{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "## Data Source: FactSet, searching for all S&P500 company PE ratio, no theoretical justification regarding the model specification" ], "metadata": { "id": "TQXcsiSyMtj6" }, "id": "TQXcsiSyMtj6" }, { "cell_type": "code", "execution_count": 36, "id": "4efee966-1f45-44e6-9f0c-37ba284e366b", "metadata": { "id": "4efee966-1f45-44e6-9f0c-37ba284e366b" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from pylab import mpl, plt\n", "import statsmodels.formula.api as smf\n", "import statsmodels.api as sm\n", "plt.style.use('seaborn')\n", "mpl.rcParams['font.family'] = 'serif'\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 37, "id": "e7c64e59-e05f-4c95-91fd-5734f40908ee", "metadata": { "id": "e7c64e59-e05f-4c95-91fd-5734f40908ee", "outputId": "c82621dc-ea56-4324-faa3-27d675192003", "colab": { "base_uri": "https://localhost:8080/", "height": 35 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "'/content'" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" } }, "metadata": {}, "execution_count": 37 } ], "source": [ "import os \n", "os.getcwd()" ] }, { "cell_type": "code", "execution_count": 38, "id": "2bfd132b-f851-4651-9788-d04f8d19c569", "metadata": { "id": "2bfd132b-f851-4651-9788-d04f8d19c569", "outputId": "992adb53-5bf0-4da6-e9a7-0fb674cce82b", "colab": { "base_uri": "https://localhost:8080/", "height": 536 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Symbol Name beta roe de pe ps \\\n", "0 MMM 3M Company 0.89 42.42 121.74 17.56 2.94 \n", "1 AOS A. O. Smith Corporation 1.10 26.47 12.59 28.43 3.91 \n", "2 ABT Abbott Laboratories 0.75 20.53 53.77 35.75 5.85 \n", ".. ... ... ... ... ... ... ... \n", "501 ZBH Zimmer Biomet Holdings, Inc. 1.13 3.23 58.12 66.55 3.41 \n", "502 ZION Zions Bancorporation, N.A. 1.25 14.55 28.63 9.30 3.42 \n", "503 ZTS Zoetis, Inc. Class A 0.83 49.01 149.33 57.11 14.96 \n", "\n", " pfcf mv gm ... cap_s dy cr cur naics eps \\\n", "0 17.77 101576.90 46.99 ... 4.53 3.33 0.53 1.70 31 10.12 \n", "1 24.47 13534.47 37.07 ... 2.12 1.23 0.56 1.57 31 3.02 \n", "2 29.11 248276.90 53.89 ... 4.38 1.29 0.78 1.85 31 3.94 \n", ".. ... ... ... ... ... ... ... ... ... ... \n", "501 26.07 26551.36 62.28 ... 6.45 0.76 0.14 1.41 31 1.91 \n", "502 19.61 9576.64 NaN ... 6.97 2.28 0.01 0.32 52 6.79 \n", "503 67.01 115322.30 68.31 ... 6.13 0.44 1.94 3.86 31 4.27 \n", "\n", " growth_capitalexp gics_ind \\\n", "0 0.1 Capital Goods \n", "1 0.0 Capital Goods \n", "2 0.0 Health Care Equipment & Services \n", ".. ... ... \n", "501 0.0 Health Care Equipment & Services \n", "502 NaN Banks \n", "503 0.0 Pharmaceuticals Biotechnology & Life Sciences \n", "\n", " fs_sec gics_sec \n", "0 Producer Manufacturing Industrials \n", "1 Producer Manufacturing Industrials \n", "2 Health Technology Health Care \n", ".. ... ... \n", "501 Health Technology Health Care \n", "502 Finance Financials \n", "503 Health Technology Health Care \n", "\n", "[504 rows x 23 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SymbolNamebetaroedepepspfcfmvgm...cap_sdycrcurnaicsepsgrowth_capitalexpgics_indfs_secgics_sec
0MMM3M Company0.8942.42121.7417.562.9417.77101576.9046.99...4.533.330.531.703110.120.1Capital GoodsProducer ManufacturingIndustrials
1AOSA. O. Smith Corporation1.1026.4712.5928.433.9124.4713534.4737.07...2.121.230.561.57313.020.0Capital GoodsProducer ManufacturingIndustrials
2ABTAbbott Laboratories0.7520.5353.7735.755.8529.11248276.9053.89...4.381.290.781.85313.940.0Health Care Equipment & ServicesHealth TechnologyHealth Care
..................................................................
501ZBHZimmer Biomet Holdings, Inc.1.133.2358.1266.553.4126.0726551.3662.28...6.450.760.141.41311.910.0Health Care Equipment & ServicesHealth TechnologyHealth Care
502ZIONZions Bancorporation, N.A.1.2514.5528.639.303.4219.619576.64NaN...6.972.280.010.32526.79NaNBanksFinanceFinancials
503ZTSZoetis, Inc. Class A0.8349.01149.3357.1114.9667.01115322.3068.31...6.130.441.943.86314.270.0Pharmaceuticals Biotechnology & Life SciencesHealth TechnologyHealth Care
\n", "

504 rows × 23 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 38 } ], "source": [ "data = pd.read_csv('https://raw.githubusercontent.com/cyrus723/my-first-binder/main/data/sp500.csv', header=0) \n", "data" ] }, { "cell_type": "code", "execution_count": 39, "id": "28e4e30f-477a-4e66-81f9-518120d53f4e", "metadata": { "id": "28e4e30f-477a-4e66-81f9-518120d53f4e", "outputId": "f024af5a-43d9-4000-804f-f618733bf117", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "RangeIndex: 504 entries, 0 to 503\n", "Data columns (total 23 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Symbol 504 non-null object \n", " 1 Name 504 non-null object \n", " 2 beta 504 non-null float64\n", " 3 roe 478 non-null float64\n", " 4 de 473 non-null float64\n", " 5 pe 480 non-null float64\n", " 6 ps 503 non-null float64\n", " 7 pfcf 456 non-null float64\n", " 8 mv 499 non-null float64\n", " 9 gm 452 non-null float64\n", " 10 gsales 504 non-null float64\n", " 11 altman 402 non-null float64\n", " 12 pvol 504 non-null float64\n", " 13 cap_s 501 non-null float64\n", " 14 dy 500 non-null float64\n", " 15 cr 454 non-null float64\n", " 16 cur 454 non-null float64\n", " 17 naics 504 non-null int64 \n", " 18 eps 504 non-null float64\n", " 19 growth_capitalexp 455 non-null float64\n", " 20 gics_ind 504 non-null object \n", " 21 fs_sec 504 non-null object \n", " 22 gics_sec 504 non-null object \n", "dtypes: float64(17), int64(1), object(5)\n", "memory usage: 90.7+ KB\n" ] } ], "source": [ "data.info()" ] }, { "cell_type": "code", "source": [ "data['cr'].plot.hist()" ], "metadata": { "id": "wNyAw-QAAC6T", "outputId": "8c5ddb1e-b178-4ff1-a8a6-d8654cb1c661", "colab": { "base_uri": "https://localhost:8080/", "height": 281 } }, "id": "wNyAw-QAAC6T", "execution_count": 48, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 48 