzlwn2+m2JoJGnoUMlChLKiGXyfBEXAur2mnNHsW1O+q6wboWwDP3ReOrX//EmStl2JJzzmBdsamHFGemnwkJshsH+eFaebVbjo4zU4SIvI0jBvvcoWpx/9govPRAa2TsL4Cm1puTy4De7cOx9/glg+O1qUuuoOKnzRizZDe0Wi38/f0xadIkxA9+Hq9/eRraMrXB+brMsMmJ7dAqLMiuYJUZR+QKDHwlzpVVir2NPbPr9gw81P7dmepkhY48O2qgxNpAytQMtuKv0eSVe06avJfuIWXt8M5o0tDf4P06K/1MSJCd9o97gb/etytT4YxhpggReRNPHuzLzCvEO98X1HtvWi2QdewSXuzVChn7zxj8TFNZjpKfPkHJz59Be6um2OSwYcOwaNEiRN92O3qm7zX7WW39+RwOTO9t82dlT/YcZ4jJHgx8Jc6VVYq9jT1Boy0DD9b+7oSMPDtqoMSWQKpusH7mSjlW7fnd4jol3c8nbsk1GMWuPVLsjPQzoUG2q1PhjGGmCBF5E3ce7LMnmBMS0H/1qxJvDe+E+TuP4c9rZbjxyze4fmAzNOXXAQC9evXCsmXLEB8fDwDIPn1V0Gd18I+rkMtkVrfb1kEIzhCTGBj4Spw7VRf0dPYEjdYWoKj9uwNqOiIxAidHDZTYGkjpgnW1RmtyhNmUuqlbdUeKnfHwIiTIdodUuLqYKUJE3sRdB/vsDeaEBvSNg/wx455yTEqaiuLTNRlVbdu2xZIlS/DEE09AJvu7zxL6GbzyUS6u3/x7ra/QdtsyCMGaFCQWueVTyN3pZp4iFYYPqZGKQP4xEJEuaDQVcspQ84ffWNCoG6DQnWeJ7ncHAD0WZ2FYxkFM2noEwzIOosfiLGTmFdr0Hsy1w56BEnsDKTG2B9J1iKk78qE2taDJAXSB7RNxLZDQpqkkBpns+bdMRCQ17jjYpwvm6vZ9umBOSD8vJEitVJ7CuOFPYPATj+Ps6ZNo2rQp3nzzTRw9ehSDBw82CHoB4Z9B7aDXmnZbOwhhaYYYcH6/T9LFGV8P4Q7VBT2dvbPr5iozzx4YU2+96u58JcYZqdSoLKnEuE25eMvIGlchv28x18HqUrSUqpsIbeiPa2VVNs0kizXKzrWpwjBThIhcwVVrNN1tWZhYa47NBam3Si7j+vcfoOzod1ACCAgIwGuvvYbk5GQoFAqT19m6RZLQdls7COHOaeokPQx8PYg7plRKhdDO2N6gUegAhVqjxYxPfzP7Wq9sNkz7sSY9SoyBEmMpWsYICaTEHmXn2lTL3GUfSiLyDq5co+lug31iBXPGglRNZTlUB7ej9H9f6AtXDR8+AosWLcTtt99usW3mPitLhLTb2kEId01TJ2li4Etez9rO2N6g0dQARe3g+1JJhcE+ecbYu9bFnoESU+ttjIn8a0Zb0cAfXxy5aPTzsnWE2RSuTRWGmSJU29q1a7F06VIolUp07NgRb775pr7gjTHbt2/H7NmzcebMGbRt2xbp6ekYMGCAE1tMUuEOazTdabBPrGDOYHtA9S2U/vINrv+wGZpyFQAgIDoWS5Yuxb+G9reqfaY+q8ZBfhafTSy129pBCHdMUyfpYuBLXs3Wzljs2XWhs6fmOGtLBnMpWjqhDf0w+7F7EBkSiGtllZi/0/zAgjUjzOZ+zirm1mOmCAHAtm3bkJSUhPXr16Nbt25YtWoV+vXrhxMnTiA8PLze+T/++COGDRuGtLQ0PPbYY9i8eTMGDx6M3NxcxMbGuuAdkLtyp62E3GWwz9Zgzlh2Wr97IjG6xWWkz5uDiivnAQC+oS1xx8CXsOr1F/Dovc1taqOxz0qj0WLEhp+sbrex1xY6COFuaeokbTKtVsvV4GZcuHAB0dHRUKlUCAkJcXVzSES6SsKmgk3dH1N79qoTwprZU6G2jO3usGAm+/RVDMs4KKgNqptVRt+b7tOsO7Bgava9y+1NcODklXrFNIS8JpEjlZSUQKFQSL6P6NatG+677z6sWbMGAKDRaBAdHY1XX30VM2bMqHf+0KFDUVZWhq+++kp/rHv37oiLi8P69est3s9TPjeyzJo+w1sG4XTPH5aCudrPH8b6x+DSs5DlbMJv/8sGADRu0hT/HJeEkaOex/3tIkR/drHUbqBmVvjQrD6CtzYSMgihe04CjM8Qs9/3PLo+4vz582jZsqVor8sZX/Ja7lAwQcjsqS0cudZF6GsrSyqwJPO4VaP8xkaYr5VV1VvPbIyY6WquKsBC5ApVVVU4dOgQkpOT9cfkcjkSExORnZ1t9Jrs7GwkJSUZHOvXrx8+//xzo+dXVlaisrJS/31JSYn9DSdJcOc1mq76W29tum/dAfJbqku4/v0HOJu/DwDgHxCIKUmTMX36dLOFq+yh+6wGxEZiww9nTJ53vbwau/OVoi65cqc0dZI2Br7ktdyhMxZjGx9jHLnWRehrF9+otGlgoXZHKGR/38ZBflg7rDO6i7SVkCsLsBC5wpUrV6BWqxEREWFwPCIiAsePHzd6jVKpNHq+Uqk0en5aWhpSU1PFaTBJiruu0XT133qhwVztAXJNZRlU2dtR8r8vAHVNBlTDex5Gu4EvYv6CYUb7QEvBvZDg35rlWI5KXXeXNHWSNga+5LXcoTMWO6h2xloXoettQhv6C3o9U5+BWqPF+z8UWOxor5dXQy6XiRb0uroAC5EnSk5ONpghLikpQXR0tAtbRM7ijms03eVvvZBgLqegGH8W30Dpka+h+mELNDdrsiUCbrsXTR5+AQGRd6L4r/Pqzp5aCu6FBP/WLsdyZLYca1KQvRj4ktdyh85YzKDaWVsyCE3RUjQQFvga+wysLfYlxgCCOxVgIXKmsLAw+Pj4oKioyOB4UVERIiMjjV4TGRlp1fkBAQEICAgQp8EkKe62lZC7/a03F8xptVp8+eXn+HPDHNy69ieAmsJVTR4egwZt4iGT/d2+uv2gpeD+pQda453vC8wG/31iIm1ejsXthcgdyV3dACJX0XXGwN+dr46zOmNd8G3LHWR1LopUBDp1lHrdyM6IVBgGrbXbYOm9yVAzslx3YEHXWVuTAi7GAII1a76JPIm/vz+6dOmCrKws/TGNRoOsrCwkJCQYvSYhIcHgfADYvXu3yfPJuwnpM5xFKn/rc3Jy8OCDD2Jx0ou4de1PyIMUCO07Ac1fWIugO7sZBL2AYT9oKbgHgIz99YPe2j9P3ZGPg39ctXk5FrcXInfEGV/yaq4umOAjl2H2wBhM2Jxr9bVaLTB74N0ICw6wuNbFEQU8LKVo2TLKb22xLzFn5d1hzTeRqyQlJWH06NHo2rUr4uPjsWrVKpSVlWHMmDEAgFGjRqFFixZIS0sDAEyaNAkPPvggli9fjoEDB2Lr1q343//+h3feeceVb4PcmLus0XT3v/VnzpzBG2+8gS1btgAAAgMDEdr9H/CNGwxZQFC98431g0KCe3N7uuiC/+zTV61uP7cXInfGwJe8nis748y8QszfmW/z9WHBAXgiroXFeziqgIel9Tb9Y6OwdngnzPoiD8Vlf29FZGpgwZpiX2LPyrvDmm8iVxk6dCguX76MOXPmQKlUIi4uDpmZmfoCVufOnYNc/neS2P3334/Nmzdj1qxZeOONN9C2bVt8/vnn3MOXzHKHNZqO/ltv60Dz9evXsWjRIqxevRpVVVWQyWR49tlnsWDBAhxV+ZrdzqduPyhe0G5dkrMrUteJrMHAlwiu6Yx3/Vpo00xvbZY6ZlcX8KgJ7I8ZBL2hDf0xe6DxoNuazlrsWXl3WPNN5EoTJ07ExIkTjf5s37599Y49/fTTePrppx3cKrIGt2KzzJF/620ZaK6qqsL69esxb948XL1aM8Pau3dvLF26FJ07dwYAREfDquw0sQZoE+4Iwye5F83u21sbtxcid8fAl8gFdv36JyZuOWzXazRu4AeNVgu1RmtyCwNXFvAwFXTr9uVdJ68fdAvtrGcPvBvP9WgtarvdrQALEZE1XL09j1Q46m+9tQPNWq0Wn332GaZPn45Tp04BAO6++24sXboUAwYMqLeG15rsNEvBPVBTJ8RUurMu+O/epqnZz0oLYHJiW7QKa8iBFpIEFrcicrLMvEJM2HwYGlvKJNZy/WY1Rrz7E3qm70VmXmG9n7uygIeQwhqpO/KhrvMhCC2IJXbQq+NOBViIiIQyVRRQF3QZ6yO8mdh/663t83766Sf06tULQ4YMwalTpxAeHo7169fj119/xcCBA+sFvTq67LQn4logwcze9brg3txjhi7otVTc09xntX5kZ0xKbGexPUTugjO+RA5WO/UsrFEA5n55VPC1/e+JwP5TV1BWqTZ5jqnRZFcW8LAm6K6dYu4Os67uUoCFiEgIV2f3SJWYf+uF9nmff38Y29cvwbZt2wAADRo0wJQpUzBt2jQEBwfb+laM6hMTicZBfrheXm305zIAjYP8EOArh7KkUn/cWLqyK/pFpu2TIzDwJTJCrD+41u5HW+/6o3/vk1k3ENQx9WDjymJN9gTdrq60DbhHARYiIiFsHWgk8f7WW+rz1BU3UPLjNjyzYiduVdcUrho9ejTmz5+Pli1b2n1/Y3IKik0GvUDNv4tr5dX46MVukMtkFp93nNkvMm2fHIWBL1EdYv3BNbXex1ZmU5ZQ/8HGlcWa7A26OetKRCSMu2/P4w1M9WVadTVKc3dB9eMWaCpuAAAeeeQRLFu2DHFxcQ5tk9Df95UblRZ3h3AmVxflJM/GwJeoFrH+4Fq7H61Yand0rkwbFiPo5qwrEZFl3IrN9er2eVqtFuUnfsD1//4Ht67XrK9uEN4K/7dxLQYOeNTkGl4x2frvouqWBh9mn8HZ4nLcHhqEZxNawd9X7pTUY6btk6Mx8CX6i1h/cNUaLd7/ocDm9GZ71O3AXJU27A5rdYmIvAG3YnO92n1e5cVjuLZ3Ayr/PA4AkDdsjCY9R+I/i6dhYFy009pky7+LtF35yNhfYFB8c+GuY3jk7nDkXSxxeOox0/bJ0Rj4Ev1FjD+49q7ptZW5B5u6acNhjQIALXClrBLZp686LIXYHdbqEhF5Og40uoe2DcoRffht7P92BwBA5huAkPh/oF2f4Zj3VBeb+zxbZ1qt/XeRtisfb39fUO91NFpgd/6lescdkXrMtH1yNAa+RH+x9w+uvWt6oxSBeOa+aKzcc9Kq64Q82OjShjPzCjF1+y92jdpa0wlzra71WMmSiKzFgUbXKS4uxoIFC7BmzRpUV1dDJpNh4JDheHLsa7i7TWujf8OF/p23t+aI0H8XVbc0yNhfP+g1xxGpx0zbJ0dj4Ev0F3v+4Fq7plc3Q7vsqY64Ulap7/gAYOvP581uOi+XwSANSeiDjRjrl23phLlWVzhWsiQiW3Gg0bkqKyuxdu1aLFiwANeuXQMA9OnTB8uWLUOHDh1MXmfs73xkSCCGxd+GVmFB+t/b7nylKDVHhPy7+DD7jMFzhVBipx4zbZ8cjYEv0V/s+YNrKU267usANTO0PdqG1fu5pdSkNcM6oUnDAKsebMRYv8xKi47Fz5eI7MWBRsfTarXYvn07ZsyYgYKCmlnS2NhYLFu2DP369TN7rcm/8yUVWLnnd/33kSEBqLilEa3Ik7F/F7VnnX8qKLb4GuaIlXrMtH1yNAa+RH+x5w+uNX/0Lc3QipWyVrtTu1Jaadf6ZUuBMwDM+PQ3BAf4oXubpuyUrMRKlkRE4nHUkpEff/wRU6ZMwcGDBwEAkZGRWLBgAZ577jn4+PhYbJPQzDBlSaXZn+v67Pd/KEBYcIDV71HseiRiph6bewaaPfBuKBr444sjF5nRQDZh4EtUi61Bp9A/+rMH3o3nerS2+Ifa3pQ1Wzs1UwG8kBnt6+XVGLHhJ6bm2oCVLImIxOGIJSOnTp3CjBkz8MknnwAAgoKCMG3aNEyZMgWNGjUS9BrWZIYJNX/nMf1/C32P9tYjqSvKAanHxp6BrpVVYf5OLgUi+zDwJUL90eH/vv4wDp29JjjoFJomLSTo1bE1Zc2eTs1UAG/NjDZTc63HSpZERPYTe8nI1atXMX/+fLz11luorq6GXC7H888/j3nz5iEqyrr+zdF/v4W8R2vrkQhxs1qN3flK/T3Fmm2v/QyUmVeIVzZzKRDZj4EveT1zo8NPxLUQ9BpC06QBIPv0VYcVHrG1U7NUMMKaNCam5lqPlSyJiOwj5pKRyspKvPnmm1iwYAFUKhUAoH///liyZAnuvfdem9rn6L/fQt6jI2adr5dX64NP/HV/MWdluRSIxCR3dQOIXEk3Oly3I9CNImbmFQp+LV2adKTCsHOLVATqO4Se6XsxLOMgJm09gmEZB9Ezfa9V97DElk5NSMEI3Yy20C6ldmquJ1BrtMg+fRVfHLmI7NNXobal/KUZlj5fGRyTTkZE5CmsWTJi8hytFlu3bkX79u3x+uuvQ6VSoUOHDvjmm2/w9ddf2xz0Atb3o7aw9B4dNeusBTDl/34x+jxVqKrAuE25WL3nd5v6TjF+r0Q6nPElr+WIUURTa3PF2pbAEls6NSFFs8zNaIvdHnfjjC2GWMmSiBzN0/cIt3fJyIEDBzBlyhTk5OQAAJo3b44FCxZg1KhRFgtXCWFtPyoDoAjyQ6CvD5Ql4tTrcOSsc1mV2uzPV+45iS055zH3cev6Ti4FIjEx8CWv5aiCQnXX5jozTceaIlvWVoI0VfhLjPa4K2duMSRWNW8iorq8YY9wW5eMnDx5EjNmzMCnn34KAGjYsCGmT5+OpKQkNGzYUNQ2Cu1HdT3y4n/cazCYfqW00qCglSmmPgtL9UgcTVlifd/JpUAkJga+5LWcNYrozIq9jiiyVVufmEgEB/rhx9NX8P4PZ0yO8HrCJvOuWFdkbzVvIqK6vGWPcKH9n65funLlir5w1a1btyCXy/Hiiy8iNTUVkZGRDmtn3b/zZ66UYUvOOYMtjOoOeOqeDdQaLd49UCD4PdZla/aW2KzpO639vRKZw8CXvJazRhGdmabjyJRZoVskeUpqrqu2GLK1mjcRUV3eVBhIaP9XXVWJFW++iYULF+oLVw0YMABLlizBPffc47S21v47P7F3W0EDnmL08bZkb4nJ2r6TS4FITCxuRV7LWQWFrA2w7S2kZKnIli0j+6aKgBljz33cCdcVEZHUeVthIHP939rhcbj22z60b98e06ZNg0qlQseOHbF7927s3LnTaUGvMbpA+Im4Fkho01RQ4GpPH98/NgoHpvfGlrHdsfqZOHz0QjdEhjg3VdiavtMRzzXknTjjS17LWaOI1qTpiLUOy56U2boFULrc3sTsFkkyAKEN/TFr4N2IVDTwmNRcrisiIqnzxgE8Y/1fxfk8TH/xSfz8888AgBYtWmDhwoUYOXKkKIWrnE2MZTF1Z53nPh5jNCVeZ2yv1th+6AKul1fb2foa1vadXApEYmDgS17NGQWFhAbYYld+tiVl1ljgHdrQH8VlVSav0QK4WlaFSEUDj0rR5boiIpI6bx3A0/V/v//+O6ZPnYjPP/8cANCoUSPMmDEDkydPRlBQkGsbaSexl8WYeh4KCfTFosH34rG45uhyexOM25Rb71rds8xLD7TGF0f+NFivbOxcW/tOLgUiezHwJa/njFFESwF2n5hI9Ezf69J1WKYKoJgLemvzpBkDgOuKiEj6vHUA7/Lly5g3bx7Wr1+vL1z10ksvYe7cuYiIiBDlHp6wPVTd99AnJhIaDTDrizx9319ScQsLvz4GX18Z+sdGYb2FyYJp/e/Gmr2nsHLP7/Xux76TXI2BLxGcM4poLsDOPn3VJYWUdMwVQBHK02YMAG4xRETS5qkDeKaCzps3b+Lf//43Fi1ahJKSEgDAwIEDsWTJEsTExFj9eqbOOXOl/K9KzNLdHspYhlfjID+jqcx1M8/MTRb4yGWYlNgWd0U2Yt9JboeBL5ETmQqwXb0Oy1IBFEsiQwI8bsZAh+uKiEjKPG0Az1jAFhnsjwd8fse2dUtw7tw5AECnTp2wbNky9O7d2+rXqxvECtnVQErbQ5nK8DK1ftdY5pmlQXj2neSOGPgSuQFXr8OyN6AeFn+bR3dmXFdERFLmKUGIsYCt4tyvOPzdRvykPAUAaNmyJRYtWoQRI0ZALje/eYmQPY4BmC36pGNqWZK7pUTbmuFlS+YZ+05yNwx8idyAq9dh2RtQtwprKFJLiIjIEaQehNQN2Kqvnse1fe/j5qmfAAAy/wZo+dAw5H/6Jho1tFy4Ssgex3O/PApAJjhIrBscirVTg5jszfDytHoe5F0Y+BK5AVevw7IUeFviiet7iYjIfegCNnXZdVz/YQtuHPka0GoAmRyN4vqjcY/hkDdsjN+UN5HQxnLgK2SPY3PVic25VFohaDZZ7OBXyOyyvYFr3f7e3Wa0icxh4EvkJpyxDstUB2Uu8LYkygMrghIRkXs5f/kaVNn/B9XB7dBW3QQANLizG5o89Bz8mkbrz3N1zQwACGsUgKnbf3HqTg1CZ5dtHag2lnnmjjPaROYw8CVyI45ch2WpgzIVeJsjgzQrghIRkTRoNBp89NFHeH16Mq4XXgQA+Ee0QZPeLyDwtg71znd1zYwoRSCghVN3arBmdtmWDC9jmWeumNEmshcDXyI3Y24dljUpRXW3Xli153eLHVTtwHtPvhIbfjhjsp1NgvyQ9o972bEREZFDfPfdd5gyZQoOHz4MAPBXNENIr1EIinkQMplh4Spra2EIqa0RERIAQIaiEuFB4jP33YYrZcJSpH84dcXuwW0ha5Vrzy