
TRABAJO FIN DE MÁSTER

Ray-Tracing on GPU:
Light Sampling Algorithms

Autor
Dmitry Ivanov

Director
Carlos Ureña Almagro

Escuela Técnica Superior de Ingenieŕıas Informática y de
Telecomunicación

—
Granada, 20 de septiembre de 2024

3

Ray-Tracing on GPU:
Light Sampling Algorithms

Autor
Dmitry Ivanov

Director
Carlos Ureña Almagro

Ray-Tracing on GPU: Light Sampling Algorithms

Dmitry Ivanov

Palabras clave: ray tracing, path tracing, gpu, realistic rendering, light
sampling

Resumen

El trazado de rayos es una tecnoloǵıa de visualización muy madura que
ha evolucionado a lo largo de los años y continúa incorporando nuevos
instrumentos que cambian las reglas del juego cada año. El trazado de
rayos permite la simulación de comportamientos de la luz y crea imágenes
muy realistas de entornos preestablecidos. Durante mucho tiempo, el mayor
obstáculo de la tecnoloǵıa era el rendimiento en tiempo, que limitaba signi-
ficativamente el alcance de la aplicación y no permit́ıa aplicaciones en tiempo
real. Para generar una imagen decente, se requeŕıan horas y d́ıas de tiempo
computacional.

La falta de trazado de rayos compatible con hardware no permitió realizar
avances que permitieran aplicar el trazado de rayos en todas partes. Los
intentos de implementar el trazado de rayos basado en hardware se hicieron
en Mitsubishi Electric con las tarjetas FPGA diseñadas espećıficamente, o
en Caustic Graphics con las tarjetas Ray-Tracing Unit (RTU).

Todo cambió en 2018 cuando las tarjetas gráficas de propósito general obtu-
vieron núcleos de trazado de rayos y tipos especiales de shaders diseñados
exclusivamente para el trazado de rayos.

En este trabajo, describimos los beneficios del trazado de rayos en la GPU
comparando las implementaciones de algunos algoritmos y métodos de trazado
de rayos en la CPU y la GPU. El resultado de este trabajo son dos platafor-
mas de renderizado de software,un trazador de rayos de CPU y un trazador
de rayos de GPU, que se basan en los principios de trazado de rayos descritos
por Peter Shirley en su serie Ray-Tracing in One Weekend [1][2][3].

El código fuente de las plataformas de trabajo de Ray-Tracing en CPU y
GPU está disponible en el repositorio público de GitHub y publicado bajo
la licencia Open Source MIT en la siguiente URL:

• https://github.com/d-k-ivanov/ray-tracing

https://github.com/d-k-ivanov/ray-tracing

Ray-Tracing on GPULight Sampling Algorithms

Dmitry Ivanov

Keywords: ray tracing, path tracing, gpu, realistic rendering, light sam-
pling

Abstract

Ray-Tracing is a very mature visualisation technology that has evolved over
the years and continues to get new game-changing instruments each year.
Ray-tracing allows the simulation of light behaviours and creates very re-
alistic images of preset environments. For a very long time, the biggest
bottleneck of the technology was time performance which was significantly
limiting the application scope and didn’t allow real-time applications. To
render a decent picture, it was required to spend hours and days of compu-
tational time.

The lack of hardware-supported Ray-Tracing didn’t allow to make break-
outs which would allow applying Ray-Tracing everywhere. The attempts to
implement hardware-based Ray-Tracing were made at Mitsubishi Electric
with the specifically designed FPGA cards, or at Caustic Graphics with the
Ray-Tracing Unit (RTU) cards.

Everything changed in 2018 when general-purpose graphics cards got Ray-
Tracing cores and special types of shaders that are solely designed for Ray-
Tracing.

In this work, we describe the benefits of ray tracing on the GPU by com-
paring the implementations of some Ray-Tracing algorithms and methods
on the CPU and GPU. The result of this work is two software rendering
platforms, CPU ray-tracer and GPU ray-tracer, that are based on the Ray-
Tracing principles described by Peter Shirley in his Ray-Tracing in One
Weekend series [1][2][3].

The source code of the Ray-Tracing frameworks on CPU and GPU is avail-
able on the public GitHub repository and published under the Open Source
MIT Licence at the following URL:

• https://github.com/d-k-ivanov/ray-tracing

https://github.com/d-k-ivanov/ray-tracing

Acknowledgments

I want to thank every person I met on my way to the Master’s Degree:

To my wife and daughters whose tremendous support helped me on the
way to make this work happen.

To my tutor, Dr. Carlos Ureña Almagro, who took me under his wing
and whose profound knowledge and success motivated me to start and finish
this project.

To my professor, Dr. Alejandro José León Salas, whose moral support
and encouragement allowed me to proceed despite every obstacle I met.

To my professors who motivate everyone to put in additional efforts to
reach goals and provide valuable and encouraging feedback.

To my classmates, who helped me to stay when my strength and motiva-
tion faded. Together, we went toward the next levels of our lives.

Quiero agradecer a cada persona que conoćı en mi camino hacia la Maestŕıa:

A mi esposa e hijas cuyo tremendo apoyo me ayudó en el camino para
hacer realidad este trabajo.

A mi tutor, el Dr. Carlos Ureña Almagro, quien me tomó bajo su
protección y cuyo profundo conocimiento y éxito me motivaron a iniciar y
terminar este proyecto.

A mi profesor, Dr. Alejandro José León Salas, cuyo apoyo moral y
est́ımulo me permitieron seguir adelante a pesar de todos los obstáculos que
encontré.

A mis profesores que motivan a todos a poner más esfuerzas para alcanzar
las metas y dan retroalimentación valiosa y alentadora.

A mis compañeros, que me ayudaron a quedarme cuando mis fuerzas y
motivación se desvanecieron. Juntos, avanzamos hacia los siguientes niveles
de nuestras vidas.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Structure . 3

2 State of Art 5

2.1 Ray-Tracing . 5

2.2 Ray-Tracing Acceleration . 10

2.3 Monte-Carlo Methods . 12

2.4 Stratified Sampling . 13

2.5 Moving Ray Tracing to GPU 16

3 Methodology and Planning 19

3.1 Research . 19

3.2 Project Management . 21

3.2.1 Software Development Methodology 21

3.2.2 Milestone Schedule . 22

3.3 Version Control and GitHub platfporm 22

3.4 Kanban Board . 23

4 Development 25

4.1 Third-Party Libraries . 25

4.2 Platform . 26

4.3 Ray-Tracing on CPU . 26

4.3.1 Class Diagram . 27

4.3.2 Single-core and Multi-core CPU implementations . . . 28

4.3.3 Performance . 29

4.3.4 Conclusion . 30

4.4 Ray-Tracing on GPU . 31

4.4.1 Five new shader types 32

4.4.2 Mapping CPU implementation to new shader types . 33

4.4.3 Vulkan Ray Tracing Pipeline 34

4.5 Light Sampling . 35

i

ii CONTENTS

5 Results and Discussion 39
5.1 CPU vs. GPU Ray-Tracing Image Quality 40
5.2 CPU vs. GPU Ray-Tracing Performance 43
5.3 Project Implementation and Availability 44

6 Conclusions and future work 47
6.1 Conclusions . 47
6.2 Future Work . 48

Bibliography 51

A Compilation 53
A.1 Compilation on Windows . 53
A.2 Compilation on Linux . 54

B Usage Instructions 55
B.1 Ray-Tracing Framework on CPU 55
B.2 Ray-Tracing Framework on GPU 57

C License 61

List of Figures

1.1 RTX I/O Off . 2

1.2 RTX I/O On . 2

2.1 Parametric Line . 6

2.2 Ray Vector . 6

2.3 Ray-Sphere intersections . 7

2.4 Ray-Plane intersection . 8

2.5 Jordan curve theorem . 8

2.6 Geometrical illustration of Möller-Trumbore intersection al-
gorithm . 9

2.7 Implicit surface and demonstration of the difficulty of sam-
pling an implicit surface . 9

2.8 Classification of acceleration techniques 10

2.9 BVH 100 objects . 10

2.10 BVH 1000 objects . 10

2.11 BVH 5000 objects . 10

2.12 BVH 10000 objects . 10

2.13 BVH 20000 objects . 10

2.14 Efficient Ray-Tracing for Bezier and B-spline surfaces 11

2.15 GARP - Ray-Patch intersections 11

2.16 GARP performance . 12

2.17 Regular and stratified sampling evolution 14

2.18 Stratified sampling papers interconnection in Ray-Tracing . . 14

2.19 Uniform and stratified sampling of spherical triangles 15

2.20 Uniform and stratified sampling of spherical rectangles 15

2.21 Wavefront Kernels overview 16

2.22 Turing Ray Tracing with RT Cores 17

3.1 Connected papers of Stratified sampling of spherical triangles 20

3.2 Connected papers of An area-preserving parametrization for
spherical rectangles . 20

3.3 Connected papers of Stratified sampling of projected spheri-
cal caps . 21

iii

iv LIST OF FIGURES

3.4 GitHub Metrics . 23
3.5 Ray-Tracing on GPU Roadmap 23
3.6 Kanban Board . 24

4.1 Ray Tracer on CPU Class Diagram 27
4.2 CPU 10 Samples Per Pixel . 29
4.3 CPU 100 Samples Per Pixel 29
4.4 CPU 250 Samples Per Pixel 29
4.5 CPU 500 Samples Per Pixel 29
4.6 Dependency of rendering time on the number of SPP 30
4.7 CPU 200’000 Samples Per Pixel 31
4.8 Five new Ray-Tracing shader types 33
4.9 Mapped Ray Tracer on CPU Class Diagram 34
4.10 Scene with random scattering on a hemisphere without PDF 37
4.11 Scene with random scattering on a hemisphere with PDF . . 37

5.1 Cornell Box with multiple light sources demo scene 39
5.2 Dependency of rendering time on the number of SPP 44

B.1 Ray-Tracing framework for CPU 55
B.2 Ray-Tracing framework for GPU 58
B.3 Heatmaps for Cornell Box with Lights 59

List of Tables

3.1 Work plan . 22

5.1 Ray Traced Image Quality 1 40
5.2 Ray Traced Image Quality 2 41
5.3 Ray Traced Image Quality 3 42
5.4 Ray Tracing performance comparison 43

v

Chapter 1

Introduction

The idea of Ray-Tracing (a rendering technique that can produce incredibly
realistic images and shading effects) isn’t new but well-defined and reachable.
Since 1968, when Arthur Appel described [4] Ray-Casting techniques and
Turner Whitted presented ≪An Improved Illumination Model for Shaded
Display≫ using Ray-Tracing [5].