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD3CAYAAADyvkg2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARWElEQVR4nO3df5BdZX3H8TdkEQls2qXdFGwKaoxfqYPIUKoBFSJYqrFjsbZjHego1JmWKqCiIkVHIWAwMJRaKs4IjtNURdE2SFRQyYCjQQEdsYhfFfH3j+zgYlJSUOL2j3vyeFl2N2eTe/bsvft+zWR2z3POvef7ZJP72XPOc56z18TEBJIkAezddgGSpPnDUJAkFYaCJKkwFCRJhaEgSSqG2i5gT4yNbdvtoVMjI4sZH9/ey3LmlUHu3yD3DexfP+uXvo2ODu813boFe6QwNLSo7RIaNcj9G+S+gf3rZ4PQtwUbCpKkxzIUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSp6OtpLvbUaWtvbmW/15z7/Fb2K0m74pGCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJKKoabeOCKWA2uArwDLgPsz84KIeDtwfNemF2XmZ6rXvBFYAowAN2Xm9U3VJ0l6rMZCATgQ+HBmbgCIiG9ExEaAzDx+8sYR8SxgVWa+KCKGgHsi4pbM/GWDNUqSujQWCpl5+6SmvYEHASLin4GHgUXAuzNzO/BiYHP12kci4h7gOMCjBUmaI00eKRQRcTJwY2Z+MyI+CnwvMx+MiDOAdwOnA0uBe7petrVqm9bIyGKGhhY1VXZjRkeHB2o/bRjkvoH962f93rfGQyEiVgGrgLMBMvPurtU3A2+svt8CdP9tLqnapjU+vn2362rzBzc2tq3xfYyODs/JftowyH0D+9fP+qVvM33+NTr6KCJWAycBZwEHRcTKiFjXtckK4N7q+43Ayup1+wCHAbc2WZ8k6dGaHH10FHAtcAewCdgfuBJ4JCKuoHMUcDhwBkBm3hYRmyLiYjqjj96QmQ80VZ8k6bGavNB8J3DALF+zbtdbSZKa4s1rkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJxVBTbxwRy4E1wFeAZcD9mXlBRBwIrAW+C6wAzsvMn1eveSOwBBgBbsrM65uqT5L0WE0eKRwIfDgz12XmWcDLI+Io4GLgs5m5Fvhv4FKAiHgWsCoz3wqcDVwWEb/TYH2SpEkaC4XMvD0zN0za14PAamBz1faFahngxTvbM/MR4B7guKbqkyQ9VmOnj7pFxMnAjZn5zYhYCmyrVm0FRiJiCFhKJwjoWrd0pvcdGVnM0NCiJkpu1Ojo8EDtpw2D3Dewf/2s3/vWeChExCpgFZ1TQgBbgGHgATrXD8Yz85GI2Nm+05Jq22mNj2/f7bra/MGNjW3b9UZ7aHR0eE7204ZB7hvYv37WL32b6fOv0dFHEbEaOAk4CzgoIlYCG4GV1SbHVst0t0fEPsBhwK1N1idJerQmRx8dBVwL3AFsAvYHrgTOAy6JiKcCy4FzADLztojYFBEX0xl99IbMfKCp+iRJj9VYKGTmncAB06x+9TSvWddUPZKkXfPmNUlSYShIkgpDQZJUGAqSpMJQkCQVtUIhIp7RdCGSpPbVPVJYX92IJkkaYHXvU/gosCQi1gN3AVdn5v3NlSVJakOtUMjMC6tvPxQRJwJ3RcTngCsz80uNVSdJmlO1QiEizgBuB15DZ6rrjwPvB54dEa+onpcgSepzdU8frQN+AFwFnJmZvwSIiNvoBIQkaQDUDYWrM/PMKdoPwZlMJWlg1B19dF11CgmAiDg9IvbLzO9n5uUN1SZJmmN1Q+EtwH1dyz8Fruh9OZKkNtUNhbsy81M7FzLzk3QelylJGiB1Q2FZ9RxloDwZ7Q+bKUmS1Ja6F5qvB+6LiK9Wy8+kemKaJGlw1DpSyMxrgT8DbgJuBF6QmR9psjBJ0tyr/TjOzLwHuGfnckS8NjPf3UhVkqRW1L2j+cXAecBSOkcXewEjgKEgSQOk7pHCpcBrgXuBHXRC4S1NFSVJakfdULg7Mz/T3RARFzVQjySpRXVD4QcR8X7gi8DDVdspdC4+S5IGRN1Q+Bs6I4+O6WrzPgVJGjB1Q+HCzLyqu8EnsUnS4Kn7kJ2rIuIpwBOBTcATMnNjk4VJkuZerZvXIuKVdG5aewuwCLg8Ik5psC5JUgvqzn30XGAF8K3M/FVmvgxY2VxZkqQ21A2Fn2Xmbya1TV6WJPW5uheaRyPiFcDvRsTRdIaiHjjTCyLiIGANcERmHl21vRL4B+CharOrM/M/qnWnAEfSuTnu3sx87yz7IknaQ3VD4c10HqpzYvXnU8BUj+fs9hxgA50ZVbu9PDO/190QEcvozLp6ZGZORMTtEXFzZn67Zn2SpB6oO/poHPi77raI2HcXr7kuIo6fYtVrIuJnwGLg3zLzF8BJwJ2ZOVFtsxl4ITBjKIyMLGZoaFGdLswro6PDA7WfNgxy38D+9bN+71vdCfEOmaL5HcCrZrm/W4CNmTkWES8CPgqcQGeivW1d222t2mY0Pr59lrv/rTZ/cGNj23a90R4aHR2ek/20YZD7Bvavn/VL32b6/Kt7+ujrwP10JsLbB/gD4EezLSQzu5/zfDNwfUQsArYAT+latwT4zmzfX5K0Z+qOPnpTZj45M5+UmcuAQ4D3zHZnEfHOrsd6rgC+l5k76NwDcVRE7FWtW0nnuoUkaQ7Vvabw3knLP42Ip870mog4DjgVODgizgcuA34GvCci7gMOpzOpHpn5o4i4lM5NcTuA93mRWZLmXt1rCtd0Le4NHExn6Oi0MvMWOtcQul0xw/brgfV16pEkNaPuNYU/4rcf2BN0fuPf1EhFkqTWzGaW1FunWhERyzJz1hedJUnzT91QOCsiJuiMPprs9cBf9q4kSVJb6obCk4EbgLur5adX3z9MZxSRJGkA1B2Suhl4YmYek5nHAIcCX8rMVcCFjVUnSZpTdUNhcTXVBQCZ+QDVHcdOXCdJg6Pu6aODI+J1/HaI6fHA7zdSkSSpNXWPFF4FHAN8pvrzbGY/75EkaZ6re0fzT4C/brgWSVLL6t7RvBRYBzyezhHC5cC53dcZJEn9r+7po3XArcCvMnM7cBXwrsaqkiS1om4o/Dgzrwb+FyAzvwo80FhVkqRW1A2F36u+TgBExP7A8kYqkiS1pu6Q1M9FxP8A+0bERuBPgNc2V5YkqQ11Rx99JCK+BpxYNb0+M7O5siRJbag7+mgMeFtmXtlwPZKkFtW9pvD1zHzU4zcjYrSBeiRJLaobCtdGxAsjYp+utrc2UZAkqT11LzSXo4Su5ypMAGc2UZQkqR0zhkJEHAL8GtiQmSdPWndBk4VJkuberk4ffQx4CZ0nrx3SfR0hM9/WaGWSpDm3q1C4IzOvojPf0Q3ASc2XJElqy65CYQIgM98B3J2Z63euiIh9myxMkjT36o4+gioguqzrZSGSpPbtavTRSyPimdX3KyLii13rnoijjyRpoOwqFL4BfGCadaf0uBZJUst2FQrnZ+YXp1oREc59JEkDZsZrCtMFQrXutt6XI0lqU907mmctIg4C1gBHZObRVdvjgUuBHwMrgLWZ+a1q3SnAkcAO4N7MfG9TtUmSpjab0Uez9RxgA50pMXY6G/hBZr6TznOerwaIiGXAOcA5mfkm4O8jYkWDtUmSptBYKGTmdcC2Sc2rgc3V+q8DR0TEEjo3xd2ZmTuHvW4GXthUbZKkqTV2+mgaS3l0UGyt2qZrn9HIyGKGhhb1tMC5MDo6PFD7acMg9w3sXz/r977NdShsAbr/xpZUbVuAp0xq/86u3mx8fPtuF9LmD25sbPIBVO+Njg7PyX7aMMh9A/vXz/qlbzN9/jV5TWEqG4GVABFxOPC1zNwK3AgcFRE7rz+sBD41x7VJ0oLXWChExHHAqcDBEXF+ROwHXAEcGhHnA28ATgfIzB/RGZV0eURcBrwvM7/dVG2SpKk1dvooM28Bbpli1T9Ns/16YP1U6yRJc2OuTx9JkuYxQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSrmepoLAaetvbm1fV9z7vNb27ek+c8jBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFUNt7TgibgMeqhZ3ZOYJEXEgsBb4LrACOC8zf95WjZK00LQWCsCnM/Ptk9ouBj6bmR+JiL8ALgVOnfPKJGmBajMUDo+INwP7Abdn5kZgNXBRtf4LwAdmeoORkcUMDS1qtsoBMzo63HYJPTEo/ZiO/etf/d63NkPhksz8ckQsAm6NiG3AUmBbtX4rMBIRQ5n5yFRvMD6+fbd33u8/uN01NrZt1xvNc6OjwwPRj+nYv/7VL32b6fOvtVDIzC9XX3dExOeBVcAWYBh4AFgCjE8XCNo9p629uZX9XnPu81vZr6TZaWX0UUQ8LSJO72paAdwLbARWVm3HVsuSpDnS1pHCVmB1RDyBzhHBD4EPAp8ELomIpwLLgXNaqk+SFqRWQiEzfwK8dIpVvwBePcflSJIq3rwmSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSUVrz2jWwuKzoaX+4JGCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqfCOZqkh3sWtfuSRgiSpmHdHChFxIvBSYAswkZnvaLkk9bG2fltvU5t9busoZSH2uSnz6kghIhYDVwGvy8y3A8+IiBParUqSFo75dqSwEvh+Zj5cLX8BWA18rr2SJGl6g3btaL6FwlJgW9fy1qptSqOjw3vtyc4+cdlL9uTlknbT6OhwT9/P/8u9M69OH9G5jtD9r2VJ1SZJmgPzLRQ2A4dGxL7V8rHAxhbrkaQFZa+JiYm2a3iUiHgB8DJgDPi1o48kae7Mu1CQJLVnvp0+kiS1yFCQJBWGgiSpmG/3KcyJQZ5KIyIOAtYAR2Tm0W3X00sRsZxO374CLAPuz8wL2q2qdyJib+ATwJeAxwHLgdMy8/9aLayHImI/Ov27KTPPabueXoqI24CHqsUdmdmXszEsuFDomkrj6Zn5cER8LCJOyMxBuWv6OcAG4JltF9KAA4EPZ+YGgIj4RkRszMw7W66rlzZn5hqAiNhA55eX/2y3pJ5aA3y17SIa8ulqep6+tuBCgQGfSiMzr4uI49uuowmZefukpr2BB9uopQmZ+Rs6H5pExBCdo6FstageiohT6fx/ewZwQMvlNOHwiHgzsB9we2b25T1WC/Gawqym0tD8FBEnAzdm5jfbrqXXIuIk4Abghsy8o+16eiEi/hg4LDM/3nYtDbokMy8BLgTOi4jntV3Q7liIoeBUGn0uIlYBq4DXtV1LEzLzxsz8c+BJEXFG2/X0yMnAQxFxLp1TnH8aEWe3XFNPZeaXq687gM/T+Tfadxbi6aMylUZ1CulY4N9brkk1RcRq4LnAWcDBEXFoZm5uuayeqH6bflLXaYf7gCe3WFLPZOZFO7+PiMcDB2Tmv7RYUk9FxNOAYzPz6qppBfBfLZa02xZcKGTm9oj4R+BfI2IMuGuALjITEccBp9L5wDwfuGxQRq9ExFHAtcAdwCZgf+BKOkE/CB4GTo+II4F9gMOAM9stqbci4q+A5wGPi4i/zcwPtV1Tj2wFVkfEE+icffgh8MF2S9o9TnMhSSoW4jUFSdI0DAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKn4f+v9gzBCxgRiAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "data2=data.loc[(data['pe'] < 200) & (data['gm'] < 10000)]\n", "data2.plot.scatter(x='pe', y='gm')" ], "metadata": { "id": "grufkZyHA05b", "outputId": "5f243198-abc7-4786-836e-f76b73914ef3", "colab": { "base_uri": "https://localhost:8080/", "height": 297 } }, "id": "grufkZyHA05b", "execution_count": 60, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 60 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEHCAYAAABBW1qbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO29f3xcZ3Xg/ZU00lgaydbYkWXID+LE8ePgBDsN6r5ZyA+WLin1h9246SYl1Nlgln3r8tKGlDQtpW6SAoUmdGlDcdjPYlJMWaD1xuznE0JSCoQ2pa0KiYnd+FGUyLHjYEmWJVkzI8/ox7x/zNzRvXfu3Lnz896ZOd9/7Hvnzp0zj+6cc55zznOetnQ6jSAIgiAAtPstgCAIghAcxCgIgiAIOcQoCIIgCDnEKAiCIAg5xCgIgiAIOcQoCIIgCDlCtbqxUmoD8Algm9Z6KHtuFfAwcAq4Avi01nok+9qvAdcAS8DLWusv1ko2QRAEwZmaGQXg7cC3gO2mc3cDJ7TWf6KUuhr4EnC9Uuoi4KPANVrrtFJqWCn1Pa31S24fMDk557rIIhrtYXo6Udm3qBMia20QWatPo8gJImshBgb62gq9VrPwkdb6b4A52+kdwI+yr78AbFNKrQZuBn6stTaU/I+Ad1cqQyjUUekt6obIWhtE1urTKHKCyFoOtZwpOLEeq6E4lz1X6Lwr0WhP0YEcGOgrXUqfEFlrg8hafRpFThBZS6XeRmECMH/r1dlzE8Am2/nRYjcrNtUaGOhjctI+WQkmImttEFmrT6PICSKr22cVot7VR08A1wFkcwqHtdbngKeAa5VSRpzrOuDJOssmCILQ8tTMKCilbgR2AW9QSn1cKdUN/BnwJqXUx4HfBj4AoLV+jUxV0v9QSn0W+F/FksyCIAhC9alZ+Ehr/QzwjMNLHypw/VeBr9ZKHkEQBKE4snhNEARByFHvRHNTEEukOPD0CJMz8wz0d7Pr5s30dnf5LZYgCELFiFEogwNPjzB8bAKA46cz1QJ7brnKT5EEQRCqghiFMpicmXc9rhcyYxEEodqIUSiDgf7u3AzBOPYDmbEIglBtxCiUwa6bNwNYPHQ/CMqMRRCE5kGMQhn0dnc5euT1DucEZcYiCELzIEahitQ7nBOUGYsgCM2DGIUqUu9wTqEZiyAIQrm0vFGoZshHwjmCIDQ6LW8UqhnykXCOIAiNTssbhWqGfCScIwhCo9PyvY/sIR4J+QiC0Mq0/ExBQj6CIAgrtLxRkJCP0ExI6xOhUlreKAjNh1kxXjTYx203XdYyilFanwiVIkZBaDrsijGZXGwZxSitT4RKEaPgI148WgkHlE4rK0ZZKyNUihgFH/Hi0Uo4oHRaWTFK4YRQKWIUfMSLR9vMXm+tZkFmxWjMwFoFKZwQKkWMgo948Wib2eut1SzIrBgHBvqYnJwr8g5BEAzEKPiIF4+2mcMBzTwLEoRGRYyCj3jxaEsJBzRaUrqes6BGGxtB8AsxCk1EoyWl6zkLarSxEQS/EKPgQKN6lY0WjqlnUrTRxkYQ/EKMggNevcqgGY9GSUr7MW6NMjaC4DdiFBzw6lUGLSTRKElpP8atUcZGEPxGjIKNWCLFbDxlOVfIqwxaSKJRatT9GLdGGRtB8JuW30/BzoGnR5ieS+aOo33hgl6l7MVQHjJughBcZKZgw+61rol0FYx3u4UkgpZvCBISyhGE4CJGwUYpCUm3kETQ8g1BQkI5tUOcEaFSxCjYqJYXG7R8g9AaiDMiVIoYBRvV8mK9zDhaeTOYShBvuDDijAiV4otRUErdC1wKnAGuAD4AdAOfBl7JnvuY1nrcD/mqgZcZRytvBlMJ4g0XRtZjCJVSd6OglNoA/B5wgdZ6WSn1LeCXgeuB72qtv6mUeg/wMLCr3vJVi2IzjlgixdGxs5Zz4tV5Q7zhwkgSX6gUP2YKCSAFrAZmgF7gKJlZwiez1zwL/KUPstWNA0+PkEguWs4V8+q8hk2aPbwi3nBhJIkvVErdjYLW+lw2fPQNpdTPgNeAUWA9YPzSzwFRpVRIa71Y4FZEoz2EQh2unzcw0FcdwavMjG2BXG93J3ffcS2rI4WV9/6vDFvCJuFwiPvuHCr7ukrwa1xn4yk6OtqJdIdoo42tl63lN2//OddxC+oz4ESjyNoocoLIWip+hI+2A/cCP6e1XlRKfRbYC0wAfWRmD6uBaTeDADA9nXD9rCBvsNJvU2LbNw+QTCSZTCQLvANeG5/LO3b6fvbrfnJsgg8/9L2qzRr8HNd9h47kDB7A8lLaddyC/AzYaRRZG0VOEFndPqsQfoSPLgTOmhT+z4BLgCeA64CTwNuyx02LPfa759ZtJB0UmzkUNBvz1n7DHl5JJBc5fnquKZKykk8QhNrih1H4DvBL2RnCDHAVcDeQBD6jlNoMXA581AfZKqKUWL499rs60uXo7ZorbSDTdmNNpMs1iWg2OBPTCRLJpdxrja5EJZ8gCLXFj5zCEvChAi9/sJ6ymKlGcrYWpZJObTf23uWeHzAbHHu4pRIlaozRTDxFf6TLlwS2YfDGz8aZm1/k9FScfYeONF0yXRD8QhavZamGQq9FaKNSz3jnDRsZPTVLfH6BVV0dnE8t8uBjw2UZPvusBVbGqF4VT4bB23foCCeOTTA9l+TkZNwiiyAI5SNGIUupCt1JCdYitFFp3fnjPxzLdX1NLS7zwiuZtRHHT8+xsLjEb/7KNs/3chujei8oa4bcgv0ZuvuOa/0WSRDEKBiUqtCdlGAxBV6ON11p3bmbshw5OVPSvdzGqN5KuhlyC/ZnaN/Bw+x+9xafpRJaHTEKWUr1yJ2UYDEFblcCR8fOsnXj2swso0L5C2FXnlbaSrqXMSbmnEKhz6mmknYyps2wctf+DI2fdS+x9gPHGbHfQgk1RYxCllI98nKUoF0JJJKLOSOx94PXef7sUjArz5m588zEF3KvqUv6c//3MosxxsipnrqWSrpQaKrRcwj2Z2hwbY+P0jjjNPa1elaFYCBGoUzKUYKFvPZahlrMxi42n+LAUyOOMleaE6hle4VmyB844XWtip8069gLhRGjUCZeGt4VCnkcHZuyrB2oVzzcTeYg//ibIX/ghNe1Kn7SrGMvFEaMQo1wC3m4eex+EeQffzPkDxoVGfvWQ4xCBbjF4U9PxS3Xmo+D2MkyyIvCgjherYKMfeshRqEC3OLwsfPWXn7246ARlEVhzd72WxCCjhiFCnCLw/f1hHKLxoxjqJ/SK/dz/M4tyK5qguAvYhRMlKJIY4kUs/HCXUsHoxFOjMctx1A/pVfu5/idW/DbKAlCqyNGwUQpivTA0yOWmUC0L2xJwhVK0NVL6ZX7OX4nFv02SoLQ6ohRMFGKInXqXmqeVRRK0NVL6ZX7OX4nFv02SoLQ6ohRMFGKIi3lWnNYqr+3i2uuuIDpuWRFSq9YqKtRlWu1jFIQ2nwL1UGKD+qLGAUTpSjSUq61t5we2rK+6J4IxbCHukZPzfLA7qHcj8Vvj99v7GM+emrWsjmRKJXGQYoP6osYBROlKNJSrq1FHsG+DmJ6LsmBp0YC9WPx08Ozj/H0XJLpuaQolQZEig/qS7vfArQC9tDSxPQ8+w4dITafKvCO4jitewjaj8Xw8I6fnmP42AQHnhqp22e7hfOCNk6CO/a/pRQf1BaZKVQBr/F9o+eRuTtquR6rfR0EVP/HUqmn76eHZ27zfWZ6nunYyliJUmksGjU/1qiIUagCxWKeRqjpwceGLcnpSpSkfR2EvSS2GlQay/WzvNTc5nvsxFTgek0J3mn1/Fi9EaOQxckrJo0nT9mrR2xXkrOxFLH5VFlxdifvqdrx+ko9/aB4eKJUBME7YhSyOHnFgCdP2atHvOvmzYyems2FfaZjSf5w/zAP7B4qeTcru6KLJVLsO3SE01NxYucX6esJMRiNVGQsKvX0RRkLQuMhRiGLF6+4kKfs1SPu7e5iTaTLkgswqoYq3c3KXoI5PZfMhZfKVcxB8fQFodbIWogVxChkKeQVe/KU0+V/DpSXW7A/xPYS1UrubVBtT19+eM1Po/6NZS3ECmIUsrh5xcU85VIeKHsICcpLwNo/M9oXdrwuSJU28sNrfhr1byxrIVYQo5ClkFfs5YEu5YHq7e7igd1DFVfD2D+jrydEMpUpdzXoCYcCFfKRH17z06h/Y2nEuIIYhSrg9YGyT63vuX1b1ZLAg9EIg9GIJa+wdePauk7di4UO5IfX/DTq31jyZyuIUagCXh+oak6tKwl31Ypi309+eM1Po/6NpVJuhZY2CtVKinl9oKo5ta4k3FUps/FM+at93Ip9v0JltI2WlBQKI8q18Wlpo+Dk2e561+aaVU/Uc2pdyyqQRw8edpwRlPr9is0sGrWSRRAamZY2CnZP9vDoGUtlULWrJ+o5ta5lFcj42YTl2BjHUr9fsZlFo1ayCEIj09JGwe7ZphaXSdmazFWzeqKeU2u73EfHzpbdUsPO4NoeXjo5kzs2ZgSlfr9iM4tGrWQRhEampY2C4ckeHj1DanHZ8ZpGqZ6wY1e4ieRi1fZb2HPrNpLJxYpnPMVmFo1aySIEEwlHesMXo6CUUsB7gXngRuB+YAL4A2AUuBT4ba11rJZyGJ7tvkNHLKWc0b6wZZeuRmTXzZtzrboNxs/Gq5LYXR2pzoyn2MyiUStZhGAi4Uhv1N0oKKU6gD8F3qO1XlZKfQVYBA4Ae7XW/6KU+jBwHxkjUXPq0XG0GIUqesr1bnq7u9i6cZ3F2M3NL3KijB+FXYa777i2zG9ZGlLJIlQTCUd6w4+ZwhDQBnxYKdUDTAFfBt4BDGeveRb4XxQxCtFoD6FQh+uHDQz0FRVoACpuSFcOs/EUjx48zPjZBNPnznNm9jyQUdjhcIj77hzii/v/yeLdtHe08fHd/4/lvYNre9hz6zZWR6zG4u47rmWf6ZpTkzFLe42ZeMrT+Oz/yrBFhn0HD3PfnZXtMV0vZuMp9j95zHWcgoSXv0cQaBQ5YUXWiwb7LOHIiwb7Avc9giCPH0bhTcB1wHu11rNKqa8C64B5rbXRWu4csL7YjaanE66vDwz0MTk553qNn9jDVmZeG59jcnKOF0bPWM6/MHqGyck5y3tfOjlDMrno6FXvfvcWy+eNvX4ud9wf6XIcH/vMYHza2mxv/Gwi0ONqZv+Tx/iHw68D7uMUBIL+vBo0ipxglfW2my6z5MJuu+myQH2Peo6rm/HxwyicA45prWezx/8AXA90K6XasoZhNZkcQ13wIwEVS6Q4Ona24OsrSdU22yuZY3tX1EJdUs2Uu/I62mtttje4tqfoZwWFQuWzQush4Uhv+GEU/hlYp5Tq0FovkZk5HCUzWxgC/gV4G/BEvQQqNwFVzJi4vX7g6RFL8zpwTnCri/t5zjRbUJf0Z+593vpe49jtM8tded3bHWLTRWty99xz6zaSiWSBdweLQuWzgiA4U3ejoLU+q5S6D/icUmqSTEj/QeBrwF6l1LuAS4B76iVTKQkos9KdjacsC91GT81alPr+b7/I86NTudcXFpf4zV/Z5vgZvd2dPLB7KG+G8v4dWwg5dFTt6wlZ8gN9PZk/ZTUqLKK9YY6zMo29oL/bco/VkS4mG8QoVKt8VhBaBV9KUrXWjwOP204fB3bXSwaLco+lLK+5eZP2Hc7MTM8lmZ5L5pTxiMlDtR/nLZxbWOKjf/GPRFZ1cu/7trMhGgEKe/eD0UhuZzXjGKpTYZG27RqUTufvItQoNd8l7H9UFxpl3ITWpWUXr9mVe7QvTF93iLn5RU5PZer5nX6wXpVs5jprPiCZWubBx