5bWlqlRf1tjepmnll7TyJ3IcnAd+3atVi6dCmUSiU6duyIN998E/Hx8UbPzcjIwAcffIC8vDwAQJcuXbBo0SKT5xPZw5FrXaxJKRKy9QJgulNMaNMUCW2awtdHhoz9BdDU6t1kAB7rEIlVz3Rmh0ZEZCeukazv2LFjmDZtGr766isAQHBwMN544w3cnfhPvPbxMQD218IQUltj7uP3AKip6ixUq7AgwbPJa747hU9yL9iVGixkrXLd2WVLS6ssZZ7Zck8idyC5wHfbtm1ISkrC+vXr0a1bN6xatQr9+vXDiRMnEB4eXu/8ffv2YdiwYbj//vsRGBiI9PR09O3bF0ePHkWLFi1c8A7IUzlyrYs1KUWmzjXFVAeVmVeId74vMPo6X/2qxMAOSs72EhHZgWskDRUVFWHu3LnIyMiAWq2Gj48Pxo0bh5SUFDRr1gwAEBDYQLRaGEJra6wb2RlvfPYbisuM73Nbmy5QFJpObG9qsK1rmi0trTIXsLrDOmoiW8i0Wq0tRVxdplu3brjvvvuwZs0aADVrP6Kjo/Hqq69ixowZFq9Xq9Vo0qQJ1qxZg1GjRlk8/8KFC4iOjoZKpUJISIjd7SfPZCrY1I2P2rPWRa3Romf6XpOjq7r0rgPTewOA2XPNWf1MHJ6Ia2H1Pd19ZoKzKeRIJSUlUCgU7COsxM/Nsf2G1JSXl2PlypVYvHgxbty4AQB44oknkJ6ejrvuuqve+WL/XRfyelW3NOieloXisiqjr1G3X9T9fgHLBSPt6VOzT1/FsIyDFs/bMra7aLOvrrgneRddH3H+/Hm0bNlStNeV1IxvVVUVDh06hOTkZP0xuVyOxMREZGdnC3qN8vJyVFdXIzTU+BqQyspKVFb+vTajtLTUvkaTx3P0WhdrUooA8wU1zKmdmuUpaUycTSEid8Q1kjU0Gg0+/PBDzJw5Excv1hSu6tq1K5YvX44HHnjA5HVi70ks5PX8feVY9GSs0WDWWKq1NQUj7elThaxVtmbts7vek0gMcsunuI8rV65ArVYjIiLC4HhERASUSqWg15g+fTqaN2+OxMREoz9PS0uDQqHQf8XExNjdbvJs1gam1rImpciWtCIZ6m9J5AlpTLrR9rq/G11aWWZeoYtaRkTeztH9hhRkZWWhS5cueO6553Dx4kXcdttt+Oijj/DTTz+ZDXpdSRfMRioM1/BGKgKNztD3j43Cgem9MfHhNoJe35Y+VbdWGfg7ANexZe2zu96TSAySCnzttXjxYmzduhWfffYZAgONFx5ITk6GSqXSf+Xn5zu5lSQ1jg4SrdmawdrtGUx1UK7eDsJelmZTgJrZFLVGUis9iMhDeMLgoq2OHj2KgQMHIjExEUeOHEFISAjS09Nx4sQJDB8+HHK5ez+a6oLZLWO7Y/UzcdgytjsOTO9tMovIRy5DjzubCXptW/tUawNyMbjinkT2klSqc1hYGHx8fFBUVGRwvKioCJGRkWavXbZsGRYvXow9e/agQ4f6+77pBAQEICAgQP99SUmJfY0mj+foINHalCJr9uczVRBE6mlMnpKqTUSeScqDi7aur1UqlUhJScG7774LjUYDX19fjB8/HnPmzEFYWJgTWm4bU+/Xmr7DGX2qpWJVjuCKexLZQ1KBr7+/P7p06YKsrCwMHjwYQM36kKysLEycONHkdUuWLMHChQvxzTffoGvXrk5qLXkLR3doQrZcqD1ja2l/vsmJbdEqrKHZDsrae7obb55NISL3J9XBRVvqJpSVlWHFihVIT09HWVkZAODJJ5/E4sWL0a5dO6e021Zi1YlwVp8q9tpnwPJAhyPuSeQo7p1PYkRSUhIyMjLwn//8B8eOHcP48eNRVlaGMWPGAABGjRplUPwqPT0ds2fPxsaNG9GqVSsolUoolUp91UAiezljrYs1KUXmzl0/sjMmJbbDE3EtkNCmqdk2STmNScqzKUTk+aS4RtLauglqtRrvvfce2rVrhzlz5qCsrAz33Xcfvv/+e3z66acOD3rVGi2yT1/FF0cuIvv0VauXtthSJ8LcPaXYp2bmFaJn+l4MyziISVuPYFjGQfRM38saGSRZktvOCADWrFmDpUuXQqlUIi4uDv/+97/RrVs3AMBDDz2EVq1a4f333wcAtGrVCmfPnq33GikpKZg7d67Fe3E7IxLKGRWErUkxE2u7ByluB6TbjsnSbIoUtmMi98ZteWzDz62GVCrPW7vF3e7duzF16lT8+uuvAIDbb78dixcvxj//+U+nrOG19XPV9XdK1U3M33lM8NZF1tzTGVsxAbD7Htxui1zJUdsZSTLwdSYGvmQNKQaJnsrUHorstElMDOBsw8/tb1LoN4Tu27rgQQU++vdCZGZmAgAUCgVmzZqFiRMnmiwqKjZbAzZjgaslun1qXRUkGmtz4yA/AMD18mr9MWsHU6wd6CASG/fxJZIArnVxH6b2UDRV0IuIyBWk0G9Yqodw60YxVPs3YfTSPfrCVa+88gpmz56Npk2d995s3R/ZVOBqyaXSCpftyWyqzbUDXh1derbQAFzMApFSGNgRize9V6li4EtEHosVJ4mI7GeqHoKmqgIlOZ+iJOdTaKtrAqUhQ4YgLS0Nbdu2dWYTAdgWsJkLXC0JDw50yS4C1rbZ2gBcrAKRUknlF4M3vVcpk1xxKyIia+hmU4QU9CIiovp0Vah1fz21GjVKf/kWf2a8BNUPm6GtrkCj6Pb47/f78fHHH7sk6AVsC9gsBa7GyFAT1MS3DnXJLgK2tLl2AG6JGAUibSkOJlXe9F6ljoEvEREREZlUuwp1xR+HUPj+JBRn/hvqG8XwVUSg2ePT8X87s/BAr54ubac1AZuuAvPXVgYldatuu2IXAXuCaCHX1h3oqKt24G+MpfRvoGb22dpK2+7Im96rJ2CqMxERERGZ1VxzGaH7lyL3x/8CAOQBDaG4/xm0fXgIUp+Mc4t0TqH7I18rqzRbvMmcunUiXLEnsz1BtJBr7d132BXp367iTe/VEzDwJSIiIiKj/vzzT8yePRvvvfcetFot/Pz88I+RL+Cx0a+gTcsot6qbICRge7xjFF7ZfNiqNb2hDf0w+7F7EBlSv06EvUGiLSwF28ZYG4DbUyDSFenfruJN79UTSCrVubi4GCNGjEBISAgaN26MF154ATdu3DB7/quvvoq77roLDRo0wG233YZ//etfUKlUTmw1ERERkbTcuHEDKSkpaNu2LTZu3AitVounn34ax44dw9aN6zDywVi3rJugC9giFYYzm5GKQKwd3hlf/lJoVbAoA7DoyXvxZCfTdSJM3bNJQz+sHd5J9Nnw2qnnQj59WwPw/rFRODC9N7aM7Y7Vz8Rhy9juODC9t8X344r0b1fxpvfqCSQ14ztixAgUFhZi9+7dqK6uxpgxY/DSSy9h8+bNRs//888/8eeff2LZsmWIiYnB2bNnMW7cOPz555/4+OOPndx6IuuxND4RETmTWq3Gxo0bMWfOHCiVSgBAQkICli1bhvvvv9/FrRPGVEV/a4tCWbP9Xf/YKGg0wKwv8lBcVgUAKC6rxvydxyCXy0QPfk3NyBrbx9eebfxs2W7LFenfruJN79UTyLRarSRWWx87dgwxMTH4+eef0bVrVwBAZmYmBgwYgAsXLqB58+aCXmf79u0YOXIkysrK4OtrOe6/cOECoqOjoVKpEBISYtd7ILIGS+MTub+SkhIoFAr2EVbi5+Z+tFotvvnmG7z++uvIy8sDANxxxx1IT0/HkCFDIJNJf9D1iyMXMWnrEYvn9Y2JwOiEVuhuxYy2qX11dVcL3UPXWsYGyAG4fNBc93kAxtO/HfV5uII3vVdn0fUR58+fR8uWLUV7XcmkOmdnZ6Nx48b6oBcAEhMTIZfL8dNPPwl+HV0nayroraysRElJif6rtLTU7rYTWYul8YmIyFl++eUX9OvXD48++ijy8vLQpEkTrFy5Evn5+Xjqqac8IugFhKebfptfhKkf/4Ld+UpB59tT2VdXXfqLIxeRffqq1dV/jW3Z5w7b+JlLOfe0QNCb3qvUSSbVWalUIjw83OCYr68vQkND9ak4lly5cgXz58/HSy+9ZPKctLQ0pKam2tVWIntSlC11oNZsQk9ERGTKxYsXMXv2bLz//vvQarXw9/fHq6++ipkzZ6JJkyaubp7orCkKVaiqwLhNuZic2A4Te99ptr+1tbKvp2d2mUo598RnF296r1Lm8hnfGTNmQCaTmf06fvy43fcpKSnBwIEDERMTg7lz55o8Lzk5GSqVSv+Vn59v973Ju2TmFaJn+l4MyziISVuPYFjGQfRM3yt4ltaaDpSIiMhapaWlmDNnDtq2bauv1jx06FAcO3YMy5Yt88igF7C+KBQArNzzO3oszjLbh