The only problem which seemed to be unsolvable was performance. Even
on a modern Central Processing Unit (CPU), generating a high-realistic
1600×900 pixels image by Ray-Tracing takes a significant amount of time to
reach decent quality and definitely can’t reach real-time performance. This
makes practical application limited and accessible only for large projects
with large computation clusters dedicated to image rendering.

In recent years, Graphics Processing Units (GPUs) have been significantly
improved. The standardized Ray-Tracing API and new hardware accelera-
tion features [6] started a boom in using these devices for general-purpose
calculation and image synthesis by ray tracing with NVIDIA RTX™and
Radeon™Rays technologies. The modern RTX technology is capable of
including dedicated ray tracing acceleration hardware, using an advanced
acceleration structure and implementing an entirely new GPU rendering
pipeline to enable ray tracing algorithms to work in real-time.

The data passing overhead, which used to be a significant blocker in the
past, is now mitigated by RTX technology. The figure 1.1 and figure 1.2
show the diagram of the I/O improvements on NVIDIA GPU platform.

1

2 1.1. Motivation

Figure 1.1: Traditional Input/Output throughput.
(Source:nvidia.com)

Figure 1.2: GPU accelerated Input/Output throughput.
(Source:nvidia.com)

1.1 Motivation

During our work with the Ray-Tracing algorithms, we experienced signifi-
cant delays in trying new ideas, mainly due to time-consuming limitations
put by the nature of Ray-Tracing technologies and the inability to use mass
parallelization easily.

With the new, hardware-supported, Ray-Tracing visualization technology
(RTX), ray-racing has become today’s technology instead of tomorrow, as
it was before the RTX appeared. Numerous technologies and frameworks
appear every day, allowing us to make outstanding and realistic visualiza-
tions. Some Ray-Tracing technologies are still niche, but production-grade
Ray-Tracing support for customer-ranged devices, inspiring further devel-
opment. Each new visualization framework polishes Ray-Tracing ideas and
improves the field.

https://images.nvidia.com/aem-dam/Solutions/geforce/news/rtx-io-for-geforce-gpus-available-now2/nvidia-rtx-io-off.png
https://images.nvidia.com/aem-dam/Solutions/geforce/news/rtx-io-for-geforce-gpus-available-now2/nvidia-rtx-io-on.png

Introduction 3

1.2 Objectives

This work aims to design and implement a software system for testing ad-
vanced low-variance light source sampling algorithms used in Ray-Tracing
and Path-Tracing Monte-Carlo rendering systems, and also aims to compare
the low-efficient CPU-only ray tracing implementation with a time-efficient
GPU implementation using modern ray tracing technologies: Vulkan Ray-
Tracing Extensions.

The expected result of this work will include simple proof-of-concept 3D
interactive scene visualizers, for CPU and GPU, that allow changing the
visualization settings and then measuring those changes’ effect on the ren-
dering performance and realism while visualizing complex 3D scenes.

From the computational perspective, it’s expected that the synthesis of the
scenes with a large amount of light sources would be significantly faster
using GPU than CPU, allowing testing new ideas on the fly and creating
Ray-Tracing solutions for real-world problems.

The goal of this work is to implement the Ray-Tracing framework derived
from the framework described by Peter Shirley [1][2][3] on the CPU. Then
implement the GPU ray tracing framework using Vulkan Ray-Tracing Exten-
sions and compare the performance of both implementations. We describe
the implementation details on both platforms and define the strategy for
porting CPU Ray-Tracing technologies from CPU to GPU.

Initially, another objective was to analyse and implement additional ad-
vanced algorithms for direct light sampling, derived by Arvo [7] and Ureña
et al. [8][9]. We have carried out the analysis, but this target couldn’t be
fully achieved because we underestimated the time needed for the imple-
mentation and limited ourselves to the basic light sampling algorithms and
their implementation using Ray-Tracing shaders.

1.3 Structure

In the chapter 2 (State of Art) the works related to the Ray-Tracing will be
described. We start with the introduction to Ray-Tracing, different inter-
section approaches of Monte-Carlo methods, and various acceleration meth-
ods, and then we describe the stratified sampling methods. We will close
this chapter with a description of the state-of-art in the field of Ray-Tracing
implementation attempts on GPU.

The chapter 4 (Development) will describe the development of the Ray-
Tracing frameworks. We will start with the description of the implementa-
tion of the CPU-based Ray-Tracing framework in the section Ray-Tracing

4 1.3. Structure

on CPU. Then we will describe the implementation of the GPU-based Ray-
Tracing framework in the section Ray-Tracing on GPU. Finally, we will
provide the basic implementation of the light sampling and the usage of
the probability density functions (PDF) in the section Light Sampling with
examples of custom light sampling.

In the chapter 5 (Results and Discussion) we will describe the results of our
work and provide a comparison of the CPU and GPU-based Ray-Tracing
frameworks. We describe the performance of the CPU and GPU-based Ray-
Tracing frameworks and provide a comparison of the quality of rendered
images.

In the chapter 6 (Conclusions and future work) we will provide the general
conclusions of our work and describe the future work that can be done using
our framework in the field of Ray-Tracing. We will provide future work
plans to improve the Ray-Tracing frameworks with additional functionality
and more robust Ray-Tracing optimizations.

Several annexes will be provided to describe the usage details of the Ray-
Tracing frameworks. The source code will be provided in the form of C++
applications, published on the GitHub platform. We will describe how the
applications can be built and executed in the local environment with the
Vulkan Ray-Tracing Extensions support. Moreover, we will describe licens-
ing information and usage instructions manuals for the Ray-Tracing frame-
works on CPU and GPU, with a detailed description of the user interface
and the scene parameters.

Chapter 2

State of Art

In modern computer graphics and ray tracing, numerous techniques and
algorithms have been developed to play with Ray-Tracing algorithms and
methods. This chapter will present the state of the art in ray tracing and
its performance acceleration, Monte Carlo methods, stratified sampling, and
the state of attempts to move it to the GPU. The most comprehensive list
of available tools and plugins from different developers and for various pur-
poses, on the state of 2019, is presented by Jon Peddie in the book ≪Ray
Tracing: A Tool for All≫ [10]. We’re going to concentrate on our imple-
mentation of the ray tracing frameworks using the framework developed by
Peter Shirley [1] as the starting point.

2.1 Ray-Tracing

When we build the ray tracing environment, we work with Ray as the ge-
ometrical object. In Ray-Tracing, we apply different ray behaviours inter-
acting with different parts of the scene we created. Everything on the scene
is created with the help of computational geometry, describing geometrical
objects of many kinds, and we need to understand how they intersect with
each other. The objects are described with the help of mathematical equa-
tions, and we need to understand how to apply ray behaviour to them and
where to put Ray-Tracing algorithms to simulate the realistic behaviour of
light.

Even though ray tracing technology utilizes Ray as the basic geometric term,
ray tracing engines work with a parametric line. Peter Shirley et. al. de-
scribe [11] the Ray parametric line as a weighted average of points A and
B:

P (t) = (1− t)A+ tB (2.1)

5

6 2.1. Ray-Tracing

For the full line, the parameter can take any real value, i.e., t ∈ [−∞,+∞],
and the point P moves continuously along the line as t changes, as shown
in Figure 2.1:

Figure 2.1: How changing values of t gives different points on the line.
(Source: [11])

Instead of two points, choosing a point and a direction is better. We can
define the normalized vector between points B and A as d̂ (direction) and
point A as O (origin). For various computation reasons, like computing
cosines with dot products, it’s preferable to use a normalized vector as a
direction:

P (t) = O + td̂ (2.2)

We may select any values of t and the point P moves continuously along
the line. When we use a normalized vector as a direction, the value of t
represents the signed distance from the origin.

Figure 2.2: A Ray, described by an origin O and direction vector d̂. The
points are in front of the origins, i.e. t > 0. The dashed line represents

points behind the origin. (Source: [11])

State of Art 7

Once we generate a ray, we need to compute its intersections with various ge-
ometrical objects. Different geometries need different ray-object intersection
algorithms, depending on the shape or material of an object. Historically,
each ray training engine starts with ray-sphere interactions [12]:

Figure 2.3: The ray origin with respect to sphere location. (Source: [12])

After defining intersections with spherical geometries, the ray tracing engine
should get ray-plane intersections for constructing quadrilaterals and further
usage in ray-polygon intersection algorithms.

We know a point is on the surface of a plane if it satisfies the plane equation:

Ax+Bx+ Cz +D = 0

where : A2 +B2 + C2 = 1
(2.3)

A point with coordinates (x, y, z) is in the plane only when the values x, y
and z make the equation hold true. If no point along the ray satisfies the
plane equation, the ray and plane do not intersect [13]:

8 2.1. Ray-Tracing

Figure 2.4: Ray-Plane intersection diagram. (Source: [13])

Once the ray-plane intersection is defined, the ray-polygon intersection can
be performed. Eric Haines presented [12] one of many methods for testing
the location of points (inside or outside), known as the Jordan curve theorem
(figure 2.5):

Figure 2.5: Jordan curve theorem. (Source: [12])

This algorithm works by shooting rays in an arbitrary direction and counting
the number of intersections with the polygon. If the number is odd, the point
is inside the polygon; otherwise, it is outside. The Jordan curve theorem is
a fundamental concept in computational geometry. Once the ray-polygon
interacting achieved, the ray tracing engine can construct more complex
geometries like triangles quadrilaterals, and other polygons.