4YZ6O9m540bc9edHJ/LLZ5LxZJ8+qs/4XMfvr7gvWOJFAuLS/SEO4A21CX9OQ/YbmxmY6mSVzLP2Iyk/Rgap+a7UJ8mv2iUcRNal3a/BfALu3JfE+licG2E6bkkJyfjDB+b4MBTI3nvs88ion1hLt3Ql5eMHejvRl3cbzm3lE5z/PQcw8cmePyZMfbcchV77xrCvpZ6LrHgKvuBp0d4fjSzMC2RXCTU0Z5T+rtu3mzZhW06lrR8D6Mz6YOPDbPv0BFi8/kK3/4dnWZOjVLzHbREc6OMm9C6tOxMwamFgv0HaswYzFN9xwqeNOz/9oskTy5i99yNfMDE9LwlsWz+rPa2NpZMIZr2tswMwynUQBqOjk1Z5DTfq7e7izWRLku+wfy6F0/VS5VSo7SgCFqiuVHGTWhdWtYoOCm+A0+NWH6wsfOLjgrUrkT3HTqSSygDFs/duNa+JsGsDN58aZQXXjlrOQZnBQ5YWlfY72UcF1I8XjxVL1VKjdKCImiJ5kYZN6F1aVmj4KT47D/Y8el4QY/bjBdF66YMPvieN/PNH7zCa+Nzlte83NfYh9k8q+jv7eKaKy5gei6Zu5/x+oRtwd9sPJXLcxRLehr3mImn6I90NUSStFp9mqqF1MoLQadljYIT9h/svkNHLBU+hab6xUICxSpOeru7uO/OIcZeneLA0yP86TcOM9DfTX+vVeEa9zV/lrEP8yMHf8pzL62sZ7jmigvYe9dKKwr7TKUnHCLc1ZFXMeWmsJwqr0TBCUJzIUbBBa9T/WLXea04sV93zRUXsH3TOkZOzrC8nOalkzNEujsylVI9IQajkdxn6RPW8lf7sX2WsT6aMTDmmdDRsSnXWYMkSQWh+RGj4ILnqX6RYng3ZWoOyZyasPY9McI/Rg7h/EKKmezEZdOFa2yy2YWwHheazdhzFcdPzxU0XI2YJC3UfVYQBGfEKFSBYjMBN2XqthjOqSLKwH5+88X9lmT3Zls5rNtsplh1lP0e5pxC0AnaOgVBCDpiFMrEnCewJ2/tCrWYQjbTEw6xPtpdsCLKwO6l795xJQcc2mEYFJr1eKmOst+jWDfHIK3aDdo6BUEIOmIUyqSYh2+mkEKOJVLMxq2Lx7ZuXGu51lDup6fixM4v5uUSin2GV6pZKhmkVbtBW6cgCEFHjEKZ2D3Otjbo7upg88X9nhXqgadHLIneaF+4asq+VG+9mqWSQUpIB22dgiAEHTEKZWLPE6TTmURtZ6ijaK3//m+/yMjJGeZT1kVoayJdkKYqiVE/vXW3HEq9Q0ulrFMIUthLEPxCjEKZGB7n4dEzuWZ2UNwrNvoWOTHQ312yMi+kyKrlrTvdf6DIZ7uFooIUWrITZNkEoV6UbRSUUldorV+qpjCNgF0RvvnSqEXJF4tZOynnrlA7P791A7fddBl/+o3DRa83y3F0bCpXsmpWZHZvPdoXLmsG4qQojf2sCylRt1BUkEJLdoIsmyDUC09GQSnVDrwDeAMrnVV/DXhXjeQKDHYjsLi0nFs5fPz0HFdtjBLtCxOfXyCyqpN3/fxFrsrXrqwBtm26gPvuHGJycs5z6MW8wY8ZQ5HtvGEjo6dmM3J1d7KwuGSRG7x5wW6KshwlGuS1DkGWTRDqhdeZwv8F1gAvs7Iq6sKaSBQw7N5wT9g6ZK+8fi7nqadiSb7w+FHLbmxAXjXRwuJSdsOdTEfVnTds5DNfGea18cx+yNs3rWMmlnINvRTCUGSP/3AsJ0dqLknSlr/w6gW7KcpycgdBbggXZNkEoV54NQr9Wuu3m08opd5dA3kCR77ytK8ctm6kE5+37oWQv+1mV25LTgNz36LjzNEd7uCqjevyZhluirwnHGLrxrUFm+k5rXAuRiyRYnFpOWsI03mVVeXkDoLcEC7IsglCvfBqFJ5RSl2utX7ZdG5TLQQKGnZvePPF/XSGOlbCSYvLPDe60ogu0t1JyhTW8aJ87X2K5pNLOYXqtjI62he27AntFqayy+3FCz7w9IilyZ69sspQosaswGjkt+vmzRKfF4QGxatRGAaeU0rNAUky7nEUeKRWggUFJ2/YrBhj86ncRjrRvjALC4skU/mb7biXOzo3T3JbGd3f20VbW5slr1CsfXap5ZVeFbvTrEDi84LQmHg1Cn8M3AK8QkaDtQH310imQFEspGB+fd+hIzz30orXb95sx644R0/N5rz8y96wmiPHp/PuXWhldCyR4g+/PGzJXRwdmyLcGWI6Zl0MtyZSfp2915zBxHS+8bjn9m25/0t8XhAaB69G4QWt9ffMJ5RSf1QDeRqaUip1zPsYbN+0jrdveyOvvj7r2srCwL4SGsju12xNJpeyV4ITXnMGdgb6uyU+Lwg1otaLLL0ahRNKqS8D/0gmfARNXpJazsCXUqljZiaW4o/2vN21yZyZcuLz5bynlPUGPeEO1kd7ZFYgCDWm1ossvRqF9wJPA//edO6iqkkRQOwD/xM9QbgrhLq4n/fv2OJoINw8a/Nrs7GUJcxTarzdzcAYdLS3sbS8kquodkzfLsPWjetkZiAIdaDWRRxejcIfaa0fNZ9QSu2oqiQBwz7QS2lIJBd5bvQMoadGHBWgm2dtfi02n8q1uY72hVlYXOKezz3jed9jp4SzPjFtCR+95fJ1LCws8uKrMywDL52c4fR0nA3RSCnD4EkGmR0IQv2odRGHV6PwcaXUbbZzKaXU9cCntNbnqipVAHDzxiu1zPbktDk2v7C4lFc6ajcSTsbHbGiM9/3h/mGWspOFmXiKh772PJ/90Nsqkt1NBkEQak+tHTKvRuFJ4DTw99njtwMR4ATw58BdVZUqABgDfXTsrGVHMvC+8MtLTsJuYEZOzjj2Mip2XyclbV9INxNLuu7BLAhC8Km1Q+bVKMxrrf/AdPy0UuqLWusvKKWuqIVgfpMr/5xPsf+JFy1tKbwu/PKSDMqfkVhXSNuNhltpq13RR1Z1kjLlLtJpcnswHx07y9aNa9l5w0Ye/+FYS7SLltbYglAcr0bhaqVUl9Y6BaCUCgMtEUR2akvhBa/JIPu+x/YV0vZZiVtpK1gNz73v285DX3ue+PwCS0vLuVASZPIjw8cmGD0169qryU4skWJ/tk9ToylWaY0tCMXxahT+D/CqUmo4e/xW4JNKqXfS5FVI5VIoGWT3VnfesNHyvv/yzssJhdoLxgtLyXVsiEZyOQR77sKgWK8mO04zlQd2DzWEYZDWG4JQHE9GQWv9iFLqB8BN2VO/r7V+Ifv/v6uBXA1PoWSQk1I1L0Qzwjr33L6taNlrKaWtKzmSKUuVUqm9mpxmKv/zW0cIhTpWQmwuZbt+Iq03GgcJ9fmH5012skbghaIXNhGVPJiWEtREpjJo/GycU5MJy3V2T90I64B7gtloI2GvOComj71K6V0/fxFfePxobt+FnTdudP3eTjOVF1+dsYSm3Mp2/fyxSxlt4yChPv+Q7Thd8PJgelFybi0h7J66QbEEM8Cud5Wu1OyVC/sOHbHsu/D4M2MABb/3rps385ORScvCuJXNSAvL7/Y96vVjlzLaxkFCff7hm1FQSnUD/ww8rbX+qFJqFfAwcAq4Avi01nrEL/nA24PpRckVeqB7wh3ce8d2Hn9mjBdfnSZmmjUM9Hfbms5ZZxiTM/NVUbBevqP5XG93F2+9cpB/Pno6d25NTxcz8ZTlPYVCM/JjF7wgob4V6j279nOm8AngOdPx3cAJrfWfKKWuBr4EXO+LZFm8PJhelFyh5PDmi/t5/JlMOejWy9YRj5/nlZ/NAW0sLi7z5SePWfYzMNPf2+VZwZYSDjK+o9v3/s3br+FzX/vxSrL8xo188+9GPZXtyo9d8IKE+lao9+zaF6OglNoFPAu8BejNnt4BfAwy+Qul1Dal1Gq31dLRaA+hUIfrZw0M9JUk22w8xaMHDzN+NsHa1av4d1sHOXsuyeDaHvbcuo3VtlbUFw32WZTcRYN9uc807jV17jxdoXZSiyuBlgvWrKKjo93yx472deWSwM+NniGyqvCfZ1W4k4siYctnD67rYf+Txxg/m7DIu/8rw5bPCYdD3HfnEAAf+M9XM/azZ5lLpOjr6eID//lq+iJd7MuOQaHvvfeD11mOr968wdP43n3HtUXvXW1KfQb8pFFkrbWcA+Q/Y2Xfq0HGFJxltc/CZ+Kpmn6nuhsFpdSbgSu11h9TSr3F9NJ6wOxOn8ueK2gUpm0hFTsDA32eO48a2Es3h7as5/fe93MAJBNJJhPW+P9tN11GLJ7MecnxeIqxE1P0dnfl3cu+U9rvPvojy71mYtY/fvy8dSW1mdNTce65fRvJ5GLOm0qllvjno+NAptdRMrnInluu4rVx6xiMnZrlzvu/Q3x+gXQ6zUI2S5ycPc+XvvUCe265it3v3pK73v69yxlXM273rjaVylpPGkXWRpETmkPWfpvT1B/pqvg7uRkVP2YKO4HzSqnfJdMuo0spdTcwAZglXZ09V1fsIZjTU3H2HTpincamsYRjAIuHb1Te2O8Vn19g04VrTOEb6+rl9rY2ltLOu7DZMfYs2PWuza6b3RjXmmcUE9OJnCEo9v2dmI2n8sZEygUFoTbUO5RWd6Ogtf6k8f9scrlXa/257P+vA/4+m1M47EejPbsCPX02wcnJOGCNs5vDMR1W3V5QGacWlxk+NsHi0jKhjnbSNgOw+eI1jJywlneasc80oPhmN5D/UD03UtjWeonxP3rwsJQLCkKdqHfVnJ/VR7cCN5CZKbwX+DPgYaXUx4FNwAf8kMuyOCyeytvhzMmTtitxuzI+PHrGkk/46ctTlpLOnnCIqzddwIvHp/Lu1dFGZh+HS/p5/y/lLwjzstmN/aH67c8/a1n01tnRxoUDvZ69kPGz+ZVQgtAKtMKiOt+Mgtb6IHDQdvpD9fhstz+sWYE++NhwnlFwqs6BzKY2F6+3Kdasgg91tJEypQfMBgFgfbSbzlA75+LWhWywso+Deb9nM/291nObL+4v2qvJ3BMp0t3JvXdsL2mfhcG1Pbx0cmUvaqkgElqFVlhU15KL18rtYBrtC+cU/k/0hMWr7+psZ6C/m8mZefY/8WJ245uZvLbbTgz0d+d533YKeeNtbW2ux06YeyIVw8mA7rnVmuBu5XJBobVohXU2LWkUSu1g6jSjuPrydTw/OpW7tjPUXjC274Q9P/BX333J8npHmzUsVcgbt89k7MeV4mRA937wuqbzjgTBC62wzqYljYL9DzsbT+VtPhNLpPjyk8fQJ2aAdF6YZveOKy09hE5NzDmGf+y0tUF3V4hLB/ssTePabJVImy/p59ozSWYAABkASURBVGdn4swmFminjfnzC8TmU3khpHIf0nI3AWpGz0gQvNIKi+pa0ig4JZPtexIceHrEspr4+dEpDpiavNmTt/c88vd4IV1gr+epc+ct1716OpYLPS2R5sjxacvnO32XUh7SckNozegZCYJXWqF/VrvfAviB8Yfde9cQayLO1TzFegDZSS46tYVboSvUTk/YaoPN9xtc22N7R35d6uHRM+w7dITY/MoiN/N32XPLVZ4rIezfxeneADtv2Ei0L0xXqJ1oX5idN1r3fxAEobloyZmCmUKesFO/IjcvuVh6d9umC/J2VZuZS+ZCQvbk7cLikiVnASvrHMDbvs12zNfN2lZPF7r34z8cy+ui6rWlhSAIjUdLzhTM7Lp5M0Nb1nPphj6GtqzPhV923rCR/t4u2toySd+rLnXfm3nzxf0FXzOqltI2738mntnbAGB1JLM62ahgaqONqzZG6QmHsBcUFWqrffz0HMPHJnL3tGO+bjqWzM0A3O4tOQVBaC1a2igYm984ediP/3CMmViKdDpTBdS9qgvSmd5IDz42nBdq2b3jypxxsYeJ1kS66O3uyuttBFYla1baz42eoTvcyec/cgNvVest7ym2b/PRsbN5MsYSKY6OWWcevatCRFZ1ut672LEgCM1FS4eP7MnWo2NTbN24jl03b3b0kN2Ss+YElL0RnteQVCGv3J5M3nnDRkvvIXtlVCK5yPHTc3mJc/M2nACx84uWlc3mdRgGpSayW2HFpyA0My1tFOxKOJFcyilzp7LV18/ELdcfeWWKRw7+lOm5pKVZ3sLiEj3hDtJp6Oxs54WXz/Abn/0+XZ0hurvaSS0s09EOPd1djE9nGu7dfce1RHvDHMe6WA6cd0szG6f+3q7s7CTN8vIy5xdWwlSFEuc94RB9PSHLugZjRmOm1GqLQjvEBd1QVMuYiVEUGp2WNgqFNr+ZnJnnv/+nNzN6ajbXXtppUdh8ailXtpqZaZylK9TGjGm9wnxqxTs/v7ByfnVPmOm5JDOxFCfG4+w7eDgv52BvmGeWz4w5LNUf6bR8TqFZytaNawE4MR7Pu7YSSp1hBYVqydgI31UQ3Ghpo2CEQo6OnbW0oxjo77ZU3XglkVzE69YA8XnrQrfxswkWFqzhHacchCGfkzEDODe/wPZN65iJpSzhHrcwUDUX4jhVczVCsrpaMjbCdxUEN1rWKJin+eriftKkmYmliPaFWVhc4t+OT9f08+2zgMG1PSSzuQCDiekE+w4dyQtBmBX8yfE5SzuM5WU4/rNzPPjf/p3lPYXCQIW82HLDIE7G58BTI4FfAFetRXqy2E9odFrWKFim+cwxtGU9e+8ayksSGxi9iqJ9YdLpNCMnZ/ISt06sjnSSSi2RXFimrQ3CnR2EO9stIaZoX5g9t25jaiqjTIyZiznHYVbeZgX/539zOG89w0x8wXH1cymUGwZxMj6N0BqgWjI2wncVBDda1igUmubbz3eF2tm26QJ23rCRx384lvuxr1u9isTkSjze3sDO2Afh8jesYWFpiSNj06TTmRyDOc8AmQTv6kgXyURGoT742LDF23xuZILf/otn6esJMRiNWLz23Tuu5COPPJvXjrvSsIXbDnQXDfZx202XeU6gNkJrgGrJ2AjfVRDcaFmj4HUl87ZNF7DnlqvyKn6MyiCDcFfIkpdYMvU46ijSzrqvp5PPfGWY18bnHEtMF5fJ9WcyEsPmUti3XLbOslLa/H3KxT4OsfOLlu9v7P8sCEJz0bJGoVDt/+mpONG+sMUrN64z09cTYtOFa3Lvt7ewMLPs0MfIzKvjc5x75SywUmK6fdM6/u34tGXHNoOjY1OWjqnv37GF9BMvMnJyBmhDXeK++toL9vEZn45bEu+SQBWE2uFnaXPLGgW32n+ATReusbxu95wHoxFr/6H5FHz7GMdOTDNvyzWs6em05BDsnE/mVx11hjrYtukCx/xGIrnEl799jFBHe+6h2b3jyuo+NDY7tq6vu+rlq4IgOONnaXPLGgU7xUoJiyUQe7u7CHW05xmEzo42It0h5hILefsvGyw4zAZOT8W5945rcv9/fSphyRv8dHSKpWwFUy0eGvtDuX3TOoa2rLfkFARBqA1+ljaLUcjSu6rD/bhAAtG8Gc98Kn/rzYWlNKfOuP9BnWxF7Pyia+uMpbS3xHK501CnBXJ77xoCYGCgj8lJ53USgiBUjp+lzWIUsrx2JuF6XAj7Zjxu9IRDrI92MzE9X3Tv5r6ezJ/GUOqnp+J0tLflVRkZFHpoyp2GSr29IPiHn6XNYhSyJM5blbTTFp1OlDKt27pxbV4lUyEGoxHAqtTt2Pd59iKfV3ml3l6oNdInqjB+ljaLUcgSWdVJytQxNJ0mr9Oo00Ps1HKiJ9xhWdhmrHWwt5wYn44zl1hk/nzK0sTO3K00v5FdB+ujPZ5/ROV6/FJvH0yaSZE2Sp+oZhpzL4hRyHLv+7bz0NeeJz6/wNJS2hKzNxSzYwfQmzezuLSMPjEDpHOb7ZhXGRtrHQzsCjc2n+KbP3glt07B6La679ARJqatRmHrxnUl/XCKtd324wFvtR9ZNWkUReqFRukT1Uxj7gUxClk2RCN89kNvAwrvh+D4EKch1NHO+mi3Jcxi37zHjJNSvO/OIUvy1i5DT7gjt9dDSdhSEH/9/ZctnV2hdg94IeXfaj+yatIoitQLjZK3aqYx94IYBQcKedd2r32gv7uggjPvIXDgqRGLN+z0nr0fvM5yb/uDtz7aU5VWzvZd4Wr5gBcamyD8yBp1ttIoitQLjZK3aqYx94IYBQeKLWwzvPadN2zkE3/5Y8t73UJNxj29KEWvD2Ix5ZZ/b+vUoZYPeKHvGYQfWaPOVhpFkXqhUfJWzTTmXhCj4IFCXvu+Q0fySktn4yli86m89xwePZNrg+1FKXp9EIspN/tnbb64n85QR9UfcC9JeON7BuFHFoTZSjk0iiJtJlptzMUoFMCs5GZtm90UUvyQaVy3/4kXmY1b35NaXM4pby9K0W2xnFn5np6ybhFqlimWSOW2BjV6Ir3/l7bUJExSKAlvyGT+nkH4kQVhtiIIQUSMQgHs6wM6O9pYyPapmJ5L8odfGuZNG3od3+u214KRnK6GXE7dWs3K7cDTI5YqqFBHe83i5k6edxCUfyGCMFsRhCAiRqEAdiXX1taGWZtPx5Jc2tbH0Jb1HB2bshmBwq2ynZLTo6/N8vnf+Q9lyWXv1mrfZtPtvdWk0TzvIBssQfCTdr8F8JNYIsW+Q0d48LFh9h06kul0msWu1CKrOvPef3Qs0+76I7dvI9oXpivUTrQvzOUXrrZc19nRxiWDEYa2rGfnDRs5OmbdKW06lmTfwcOeZLbLdWbmPAD33L6NPbdcZZkJ2K+tpaLedfNmhras59INGUPZDJ632/MhCM1KS88UHOPg2VLS8ek40d4wvd0hNqyLsPPGjTz0V88zbVr1bOQJRk/N5vYaSM0ledNgL9G+cO7cwlKaMzNJBqMR/vr7LzuGlsbPeuu1ZCjbYlt2mq91C5FUqzSzGT3vRq1QEoRKqLtRUEpdDnwC+AlwETCltX5QKbUW+DTwCnAF8DGt9XgtZbGHU154+Qx3PzKBuefcpW/oyymCBz4wxIGnRjg8esay+U183rpXwkwsxZpIl2VTmkQys3OZfZ2AweDaHk8yG8rXvmWnU2jIi6IWxVeYRq1QEoRK8CN8tBb4utb6Ia31bwG/qpS6FvgU8F2t9aeBQ8DDtRbEHk45v7CMvQlppn1FBkPJbtt0geUae2hpoL/bJVRj/YCecAdDW9az59ZtFck+G0uVFN4wQiOHbbvFieJboZ7hN0EICm3pdAWlMFVAKXUMuAX4W+Dfa61PZmcNo1rrtW7vXVxcSodCHW6XuHJqIsbHH32Wc/GU47aXAL3dnfzvT/yS5dy5eIp9Bw8zfjbB4Noefu0Xr+Sr33kxd2wo+Dvv/05eq+tr1QDdqzot166OlB6uORdP8Vuf/T5nZs/nzr192xu5784hT+//zFeG+YfDr+edL+UejcBsPMWjpr9VKeNt/zuX+7cShABSsBrG15yCUmon8JTW+phSaj1gxEPOAVGlVEhrXXDjgelp9zh8sc1gvvStIxal6sSmC1c73mP3u7eYjtKW42QiEzYKd3bkLW5bWlrOu3YykSxr45re7k6L/K+Nz3m+x2vj1uuMTq633XSZ4z3MuQdj57VGaAux/8ljOeP30skZksnFksJjTn+rWtEomxc1ipwgsrp9ViF8MwpKqXcA7wDuzp6aAPqAGWA1MO1mECrBUHD20ImZ7nAH6uJ+du+40vH101NxHvp6pqtqZFUn975vOxuyeyAYqIv7ec72GTOx6lWwVFIGan+vvZOrHXvuoVTl6hf2BL6ExwTBHV+MglJqB3A98FvAG5RSbwKeAK4DTgJvyx7XBLeNa4BMjD+r8IzYu70656GvP79ScRRL8tDXnufeX91uMRS/cetWjo/PWRLO/b1dVWtdXckCrFLf26hJ18G1Pbx0ciUvJHkBQXDHj+qja4FvAP8KfB+IAH8BfAz4jFJqM3A58NFayWBXaJ2hdnq7O+ldlSk/NSvIQtU59oqj+PxCnqH4wv85ygO7hyxttBeXlh3LYPd/Zdiyn0Jvd1fRctFKykBLfW+jLU4zxm7q3HlLaXEzrJ8QhFpSd6Ogtf4x4NwfAj5YDxnsCm67S+ikUGO7nnCHJTm9tJxmJmaNNxvH5ns/+Nhw3v0LGZ4glYuaZxZGTiHI2GeDmy5a0xDhLkHwm5ZcvFZK6MRuQIwFa1dtjNJ2JsFMLEk6TV6VEWS29Dzw1Ihr19KB/u6CoZkghWzMM4tGSN4FaewEoZFoyTYXhoLbe9dQXmsIO0b7hq6Qdahi84t89kNv4+KBSIF3ZrArI6d2EIXq4e3nJ6bnpd2CR2SNgSCUR0vOFErBMCCFtug8l7DmFszdVM3X2e9nZtfNmwmHQ9Y9mjG3tMg03DNWRYOsOi6GMXYz8RT9kS7JJVRIo5YkC6UjRsEBpwRvoZDTeds6hIWldMmJzd7urrw9mo3zXltaFJK7VX+4xtg1QqirEWjUkmShdMQoOFAowWsuUzUqihYW83MJ07FkSYnNWCLlWH1k4LXyJ0iJaaG5kBxN6yBGwYFiP4Bi6xyAvB3R3CimzN0S4+bZwcS0LNQSakOjlSQL5SNGwYFiP4Dxs1aF39aWqTQyEzvvfTF2MSPktqbAzUDJD1eoFo1WkiyUjxgFB4qVrM4lrAo/1G5NLkNmRzSvVOKF2Q1ITzjE+mi364yi1fMNQuk0WkmyUD5iFBwottq3tztk2WxnfXQVifPLlnODUfdSVTOFqo+8YDcoWzeudZRd8g2CIHhBjEIZbFgX4eTkSgjpjRf0sevmzZZ2FqUo9kLVR17wuhBPEoWCIHhBjEIZOCliv7aj9Pq5kigUBMELYhSKUCgWX2sDUO0cQCUdVQVBaB1a0iiUonD9isVX+3P9mskIgtBYtKRRKEXhFovF16qqR3IAgiD4QUs2xCtF4RZrrGYYmOOn5xg+NsGBp0aqIqM0dBMEwQ9acqZQStK1WCy+Vh695AAEQfCDljQKpShcp1i8OWQ0a9tzuVoeveQABEHwg5Y0CpUqXHtriWhfmDWRLvHoBUFoeFrSKFSKPUS0JtLF3ruGKr6vtKIQBMFvxCiUgVNOohoKXVpRCILgN2IUysApJ3HgqcoVupShCoLgN2IUysApJ1GqQrfPLO6+41ppRSEIgu+IUSgDp1BRqQrdHirad/CwlKEKguA7YhTKwCn2X6pCt88kxs8m6lqGKkltQRCcEKNQBk6holIVun1mMbi2p2ryeUGS2oIgOCFGoQyqEfu3zyz23LqNZCJZNw9ektqCIDghRqEMqhH7t88sVke6mEwk6+bBS1JbEAQnxCiUgV2hxxIp9h06UrJ3b54VGJuhe/XgK51RSFJbEAQnxChUgXK9e/v7kslFzx58pTMK6a0kCIITYhSqQLnxeaf33XP7ttz/Zc9lQRDqjRiFKlBufN7pfbLnsiAIfiJGoQqUG583v8/IKdT6MwVBENwInFFQSv0C8MvABJDWWj/gs0hFKTc+b37fwEAfk5NzRd5R+WcKgiC4EajtOJVSPcCjwEe01vcDb1FKvdNfqQRBEFqHQBkF4DrgVa11Mnv8LLDDR3kEQRBaiqCFj9YD5hjKuew5R6LRHkKhDtcbDgz0VUeyOiCy1oZayDobT/HowcOMn00wuLaHPbduY3Wk8pXnjTKujSIniKylEjSjMAGYR2V19pwj09MJ15uVGqf3E5G1NtRK1n2HjuTWibx0coZkcrHiHE+jjGujyAkiq9tnFSJo4aMfAW9SSoWzx28DnvBRHkFwRNaJCM1KoIyC1joB7AH+XCn1CeCnWuu/81ksQcjDvi5E1okIzULQwkdorf8W+Fu/5RAEN2SdiNCsBM4oCEIjIOtEhGYlUOEjQRAEwV/EKAiCIAg5xCgIgiAIOcQoCIIgCDnEKAiCIAg5xCgIgiAIOdrS6bTfMgiCIAgBQWYKgiAIQg4xCoIgCEIOMQqCIAhCDjEKgiAIQg4xCoIgCEIOMQqCIAhCDjEKgiAIQo6mbZ2tlPoF4JfJbOeZ1lo/4LNIACilLgc+AfwEuAiY0lo/qJS6H7jJdOkns3tL+IpS6p+A89nDJa31O5VSa4FPA68AVwAf01qP+yUjgFLqUuDvgJPZU6uBnwLHCcC4KqU2kPm7b9NaD2XPrQIeBk6RGcdPa61Hsq/9GnANsAS8rLX+os+y3gdsAH4GvBXYq7U+ln3tOJlxBjiltX6fz7LeBfw6K8/tl7TWB7KvBW1cvwRcbrrsauBarfVxv8a1KY2CUqoHeBTYqrVOKqUOKqXeGZBd3NYCX9dafwtAKfVvSqknALTWN/kpWAG+o7W+33buU8B3tdbfVEq9h4xi21V3yazMAf+v1vq7AFkj+13gFwIyrm8HvgVsN527Gzihtf4TpdTVwJeA65VSFwEfBa7RWqeVUsNKqe9prV/yUdZe4J6sPLcDDwHvyb72mMMzUi+cZAX4Va31cfOJgI7r01rrb2TlW01mLA25fRnXpjQKwHXAq1rrZPb4WWAHGU/SV7TWw7ZT7UAcQCn1+0AS6AAeyW5P6jdXZ73EbmBYa/0EmbH8ZPb1Z4G/9Es4A631FBkjQHaP77dqre9XSv1CEMZVa/03SqmbbKd3AB/Lvv6CUmpbVjHcDPxYa220G/gR8G6gLsrLSVat9R+YDtuBmOn4eqXU7wB9wJNa63+svZQ5uZzGFeD/U0qdBnqAz2utzxLMcf2G6XA3sN907Mu4NmtOYT0Zz9HgXPZcoFBK7QSeyk7D/xr4nNb6YTKyP+KrcCt8Rmv9GeCPgI8ppW7AOr7ngKhSKkgOxnuBr2f/H9RxhcLPaWCfX6VUF/BfgY+bTv+e1vpPgD8G9iulNvki3ArPkHluHwb+lcwzAMEe13YyRusJ02lfxrVZjcIEGetqsDp7LjAopd4BvAP4CIDW+qjWOp59+XvAf/BLNjNa63/J/rsE/D0Zmc3juxqY1lov+iOhI/8F+AYEd1yzFHpOA/n8Zg3CPuD3tdYvG+dNz0gCeB54mz8S5uQZ01pPZg+/B9yolOogoOOa5T8BT5hmMb6Na7MahR8Bb8qGESAzmE+4XF9XlFI7yHgFvwVsUEpdp5R6yHTJFcDLjm+uI0qpLUqpD5hOGXI9QSZEB8Eb25uAH2mtF7LHgRtXE7lxzOYUDmutzwFPAdcqpdqy110HPOmPiBmyebovAn+qtf6xUurW7Pl3KqV+0XTpJnweY6XUH5tmrlcAx7NOTeDG1cR/BR4zDvwc16btkqqU+o/ArwCTwEKAqo+uJTO9/dfsqQjwF4AiE/+cIFOBsNeoRPELpdQbgc8Dz5HxqjqBe4B+4DPAq2QqJ37X7+ojA6XU/wY+rLU+kz3+YwIwrkqpG4E7gV8k421/NvvSw2QqejYBn7JVH72VTJXMSJ2rZJxk/SvgKuD17GURrfVQ1pjdD/wYeCPwutb6Uz7L+t+zso6R+Zv/mdb6n7LXB2pctdbzSqntwPu01vearvVtXJvWKAiCIAil06zhI0EQBKEMxCgIgiAIOcQoCIIgCDnEKAiCIAg5xCgIgiAIOcQoCIIgCDnEKAiCIAg5gtSvRhAaDqXUrwN/AHybTNO9q4CDWutHlFK3Af8RmAIuBO7VWp/2TVhB8IAsXhOEClFK/QD4odZ6b7YdxCtkjMHXgau11stKqf8G3KC1vtNHUQWhKDJTEITq8Cxkmpcppf6VTOPAVcAXlFKQacQWLvx2QQgGYhQEoXaMaK1/3ThQSvX6KYwgeEESzYJQHYxupz1kGq59H3irUqove/4a4H/4J54geENmCoJQHSJKqf9JptvtJ7M7qX0YOKCUeplMZ9nf8VVCQfCAJJoFoUKyieb7tdY/8FkUQagYCR8JQgUopX4D2Azck90YXhAaGpkpCIIgCDlkpiAIgiDkEKMgCIIg5BCjIAiCIOQQoyAIgiDkEKMgCIIg5Pj/AZw9F5SBewrGAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "QPG7CYHYA0OF" }, "id": "QPG7CYHYA0OF", "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "data2=data.dropna(subset=['mv'],axis=0)" ], "metadata": { "id": "b5ru8BAA5Qg9" }, "id": "b5ru8BAA5Qg9", "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "-yjR3w_WAyV0" }, "id": "-yjR3w_WAyV0", "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "data2" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 800 }, "id": "b-0HdTcN5iHo", "outputId": "d465fc0f-86dc-4495-fdf6-1fe256e8c4de" }, "id": "b-0HdTcN5iHo", "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Symbol Name beta roe de \\\n", "0 MMM 3M Company 0.89 42.42 121.74 \n", "1 AOS A. O. Smith Corporation 1.10 26.47 12.59 \n", "2 ABT Abbott Laboratories 0.75 20.53 53.77 \n", "3 ABBV AbbVie, Inc. 0.82 80.52 503.47 \n", "4 ABMD ABIOMED, Inc. 1.46 9.64 NaN \n", ".. ... ... ... ... ... \n", "499 YUM Yum! Brands, Inc. 1.25 NaN NaN \n", "500 ZBRA Zebra Technologies Corporation Class A 1.73 32.64 38.37 \n", "501 ZBH Zimmer Biomet Holdings, Inc. 1.13 3.23 58.12 \n", "502 ZION Zions Bancorporation, N.A. 1.25 14.55 28.63 \n", "503 ZTS Zoetis, Inc. Class A 0.83 49.01 149.33 \n", "\n", " pe ps pfcf mv gm ... cap_s dy cr cur \\\n", "0 17.56 2.94 17.77 101576.90 46.99 ... 4.53 3.33 0.53 1.70 \n", "1 28.43 3.91 24.47 13534.47 37.07 ... 2.12 1.23 0.56 1.57 \n", "2 35.75 5.85 29.11 248276.90 53.89 ... 4.38 1.29 0.78 1.85 \n", "3 20.98 4.28 10.94 239432.90 69.49 ... 1.40 3.92 0.28 0.79 \n", "4 111.15 14.73 NaN 15086.33 81.76 ... NaN NaN 5.48 7.05 \n", ".. ... ... ... ... ... ... ... ... ... ... \n", "499 26.63 6.37 28.41 40130.54 48.09 ... 3.49 1.44 0.52 1.08 \n", "500 38.33 5.70 31.77 31792.77 44.68 ... 1.05 0.00 0.19 0.94 \n", "501 66.55 3.41 26.07 26551.36 62.28 ... 6.45 0.76 0.14 1.41 \n", "502 9.30 3.42 19.61 9576.64 NaN ... 6.97 2.28 0.01 0.32 \n", "503 57.11 14.96 67.01 115322.30 68.31 ... 6.13 0.44 1.94 3.86 \n", "\n", " naics eps growth_capitalexp \\\n", "0 31 10.12 0.1 \n", "1 31 3.02 0.0 \n", "2 31 3.94 0.0 \n", "3 31 6.45 1.4 \n", "4 31 2.98 0.0 \n", ".. ... ... ... \n", "499 72 5.22 0.0 \n", "500 31 15.53 0.0 \n", "501 31 1.91 0.0 \n", "502 52 6.79 NaN \n", "503 31 4.27 0.0 \n", "\n", " gics_ind fs_sec \\\n", "0 Capital Goods Producer Manufacturing \n", "1 Capital Goods Producer Manufacturing \n", "2 Health Care Equipment & Services Health Technology \n", "3 Pharmaceuticals Biotechnology & Life Sciences Health Technology \n", "4 Health Care Equipment & Services Health Technology \n", ".. ... ... \n", "499 Consumer Services Consumer Services \n", "500 Technology Hardware & Equipment Electronic Technology \n", "501 Health Care Equipment & Services Health Technology \n", "502 Banks Finance \n", "503 Pharmaceuticals Biotechnology & Life Sciences Health Technology \n", "\n", " gics_sec \n", "0 Industrials \n", "1 Industrials \n", "2 Health Care \n", "3 Health Care \n", "4 Health Care \n", ".. ... \n", "499 Consumer Discretionary \n", "500 Information Technology \n", "501 Health Care \n", "502 Financials \n", "503 Health Care \n", "\n", "[499 rows x 23 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SymbolNamebetaroedepepspfcfmvgm...cap_sdycrcurnaicsepsgrowth_capitalexpgics_indfs_secgics_sec
0MMM3M Company0.8942.42121.7417.562.9417.77101576.9046.99...4.533.330.531.703110.120.1Capital GoodsProducer ManufacturingIndustrials
1AOSA. O. Smith Corporation1.1026.4712.5928.433.9124.4713534.4737.07...2.121.230.561.57313.020.0Capital GoodsProducer ManufacturingIndustrials
2ABTAbbott Laboratories0.7520.5353.7735.755.8529.11248276.9053.89...4.381.290.781.85313.940.0Health Care Equipment & ServicesHealth TechnologyHealth Care
3ABBVAbbVie, Inc.0.8280.52503.4720.984.2810.94239432.9069.49...1.403.920.280.79316.451.4Pharmaceuticals Biotechnology & Life SciencesHealth TechnologyHealth Care
4ABMDABIOMED, Inc.1.469.64NaN111.1514.73NaN15086.3381.76...NaNNaN5.487.05312.980.0Health Care Equipment & ServicesHealth TechnologyHealth Care
..................................................................