9tS2ddbMrvcYfbZWbzpvUqVy2d8p0yZgueee87sOXfccQciIyNx6dIlg+O3bt1CcXExIiMjzV5fWlqK/v37Izg4GJ999hn8/PxMnhsQEICAgAD99yUlJZbfBNFfTK3x0XVkQlJeWBqfiIgc4datW/rCVUVFRQCAHj16YNmyZejevbuLW+ccpopCmaMsqTTbh1tb2dfdMrtYSJO8hcsD32bNmqFZs2YWz0tISMD169dx6NAhdOnSBQCwd+9eaDQadOvWzeR1JSUl6NevHwICAvDll18iMJDlxMkxxOrIWBqfiIjEpNVq8fXXX+P111/XZ7LdeeedSE9Px5NPPukxa3iF0qWlrtz9O9Z8d0rwdab6cGsr+9qaGu0Inp5uTVSby1Odhbr77rvRv39/jB07Fjk5Ofjhhx8wceJEPPPMM/qKzhcvXkT79u2Rk5MDoCbo7du3L8rKyrBhwwaUlJRAqVRCqVRCrVa78u2QBxIrRVnXgZp6DJGhplNiaXwiIrLkyJEj6NOnDwYOHIj8/HyEhoZi9erVOHr0KP7xj3/YFPTaW5DJHfjIZehxZ5jg88314eZSqGvvoQsA2aev4muBacyOzuzylnRrIh2Xz/ha46OPPsLEiRPxyCOPQC6XY8iQIfj3v/+t/3l1dTVOnDiB8vJyAEBubq6+4vOdd95p8FoFBQVo1aqV09pOnk+sFGVdBzp+Uy5kMF4a39pN6ImIyLtcuHABs2bNwgcffKAvXDVp0iS88cYbaNy4sc2v60kzhNYUu9Ix1YebSqHW7aELAD3T/7+9O4+Lqur/AP4Z9h1UENAQXFFBwSUQs5/0iGn6pJlPqbmAmVqZOymkCbghpo+WaT5qiZZJmYlkLplKbmhKYG6ZC2aWuIDgyjrn94cvJkcGmH39vF8vXy/nzrnnnnPvMOd8595zzl6V1hHW5ZNdxva4NZE+mFTgW79+fXz55Zc1vh8QEIDHlyWOjIyEiSxTTGZAm48o19WAmlrngoiI9OPu3btISUnB4sWLUVLyqP0YMmQI5s2bh6ZNm2qUt6bzWBjbWNLHf2hWVm1teE0z++4+k6/wvNXkyUejdcGYHrcm0heTCnyJjJmqY3zqwqnxiYhIWRUVFVizZg0SEhJkk4F269YNixcvRlhYmMb5a3qH0FjvFFf90JyYcQb5d2oOBJVtw6tm9q1S23mr6TiA7p/s4kSaZIlMZowvkbFTdoyPKg0Zp8YnIqLaCCGwbds2tGvXDm+99RZu3LiBli1bYsuWLdi/f79Wgl5As3ksjH0sae9gXxyK+xcmR7VU+L4mwWhd5+1JPu4OsjvnuhxLzYk0yRLxji+RFvERZSIi0pdffvkFsbGx2LdvHwCgQYMGSExMxNixY2tdulEdyt75y79TgqyLBbInlTr51zOJsaTWVhJMjGqFQB9Xrbbhyp63Z1t6IrKVF4ZHBMDOxkrnd8i1/ZQakSlg4EukoSfHLPVs68NHlImISGf+/PNPzJgxA59//jkAwN7eHpMmTUJcXJxGE1fVRtk7f3O2nUbh/XLZ6/rOtnKvn2RsY0m1PcxI2fN24PwtHDh/C2sO5qFfiC9W7c9Teyw1UPd4ak6kSZaIgS+RBox1zBIREZmfO3fuYMGCBViyZIls4qrXXnsN8+fPh7+/v06PrewMyE8GubUFvY8zprGkT47T1YSqM0dfKy7B//bnKXyvpjvkTwa5t++XYs73Z+vsm/ApNbI0DHyJ1KTp7JZERETKKC8vx+rVq5GYmIibN28CAP7v//4PixcvRufOnfVShrruEGo6+tRcx5LWdt7U8eQdckU/wCtSU9+EE2mSJeHkVkRqqGt2S+DRL7LanIiCiIgsixACGRkZaNeuHcaNG4ebN2+iVatW2Lp1KzIzM/UW9FapukPo4y4fpNZ3tlM7Twke3Y0057GkNZ03Tdy4W1LjpGGK1NY30dVEmrqcnItIHbzjSzpnbOv2aQPXvyMiIl06fvw4YmNj8dNPPwEAPD09kZiYiDFjxmh94ipVKLpDmF/8EJO/PqFyXpY0lvTx87bj1DWsz/pDo/w8XewRu+mESneQ9dk34VAwMkYMfEmnzPWLj+vfERGRLvzxxx+YMWMGNmzYAODRxFWTJ09GXFwc3N3dDVy6R54cA5t1sUCp/eo726HwfpnstaWNJX38vKkb+FbNtgwBlZZJepyu+yYcCkbGioEv6Yw5f/Fx/TsiItKm4uJiJCcnY+nSpSgtLQUADBs2DPPmzUOTJk0MXLraKbs0zk/vPofsP26b1RNg6ghrWr/O2a5rk/BiW9y6X6r28XXZN6lrKJixLF9FloljfEknzH0MbFUjX9NXtiWMWSIiIs2Vl5fj448/RosWLZCSkoLS0lJERkbi+PHj+Pzzz40+6AX+mcAJQLV28fHHme1srJQeS2rO40OtrSQYENpY5f08nGxlNw3UCV710TdRZSgYkb4x8CWdMPcvPmUbef6aSUREigghkJ6ejuDgYIwfPx63bt1CYGAgMjIysHfvXnTq1MnQRVRJTRM4+bg7qPyE185T19AtZS+GrD6CiWm5GLL6CLql7MXOU9e0XWyDiWrro/I+y4f8cx7r+gH+Sfrqm3AoGBkzPupMOmEJX3xc/46IiNRx7NgxTJ06FQcOHAAAeHl5ISkpCW+88YZBJ67SlDaWxjHnYVKPU2V936pHxbs8Nq5a1WWS9NU34VAwMmYMfEknLOWLT1fr35njTNhERJbu8uXLeO+997Bx40YAgIODA6ZMmYLp06fDzc3NwKXTjicnvlKFJY0PVTZwre1ObU0/wPu6O+D9vm1Rz9lO7/0IZQL6+s62yL9TgqyLBezfkF4x8CWdUHaiC3MYA6tJI6+Iuc6ETURkqYqKijB//nx8+OGHKCsrg0QiwfDhwzF37lz4+fkZunhGw9KWCqwpcH2ct5s9EvsF1dj+a/sHeE1/eFcmoC+8X47JX+UCYP+G9ItjfEknOAZWPTUtRl/1iJc5jW8iIuNQWFiIoUOHws3NDR4eHhg1ahTu3btXa/rx48cjMDAQjo6OaNKkCSZMmIDi4mI9lto0lJWV4aOPPkKLFi3wwQcfoKysDM899xyOHz+OdevWMeh9giUMk3pS72BfHJz+L2wc3QWjnglAPacnH3Wvu59U9QO8MpOG1UZbY6trGu+tCPs3pE8MfElntDnRhSUw95mwicg4DR06FKdPn8bu3buxbds27N+/H2PGjKkx/d9//42///4bixYtwqlTp5CamoqdO3di1KhReiy1cRNC4Ntvv0VQUBAmTpyIgoICtGnTBtu2bcOePXvQsWNHQxfRKFnKMKknWVtJUPywDJ8duozbD+SXOLp+Rz+BobZ/eH88oF/yagjqO9spTMf+DekTH3UmndLVGFhzZGmPeBGR4Z09exY7d+7EsWPH0LlzZwDAsmXL0KdPHyxatAiNGjWqtk9wcDA2b94se928eXPMmzcPw4YNQ0VFBWxsLLtrcfToUUydOhWHDh0CADRs2BCzZ8/GqFGjLP7c1MWShkk9ztBjm3V1/Ko70VkXC1B4v6zGdOzfkL7wji/pnLYewTEUfa0laImPeBGRYWVlZcHDw0MW9AJAVFQUrKyscPToUaXzKS4uhpubW42BXWlpKe7cuSP3z9zk5eVh8ODB6NKlCw4dOgRHR0fMnDkTFy5cwNixYxn0KsFSh0kZeglIXR+f/RsyFvwWJqqFPieastRHvIjIcPLz89GwYUO5bTY2Nqhfvz7y8/OVyuPWrVuYM2dOrY9HJycnIykpSaOyGqvbt29j3rx5WLZsmWziqujoaMyZMwdPPfWUoYtncixxqUBDB4a6Pj77N2QsGPgS1UDfawla6iNeRKR9cXFxSElJqTXN2bNnNT7OnTt30LdvX7Rt2xaJiYk1pouPj8eUKVPk9jP1iZ3KysqwYsUKzJ49G7dv3wYA9OjRA4sWLUJoaKhhC2fiLG2YlKEDQ10fn/0bMhYMfIkUMMR4m9qWADDnR7yISPumTp2KmJiYWtM0a9YMPj4+uHHjhtz2iooKFBYWwsfHp9b97969i969e8PV1RVbtmyBre2Ts9H+w97eHvb29kqX35gJIbB582bExcXh4sWLAIC2bdti0aJF6N27NyQSfkdrg7aXCjRmhg4MdX189m/IWHCML5EChhpvw5mwiUgbvLy80Lp161r/2dnZISIiAkVFRcjOzpbtu3fvXkilUoSHh9eY/507d/D888/Dzs4OGRkZcHCwjEcUs7Ky8Mwzz+CVV17BxYsX4e3tjVWrVuHEiRN44YUXGPSSWgw9tlkfx7fk/o2+5oqhuvGOL5EChhxvY2mPeBGR4bRp0wa9e/fG6NGjsXLlSpSXl+Odd97B4MGDZTM6//XXX+jRowfWr1+PsLAwWdD74MEDfPHFF3KTVXl5ecHa2tqQVdKJixcvIj4+Hps2bQIAODo64t1330VsbCxcXV0NXDoyB4Ye26yP41ti/0afc8VQ3Rj4Eilg6PE2lvSIFxEZ1oYNG/DOO++gR48esLKywsCBA/HRRx/J3i8vL8e5c+fw4MEDAMAvv/wim/G5RYsWcnnl5eUhICBAb2XXtcLCQsydOxcff/wxysvLIZFIMHLkSMyePRuNGzc2dPHIzBg6MNTH8evq31RKhdkExvqeK4bqxsCXSAFDj7chItKX+vXr48svv6zx/YCAAAjxzzdhZGSk3GtzVFpaiuXLl2Pu3Lmyiat69uyJDz74ACEhIQYuHZkzQ//wbcjjm9PdUUOvzUyKcYwvkQKGHm9DRET6J4TA119/jTZt2mDq1Km4ffs2goODsXPnTvzwww8Meol0pOru6JPzq1TdHd156pqBSqYeQ6/NTIox8CWqgSVPxEBEZGkOHz6Mrl27YtCgQcjLy4OPjw/WrFmD3Nxc9OrVy9DFIzJbdd0dBR7dHTWlSaEMvTYzKcZHnYlqYejxNkREpFsXLlxAfHw8vvnmGwCAk5MTpk2bhqlTp8LFxcXApSMyf6rcHTWV+U8MPVcMKcbAl6gOhh5vQ0RE2ldQUIC5c+di+fLlKC8vh5WVFV5//XUkJSXJZrQmIt0zx7ujnCvGOPFRZyIiIrIYpaWlWLx4MVq0aIGlS5eivLwcvXv3Rm5uLlavXs2gl0jPzPHuKOeKMU4MfImIiMjsCSHw1VdfoXXr1oiNjUVRURHat2+PXbt2YceOHWjXrp2hi0hkkarujtYUAkrwaHZnU7s7yrlijA8fdSYiIiKzdvDgQcTGxsrWH/b19cW8efMwYsQIWFtbG7h0yjOnNU6JqlTdHX3ri18gAeQeDTb1u6OcK8a4MPAlIiIis3T+/HnExcXh22+/BQA4Oztj+vTpmDJlCpydnQ1cOtWY0xqnRE+qujv65Gfcxww+45wrxngw8CUiIiKzcuvWLcyZMwcrVqxARUUFrKys8MYbbyApKQk+Pj6GLp7KqtY4fXKSnKo1TvnYJJkD3h0lXWPgS0RERGahpKQEy5Ytw7x581BcXAwA6NOnDxYuXIigoCADl049da1xKsGjNU57tvVhgEAmj3dHSZc4uRURERGZNKlUio0bN6J169aYNm0aiouLERISgt27d+P777832aAXUG2NUyIiqhnv+BIREZHJ2r9/P2JjY3Hs2DEAQKNGjTBv3jwMHz7cpCauqok5rnFaE07eZVx4PcjcMPAlIiIik/P7779j+vTpSE9PBwC4uLjIJq5ycnIybOG0yBzXOFWEk3cZF14PMkd81JmIiIhMxs2bNzF+/HgEBQUhPT0dVlZWGDt2LM6fP4+ZM2eaVdALmO8ap4+rmrzryUe6qybv2nnqmoFKZpl4PchcMfAlIiIio/fw4UOkpKSgRYsW+Pjjj1FRUYG+ffvi5MmTWLlypUnO1qyMqjVOAVQLfk19jVOg7sm7gEeTd1VKFaUgbeP1IHPGwJeIiIiMllQqxYYNG9C6dWvExcXhzp07CA0NxY8//oht27ahbdu2hi6izlWtcerjLv84s4+7g8kvZcTJu4wLrweZM47xJSIiIqOUmZmJ2NhYZGdnAwCeeuopzJs3D8OGDYOABFkXCyxm4h1zXePUkibvMgW8HmTOGPgSERGRUfntt98wffp0ZGRkAHg0cVV8fDwmTZoEJycni514xxzXOLWUybtMBa8HmTM+6kxERERG4caNGxg3bhyCg4ORkZEBa2trvPXWW7hw4QLee+89WdDLiXfMhyVM3mVKeD3InDHwJSIiIoN6+PAhkpOT0aJFC6xYsQKVlZV48cUXcfLkSaxYsQLe3t4AOPGOOTL3ybtMDa8HmTMGvqQ1lVKBrIsF2Jr7F7IuFrDjQUREtZJKpfj8888RGBiI9957D3fv3kXHjh2xd+9eZGRkoE2bNnLpOfGO/umjbdfm5F3si2jOnCdTI8vGMb6kFZY63oqIiNQXGRmJEydOAAD8/Pwwf/58vPbaa7CyUvy7PCfe0S99tu3amLyLfRHtMdfJ1Miy8Y4vaYzjrYiISB0nTpyAq6srkpOTce7cOQwbNqzGoBfgxDv6ZIi2vWryrv6hjRHRvIHKQS/7ItqlyfUgMkYMfEkjHG9FRETqGj16NC5evIi4uDg4OjrWmZ4T7+iHqbXtplZeIjIMBr6kEY63IiIidS1atAheXl5Kp+fEO/pham27qZWXiAyDgS9phOOtiIhInzjxju6ZWttuauUlIsPg5FakEY63IiIifePEO7plam27qZWXiAyDgS9ppGq8VX5xicKxNRI8+hWe462IiEibqibeIe0ztbbd1MpLRIbBR51JIxxvRUREZF5MrW03tfISkWEw8CWNcbwVERGReTG1tt3UyktE+sdHnUkrON6KiIjIvJha225q5SUi/WLgS1rD8VZERETmxdTadlMrLxHpDx91JiIiIiIiIrPGwJeIiIiIiIjMGgNfIiIiIiIiMmsMfImIiIiIiMisMfAlIiIiIiIis8bAl4iIiIiIiMwaA18iIiIiIiIyawx8iYiIiIiIyKwx8CUiIiIiIiKzxsCXiIiIiIiIzBoDXyIiIiIiIjJrJhn4Ll++HAEBAXBwcEB4eDh+/vnnWtNv2rQJrVu3hoODA9q1a4ft27frqaRERERERERkaCYX+H711VeYMmUKEhIS8MsvvyAkJAS9evXCjRs3FKY/fPgwhgwZglGjRiEnJwcvvfQSXnrpJZw6dUrPJSciIiIiIiJDkAghhKELoYrw8HA8/fTT+PjjjwEAUqkUfn5+GD9+POLi4qqlHzRoEO7fv49t27bJtnXp0gWhoaFYuXJlnce7evUq/Pz8UFxcDDc3N+1VhIiITN6dO3fg7u7ONkJFPG9ERFSTqjbizz//xFNPPaW1fG20lpMelJWVITs7G/Hx8bJtVlZWiIqKQlZWlsJ9srKyMGXKFLltvXr1Qnp6usL0paWlKC0tlb0uLi4G8OgCEBERPa6qbahqK0g5bFuJiKgmVW2DVCrVar4mFfjeunULlZWV8Pb2ltvu7e2N3377TeE++fn5CtPn5+crTJ+cnIykpKRq2/38/NQsNRERmbsmTZoYuggmiW0rERHV5M8//9Rq+2pSga8+xMfHy90hLiwsRNOmTXHq1Cm4u7sbsGTV3b17F23btsWZM2fg6upq6OJojTnWS5910texeJ1Mh7HXS53yGUudhBC4d+8efH19YWVlctNmGIxUKsW1a9fg4uICiUQi224s17Uu/J41DJ6Pf6hyLizhvFlCHVVh6uejuLgYwcHBaNOmjVbzNanA19PTE9bW1rh+/brc9uvXr8PHx0fhPj4+Piqlt7e3h729fbXtfn5+RjcOqeoxgMaNGxtd2TRhjvXSZ530dSxeJ9Nh7PVSp3zGXieqm4eHR7VtpnJd+T1rGDwf/1DlXFjCebOEOqrC1M9HVZltbLQbqprUz9N2dnbo1KkT9uzZI9smlUqxZ88eREREKNwnIiJCLj0A7N69u8b0REREREREZF5M6o4vAEyZMgXR0dHo3LkzwsLCsHTpUty/fx8jR44EAIwYMQKNGzdGcnIyAGDixIno3r07Fi9ejL59+yItLQ3Hjx/HqlWrDFkNIiIiIiIi0hOTC3wHDRqEmzdvYtasWcjPz0doaCh27twpm8DqypUrcuOsunbtii+//BIzZ87Ee++9h5YtWyI9PR3BwcFKHc/e3h4JCQkKH382NGMumybMsV76rJO+jsXrZDqMvV7qlM/Y60TqMZXryu9Zw+D5+Icq58ISzpsl1FEVpn4+dFV+k1vHl4iIiIiIiEgVJjXGl4iIiIiIiEhVDHyJiIiIiIjIrDHwJSIiIiIiIrPGwJeIiIiIiIjMGgNfAMuXL0dAQAAcHBwQHh6On3/+udb0mzZtQuvWreHg4IB27dph+/btBinL6tWr8eyzz6JevXqoV68eoqKiqqWPiYmBRCKR+9e7d2+tlVcZqtQpNTW1WnkdHBzk0gghMGvWLPj6+sLR0RFRUVE4f/68rqshR5U6RUZGVquTRCJB3759ZWlUvU7a/pzs378fL774Iho1agSJRIL09PQ6z0FmZiY6duwIe3t7tGjRAqmpqRqVUxdUrde3336Lnj17wsvLC25uboiIiMCuXbvk0iQmJla7Vq1bt9ZhLeSpWqfMzEyFn7/8/Hy5dLq+VrXlX1ud0tLSIJFI8NJLL8m2Kfp7kUgkCAoKkqUx9HUixQoLCzF06FC4ubnBw8MDo0aNwr1792rdZ9WqVYiMjISbmxskEgmKioqqpQkICKh2vRcsWKBRWVX9mygqKsK4cePg6+sLe3t7tGrVqs7+ga7Ohzr5GgN1yl1SUoJx48ahQYMGcHFxwcCBA3H9+nW5NIq+L9LS0nRZFbVo0h9t1KgRvL295fatrb+0dOlSBAYGwtHREX5+fpg8eTJKSkr0UU2labt/bgx9YnWpci5Onz6NgQMHyr4Xly5dqnGe2qarfmedhIVLS0sTdnZ24rPPPhOnT58Wo0ePFh4eHuL69esK0x86dEhYW1uLhQsXijNnzoiZM2cKW1tbcfLkSb2X5bXXXhPLly8XOTk54uzZsyImJka4u7uLq1evytJER0eL3r17i2vXrsn+FRYWalxWZalap7Vr1wo3Nze58ubn58ulWbBggXB3dxfp6enixIkTol+/fqJp06bi4cOH+qiSynUqKCiQq8+pU6eEtbW1WLt2rSyNKtdJF5+T7du3ixkzZohvv/1WABBbtmyp9RxcunRJODk5iSlTpogzZ86IZcuWCWtra7Fz5061y6kLqtZr4sSJIiUlRfz888/i999/F/Hx8cLW1lb88ssvsjQJCQkiKChI7lrdvHlTxzX5h6p12rdvnwAgzp07J1fmyspKWRpdX6u68q+pTnl5eaJx48bi2WefFf3795flV1RUJFeXP//8U9SvX18kJCTI0hj6OpFivXv3FiEhIeLIkSPiwIEDokWLFmLIkCG17rNkyRKRnJwskpOTBQBx+/btamn8/f3F7Nmz5a73vXv31C6nqn8TpaWlonPnzqJPnz7i4MGDIi8vT2RmZorc3Nxaj6Or86FOvsZAnXK/+eabws/PT+zZs0ccP35cdOnSRXTt2lUuDQCxdu1auc+HvvoMytKkP7p48WJhZWUlrK2tRXp6umzfmTNnKuwvrV27Vtjb24sNGzaIvLw8sWvXLuHr6ysmT56s51rXTBf9c0P3idWl6rn4+eefRWxsrNi4caPw8fERS5Ys0ThPbdNFv1MZFh/4hoWFiXHjxsleV1ZWikaNGonk5GSF6V999VXRt29fuW3h4eFi7Nixei/LkyoqKoSrq6tYt26dbFt0dLRch1HfVK3T2rVrhbu7e435SaVS4ePjIz744APZtqKiImFvby82btyotXLXRtPrtGTJEuHq6irXKVPlOunic/I4Zb6Apk2bJoKCguS2DRo0SPTq1Utr5dQ2ZeqlSNu2bUVSUpLsdUJCgggJCdFewTSgSuCrqHNcRdfXSpX8q+pUUVEhunbtKtasWVPn38eWLVuERCIRly9flm0zputEj5w5c0YAEMeOHZNt27Fjh5BIJOKvv/6qc//aPsv+/v4KO3fqUvVv4pNPPhHNmjUTZWVlSh9DV+dD03wNRZ1yFxUVCVtbW7Fp0ybZtrNnzwoAIisrS7ZN3e9/fdKkP1q1b1V/tLKyUvj6+gpXV1eF/aXnn39e/Otf/5LLb8qUKeKZZ57RQc3Uo4v+uaH7xOrSpI2u6bvRmPpo2up3KsOiH3UuKytDdnY2oqKiZNusrKwQFRWFrKwshftkZWXJpQeAXr161Zhel2V50oMHD1BeXo769evLbc/MzETDhg0RGBiIt956CwUFBRqVVVnq1unevXvw9/eHn58f+vfvj9OnT8vey8vLQ35+vlye7u7uCA8P1/gaKEMb1+nTTz/F4MGD4ezsLLddmeuky8+JKur6O9BGOY2BVCrF3bt3q52r8+fPo1GjRmjWrBmGDh2KK1euGKiEygsNDYWvry969uyJQ4cOybbr+lqpm//s2bPRsGFDjBo1qs5jfPrpp4iKioK/v7/cdlO8TuYsKysLHh4e6Ny5s2xbVFQUrKyscPToUY3zX7BgARo0aIAOHTrggw8+QEVFhVr5qPOZzcjIQEREBMaNGwdvb28EBwdj/vz5qKysrPE4ujofuj7PuqJOubOzs1FeXi53rVq3bo0mTZpUu1bjxo2Dp6cnwsLC8Nlnn+FRf9s4aNIffXzfqnbYysoKXbp0wd27dxX2lyQSCbKzs2WPtl66dAnbt29Hnz59dFtRJemyf26oPrG6dNFGm2IfTVvxl0UHvrdu3UJlZSW8vb3ltnt7e1cb/1YlPz9fpfS6LMuTpk+fjkaNGsl9MHr37o3169djz549SElJwU8//YQXXnih1sZYW9SpU2BgID777DNs3boVX3zxBaRSKbp27YqrV68CgGw/XVwDZWh6nX7++WecOnUKb7zxhtx2Za+Trj4nqqrp7+DOnTt4+PChVsppDBYtWoR79+7h1VdflW0LDw9Hamoqdu7ciU8++QR5eXl49tlncffuXQOWtGa+vr5YuXIlNm/ejM2bN8PPzw+RkZH45ZdfAGjnM1UbdfI/c+YMPv30U6xevbrO/P/++2/s2LGj2t+UqV0nS5Cfn4+GDRvKbbOxsUH9+vU1/qxNmDABaWlp2LdvH8aOHYv58+dj2rRpauWlzmf20qVL+Oabb1BZWYnt27fj/fffx+LFizF37twaj6Or86HL86xL6pQ7Pz8fdnZ28PDwkNv+5LWaPXs2vv76a+zevRsDBw7E22+/jWXLlmm9DurSpD/6+L6Pp3d0dJTl8WSe7u7umD17Nrp16wZbW1s0b94ckZGReO+993RQO9Xpqn9uyD6xunTRRptiH62ufqeybLRdMDKMBQsWIC0tDZmZmXKTQQ0ePFj2/3bt2qF9+/Zo3rw5MjMz0aNHD0MUtVYRERGIiIiQve7atSvatGmD//3vf5gzZ44BS6Ydn376Kdq1a4ewsDC57fq6TjV9Tqi6L7/8EklJSdi6datcZ+yFF16Q/b99+/YIDw+Hv78/vv76a6XuTupbYGAgAgMDZa+7du2KixcvYsmSJfj8888NWLKaLV26FOvWrYOnp2edadetWwcPDw+5ya8A07tOpiwuLg4pKSm1pjl79qxOyzBlyhTZ/9u3bw87OzuMHTsWycnJsLe31+mxgUdPhzRs2BCrVq3CjBkzZOcjMTERiYmJ1dLr+nwYE2P4fLz//vuy/3fo0AH379/HBx98gAkTJuj0uMbqxo0bmD9/PlasWIHw8HBcuHABEydOxJw5c+TOlbkxtT4xaZ9FB76enp6wtrauNvvf9evX4ePjo3AfHx8fldLrsixVFi1ahAULFuDHH39E+/bta03brFkzeHp64sKFCzr/I9ekTlVsbW3RoUMHXLhwAQBk+12/fh2+vr5yeYaGhmqn4LXQpE73799HWloaZs+eXedxarpO+vqc1KWmvwM3Nzc4OjrC2tpa42tvSGlpaXjjjTewadOmOu+Me3h4oFWrVrLPqCkICwvDwYMHAWjn77Q26uR/8+ZNvPjii7LXUqkUwKO7P+fOnUPz5s0BPJrh/bPPPsPw4cNhZ2dXazlM8TqZiqlTpyImJqbWNM2aNYOPjw9u3Lght72iogKFhYVa/14IDw9HRUUFLl++LPfDjzLU+cz6+vrC1tYW1tbWsvOxf/9+jB07FidOnKj2+dTl+dDneVaGLj8fPj4+KCsrQ1FRkdxd37q+v8LDwzFnzhyUlpbq5YeRumjSH31838fTV90FU9RfOn/+PIYPHy57UqZdu3a4f/8+xowZgxkzZsDKyrAPhOqrf67PPrG6dNFG67rd14W6+p3KsuhHne3s7NCpUyfs2bNHtk0qlWLPnj1ydx0fFxERIZceAHbv3l1jel2WBQAWLlyIOXPmYOfOnXLjYmpy9epVFBQUyH0J6oq6dXpcZWUlTp48KStv06ZN4ePjI5fnnTt3cPToUY2vgTI0qdOmTZtQWlqKYcOG1Xmcmq6Tvj4ndanr70Ab195QNm7ciJEjR2Ljxo1yS07V5N69e7h48aJe/qa0JTc3V1ZeXV8rdfJfunQpcnNzZf/69euH5557Drm5ufDz85Ol++mnn3DhwgWl7uCa4nUyFV5eXmjdunWt/+zs7BAREYGioiJkZ2fL9t27dy+kUinCw8O1Wqbc3FxYWVlVe3RWGep8Zp955hlcuHABUqlUdj4ePnwIX19ftG/fXq/nQ5/nWRm6/Hx06tQJtra2ctfq3LlzuHLlSq3fX7m5uahXr55RBL2AZv3Rx/etaoelUimOHj0KV1dXhf0le3v7asGttbU1ABjF2Gd99c/12SdWly7aaFPso2kt/lJpKiwzlJaWJuzt7UVqaqo4c+aMGDNmjPDw8JAtoTN8+HARFxcnS3/o0CFhY2MjFi1aJM6ePSsSEhK0upyRKmVZsGCBsLOzE998843c1Ox3794VQghx9+5dERsbK7KyskReXp748ccfRceOHUXLli1FSUmJxuXVRZ2SkpLErl27xMWLF0V2drYYPHiwcHBwEKdPn5art4eHh9i6dav49ddfRf/+/fW+nJEqdarSrVs3MWjQoGrbVb1O2v6cVJUhJydH5OTkCADiv//9r8