Möller and Trumbore presented [14] the faster and simpler ray-triangle in-
tersection algorithm. The algorithm translates the origin of the ray to

State of Art 9

triangle-specific barycentric coordinates, then changes the base to yield a
vector containing the distance t and the coordinates (u, v) of the intersec-
tion, as illustrated on figure 2.6:

Figure 2.6: Geometrical illustration of Möller-Trumbore intersection
algorithm. (Source: [14])

It is shown that the Möller-Trumbore algorithm is comparable in speed
to previous methods while significantly reducing memory storage costs, by
avoiding storing triangle plane equations. Baldwin andWeber presented [15]
a faster ray-triangle intersection calculation at the expense of pre-computing
and storing a small amount of extra information for each triangle. The
Baldwin-Weber algorithm is 1-6% faster than the Möller-Trumbore algo-
rithm.

Implicit functions can be used to represent interesting geometries, but the
task of finding intersections with them is more complicated. It is difficult
to create a universal algorithm, based only on the evaluation of an implicit
function, that would guarantee a correctly detected intersection. Some func-
tions may introduce spikes that are not detected by the sampling algorithms.
Kalra and Barr presented [16] a method for finding guaranteed ray inter-
sections with implicit surfaces. Figure 2.7 represents the problem of finding
the intersection of a ray with an implicit surface and the example of implicit
surface f(x, y, z) = 0:

Figure 2.7: Implicit surface (b) and demonstration of the difficulty of
sampling an implicit surface (a). (Source: [15])

10 2.2. Ray-Tracing Acceleration

2.2 Ray-Tracing Acceleration

The weakest point of Ray-Tracing is its performance. There are numer-
ous performance optimizations and acceleration techniques. Using different
geometry structures allows for the reduction of complicated computations,
increasing the rendering time of a scene. The figure 2.8 presents the broad
classification of various optimization approaches described by Arvo and Kirk
[17].

Figure 2.8: A broad classification of acceleration techniques. (Source: [17])

Bounding Volumes Hierarchy (BVH) trees are the most important optimiza-
tion technology in ray tracing. A scene can consist of thousands of objects.
BVH structure makes it possible to avoid computing the intersections be-
tween a single ray and each object in a large group of objects when the
bounding box of the group does not intersect the ray. BVH tree construc-
tion and bounding box hit-checking algorithms help with the time of initial
scene construction and Ray-Tracing computations. The figures 2.9, 2.10,
2.11, 2.12, 2.13 show the increasing number of objects on the ray-traced
scene. Each sphere is wrapped into a bounding box, and the whole scene
exists as one BVH construction.

Figure 2.9:
100 objects
Time: 5s

Figure 2.10:
1000 objects
Time: 27s

Figure 2.11:
5000 objects
Time: 106s

Figure 2.12:
10000
objects

Time: 112s

Figure 2.13:
20000
objects

Time: 149s

State of Art 11

As was shown in the figures above, the computation time for 100 samples
per pixel doesn’t increase too much when the number of spheres is quite
large, because of the usage of a BVH. The application code is available on
GitHub [18].

For surfaces defined by its parametric equations (like Bézier and B-splines),
the usage of binary trees with small parts of the surfaces enclosed by par-
allelepipeds (as it’s shown in the figure 2.14) and testing these enclosures
which part of the surface may be hit by the ray is a good idea, as proposed
by Barth and Stürzlinger [19].

Figure 2.14: Efficient Ray-Tracing for Bezier and B-spline surfaces. A part
of the surface. (Source: [19])

Another interesting optimization approach proposed by Alexander Reshetov
[20]. Their GARP method (Geometric Approach to Ray/bilinear Patch
intersections) is trying to find a balance between the simplicity of triangles
and the richness of such smooth shapes as subdivision surfaces, NURBS,
and Bézier patches.

Figure 2.15: Finding Ray-Patch intersections. (Source: [20])

12 2.3. Monte-Carlo Methods

The intersection point could be computed as either Xr = R(t) or as Xq =
Q(u, v) using the found parameters t, u, and v. The two-step GARP process
dynamically reduces a possible error in each step. In the first step, we find
the best estimation for u. On the second step, using the found u − aim,
minimizing the total error.

The figure 2.16 shows the performance measurements performed by the au-
thor by counting the total number of rays processed per second.

Figure 2.16: Ray-Patch intersection performance. (Source: [20])

In this work, we would like to explore another approach to accelerate Ray-
Tracing computations. We will use the Vulkan Ray Tracing extension to
offload the computations to the GPU. The chapter 4 (Development) will
describe the implementation details of the sample Ray-Tracing framework
using the Vulkan Ray Tracing extension.

2.3 Monte-Carlo Methods

Computing how light is reflected and scattered in arbitrary and complex
3D scenes is a challenging computational effort, which may require a vast
amount of time and memory when using traditional finite-element meth-
ods. However, it has been proved that Monte-Carlo methods are far more
appropriate for this kind of computation as their time complexity does not
increase so much when the complexity of the scene does, as compared to
finite-element methods. Monte-Carlo methods are more favourable in ray
tracing when it’s possible to task many independent colour samples from a
single point.

Kajiya presented the rendering equation[21], the formula that gives an ex-
presion for the radiance leaving a point x in a direction ω̂o, and thus models
how light is globally reflected in a 3D scene, which can be solved using the
Monte-Carlo methods to approximate numerical integration for calculations
of ray intersections that employ a collection of random samples.

State of Art 13

Lo(x, ω̂o) = Le(x, ω̂o) +

∫
S2 Li(x, ω̂i) fr(x, ω̂i, ω̂o) |ω̂i · n̂| dω̂i

Outgoing Light

Emitted Light

Reflected Light

All Incoming Directions

Incoming light
Material Reflection

Outward Irradiance

Incoming Direction

Eric Veach and Leonidas Guibas from Stanford presented [22] a way to con-
struct Monte-Carlo estimators by combining samples from several ray dis-
tributions. The experiments indicated that combining sampling techniques
can reduce the variance of Monte-Carlo rendering calculation. The authors
think that better sampling distributions have great potential for practical
applications.

The Monte-Carlo methods have been used in ray tracing for a long time
and seems to be the first candidate for porting it to the GPU. Shirley et
al. [23] presented Monte-Carlo techniques for direct light sample calcula-
tions. Combining them with the Martinsen et al. work [24] on accelerat-
ing Monte-Carlo simulations using the NVIDIA CUDA toolkit. We may
reach significant results in porting the Monte-Carlo-based algorithms to the
GPU, using modern implementations of CUDA on top of RTX. Martinsen
et al. showed [24] that the GPU-based implementation of the Monte-Carlo
methods for photon tracing is 70 times faster than a single-threaded CPU
implementation.

2.4 Stratified Sampling

The Monte-Carlo method has a downside, which can be described by the
law of Diminishing Returns from economics, where each sample helps less
than the last because, when using Monte-Carlo, every new sample requires a
fixed amount of computational effort but its contribution to lower the error
decreases with the number of samples already computed. Shirley pointed out
[25]) and [3], that the diminishing return can be mitigated by stratifying the
random samples. Instead of taking random samples, the grid can be taken
and then one sample within each cell of the grid. However, the rendering
result of the usage of this technique becomes more noisy.

In the figure 2.17 we can see the evolution of the regular and stratified
sampling. In the picture (a), pixel sampling produces the same answer
for each pixel. No matter how many samples are taken, the result is the
same because we approximate the true average. The picture (b) shows the
stratified sampling, the samples are taken from the bins, and the result is
more noisy, but the error is lower. Alternatively, we might use random

14 2.4. Stratified Sampling

sampling within the pixel, but, in this case, Moiré patterns can arise, and
these artefacts can be turned into unpleasant noise.

Figure 2.17: Sixteen regular samples for a single pixel (a). Sixteen
stratified (jittered) samples for a single pixel shown with and without the
bins highlighted (b). There is exactly one random sample taken within

each bin (c). (Source: [25])

Stratified sampling is a well-known technique for reducing variance in statis-
tics, here we focus on its application in computer graphics. Specifically, we
are interested in applying stratified sampling to the problem of sampling
light sources in ray tracing. In the figure 2.17 we can see the distribution of
the works related to stratified sampling in Ray-Tracing.

Figure 2.18: Stratified sampling papers interconnection in Ray-Tracing
concentrated around. [7]

State of Art 15

James Arvo applied stratified sampling to light source sampling and derived
[7] the algorithm of stratified sampling of spherical triangles to improve the
distribution of random samples and indicated that stratified sampling can
be performed on each triangle component of the sphere independently.

Figure 2.19: Uniform and stratified sampling of Spherical Triangles.
(Source: [7])

Ureña et al. extended stratified sampling algorithms to cover spherical rect-
angles [8] and spherical caps [9]. The figure 2.20 shows the distribution
improvements.

Figure 2.20: Uniform and stratified sampling of Spherical Rectangles
(Source: [8])

16 2.5. Moving Ray Tracing to GPU

2.5 Moving Ray Tracing to GPU

The randomized nature of ray generation makes it natural to use GPUs in
ray tracing, but previous implementations faced hardware limitations and
were not very performant.

Martin Christen [26] has attempted to use OpenGL and Direct3D shaders.
He concluded that GPU ray tracing is feasible, but the GPU-based imple-
mentation was not faster than the CPU implementation using the 2005-year
hardware.