499YUMYum! Brands, Inc.1.25NaNNaN26.636.3728.4140130.5448.09...3.491.440.521.08725.220.0Consumer ServicesConsumer ServicesConsumer Discretionary
500ZBRAZebra Technologies Corporation Class A1.7332.6438.3738.335.7031.7731792.7744.68...1.050.000.190.943115.530.0Technology Hardware & EquipmentElectronic TechnologyInformation Technology
501ZBHZimmer Biomet Holdings, Inc.1.133.2358.1266.553.4126.0726551.3662.28...6.450.760.141.41311.910.0Health Care Equipment & ServicesHealth TechnologyHealth Care
502ZIONZions Bancorporation, N.A.1.2514.5528.639.303.4219.619576.64NaN...6.972.280.010.32526.79NaNBanksFinanceFinancials
503ZTSZoetis, Inc. Class A0.8349.01149.3357.1114.9667.01115322.3068.31...6.130.441.943.86314.270.0Pharmaceuticals Biotechnology & Life SciencesHealth TechnologyHealth Care
\n", "

499 rows × 23 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 28 } ] }, { "cell_type": "code", "source": [ "data2.info()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5_EYCXcO-wwT", "outputId": "7634d76b-ab29-4f7f-a90e-be8c1abb3126" }, "id": "5_EYCXcO-wwT", "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "Int64Index: 499 entries, 0 to 503\n", "Data columns (total 23 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Symbol 499 non-null object \n", " 1 Name 499 non-null object \n", " 2 beta 499 non-null float64\n", " 3 roe 474 non-null float64\n", " 4 de 469 non-null float64\n", " 5 pe 476 non-null float64\n", " 6 ps 499 non-null float64\n", " 7 pfcf 454 non-null float64\n", " 8 mv 499 non-null float64\n", " 9 gm 447 non-null float64\n", " 10 gsales 499 non-null float64\n", " 11 altman 402 non-null float64\n", " 12 pvol 499 non-null float64\n", " 13 cap_s 498 non-null float64\n", " 14 dy 497 non-null float64\n", " 15 cr 449 non-null float64\n", " 16 cur 449 non-null float64\n", " 17 naics 499 non-null int64 \n", " 18 eps 499 non-null float64\n", " 19 growth_capitalexp 450 non-null float64\n", " 20 gics_ind 499 non-null object \n", " 21 fs_sec 499 non-null object \n", " 22 gics_sec 499 non-null object \n", "dtypes: float64(17), int64(1), object(5)\n", "memory usage: 93.6+ KB\n" ] } ] }, { "cell_type": "code", "source": [ "data2.describe()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 364 }, "id": "p1TPiaQ4-qx5", "outputId": "e4733e11-c0eb-4bf4-be41-a208535b0ae1" }, "id": "p1TPiaQ4-qx5", "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " beta roe de pe ps \\\n", "count 499.000000 474.000000 469.000000 476.000000 499.000000 \n", "mean 1.066092 55.780380 156.405714 36.689853 5.092465 \n", "std 0.499602 368.240081 274.977253 48.280792 5.041844 \n", "min -0.430000 -132.810000 0.340000 4.390000 0.100000 \n", "25% 0.750000 10.430000 45.560000 15.607500 1.745000 \n", "50% 1.060000 18.445000 82.070000 24.845000 3.310000 \n", "75% 1.315000 31.650000 149.330000 39.127500 6.380000 \n", "max 4.710000 5863.580000 3494.650000 573.370000 27.790000 \n", "\n", " pfcf mv gm gsales altman \\\n", "count 454.000000 4.990000e+02 447.000000 499.000000 402.000000 \n", "mean 40.172841 8.570345e+04 40.001790 25.513547 5.025746 \n", "std 100.845676 2.190224e+05 29.486308 101.378348 5.998500 \n", "min 2.630000 6.376470e+03 -249.200000 -65.900000 -3.080000 \n", "25% 13.702500 1.877855e+04 26.575000 6.365000 2.112500 \n", "50% 23.945000 3.344233e+04 38.380000 14.350000 3.325000 \n", "75% 36.805000 6.918584e+04 56.320000 24.380000 5.420000 \n", "max 1473.550000 2.413423e+06 95.840000 2191.900000 55.750000 \n", "\n", " pvol cap_s dy cr cur naics \\\n", "count 499.000000 498.000000 497.000000 449.000000 449.000000 499.000000 \n", "mean 9.571383 8.016365 1.534406 0.650490 1.612183 40.817635 \n", "std 3.817050 14.891767 1.438945 0.798887 1.114226 12.558170 \n", "min 4.080000 0.000000 0.000000 0.010000 0.050000 11.000000 \n", "25% 7.205000 1.937500 0.240000 0.160000 0.930000 31.000000 \n", "50% 8.640000 3.760000 1.270000 0.380000 1.330000 42.000000 \n", "75% 10.645000 7.845000 2.400000 0.810000 1.940000 52.000000 \n", "max 41.850000 189.050000 8.460000 5.480000 7.870000 72.000000 \n", "\n", " eps growth_capitalexp \n", "count 499.000000 450.000000 \n", "mean 8.381323 -0.010889 \n", "std 19.061651 2.781380 \n", "min -20.890000 -23.700000 \n", "25% 2.585000 0.000000 \n", "50% 4.940000 0.000000 \n", "75% 8.555000 0.000000 \n", "max 320.480000 35.600000 " ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
betaroedepepspfcfmvgmgsalesaltmanpvolcap_sdycrcurnaicsepsgrowth_capitalexp
count499.000000474.000000469.000000476.000000499.000000454.0000004.990000e+02447.000000499.000000402.000000499.000000498.000000497.000000449.000000449.000000499.000000499.000000450.000000
mean1.06609255.780380156.40571436.6898535.09246540.1728418.570345e+0440.00179025.5135475.0257469.5713838.0163651.5344060.6504901.61218340.8176358.381323-0.010889
std0.499602368.240081274.97725348.2807925.041844100.8456762.190224e+0529.486308101.3783485.9985003.81705014.8917671.4389450.7988871.11422612.55817019.0616512.781380
min-0.430000-132.8100000.3400004.3900000.1000002.6300006.376470e+03-249.200000-65.900000-3.0800004.0800000.0000000.0000000.0100000.05000011.000000-20.890000-23.700000
25%0.75000010.43000045.56000015.6075001.74500013.7025001.877855e+0426.5750006.3650002.1125007.2050001.9375000.2400000.1600000.93000031.0000002.5850000.000000
50%1.06000018.44500082.07000024.8450003.31000023.9450003.344233e+0438.38000014.3500003.3250008.6400003.7600001.2700000.3800001.33000042.0000004.9400000.000000
75%1.31500031.650000149.33000039.1275006.38000036.8050006.918584e+0456.32000024.3800005.42000010.6450007.8450002.4000000.8100001.94000052.0000008.5550000.000000
max4.7100005863.5800003494.650000573.37000027.7900001473.5500002.413423e+0695.8400002191.90000055.75000041.850000189.0500008.4600005.4800007.87000072.000000320.48000035.600000
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 30 } ] }, { "cell_type": "code", "execution_count": null, "id": "04ca0560-f5f0-40e1-8773-79f555fb104e", "metadata": { "id": "04ca0560-f5f0-40e1-8773-79f555fb104e", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c8e4eee0-765c-4ad3-f58e-ec1e47d20b03" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " \"\"\"Entry point for launching an IPython kernel.\n" ] } ], "source": [ "data2['log_mv'] = np.log(data2['mv'])" ] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "LJ90vLrb5Aec" }, "id": "LJ90vLrb5Aec", "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "vFWpu_vs5AYE" }, "id": "vFWpu_vs5AYE", "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "outputId": "97af6223-4e02-4385-ff49-6f2c584f50b1", "colab": { "base_uri": "https://localhost:8080/" }, "id": "FaLMIm9F422p" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: pe R-squared: 0.194\n", "Model: OLS Adj. R-squared: 0.165\n", "Method: Least Squares F-statistic: 6.776\n", "Date: Thu, 19 May 2022 Prob (F-statistic): 5.88e-11\n", "Time: 20:26:38 Log-Likelihood: -1795.1\n", "No. Observations: 351 AIC: 3616.\n", "Df Residuals: 338 BIC: 3666.\n", "Df Model: 12 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -22.4419 28.073 -0.799 0.425 -77.663 32.779\n", "beta -2.8807 8.362 -0.344 0.731 -19.329 13.568\n", "roe -0.2866 0.081 -3.551 0.000 -0.445 -0.128\n", "de 0.0351 0.015 2.387 0.018 0.006 0.064\n", "altman 2.4576 0.517 4.752 0.000 1.440 3.475\n", "log_mv 4.1409 2.303 1.798 0.073 -0.389 8.670\n", "gm 0.2643 0.136 1.943 0.053 -0.003 0.532\n", "gsales -0.0301 0.023 -1.329 0.185 -0.075 0.014\n", "pvol 1.8613 1.210 1.538 0.125 -0.519 4.242\n", "cap_s 0.1892 0.239 0.792 0.429 -0.281 0.659\n", "dy -4.4782 1.747 -2.564 0.011 -7.914 -1.043\n", "cr 5.4418 5.925 0.918 0.359 -6.212 17.096\n", "cur -9.7856 4.203 -2.328 0.020 -18.053 -1.519\n", "==============================================================================\n", "Omnibus: 489.711 Durbin-Watson: 2.116\n", "Prob(Omnibus): 0.000 Jarque-Bera (JB): 72928.702\n", "Skew: 6.818 Prob(JB): 0.00\n", "Kurtosis: 72.287 Cond. No. 3.59e+03\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "[2] The condition number is large, 3.59e+03. This might indicate that there are\n", "strong multicollinearity or other numerical problems.