jJyRF//PGHEEKIuLg4MXz4cFn6qmnl3333XXH27FmxfPlyhcsZ1VZOfVC1Xhs2bBA2NjZi+fLlcueqqKhIlmbq1KkiMzNT5OXliUOHDomoqCjh6ekpbty4YZR1WrJkiUhPTxfnz58XJ0+eFBMnThRWVlbixx9/lKXR9bWqK//BgweLkSNH1lin4OBg8dRTT1XLd9iwYSI8PFzhMQ19nUix3r17iw4dOoijR4+KgwcPipYtW8otV3P16lURGBgojh49Ktt27do1kZOTI1avXi0AiP3794ucnBxRUFAghBDi8OHDYsmSJSI3N1dcvHhRfPHFF8LLy0uMGDFC7XKq+j175coV4erqKt555x1x7tw5sW3bNtGwYUMxd+5cvZ8PZfI1VuqcjzfffFM0adJE7N27Vxw/flxERESIiIgI2fsZGRli9erV4uTJk+L8+fNixYoVwsnJScyaNUuvdauLJv3RxYsXC2tra2FtbS22bt0q23fGjBnCw8NDREZGitdff13WX5oxY4ZwdXUVGzduFJcuXRI//PCDaN68uXj11VcNVf1qtN0/N4Y+sbpUPRelpaWyfoKvr6+IjY0VOTk54vz580rnqWu66Hcqw+IDXyGEWLZsmWjSpImws7MTYWFh4siRI7L3unfvLqKjo+XSf/3116JVq1bCzs5OBAUFie+//94gZfH39xcAqv2rWsvywYMH4vnnnxdeXl7C1tZW+Pv7i9GjR+s18FC1TpMmTZKl9fb2Fn369JFbQ1WIR0savf/++8Lb21vY29uLHj16iHPnzumrOkII1T8zv/32mwAgfvjhh2p5qXOdtPk5EeKfZTGe/FeVT3R0tOjevbtcGfbt2ydCQ0OFnZ2daNasmdy6xMqUUx9UrVf37t1rTS/Eo+nzfX19hZ2dnWjcuLEYNGiQuHDhgtHWKSUlRTRv3lw4ODiI+vXri8jISLF3795q+er6WtWWf0hISK11at68uWjQoIFcfkVFRcLR0VGsWrVK4fEMfZ1IsYKCAjFkyBDh4uIi3NzcxMiRI+V+hMvLyxMAxL59+2TbEhISFH4+qr5zsrOzRXh4uHB3dxcODg6iTZs2Yv78+Rp3ZlX9nj98+LAIDw8X9vb2olmzZmLevHmioqJC7+dDmXyNlTrn4+HDh+Ltt98W9erVE05OTmLAgAHi2rVrsvd37NghQkNDhYuLi3B2dhYhISFi5cqVcmuZGwtN+qO+vr7Cy8tLbt+q/pKtra2wsrKS9ZfKy8tFYmKirG3w8/MTb7/9dq3L3hmCNvvnxtInVpcq56Lq7+TJf0/24wzZR9NVv7MuEiGM4JkGIiIiIiIiIh2x6DG+REREREREZP4Y+BIREREREZFZY+BLREREREREZo2BLxEREREREZk1Br5ERERERERk1hj4EhERERERkVlj4EtERERERERmjYEvERERERERmTUGvkRG5P3338eYMWMMXQyjdPnyZUgkEo3zuXXrFho2bIirV69qoVRERGRJjKWdjomJQWJiosb5xMXFYfz48ZoXiMgEMPAlMhL5+fn48MMPMWPGDNm2mJgYvPTSSyrlI5FIkJ6ert3C6VBiYiJCQ0O1ktegQYMQFhaGyspK2bby8nJ06tQJQ4cOBQB4enpixIgRSEhI0MoxiYjIMihqp2/evIm33noLTZo0gb29PXx8fNCrVy8cOnRIliYgIAASiQQSiQTOzs7o2LEjNm3ahNLSUgQFBSkMpKdNm4amTZvi7t27apX1xIkTsLOzQ0ZGhtz2zZs3w8HBAadOnQIAxMbGYt26dbh06ZJaxyEyJQx8iYzEmjVr0LVrV/j7+xu6KAAeBYymZsWKFbhy5QoWLFgg2zZnzhxcu3YNH3/8sWzbyJEjsWHDBhQWFhqimEREZIIUtdMDBw5ETk4O1q1bh99//x0ZGRmIjIxEQUGB3L6zZ8/GtWvXkJOTg6effhqDBg1CdnY21q9fj9TUVOzatUuW9siRI1iyZAlSU1Ph6uqqVllDQkIwa9YsjBkzRlaWGzdu4M0330RSUhKCg4MBPPoxuFevXvjkk0/UOg6RKWHgS6QHUqkUycnJaNq0KRwdHRESEoJvvvlGLk1aWhpefPHFWvOJjIzEhAkTMG3aNNSvXx8+Pj5yjzoFBAQAAAYMGACJRCJ7DQBbt25Fx44d4eDggGbNmiEpKQkVFRWy9yUSCT755BP069cPzs7OmDdvHgDgu+++w9NPPw0HBwd4enpiwIABsn1KS0sRGxuLxo0bw9nZGeHh4cjMzJS9n5qaCg8PD6Snp6Nly5ZwcHBAr1698Oeff8reT0pKwokTJ2S/hqempqpwZuU1aNAAq1atwuzZs/Hrr7/i+PHjSE5Oxpo1a1CvXj1ZuqCgIDRq1AhbtmxR+1hERGQ+1Gmni4qKcODAAaSkpOC5556Dv78/wsLCEB8fj379+snt6+rqCh8fH7Rq1QrLly+Ho6MjvvvuO3Tq1AkzZszAqFGjUFRUhJKSEowcORLjx49H9+7dNapTfHw8mjRpgnHjxgEAxo4di5YtWyI2NlYu3Ysvvoi0tDSNjkVkChj4EulBcnIy1q9fj5UrV+L06dOYPHkyhg0bhp9++gkAUFhYiDNnzqBz58515rVu3To4Ozvj6NGjWLhwIWbPno3du3cDAI4dOwYAWLt2La5duyZ7feDAAYwYMQITJ07EmTNn8L///Q+pqamy4LZKYmIiBgwYgJMnT+L111/H999/jwEDBqBPnz7IycnBnj17EBYWJkv/zjvvICsrC2lpafj111/xyiuvoHfv3jh//rwszYMHDzBv3jysX78ehw4dQlFREQYPHgzg0aPJU6dORVBQEK5du4Zr165h0KBBGpxpoF+/fhg8eDBGjBiB6OhoREdHo0+fPtXShYWF4cCBAxodi4iIzIM67bSLiwtcXFyQnp6O0tJSpY9lY2MDW1tblJWVAQBmzJgBHx8fTJgwATNnzoREIsH8+fM1rpO1tTXWrVuHrVu34rXXXsOuXbuQmpoKa2truXRhYWG4evUqLl++rPExiYyaICKdKikpEU5OTuLw4cNy20eNGiWGDBkihBAiJydHABBXrlyRSxMdHS369+8ve929e3fRrVs3uTRPP/20mD59uuw1ALFlyxa5ND169BDz58+X2/b5558LX19fuf0mTZoklyYiIkIMHTpUYb3++OMPYW1tLf76669qx4qPjxdCCLF27VoBQBw5ckT2/tmzZwUAcfToUSGEEAkJCSIkJEThMR6Xl5cnlP3KKiwsFI6OjsLb21sUFxcrTDN58mQRGRmpVH5ERGS+NGmnv/nmG1GvXj3h4OAgunbtKuLj48WJEyfk0vj7+4slS5YIIYQoLS0V8+fPFwDEtm3bZGlOnz4tHBwchJ2dnTh27FidZY6OjhYJCQlK1S8uLk4AECkpKQrfLy4uFgBEZmamUvkRmSobQwXcRJbiwoULePDgAXr27Cm3vaysDB06dAAAPHz4EADg4OBQZ37t27eXe+3r64sbN27Uus+JEydw6NAhuTu8lZWVKCkpwYMHD+Dk5AQA1e445+bmYvTo0QrzPHnyJCorK9GqVSu57aWlpWjQoIHstY2NDZ5++mnZ69atW8PDwwNnz56Vu3usTRs3boREIsGtW7fw22+/KTyOo6MjHjx4oJPjExGR6dCknR44cCD69u2LAwcO4MiRI9ixYwcWLlyINWvWICYmRpZu+vTpmDlzJkpKSuDi4oIFCxagb9++svfbtm2LgQMHoqioSKmnv5R17949fPXVV3BycsKBAwcwbdq0amkcHR0BgG0imT0GvkQ6du/ePQDA999/j8aNG8u9Z29vD+DR5BIAcPv2bXh5edWan62trdxriUQCqVRaZxmSkpLw8ssvV3vv8Ubc2dlZ7r2qxrCmPK2trZGdnV3tsSkXF5day6NLly5dwrRp0/DJJ59g3759iImJQU5OjuxcVyksLKzzXBMRkfnTtJ12cHBAz5490bNnT7z//vt44403kJCQIBf4vvvuu4iJiYGLiwu8vb0VLs9nY2MDGxvtds3fffddODg44PDhw+jSpQvWr1+PESNGyKWpmuiRbSKZOwa+RDrWtm1b2Nvb48qVKzVOVNG8eXO4ubnhzJkz1e6gqsrW1lZuOR8A6NixI86dO4cWLVqolFf79u2xZ88ejBw5stp7HTp0QGVlJW7cuIFnn322xjwqKipw/Phx2V3Xc+fOoaioCG3atAEA2NnZVSuvuqRSKWJiYtCjRw+MGDEC/fv3R3BwMGbNmoWUlBS5tKdOnUJkZKRWjktERKZL2+1027Ztqy0r6OnpqXIbrKndu3djzZo1OHz4MEJCQjB37lxMmjQJPXv2hK+vryzdqVOnYGtri6CgIL2Wj0jfGPgS6ZirqytiY2MxefJkSKVSdOvWDcXFxTh06BDc3NwQHR0NKysrREVF4eDBgyqv2/ukgIAA7NmzB8888wzs7e1Rr149zJo1C//+97/RpEkT/Oc//4GVlRVOnDiBU6dOYe7cuTXmlZCQgB49eqB58+YYPHgwKioqsH37dkyfPh2tWrXC0KFDMWLECCxevBgdOnTAzZs3sWfPHrRv3172CJetrS3Gjx+Pjz76CDY2NnjnnXfQpUsXWSAcEBCAvLw85Obm4qmnnoKrq2u1u7PK+vDDD3H69GmcPn0aAODu7o41a9bg3//+NwYOHCg75oMHD5Cdna2VyUOIiMi0qdtOFxQU4JVXXsHrr7+O9u3bw9XVFcePH8fChQvRv39/g9bpzp07GDVqFN59913ZcKPJkydjy5YtGDNmDL777jtZ2gMHDuDZZ5+t9SkvIrNg6EHGRJZAKpWKpUuXisDAQGFrayu8vLxEr169xE8//SRLs337dtG4cWNRWVkp26ZocquJEyfK5d2/f38RHR0te52RkSFatGghbGxshL+/v2z7zp07RdeuXYWjo6Nwc3MTYWFhYtWqVbL3oWBSLCGE2Lx5swgNDRV2dnbC09NTvPzyy7L3ysrKxKxZs0RAQICwtbUVvr6+YsCAAeLXX38VQjya3Mrd3V1s3rxZNGvWTNjb24uoqCjxxx9/yPIoKSkRAwcOFB4eHgKAWLt2rcJzWNfkVufOnROOjo5iw4YN1d4bPXq0aNOmjSgpKRFCCPHll1+KwMDAGvMiIiLLok47XVJSIuLi4kTHjh2Fu7u7cHJyEoGBgWLmzJniwYMHsv0en9yqNk+2+XWlrW1yq5EjR4rg4GBRWloqt/33338XTk5OYt26dbJtgYGBYuPGjUodl8iUSYQQwsCxNxEBEEIgPDwckydPxpAhQwxdHK1ITU3FpEmTUFRUpHFely9fRtOmTaGNr6wuXbpgwoQJeO211zTOi4iILIMxtdMxMTEICAhAYmKiRvns2LEDU6dOxa+//qr18cVExobr+BIZCYlEglWrVqGiosLQRTFrt27dwssvv2zwTgsREZkWc2yn79+/j7Vr1zLoJYvATzmREQkNDUVoaKihi2HWPD09FS7nQEREVBdza6f/85//GLoIRHrDO75EpDMxMTFaecwZADw8PJCQkKCVvIiIiEzZSy+9xJUJiFTEMb5ERERERERk1njHl4iIiIiIiMwaA18iIiIiIiIyawx8iYiIiIiIyKwx8CUiIiIiIiKzxsCXiIiIiIiIzBoDXyIiIiIiIjJrDHyJiIiIiIjIrDHwJSIiIiIiIrP2/6BgG5yrsajiAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"#!pip install matplotlib #again, if you installed Anaconda, you have this already.\n",
"import matplotlib.pyplot as plt\n",
"\n",
"fig, ax=plt.subplots(figsize=(10,6))\n",
"fig = sm.graphics.plot_partregress_grid(results, fig=fig)"
]
},
{
"cell_type": "markdown",
"id": "f58ce303",
"metadata": {
"id": "f58ce303"
},
"source": [
"### Extra 1: using scipy module, we can get the same beta!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69ce9117",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "69ce9117",
"outputId": "66780398-b94e-43f4-bb07-68644df34a99"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"1.7553\n",
"0.0319\n",
"0.4\n",
"0.0\n"
]
}
],
"source": [
"#!pip install scipy\n",
"from scipy import stats\n",
"\n",
"beta,alpha,r_value,p_value,std_err = stats.linregress(data3['SPY'],data3[\"TSLA\"])\n",
"\n",
"print(beta.round(4))\n",
"print(alpha.round(4))\n",
"print(r_value.round(2))\n",
"print(p_value.round(4))"
]
},
{
"cell_type": "markdown",
"id": "b192016a",
"metadata": {
"id": "b192016a"
},
"source": [
"### Extra 2: using a beta formula, we can get the same beta.\n",
"\n",
"#$$\n",
"\\beta_{tsla} = \\frac{\\sigma_{tsla,spy}}{\\sigma_{spy}^2}\n",
"$$\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "642827eb",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "642827eb",
"outputId": "229cd428-2237-46af-c5aa-6066d9e4e10a"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" TSLA SPY\n",
"TSLA 0.376964 0.034167\n",
"SPY 0.034167 0.019465\n",
"\n",
"\n",
"1.7553\n"
]
}
],
"source": [
"# find covariance matrix\n",
"cov = data3.cov() * 12\n",
"print(cov)\n",
"print('\\n') # to give a space\n",
"print(round(cov.iloc[0,1]/cov.iloc[1,1], 4))"
]
},
{
"cell_type": "markdown",
"id": "e3ff4c65",
"metadata": {
"id": "e3ff4c65"
},
"source": [
"### Extra3: using linear algebra, we can get the same beta.\n",
"Need to install numpy and import it. You probably have this alreay. So skip installation. Just import it. https://numpy.org/"
]
},
{
"cell_type": "code",
"source": [
"# warnings are annoying, so I include below to supress them. You do not need to do this.\n",
"import warnings\n",
"warnings.simplefilter(action='ignore', category=FutureWarning)"
],
"metadata": {
"id": "ApyNN1N27OM9"
},
"id": "ApyNN1N27OM9",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7903709",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "c7903709",
"outputId": "68efaf90-4b99-493f-a1f2-57a866386d12"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"1.7553\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"X = data3['SPY']\n",
"y = data3['TSLA']\n",
"X_ols = sm.add_constant(X) # add a constant vector\n",
"#print(X_ols)\n",
"\n",
"# compute beta using matrix operation\n",
"beta = np.linalg.inv(X_ols.T.dot(X_ols)).dot(X_ols.T.dot(y))\n",
"print(round(beta[1], 4))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"colab": {
"name": "First_Regression.ipynb",
"provenance": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 5
}