Parker et al. [27] described how the NVIDIA OptiX engine with a pro-
grammable ray tracing pipeline can be used to implement ray tracing algo-
rithms. OptiX uses a small set of programmable operations, which is similar
to the approach in using programmable rasterization pipelines employed by
OpenGL and Direct3D.

Antwerpen in his Master’s thesis evaluated [28] streaming implementation
of a BiDirectional Path Tracer (BDPT) and found that the streaming imple-
mentation of BDPT required only storage for a single light and eye vertex in
memory at any time during sample evaluation, making the memory footprint
independent of the path length.

Laine et al. presented [29] the implementation of a wavefront path tracer.
A wavefront ray tracer separates the main operations into separate kernels
instead of using a single kernel for the entire ray tracing process, which is
harmful to the ray tracing performance. The per-process operation queues
are used for each primitive operation request: new ray generation, shading,
material evaluation, and extension ray casting. In figure 2.21 we can see the
overview of the wavefront kernels.

Figure 2.21: Wavefront Kernels overview (Source: [30])

State of Art 17

We believe that Laine et al. work [29] has greatly influenced Nvidia Ray-
Tracing hardware design. Better implementations of Ray-Tracing algorithms
became available when NVIDIA released the RTX technology with RT Cores
in 2018 and support of dedicated Ray-Tracing shaders for the major Ray-
Tracing stages. The RTX technology became available in the Nvidia Turing
GPU architecture. The release of RTX technology led to the development
of a Real-Time 0ray tracing section in DirectX, NVIDIA OptiX and Vulkan.

Figure 2.22: Turing Ray Tracing with RT Cores (Source: nvidia.com)

Knoll et al. [31] provided a method to leverage RTX GPUs with RT Cores
for efficient rendering of large particle data. Daniel Meister, Jakub Boksan-
sky, Michael Guthe, and Jiri Bittner [32] compared nine methods for ray
reordering using RTX-based technologies.

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Chapter 3

Methodology and Planning

In this chapter, we will describe the planning, methodology and project
management tools we use to develop the project. We start with the de-
scription of the research strategy and knowledge management toolbox. We
continue with the project management tools and the version control system
we use to develop the project.

3.1 Research

Our development has been started from the analysis of the initial papers we
selected:

• Arvo, J. Stratified sampling of spherical triangles [7]

• Ureña, C. P. and Fajardo, M. and King, A. An area-preserving parametriza-
tion for spherical rectangles [8]

• Ureña, C. P. and Georgiev, I. Stratified sampling of projected spherical
caps [9]

A connected papers graph is used to make a comprehensive literature anal-
ysis and extend or reduce the scope of the work if necessary. The figures
3.1, 3.2, and 3.3 show the graph for the initial paper. These papers greatly
contributed to the development of the Ray-Tracing project. They allowed
us to summarise the state of the art in the field and the requirements for the
Ray-Tracing framework we will develop to evaluate Ray-Tracing algorithms.

The main deduction we made from the initial paper analysis, is that before
starting working on the precise Ray-Tracing algorithms, we need to develop
the Ray-Tracing framework. The Ray-Tracing framework should be able
to evaluate the Ray-Tracing algorithms and provide the results in a visual

19

20 3.1. Research

form. The Ray-Tracing framework should be able to run on the CPU and
GPU with the RTX technology, if available.

Figure 3.1: Connected papers of Stratified sampling of spherical triangles
[7]

Figure 3.2: Connected papers of An area-preserving parametrization for
spherical rectangless [8]

Methodology and Planning 21

Figure 3.3: Connected papers of Stratified sampling of projected spherical
caps [9]

All related to the work papers collected in the Zotero database and are avail-
able for further analysis. The Zotero database is used to store the papers,
the notes, and the tags. The tags are used to categorize the documents and
to make the search easier. The notes are used to summarize the papers and
to extract the main ideas. The Zotero database may be synchronized with
the cloud storage or moved manually, so the papers are available from any
device.

3.2 Project Management

3.2.1 Software Development Methodology

For repetitive development, the aim is to follow an agile development method-
ology, developing tasks of small size and grouping them to meet an impor-
tant objective. The tasks are assigned to a sprint of a specific duration,
thus allowing small work units to form more complex milestones. The basic
implementations are verified with quick checks using expected results as a
driver for further development. Once the outputs of the initial implemen-
tation have been validated with satisfying results, the development moves
on to the next iteration. It is essential to keep the tests quick and simple
enough to progress faster, fulfilling the main and improvement backlog. The
improvement backlog is the reserved task list within each milestone to ful-
fil the development of unforeseen events of low priority. The main backlog
is the reserved task list within each milestone to fulfil the development of

22 3.3. Version Control and GitHub platfporm

unforeseen events of high priority.

For simplicity and due to a lack of developers, we’ve chosen the semi-
waterfall methodology for the project. The Waterfall methodology is a linear
project management approach, where the project is divided into sequential
phases. Each phase must be completed before the next phase begins.

3.2.2 Milestone Schedule

The development sections (also known as sprints) are combined into mile-
stones. Each milestone represents the self-sufficient stage of the working
plan and should be completed on time. The Table 3.1 shows the project
methodology plan.

Milestone Duration Start End

Study and analysis of relevant litera-
ture

4 weeks 01/01/2024 31/01/2024

Analysis of existing solutions 8 weeks 01/02/2024 31/03/2024

Design and implement the Ray-
Tracing evaluation framework on
CPU

8 weeks 01/04/2024 31/05/2024

Design and implement the Ray-
Tracing evaluation framework on
GPU

8 weeks 01/06/2024 31/07/2024

Writing the TFM report document 4 weeks 01/08/2024 31/08/2024

Writing the TFM presentation 2 weeks 01/09/2024 14/09/2024

Ray-Tracing on GPU project work schedule.

3.3 Version Control and GitHub platfporm

The project is developed on the GitHub collaboration platform: https://

github.com/d-k-ivanov/ray-tracing. GitHub offers version control, col-
laboration, project management and development automation tools. Each
milestone is divided into tasks. Each task could be developed in a separate
branch. The branches are merged into the main branch when the task is
completed. The main branch is used to build and release the project. The
GitHub metrics allow tracking of the project progress, such as the number
of commits, the number of branches, the number of pull requests, and the
number of issues.

https://github.com/d-k-ivanov/ray-tracing
https://github.com/d-k-ivanov/ray-tracing

Methodology and Planning 23

Figure 3.4: GitHub Metrics.

Each project item, such as Milestone, Epic, Story, or Task, is visualized on
the Kanban board. The Review state section is reserved for item milestone
validation. The milestone roadmap can be described as a Waterfall diagram,
which fits the best for time scheduling. The initial roadmap for the Ray-
Tracing on GPU project is shown in Figure 3.5.

Figure 3.5: Ray-Tracing on GPU Roadmap on GitHub. The original
interactive version of the roadmap is available at

https://github.com/users/d-k-ivanov/projects/2/views/4.

3.4 Kanban Board

For better visualization of the project’s progress, we use the Kanban board.
The board is divided into columns: Backlog, Ready (to take in the develop-
ment), In Progress, Review, and Done. Each task is represented as a card
on the board. The card contains the task description, the assignee, the mile-
stone, and the due date. The board is used to track the project’s progress
and to identify the bottlenecks when we set the maximum number of work

https://github.com/users/d-k-ivanov/projects/2/views/4

24 3.4. Kanban Board

items in the specific state. The board is updated daily to reflect the current
state of the project. The board is used to plan the work for the next day
and to identify the tasks that need to be completed.

Figure 3.6 shows the Kanban board for the Ray-Tracing on GPU TFM
project.

Figure 3.6: Kanban Board. The original interactive version of the board is
available at

https://github.com/users/d-k-ivanov/projects/2/views/1.

https://github.com/users/d-k-ivanov/projects/2/views/1

Chapter 4

Development

The project is written in C++ and uses CMake as the build system. All
libraries used in this project are open-source and available on GitHub. The
project is divided into two main parts: the CPU and GPU Ray-Tracing im-
plementations. The CPU implementation is based on the Vulkan API, while
the GPU implementation is based on the Vulkan Ray Tracing extension.

4.1 Third-Party Libraries

We use VCPKG to manage the third-party libraries in the project. It sup-
ports all popular platforms: Windows, Linux, and macOS. The libraries
used in the project are:

GLFW is an Open Source, multi-platform library for OpenGL, OpenGL
ES and Vulkan development on the desktop. It provides a simple API for cre-
ating windows, contexts and surfaces, as well as receiving input and events.
We use it for window creation and input handling.

GLM is a header-only C++ mathematics library for graphics software
based on the GLSL specifications. It is used for the vector and matrix
operations in the project. We use it for the math operations in the project
and to get the general math classes that are compatible with GLSL.

Dear ImGui with Docking is a bloat-free graphical user interface li-
brary for C++. It outputs vertex buffers that you can render in your 3D-
pipeline enabled application. It is fast, portable, renderer agnostic and
self-contained (no external dependencies).

25

26 4.2. Platform

spdlog is a fast C++ logging library. It is header only and we use it in
the project for logging.

stb is a single-file public domain image loader for C/C++. We use it for
storing images and visualising them in Dear ImGui using a Vulkan wrapper.

tinyobjloader is a tiny but powerful single-file object loader written in
C++. We use it to load wavefront object files into the scene to get triangu-
lated surfaces.

Vulkan SDK is the official Vulkan SDK from LunarG. It includes the
Vulkan headers, libraries, tools, and documentation. It is the main library
used in the project for Vulkan API calls.