\n" ] } ], "source": [ "formula = 'pe ~ beta + roe + de + altman + log_mv + gm + gsales + pvol\t+ cap_s\t+ dy\t+ cr\t+ cur'\n", "results = smf.ols(formula, data2).fit()\n", "print(results.summary())" ], "id": "FaLMIm9F422p" }, { "cell_type": "code", "execution_count": null, "id": "2740154c-e1f0-493c-b29f-eb62e4767d86", "metadata": { "id": "2740154c-e1f0-493c-b29f-eb62e4767d86" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "3945b46c-c01d-4979-a230-21ef60b6fbbf", "metadata": { "id": "3945b46c-c01d-4979-a230-21ef60b6fbbf", "colab": { "base_uri": "https://localhost:8080/", "height": 678 }, "outputId": "cdc130a6-6c6a-47cd-98d5-4c9d45c7c2c4" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " beta roe de pe ps pfcf \\\n", "beta 1.000000 -0.079395 -0.092053 0.068494 0.063886 -0.002039 \n", "roe -0.079395 1.000000 0.688829 -0.097493 0.087583 -0.053414 \n", "de -0.092053 0.688829 1.000000 -0.044639 -0.115563 0.095510 \n", "pe 0.068494 -0.097493 -0.044639 1.000000 0.593247 0.327988 \n", "ps 0.063886 0.087583 -0.115563 0.593247 1.000000 0.165828 \n", "pfcf -0.002039 -0.053414 0.095510 0.327988 0.165828 1.000000 \n", "mv 0.018675 0.091196 -0.048443 0.053075 0.214163 -0.002806 \n", "gm -0.101625 0.147294 -0.058295 0.215156 0.621423 -0.087149 \n", "gsales 0.159374 0.125849 -0.060532 -0.029283 0.017286 -0.000703 \n", "altman 0.054296 0.097988 -0.174033 0.286280 0.706467 0.095019 \n", "pvol 0.775831 -0.064803 -0.070414 0.082177 0.051855 0.064714 \n", "cap_s 0.028896 -0.130779 -0.041466 0.080169 0.038678 0.122443 \n", "dy -0.222000 -0.019617 0.061359 -0.237169 -0.408821 -0.158816 \n", "cr 0.076676 -0.015204 -0.145291 0.177014 0.480707 0.104814 \n", "cur 0.078979 -0.047372 -0.215181 0.078290 0.348642 0.070986 \n", "naics 0.039516 0.021315 0.135928 0.103943 0.096871 0.020150 \n", "eps -0.012030 0.090308 -0.036949 -0.094833 -0.014581 -0.040744 \n", "growth_capitalexp -0.080412 0.030906 0.031790 0.000932 0.002545 -0.023627 \n", "\n", " mv gm gsales altman pvol cap_s \\\n", "beta 0.018675 -0.101625 0.159374 0.054296 0.775831 0.028896 \n", "roe 0.091196 0.147294 0.125849 0.097988 -0.064803 -0.130779 \n", "de -0.048443 -0.058295 -0.060532 -0.174033 -0.070414 -0.041466 \n", "pe 0.053075 0.215156 -0.029283 0.286280 0.082177 0.080169 \n", "ps 0.214163 0.621423 0.017286 0.706467 0.051855 0.038678 \n", "pfcf -0.002806 -0.087149 -0.000703 0.095019 0.064714 0.122443 \n", "mv 1.000000 0.161233 0.012807 0.172525 -0.063880 0.101586 \n", "gm 0.161233 1.000000 0.096531 0.357395 -0.047744 0.017925 \n", "gsales 0.012807 0.096531 1.000000 0.047899 0.432890 0.004500 \n", "altman 0.172525 0.357395 0.047899 1.000000 0.036324 -0.034857 \n", "pvol -0.063880 -0.047744 0.432890 0.036324 1.000000 0.093602 \n", "cap_s 0.101586 0.017925 0.004500 -0.034857 0.093602 1.000000 \n", "dy -0.061784 -0.300490 -0.044612 -0.341119 -0.197214 0.113233 \n", "cr 0.166952 0.383953 0.060785 0.552764 0.167022 0.107054 \n", "cur 0.047235 0.245208 0.018272 0.541831 0.121421 0.005705 \n", "naics 0.074423 0.091483 0.029131 -0.007095 -0.025478 -0.043567 \n", "eps 0.222852 -0.001708 0.059474 0.094992 -0.031780 -0.034861 \n", "growth_capitalexp 0.015418 0.011326 -0.021103 -0.036804 -0.069099 -0.034913 \n", "\n", " dy cr cur naics eps \\\n", "beta -0.222000 0.076676 0.078979 0.039516 -0.012030 \n", "roe -0.019617 -0.015204 -0.047372 0.021315 0.090308 \n", "de 0.061359 -0.145291 -0.215181 0.135928 -0.036949 \n", "pe -0.237169 0.177014 0.078290 0.103943 -0.094833 \n", "ps -0.408821 0.480707 0.348642 0.096871 -0.014581 \n", "pfcf -0.158816 0.104814 0.070986 0.020150 -0.040744 \n", "mv -0.061784 0.166952 0.047235 0.074423 0.222852 \n", "gm -0.300490 0.383953 0.245208 0.091483 -0.001708 \n", "gsales -0.044612 0.060785 0.018272 0.029131 0.059474 \n", "altman -0.341119 0.552764 0.541831 -0.007095 0.094992 \n", "pvol -0.197214 0.167022 0.121421 -0.025478 -0.031780 \n", "cap_s 0.113233 0.107054 0.005705 -0.043567 -0.034861 \n", "dy 1.000000 -0.275627 -0.271625 -0.157792 -0.118787 \n", "cr -0.275627 1.000000 0.834780 -0.029683 0.125976 \n", "cur -0.271625 0.834780 1.000000 -0.221567 0.141528 \n", "naics -0.157792 -0.029683 -0.221567 1.000000 -0.029311 \n", "eps -0.118787 0.125976 0.141528 -0.029311 1.000000 \n", "growth_capitalexp -0.043085 -0.040837 -0.014548 0.017290 0.044753 \n", "\n", " growth_capitalexp \n", "beta -0.080412 \n", "roe 0.030906 \n", "de 0.031790 \n", "pe 0.000932 \n", "ps 0.002545 \n", "pfcf -0.023627 \n", "mv 0.015418 \n", "gm 0.011326 \n", "gsales -0.021103 \n", "altman -0.036804 \n", "pvol -0.069099 \n", "cap_s -0.034913 \n", "dy -0.043085 \n", "cr -0.040837 \n", "cur -0.014548 \n", "naics 0.017290 \n", "eps 0.044753 \n", "growth_capitalexp 1.000000 " ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
betaroedepepspfcfmvgmgsalesaltmanpvolcap_sdycrcurnaicsepsgrowth_capitalexp
beta1.000000-0.079395-0.0920530.0684940.063886-0.0020390.018675-0.1016250.1593740.0542960.7758310.028896-0.2220000.0766760.0789790.039516-0.012030-0.080412
roe-0.0793951.0000000.688829-0.0974930.087583-0.0534140.0911960.1472940.1258490.097988-0.064803-0.130779-0.019617-0.015204-0.0473720.0213150.0903080.030906
de-0.0920530.6888291.000000-0.044639-0.1155630.095510-0.048443-0.058295-0.060532-0.174033-0.070414-0.0414660.061359-0.145291-0.2151810.135928-0.0369490.031790
pe0.068494-0.097493-0.0446391.0000000.5932470.3279880.0530750.215156-0.0292830.2862800.0821770.080169-0.2371690.1770140.0782900.103943-0.0948330.000932
ps0.0638860.087583-0.1155630.5932471.0000000.1658280.2141630.6214230.0172860.7064670.0518550.038678-0.4088210.4807070.3486420.096871-0.0145810.002545
pfcf-0.002039-0.0534140.0955100.3279880.1658281.000000-0.002806-0.087149-0.0007030.0950190.0647140.122443-0.1588160.1048140.0709860.020150-0.040744-0.023627
mv0.0186750.091196-0.0484430.0530750.214163-0.0028061.0000000.1612330.0128070.172525-0.0638800.101586-0.0617840.1669520.0472350.0744230.2228520.015418
gm-0.1016250.147294-0.0582950.2151560.621423-0.0871490.1612331.0000000.0965310.357395-0.0477440.017925-0.3004900.3839530.2452080.091483-0.0017080.011326
gsales0.1593740.125849-0.060532-0.0292830.017286-0.0007030.0128070.0965311.0000000.0478990.4328900.004500-0.0446120.0607850.0182720.0291310.059474-0.021103
altman0.0542960.097988-0.1740330.2862800.7064670.0950190.1725250.3573950.0478991.0000000.036324-0.034857-0.3411190.5527640.541831-0.0070950.094992-0.036804
pvol0.775831-0.064803-0.0704140.0821770.0518550.064714-0.063880-0.0477440.4328900.0363241.0000000.093602-0.1972140.1670220.121421-0.025478-0.031780-0.069099
cap_s0.028896-0.130779-0.0414660.0801690.0386780.1224430.1015860.0179250.004500-0.0348570.0936021.0000000.1132330.1070540.005705-0.043567-0.034861-0.034913
dy-0.222000-0.0196170.061359-0.237169-0.408821-0.158816-0.061784-0.300490-0.044612-0.341119-0.1972140.1132331.000000-0.275627-0.271625-0.157792-0.118787-0.043085
cr0.076676-0.015204-0.1452910.1770140.4807070.1048140.1669520.3839530.0607850.5527640.1670220.107054-0.2756271.0000000.834780-0.0296830.125976-0.040837
cur0.078979-0.047372-0.2151810.0782900.3486420.0709860.0472350.2452080.0182720.5418310.1214210.005705-0.2716250.8347801.000000-0.2215670.141528-0.014548
naics0.0395160.0213150.1359280.1039430.0968710.0201500.0744230.0914830.029131-0.007095-0.025478-0.043567-0.157792-0.029683-0.2215671.000000-0.0293110.017290
eps-0.0120300.090308-0.036949-0.094833-0.014581-0.0407440.222852-0.0017080.0594740.094992-0.031780-0.034861-0.1187870.1259760.141528-0.0293111.0000000.044753
growth_capitalexp-0.0804120.0309060.0317900.0009320.002545-0.0236270.0154180.011326-0.021103-0.036804-0.069099-0.034913-0.043085-0.040837-0.0145480.0172900.0447531.000000
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 39 } ], "source": [ "data2.corr()" ] }, { "cell_type": "code", "execution_count": null, "id": "0c42a27b-ed41-4e75-8ae7-4a386d25efc8", "metadata": { "id": "0c42a27b-ed41-4e75-8ae7-4a386d25efc8" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "d58861f2-cafe-45ea-bfdf-012fbbea2cac", "metadata": { "id": "d58861f2-cafe-45ea-bfdf-012fbbea2cac" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "23795490-c41a-4a87-a6cd-e494f7a7c623", "metadata": { "id": "23795490-c41a-4a87-a6cd-e494f7a7c623" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "82f2681d-14ba-461a-854e-69efe06c9586", "metadata": { "id": "82f2681d-14ba-461a-854e-69efe06c9586" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "f785438b-d7d1-4d0b-841f-960da6596ed2", "metadata": { "id": "f785438b-d7d1-4d0b-841f-960da6596ed2" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "3ce2f49b-defa-4e80-954f-63564df981e4", "metadata": { "id": "3ce2f49b-defa-4e80-954f-63564df981e4" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "c41b491a-b2ba-433b-83b9-74a890e53107", "metadata": { "id": "c41b491a-b2ba-433b-83b9-74a890e53107" }, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "id": "eff01d80-2ad7-4ff2-979a-d11754792e7f", "metadata": { "id": "eff01d80-2ad7-4ff2-979a-d11754792e7f" }, "outputs": [], "source": [ "" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "colab": { "name": "regression_FactSet3.ipynb", "provenance": [], "collapsed_sections": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 5 }