4.2 Platform

To develop the Ray Tracing using Vulkan, we need to have an RTX-compatible
GPU and driver. The project is developed on a desktop computer with the
following specifications:

• System: XMG Neo 17 (Laptop)

• OS: Windows 10

• CPU: Intel i9-14900 HX

• RAM: 64 GB

• GPU: NVIDIA GeForce RTX 4070 (with Ray Tracing cores)

• GPU Ram: 8 GB

• Compiler: MSVC 19.41 (Visual Studio 2022)

• CMake: 3.30.2

• DirectX Support: 12.1

4.3 Ray-Tracing on CPU

We started our project with the development of a simple Ray-Tracing frame-
work on the CPU. We use the implementation of the ray-tracer described
by Peter Shirley in his book series Ray Tracing in One Weekend [1] [2] [3].

In the next section, we described the relationship between classes and the
most important fields and methods which are used to trace rays and make
decisions about the ray behaviour.

Development 27

The implementation details are published on GitHub:

• Ray-Tracing Frameworks and Visualizers: RayTracingCPU

4.3.1 Class Diagram

On the figure 4.1, we can see the class diagram of the RayTracer on CPU.

Figure 4.1: Ray Tracer on CPU Class Diagram

• Camera: class for the camera in the scene. The camera has a position,
a look-at point, and a field of view. The method GetRay returns
the ray from the camera to the scene, these rays are usually called
≪primary rays≫. The method GetColor returns the colour of the pixel
in the scene, depending on the hit record or background colour if the
ray does miss any object.

• Hittable: abstract class for all objects in the scene. The main method
is Hit which returns the hit record and the material of the object.

• HittableList: class for the list of objects in the scene. We use it to
group some objects. The bounding box of the Hittable List is used to
speed up the Ray-Tracing algorithm in high-density scenes.

https://github.com/d-k-ivanov/ray-tracing/tree/main/RayTracingCPU

28 4.3. Ray-Tracing on CPU

• Material: abstract class for all materials in the scene. The main
method is Scatter which returns the scattered ray and the attenuation
of the ray. Reflected or emitting ray behaviour.

• Ray: class for the ray in the scene. The main method is At which
returns the point on the ray at the given distance.

• HitRecord: class for the hit record of the object in the scene. The
main fields are the hit point, normal, and material. The method Set-
FaceNormal sets the normal of the hit record depending on the ray
direction.

4.3.2 Single-core and Multi-core CPU implementations

The Ray-Tracer on the CPU is implemented in two versions: single-core and
multi-core. The single-core version is a simple implementation of the Ray-
Tracing algorithm that uses a single for loop to iterate through all pixels
in the image and calculate the colour of the pixel. The multi-core version
uses the C++ parallel version std::for each loop to parallelize the rendering
process. The parallel execution evaluates each pixel in a separate thread.
On the algorithm 1, we can see the main rendering loop of CPU Ray-Tracer
implementation. The main difference between the single-core and multi-core
implementations is the execution policy of the ≪for≫ loop. The single-core
version uses the sequential execution policy, while the multi-core version
uses the parallel execution policy.

Algorithm 1 Ray-Tracing on CPU main rendering loop

1: Depth ▷ The maximum depth of the ray
2: Image ▷ The image data array
3: Lights ▷ The list of lights in the scene
4: NumberOfSamples ▷ The number of samples per pixel
5: Objects ▷ The list of objects in the scene
6: ExecutionPolicy ▷ The execution policy for the ”for” for loop: parallel or sequential
7:
8: The iteration through all pixels in the image and calculates the pixel colour. The

execution policy is used to parallelize the rendering process if parallelization is available.
9:
10: The colour sampling is executed in the same thread sequentially, regardless of the

execution policy.
11:
12: for each y in the ImageHeight do
13: for each x in the ImageWidth do
14: for each sample in the NumberOfSamples do
15: Index = y ∗ ImageWidth+ x
16: Image[Index] = RayColor(Ray(x, y), Depth, Objects, Lights)
17: end for
18: end for
19: end for

Development 29

4.3.3 Performance

In the pictures 4.2, 4.3, 4.4, and 4.5, we can see the rendered images with
10, 100, 250, and 500 samples per pixel (SPP) settings respectively. As we
can see, the pictures are very noisy, especially with a low number of SPP.
We need to significantly increase the number of SPP to render an image of
decent quality.

Figure 4.2:
10 Samples Per Pixel

Figure 4.3:
100 Samples Per Pixel

Figure 4.4:
250 Samples Per Pixel

Figure 4.5:
500 Samples Per Pixel

Let’s analise the performance of the Ray Tracer on the CPU with different
samples per pixel (SPP) settings. In the graph 4.6, we can see the rendering
time of the Ray Tracer on CPU with different SPP settings. The values for
GPU are not available yet.

30 4.3. Ray-Tracing on CPU

6 50 100 250 500
6
30
60

158

346

Samples Per Pixel (SPP)

R
en
d
er
in
g
T
im

e
[s
ec
]

Sample Scene 600x600

CPU (1 core)

CPU (32 cores)
GPU - ???

Figure 4.6: Dependency of rendering time on the number of SPP. The
results will be different on different CPU hardware.

The graph indicates that the rendering time linearly depends on the number
of SPPs. The more SPP, the more time is needed to render the image. The
rendering time is also dependent on the number of CPU cores. The more
cores, the less time is required to render the image. Since the dependencies
are linear, we can conclude that moving the computations to the GPU will
significantly reduce the rendering time because the modern RTX GPUs have
much more RT (Ray-Tracing) cores specifically designed for Ray-Tracing
computations.

4.3.4 Conclusion

The RayTracer on CPU is a simple implementation of the Ray-Tracing al-
gorithm. It is not optimized for performance. The main goal of this imple-
mentation is to understand the Ray-Tracing algorithm and the relationship
between classes and methods.

Development 31

Using just the CPU, we can get very realistic images, but the rendering time
is very high. To use the Ray-Tracing algorithm in real-time applications,
we need to solve the performance issue. In figure 4.7, we can see the ren-
dered image with 200’000 samples per pixel. It took 8 hours 44 minutes 53
seconds to render this image using a multicore (32) CPU renderer on Intel
i9-14900HX CPU.

Figure 4.7: 200’000 Samples Per Pixel. Rendering time: 8 hours 44
minutes 53 second. CPU: Intel i9-14900HX (32 cores).

4.4 Ray-Tracing on GPU

After we created the Ray-Tracing framework on the CPU, we can now port it
to the GPU. The GPU implementation is based on the Vulkan Ray Tracing
extension. The Vulkan Ray Tracing extension is a set of functions and
structures that allow us to create and manage Ray-Tracing pipelines on the
NVIDIA RTX GPUs.

The implementation details are published on GitHub:

32 4.4. Ray-Tracing on GPU

• Ray-Tracing Frameworks and Visualizers: RayTracingGPU

4.4.1 Five new shader types

In 2018, NVIDIA and Microsoft introduced the new DirectX Ray Tracing
API (DXR) for ray tracing on the GPU, which was in 2020 adopted by
Khronos Group in Vulkan as VK KHR ray tracing extension. At a high
level, DXR introduced three new concepts:

• Ray Tracing Pipeline State Objects: contain the compiled shader
code that gets executed during a ray tracing dispatch.

• Acceleration Structures: contain the data structures used to accel-
erate ray tracing itself, i.e. the search for intersections between rays
and scene geometry.

• Shader Tables: define the relationship between ray tracing shaders,
their resources (textures, constants, etc), and scene geometry.

We’re going to concentrate on the shader part. In the figure 4.8 we can see
the schematic representation of the RTX execution model.

• Ray Generation shader defines how to start ray tracing. It’s called
the entry point to the ray tracer to generate the initial set of primary
rays to be traced. The rays originate at the observer position according
to the current camera settings.

• Any Hit shader runs once per any intersection found between a ray
and an object, regardless of whether this intersection is the closest to
the ray origin or not. It’s used to determine transparency. It is called
when the Intersection Shader finds a hit. The Any Hit shader decides
if that intersection should be accepted or ignored. We’re not going to
use it here.

• Intersection shader defines how rays intersect geometry. When using
non-triangle geometry, an intersection shader is required to compute
ray intersections with the custom primitives. This isn’t necessary for
triangle meshes, as the ray-triangle intersection test is done in hard-
ware. We will use it to detect intersections for procedural spheres in
the scene.

• Miss shader defines behaviour when rays miss geometry. Usually, it
returns the background colour or black colour if we don’t have any
background.

• Close Hit shader runs once per ray to shade the final (closest) hit. It’s
called with the information about the hit that happened closest to the

https://github.com/d-k-ivanov/ray-tracing/tree/main/RayTracingGPU

Development 33

viewer. Typically, lighting is done here, or firing off new rays to handle
shadows, reflections, and refractions. This is where we calculate the
colour of the pixel.

Ray Generation

Acceleration
Structure
Traversal

Any Hit

Intersection

Hit?

Miss Close Hit

No Yes

Figure 4.8: Five new Ray-Tracing shader types.

4.4.2 Mapping CPU implementation to new shader types

As we mentioned in the previous section, we’re going to use 4 of 5 (we
skip any hit because we don’t have transparency in our scene) new shader
types in our implementation. In the figure 4.9 we marked method which we
implement in the ray tracing shaders.

Our camera class has two methods: GetRay and GetColor. We’re going to
use GetRay in the Ray Generation shader to generate the initial set of rays
to be traced. The GetColor method will be used in the Close Hit shader
to calculate the colour of the pixel, and in the Miss shader to define the
behaviour when rays miss geometry.

34 4.4. Ray-Tracing on GPU

Figure 4.9: Ray Tracer on CPU Class Diagram with marked methods for
GPU implementation

4.4.3 Vulkan Ray Tracing Pipeline

To build a ray tracing pipeline in Vulkan, we need to create a ray tracing
pipeline object. The ray tracing pipeline object is created by calling the
vkCreateRayTracingPipelinesKHR function. The function takes a logical
device, a pipeline cache, the number of ray tracing pipeline objects to create,
an array of ray tracing pipeline create info structures, and a pointer to an
array of ray tracing pipeline objects. The ray tracing pipeline creates the
info structure that is used to specify the shader groups, shader stages, the
maximum recursion depth, and the layout of the pipeline.

We need to create the following shader groups:

• Ray Generation Group. The general type of shader group defines
the ray generation shader. The ray generation shader is the entry point
to the ray tracer to generate the initial set of rays to be traced. The
shader stage is VK SHADER STAGE RAYGEN BIT KHR, in terms
of Vulkan bits, the shader file has the name RayTracing.rgen in the
project. It also declares its access to the ray tracing output buffer
image, and the ray tracing acceleration structure topLevelAS, bound

Development 35

as an accelerationStructureEXT.

• Miss Group. Similar to the ray generation group, the general type
of shader group defines the miss shader. The miss shader defines be-
haviour when rays miss geometry. The shader stage is
VK SHADER STAGE MISS BIT KHR, and the shader file has the
name RayTracing.rmiss in the project. It’s the simplest shader which
returns the background colour or black colour if the scene doesn’t have
any background, in other words, no sky. It will write a constant colour
into the ray payload rayPayloadInEXT.

• Close Hit Group for Triangular Data. The special type of shader
group defines the closest hit shader for triangular data. The closest
hit shader runs once per ray to shade the final hit. The shader stage is
VK SHADER STAGE CLOSEST HIT BIT KHR, and the shader file
has the name RayTracing.rchit in the project. It takes the colour prop-
erties of the material of the object, physical properties of the object
(e.g. scattering or refraction), and calculates the resultant colour of
the pixel. This shader is used for triangular data, i.e. loaded meshes.
As the miss shader, it takes the ray payload rayPayloadInEXT. It also
has a second input defining the intersection attributes hitAttributeEXT
(i.e. the barycentric coordinates).

• Close Hit Group for Non-Triangular Data. As the previous
group, the special type of shader group defines the closest hit shader
for non-triangular data, in other words for objects defined procedurally
(mathematically). Similar to the shader for triangular data, it calcu-
lates the resultant colour of the pixel and uses the same shader stage
VK SHADER STAGE CLOSEST HIT BIT KHR. The main difference
is that we need to define the intersection shader for objects of specific
shape, i.e. sphere, cube, etc. In our case, we’re going to use the sphere
object. The shader files have the name RayTracing.Procedural.rchit,
for hit shader, and RayTracing.Procedural.rint for intersection shader.
The hit shader almost repeats the hit shader for triangular data,
with additions for the specifics of the object (radius and centre of
the sphere). The intersection shader is used to calculate the intersec-
tion of the ray with the object based on the mathematical formula of
the object. It also takes the ray payload rayPayloadInEXT and has
a second input defining the intersection attributes hitAttributeEXT in
both, rchit and rint, shaders.

4.5 Light Sampling

After the initial; implementation of the Ray-Tracing framework GPU, we
can start implementing the light sampling algorithms. The light sampling

36 4.5. Light Sampling

is a crucial part of the Ray-Tracing algorithm, as it allows us to calculate
the direct light contribution to the scene. The direct light contribution is
the light that comes directly from the light sources in the scene. The direct
light contribution is the most significant part of the light in the scene, and
it’s essential to calculate it correctly to get a realistic image.

The first concept we need to introduce is the probability density functions
(PDF). The PDF is a function that describes the probability of a random
variable taking a specific value. In the context of Ray-Tracing, the PDF is
used to describe the likelihood of a light ray hitting a specific point on the
object’s surface. The PDF is used to calculate the direct light contribution
to the scene. The PDF is calculated using the light sampling algorithms.

To introduce the light sampling algorithms, we need to improve the following
shaders and classes:

• Scatter functions. We need to change our scattering functions to
support the light sampling. In the lambertian scattering model, we
need to calculate the scattering PDF and pass the PDF value from
the emitting geometry.

• Ray Generation shader. The main loop of the Ray-Tracing algo-
rithm is located in this shader. We need to change it to process PDF
values from the scattering functions and geometries.

• Close Hit shaders, for procedural and triangle meshes. These shaders
are used to calculate the PDF value for a specific emitting light source.
In the case of procedural spheres, we need to calculate the PDF value
for the spherical surface. In the case of triangle meshes, we need to
calculate the PDF value for the triangle or we may use algorithms for
rectangle surfaces.

The basic implementation of the light sampling algorithms was taken from
the Ray Tracing: The Rest of Your Life book by Peter Shirley [3]. We
added the same implementations of the light sampling algorithms to the Ray-
Tracing framework on the CPU and GPU. Additionally, on the Ray-Tracing
for CPU was added the implementation of the light sampling algorithm
presented [7] by James Arvo.

In the pictures 4.10 and 4.11 we can see the comparison of the scene rendered
random scattering on a hemisphere with and without PDF distribution on
the Ray-Tracing framework for GPU with two light sampling algorithms:
solid angle of the sphere and stratified sampling of spherical triangles [7] on
the same scene. The scene in the picture 4.11 appears lighter in the parts
where the light sources are located, and the shadows are less pronounced.

Development 37

Figure 4.10: Test scene rendered using random scattering without PDF.

Figure 4.11: Test scene rendered using random scattering with PDF.

Chapter 5

Results and Discussion

In this chapter, we will compare rendering time and quality on CPU and
GPU. The section 5.1 shows the quality of the ray-traced images rendered
by CPU and GPU. The section 5.2 shows the performance comparison of the
Ray-Tracing on CPU and GPU. We used the Cornell Box with multiple light
sources as the test scene. The resolution is 600x600 pixels. SPP numbers
are 10, 50, 100, 250, 500, 1000, 2000, 5000, 10000, and 20000.

In figure 5.1 the scene parameters are shown with the resultant image ren-
dered by the Ray-Tracing framework using 200’000 sample per pixel.

Figure 5.1: Cornell Box with multiple light sources demo scene.

39

40 5.1. CPU vs. GPU Ray-Tracing Image Quality

5.1 CPU vs. GPU Ray-Tracing Image Quality

In the tables 5.1, 5.2, and 5.3, we can see the quality of the ray-traced images
rendered by CPU and GPU. The quality of the images rendered by the GPU
is comparable with the quality of the images rendered by the CPU, so ray
tracing on the GPU doesn’t affect the quality of the images too much.

There is a noticeable difference in refracted light, but it’s because the CPU
implementation uses the probability density function (PDF) while the GPU
implementation doesn’t. This doesn’t affect the original goal of the project,
which is to compare the generic performance of the ray tracing on the CPU
and GPU.

SPP CPU GPU

10

100

Table 5.1: The qualty of the ray traced images rendered by CPU and
GPU (part 1).

Results and Discussion 41

SPP CPU GPU

250

500

1000

2000

Table 5.2: The qualty of the ray traced images rendered by CPU and
GPU (part 2).

42 5.1. CPU vs. GPU Ray-Tracing Image Quality

SPP CPU GPU

5000

10000

20000

Table 5.3: The qualty of the ray traced images rendered by CPU and
GPU (part 3).

Results and Discussion 43

5.2 CPU vs. GPU Ray-Tracing Performance

The table 5.4 shows the performance comparison of the Ray-Tracing on CPU
and GPU. The rendering time of the Ray Tracer on the GPU is significantly
lower than the rendering time of the Ray Tracer on the CPU. The GPU is
faster than the CPU in all cases and allows us to try theories much faster
than ray tracing on the CPU.

Samples per pixel Rendering Time CPU Rendering Time GPU

10 2′000 ms 10 ms
50 9′000 ms 44 ms
100 19′000 ms 83 ms
250 42′000 ms 250 ms
500 94′000 ms 546 ms
1000 146′000 ms 1′092 ms
2000 358′000 ms 2′310 ms
5000 888′000 ms 5′730 ms
7500 1′313′000 ms 7′900 ms
10000 1′617′000 ms 11′160 ms
15000 2′370′000 ms 15′800 ms
20000 3′311′000 ms 20′440 ms

Table 5.4: Ray Tracing performance comparison.

According to our evaluation, we can reach a nearly real-time rendering ex-
perience, 25 frames per second, using around 25–50 samples per pixel, de-
pending on the scene complexity. But using such a few samples per pixel,
we can’t produce images of good quality and completely noiseless. Using
a larger number of samples per pixel allows us to produce perfect realistic
images spending much less time on rendering, but the usability, even on
GPU, is still non-real-time. At that point, we need to start using denoising
algorithms and sample accumulation. This would allow us to improve the
quality of the resultant image without noticeable performance loss, using
some quality trade-offs.

44 5.3. Project Implementation and Availability

The graph 5.2 visualizes the dependency of rendering time on the number
of samples per pixel.

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
0

1,000

2,000

3,000

Samples Per Pixel (SPP)

R
en
d
er
in
g
T
im

e
[s
ec
]

CPU i9-14900HX (32 cores)

GPU - NVIDIA RTX 4070

Figure 5.2: Dependency of rendering time on the number of SPP. Sample
Scene 600× 600. Ray-Tracing depth 50 hits.

On the graph 5.2 we can see the immediate drop in rendering time on the
GPU for the same number of samples per pixel. But still, we can see that
the rendering time on the GPU grows linearly with the number of SPP, so
for the very high number of SPP, we will still struggle with the rendering
time on the GPU. Improvements on the hardware side can help to reduce
the rendering time even more, but it is not a ”silver bullet” for the high
number of SPPs coupled with very complex scenes.

5.3 Project Implementation and Availability

The source code of the Ray-Tracing frameworks on CPU and GPU is avail-
able on GitHub under the Open Source MIT Licence. The project is com-
pilable and runnable on Windows, Linux, and macOS using CMake and
VCPKG as the package manager. The project is well-organized and follows
the implementation of the Ray-Tracing in One Weekend book series by Peter
Shirley [1] [2] [3].

The CPU implementation can be run on modern CPU hardware without
any limitations. The GPU implementation requires an RTX-compatible
GPU and driver. The appendix B (Usage Instructions) describes the basic
features of the Ray-Tracing frameworks and how to run them. The GPU
implementation is memory-sensitive, so the resolution and the number of

Results and Discussion 45

samples per pixel in one run should be adjusted according to the available
GPU memory. The sample accumulation mitigates the issues with memory.

The appendix C provides the full text of the MIT License under which the
project is published. Anyone can use the project for any purpose, includ-
ing commercial purposes, without any limitations. In case of any issues or
questions, the author can be contacted via email d.k.ivanov (at) live.com.

The source code and the project related artefacts are available at the fol-
lowing links:

• Ray-Tracing Framework source code

• Ray-Tracing Framework demonstration video

• Ray-Tracing on GPU GitHub project

• Ray-Tracing on GPU project roadmap

https://github.com/d-k-ivanov/ray-tracing
https://www.youtube.com/watch?v=koZc1S7LPkQ
https://github.com/users/d-k-ivanov/projects/2
https://github.com/users/d-k-ivanov/projects/2/views/4

Chapter 6

Conclusions and future work

In this last chapter, we will discuss the conclusions and results reached, as
well as the potential future improvements that could be made in the projects
to make them more mature and usable.

6.1 Conclusions

As a result of our work, we created two independent software systems for
testing various Ray-Tracing technologies. The first system is a CPU-based
Ray-Tracing framework, and the second system is a GPU-based Ray-Tracing
framework using Vulkan Ray-Tracing Extensions. The predictions we made
about potential improvements in the ray tracing performance were confirmed
by the results of our work. The GPU-based ray tracing framework is sig-
nificantly faster than the CPU-based ray tracing framework, allowing for
real-time rendering of complex 3D scenes.

We figured out that the quality of the ray-traced images rendered by the
GPU is comparable with the quality of the images rendered by the CPU.
The differences in the current project are noticeable, but the new RTX Ray-
Tracing technologies allow porting almost any Ray-Tracing algorithm to the
GPU with a significant performance improvement to specifically designed
Ray-Tracing shaders.

During our work, we discovered that the GPU-based Ray-Tracing is very
mature technology that can be used in real-world light simulations and col-
lision detection systems.

47

48 6.2. Future Work

6.2 Future Work

The present work opens ways to further development of the presented Ray-
Tracing frameworks and additional features. The following list presents some
of the future work that can be done to improve the Ray-Tracing evaluation
framework.

Further development plans:

1. Extend the Ray-Tracing framework with more functionality, including
UI and better OOP structure.

2. Merge the Ray-Tracing on CPU framework with the Ray-Tracing on
GPU framework and refactor architecture of shader functions.

3. Enhance robustness and convergence rates of stratified sampling algo-
rithms.

4. More shapes in sampling algorithms and scene setups.

5. Add ray tracing acceleration structures to support sample grouping in
the world scene.

6. Add real-time denoisers support.

7. Fallback to NVIDIA OptiX older structures to support older GPU
hardware.

8. Add support for spatio-temporal resampling for real-time ray tracing
(RTX Only).

9. Add support for Deep Learning Super Sampling (DLSS) for real-time
ray tracing (RTX Only).

10. Split the Ray-Tracing evaluation framework into modules for partial
usage in education.

11. Add Material Definition Language (MDL) support and interactive ma-
terial selection.

12. Add interactive mode to adjust the camera position, viewport config-
uration, and multiple viewports.

13. Add interacrtive scene editor to add, remove, and modify the scene
objects.

14. Summarize the work done into an educational step-by-step workflow.

15. Integrate concepts from Physically Based Rendering (PBR) [30] into
the Ray-Tracing evaluation framework.

Bibliography

[1] P. Shirley, T. D. Black, and S. Hollasch, “Ray tracing in
one weekend,” August 2023. https://raytracing.github.io/books/

RayTracingInOneWeekend.html.

[2] P. Shirley, T. D. Black, and S. Hollasch, “Ray tracing: The next week,” August
2023. https://raytracing.github.io/books/RayTracingTheNextWeek.

html.

[3] P. Shirley, T. D. Black, and S. Hollasch, “Ray tracing: The rest
of your life,” August 2023. https://raytracing.github.io/books/

RayTracingTheRestOfYourLife.html.

[4] A. Appel, “Some techniques for shading machine renderings of solids,” Pro-
ceedings of the April 30–May 2, 1968, Spring Joint Computer Conference on
- AFIPS ’68 (Spring), 1968.

[5] T. Whitted, “An improved illumination model for shaded display,” Commu-
nications of the ACM, vol. 23, pp. 343–349, 1980.

[6] P. E. Moreau and P. Clarberg, “Importance sampling of many lights on the
gpu,” Ray Tracing Gems, pp. 255–283, 2019.

[7] J. Arvo, “Stratified sampling of spherical triangles,” Proceedings of the 22nd
Annual Conference on Computer Graphics and Interactive Techniques - SIG-
GRAPH ’95, 1995.

[8] C. P. Ureña, M. Fajardo, and A. King, “An area-preserving parametrization
for spherical rectangles,” Computer Graphics Forum, vol. 32, pp. 59–66, 2013.

[9] C. P. Ureña and I. Georgiev, “Stratified sampling of projected spherical caps,”
Computer Graphics Forum, vol. 37, pp. 13–20, 2018.

[10] J. Peddie, Ray Tracing: A Tool for All. Cham: Springer International Pub-
lishing, 2019.

[11] E. Haines and T. Akenine-Möller, eds., Ray Tracing Gems: High-Quality and
Real-Time Rendering with DXR and Other APIs. Berkeley, CA: Apress, 2019.

[12] E. Haines, Essential ray tracing algorithms, pp. 33–77. GBR: Academic Press
Ltd., July 1989.

49

https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://raytracing.github.io/books/RayTracingTheRestOfYourLife.html
https://raytracing.github.io/books/RayTracingTheRestOfYourLife.html

50 BIBLIOGRAPHY

[13] G. Szauer, Game Physics Cookbook. UK: Packt Publishing Ltd., 2017.

[14] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersec-
tion,” Journal of Graphics Tools, vol. 2, p. 21–28, Jan. 1997.

[15] D. Baldwin and M. Weber, “Fast ray-triangle intersections by coordinate
transformation,” Journal of Computer Graphics Techniques (JCGT), vol. 5,
p. 39–49, Sept. 2016.

[16] D. Kalra and A. H. Barr, “Guaranteed ray intersections with implicit sur-
faces,” Proceedings of the 16th annual conference on Computer graphics and
interactive techniques, p. 297–306, July 1989.

[17] J. Arvo and D. Kirk, A survey of ray tracing acceleration techniques,
p. 201–262. GBR: Academic Press Ltd., July 1989.

[18] D. Ivanov, “Ray-tracing framework,” September 2024. https://github.com/
d-k-ivanov/ray-tracing.

[19] W. Barth and W. Stürzlinger, “Efficient ray tracing for bezier and b-spline
surfaces,” Computers and Graphics, vol. 17, p. 423–430, July 1993.

[20] A. Reshetov, Cool Patches: A Geometric Approach to Ray/Bilinear Patch
Intersections, p. 95–109. Berkeley, CA: Apress, 2019.

[21] J. T. Kajiya, “The rendering equation,” ACM SIGGRAPH Computer Graph-
ics, vol. 20, pp. 143–150, August 1986.

[22] E. Veach and L. J. Guibas, “Optimally combining sampling techniques for
monte carlo rendering,” Proceedings of the 22nd Annual Conference on Com-
puter Graphics and Interactive Techniques - SIGGRAPH ’95, 1995.

[23] P. Shirley, C. Wang, and K. Zimmerman, “Monte carlo techniques for direct
lighting calculations,” ACM Transactions on Graphics, vol. 15, pp. 1–36, 1996.

[24] P. Martinsen, J. Blaschke, R. Künnemeyer, and R. B. Jordan, “Accelerat-
ing monte carlo simulations with an nvidia® graphics processor,” Computer
Physics Communications, vol. 180, pp. 1983–1989, 2009.

[25] P. Shirley, “Ray tracing,” in ACM SIGGRAPH 2005 Courses, SIGGRAPH
’05, (New York, NY, USA), pp. 2–es, Association for Computing Machinery,
July 2005.

[26] M. Christen, “Ray tracing on gpu,” Master’s thesis, Univ. of Applied Sciences
Basel (FHBB), Jan, vol. 19, 2005.

[27] S. G. Parker, H. Friedrich, D. Luebke, K. Morley, J. Bigler, J. Hoberock,
D. McAllister, A. Robison, A. Dietrich, G. Humphreys, M. McGuire, and
M. Stich, “Gpu ray tracing,” Communications of the ACM, vol. 56, pp. 93–
101, May 2013.

[28] D. V. Antwerpen, “Unbiased physically based rendering on the gpu,” Master’s
thesis, June 2011.

https://github.com/d-k-ivanov/ray-tracing
https://github.com/d-k-ivanov/ray-tracing

BIBLIOGRAPHY 51

[29] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful: wavefront
path tracing on gpus,” in Proceedings of the 5th High-Performance Graphics
Conference, HPG ’13, (New York, NY, USA), p. 137–143, Association for
Computing Machinery, July 2013.

[30] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From
Theory to Implementation. Cambridge, MA, USA: The MIT Press, 4th ed.,
2023.

[31] A. Knoll, R. K. Morley, I. Wald, N. Leaf, and P. Messmer, Efficient Particle
Volume Splatting in a Ray Tracer, pp. 533–541. Berkeley, CA: Apress, 2019.

[32] D. Meister, J. Boksansky, M. Guthe, and J. Bittner, “On ray reordering tech-
niques for faster gpu ray tracing,” in Symposium on Interactive 3D Graphics
and Games, I3D’20, (New York, NY, USA), pp. 1–9, Association for Comput-
ing Machinery, May 2020.

Appendix A

Compilation

A.1 Compilation on Windows

• Clone the project from
https://github.com/d-k-ivanov/ray-tracing

• Install Visual Studio from
https://visualstudio.microsoft.com/downloads/

• Install Install Vulkan SDK from
https://vulkan.lunarg.com/sdk/home

• Install VCPKG from
https://vcpkg.io/en/getting-started.html

• Add VCPKG folder to PATH:

– Option 1:
Command Line tools

1 REM Assuming that VCPKG cloned and bootstrapped in c:\src\vcpkg

2 REM setx for the global environment, set for the local

3 setx PATH c:\src\vcpkg;%PATH%

4 set PATH c:\src\vcpkg;%PATH%

– Option 2:
PowerShell

1 # Assuming that VCPKG cloned and bootstrapped in c:\src\vcpkg

2 [Environment]::SetEnvironmentVariable("PATH", "c:\src\vcpkg;${PATH}", "Machine")

3 Set-Item -Path Env:PATH -Value "c:\src\vcpkg;${PATH}"

– Option 3:
Manually in System Properties → Environment Variables

53

https://github.com/d-k-ivanov/ray-tracing
https://visualstudio.microsoft.com/downloads/
https://vulkan.lunarg.com/sdk/home
https://vcpkg.io/en/getting-started.html

54 A.2. Compilation on Linux

• Navigate to the folder with the project

• Run build.bat

• Open ray-tracing-gpu.sln in Visual Studio to work with the source code

• Run Ray-Tracin on CPU Framework
build/RayTracingCPU/Release/ray-tracing-cpu.exe

• Run Ray-Tracin on GPU Framework
build/RayTracingGPU/Release/ray-tracing-gpu.exe

A.2 Compilation on Linux

• Clone the project from
https://github.com/d-k-ivanov/ray-tracing

• Install Install Vulkan SDK from
https://vulkan.lunarg.com/sdk/home

• Install VCPKG from
https://vcpkg.io/en/getting-started.html

• Add VCPKG folder to System PATH

– Option 1:
Temporary local environment

1 # Assuming that VCPKG cloned and bootstrapped in ~/vcpkg

2 export PATH="~/vcpkg;${PATH}"

– Option 2:
Local environment and Bash profile

1 # Assuming that VCPKG cloned and bootstrapped in ~/vcpkg

2 export PATH="~/vcpkg;${PATH}"

3 echo 'export PATH="~/vcpkg;${PATH}"' >> ~/.bashrc

• Navigate to the folder with the project

• Run build.sh

• Run Ray-Tracin on CPU Framework
build/RayTracingCPU/Release/ray-tracing-cpu

• Run Ray-Tracin on GPU Framework
build/RayTracingGPU/Release/ray-tracing-gpu

Important Note: the VCPKG requests installation of additional pack-
ages.

https://github.com/d-k-ivanov/ray-tracing
https://vulkan.lunarg.com/sdk/home
https://vcpkg.io/en/getting-started.html

Appendix B

Usage Instructions

B.1 Ray-Tracing Framework on CPU

The figure B.1 presents the CPU version of the Ray-Tracing framework.
The compiled application can be executed in the local environment without
additional configuration.

Figure B.1: The initial implementation of the Ray-Tracing framework on
CPU.

55

56 B.1. Ray-Tracing Framework on CPU

UI Parameters The application provides constrols to change the colour
mode (dark or light) and the UI font.

Rendering Parameters is the main control panel for the rendering pro-
cess. The following parameters can be adjusted:

• Scene. Selection of the scene to render. The application provides the
following scenes:

– RTWeekOneDefaultScene: Ray Tracing in one weekend default
scene.

– RTWeekOneTestScene: Ray Tracing in one weekend test scene.

– RTWeekOneFinalScene: Ray Tracing in one weekend final scene.

– RTWeekNextDefaultScene: Ray Tracing next week default scene.

– RTWeekNextRandomSpheresScene: Ray Tracing next week ran-
dom spheres scene.

– RTWeekNextTwoSpheresScene: Ray Tracing next week two spheres
scene.

– RTWeekNextEarthScene: Ray Tracing next week earth scene.

– RTWeekNextTwoPerlinSpheresScene: Ray Tracing next week two
perlin spheres scene.

– RTWeekNextQuadsScene: Ray Tracing next week quads scene.

– RTWeekNextSimpleLightScene: Ray Tracing next week simple
light scene.

– RTWeekNextCornellBoxScene: Ray Tracing next week Cornell-
Box scene.

– RTWeekNextCornellSmokeScene: Ray Tracing next week Cornell
Box with smoke scene.

– RTWeekNextFinalScene: Ray Tracing next week final scene.

– RTWeekRestACornellBoxScene: Ray Tracing rest of your life
Cornel lBox scene.

– RTWeekRestBCornellBoxMirrorScene: Ray Tracing rest of your
life Cornell Box with mirror scene.

– RTWeekRestCCornellBoxGlassScene: Ray Tracing rest of your
life Cornell Box with glass scene.

– CornellBoxLightsScene: Cornell Box with multiple light sources
scene.

– WhiteSperesScene: Scene with multiple white spheres to show
BVH performance.

• Number samples per pixel. Imput field to set the number of sam-
ples per pixel.

Usage Instructions 57

• Ray-Tracing depth. Imput field to set the Ray-Tracing depth.

• Aspect ratio. Imput field to set the aspect ratio. The default value
is 1.00.

• Image width. Imput field to set the image width. The default value
is 600.

• Rendering engine. Selection of the rendering engine. The applica-
tion provides the following rendering engines:

– Single Core CPU.

– Multi Core CPU.

– GPU. Not working yet, reserved for future implementation.

• Pixel sampling type. Selection of the pixel sampling type. The
application provides the following pixel sampling types:

– Normal. The default pixel sampling type without any additional
sampling or random distribution improvements.

– Accumulation. The same as the Normal pixel sampling type,
with the accumulation of the samples.

– Stratified. The pixel sampling type with stratified sampling.

• Probability density function. Flag to enable the probability den-
sity function (PDF) for the pixel sampling type. The default value is
true.

• Unidirectional light. Flag to enable the unidirectional light. The
default value is true.

• Loop rendering. Flag to enable the loop rendering. The default
value is false. Usefult for accumulation rendering.

Additionally, the application provides the rendering time for the last image.

B.2 Ray-Tracing Framework on GPU

The figure B.2 presents the GPU version of the Ray-Tracing framework. The
compiled application can be executed in the local environment without ad-
ditional configuration. The only requirement is the GPU with Ray-Tracing
support (RTX): NVIDIA GeForce RTX 20xx or newer otherwise the appli-
cation will not start.

58 B.2. Ray-Tracing Framework on GPU

Figure B.2: The initial implementation of the Ray-Tracing framework on
GPU.

UI Parameters The application provides constrols to change the colour
mode (dark or light) and the UI font.

Scene Selection of the scene to render. The application provides the fol-
lowing scenes:

• Cube and Spheres: Scene with a cube and multiple spheres.

• Cornell Box Lights: Cornell Box with multiple light sources scene.

• Ray Tracing in One Weekend: Ray Tracing in One Weekend final
scene.

• Planets in One Weekend: Ray Tracing in One Weekend final scene
with planetary textures for larger spheres.

• Lucy in One Weekend: Ray Tracing in one weekend final scene with
Lucy model instead of larger spheres.

• Cornell Box: Cornell Box scene.

• Cornell Box and Lucy: Cornell Box scene with Lucy model.

Usage Instructions 59

Ray Tracing . The application provides the following parameters to ad-
just the Ray-Tracing process:

• Enable ray tracing. Flag to enable the ray tracing. The default
value is true. If false, the application will only render models on the
scene using the rasterization.

• Accumulate rays between frames. Flag to enable the accumula-
tion of samples of rays between frames. The default value is true.

• Samples. The number of samples per pixel. The default value is 25.

• Depth. The Ray-Tracing depth. The default value is 50.

Camera . The application provides parameters to adjust the camera:
The field of view, Aperture, and Focus.

Profiler . The application provides the parameters to adjust and enable
heatmaps.

Figure B.3: Heatmaps for Cornell Box with multiple light sources scene.

Appendix C

License

The project is published under the MIT License. Free to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software.
The only requirement is to include the license and copyright notice.

MIT License

Copyright (c) 2023 Dmitry Ivanov

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

61

	Contents
	Introduction
	Motivation
	Objectives
	Structure

	State of Art
	Ray-Tracing
	Ray-Tracing Acceleration
	Monte-Carlo Methods
	Stratified Sampling
	Moving Ray Tracing to GPU

	Methodology and Planning
	Research
	Project Management
	Software Development Methodology
	Milestone Schedule

	Version Control and GitHub platfporm
	Kanban Board

	Development
	Third-Party Libraries
	Platform
	Ray-Tracing on CPU
	Class Diagram
	Single-core and Multi-core CPU implementations
	Performance
	Conclusion

	Ray-Tracing on GPU
	Five new shader types
	Mapping CPU implementation to new shader types
	Vulkan Ray Tracing Pipeline

	Light Sampling

	Results and Discussion
	CPU vs. GPU Ray-Tracing Image Quality
	CPU vs. GPU Ray-Tracing Performance
	Project Implementation and Availability

	Conclusions and future work
	Conclusions
	Future Work

	Bibliography
	Compilation
	Compilation on Windows
	Compilation on Linux

	Usage Instructions
	Ray-Tracing Framework on CPU
	Ray-Tracing Framework on GPU

	License

