{ "cells": [ { "cell_type": "markdown", "id": "8c28a85d", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# 实战Kaggle比赛:狗的品种识别(ImageNet Dogs)\n", "\n", "比赛网址是https://www.kaggle.com/c/dog-breed-identification" ] }, { "cell_type": "code", "execution_count": 1, "id": "b6e1a2a2", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:14.555794Z", "iopub.status.busy": "2023-08-18T06:58:14.555246Z", "iopub.status.idle": "2023-08-18T06:58:16.563976Z", "shell.execute_reply": "2023-08-18T06:58:16.563095Z" }, "origin_pos": 2, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "import os\n", "import torch\n", "import torchvision\n", "from torch import nn\n", "from d2l import torch as d2l" ] }, { "cell_type": "markdown", "id": "19c4ff5d", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "我们提供完整数据集的小规模样本" ] }, { "cell_type": "code", "execution_count": 2, "id": "9ecb1309", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:16.567802Z", "iopub.status.busy": "2023-08-18T06:58:16.567412Z", "iopub.status.idle": "2023-08-18T06:58:17.348683Z", "shell.execute_reply": "2023-08-18T06:58:17.347865Z" }, "origin_pos": 5, "tab": [ "pytorch" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading ../data/kaggle_dog_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/kaggle_dog_tiny.zip...\n" ] } ], "source": [ "d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',\n", " '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')\n", "\n", "demo = True\n", "if demo:\n", " data_dir = d2l.download_extract('dog_tiny')\n", "else:\n", " data_dir = os.path.join('..', 'data', 'dog-breed-identification')" ] }, { "cell_type": "markdown", "id": "5dc5441a", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "整理数据集" ] }, { "cell_type": "code", "execution_count": 3, "id": "3b420853", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.352573Z", "iopub.status.busy": "2023-08-18T06:58:17.352101Z", "iopub.status.idle": "2023-08-18T06:58:17.685237Z", "shell.execute_reply": "2023-08-18T06:58:17.683473Z" }, "origin_pos": 7, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "def reorg_dog_data(data_dir, valid_ratio):\n", " labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))\n", " d2l.reorg_train_valid(data_dir, labels, valid_ratio)\n", " d2l.reorg_test(data_dir)\n", "\n", "\n", "batch_size = 32 if demo else 128\n", "valid_ratio = 0.1\n", "reorg_dog_data(data_dir, valid_ratio)" ] }, { "cell_type": "markdown", "id": "4b2671b6", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "图像增广" ] }, { "cell_type": "code", "execution_count": 5, "id": "0b467084", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.704258Z", "iopub.status.busy": "2023-08-18T06:58:17.703547Z", "iopub.status.idle": "2023-08-18T06:58:17.710398Z", "shell.execute_reply": "2023-08-18T06:58:17.709360Z" }, "origin_pos": 14, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "transform_train = torchvision.transforms.Compose([\n", " torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),\n", " ratio=(3.0/4.0, 4.0/3.0)),\n", " torchvision.transforms.RandomHorizontalFlip(),\n", " torchvision.transforms.ColorJitter(brightness=0.4,\n", " contrast=0.4,\n", " saturation=0.4),\n", " torchvision.transforms.ToTensor(),\n", " torchvision.transforms.Normalize([0.485, 0.456, 0.406],\n", " [0.229, 0.224, 0.225])])\n", "\n", "transform_test = torchvision.transforms.Compose([\n", " torchvision.transforms.Resize(256),\n", " torchvision.transforms.CenterCrop(224),\n", " torchvision.transforms.ToTensor(),\n", " torchvision.transforms.Normalize([0.485, 0.456, 0.406],\n", " [0.229, 0.224, 0.225])])" ] }, { "cell_type": "markdown", "id": "9a8f744d", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "读取数据集" ] }, { "cell_type": "code", "execution_count": 7, "id": "8ef84d02", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.756485Z", "iopub.status.busy": "2023-08-18T06:58:17.755671Z", "iopub.status.idle": "2023-08-18T06:58:17.764122Z", "shell.execute_reply": "2023-08-18T06:58:17.762916Z" }, "origin_pos": 22, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(\n", " os.path.join(data_dir, 'train_valid_test', folder),\n", " transform=transform_train) for folder in ['train', 'train_valid']]\n", "\n", "valid_ds, test_ds = [torchvision.datasets.ImageFolder(\n", " os.path.join(data_dir, 'train_valid_test', folder),\n", " transform=transform_test) for folder in ['valid', 'test']]\n", "\n", "train_iter, train_valid_iter = [torch.utils.data.DataLoader(\n", " dataset, batch_size, shuffle=True, drop_last=True)\n", " for dataset in (train_ds, train_valid_ds)]\n", "\n", "valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,\n", " drop_last=True)\n", "\n", "test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,\n", " drop_last=False)" ] }, { "cell_type": "markdown", "id": "b773e0c9", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "微调预训练模型" ] }, { "cell_type": "code", "execution_count": 8, "id": "1fd0cd74", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.769780Z", "iopub.status.busy": "2023-08-18T06:58:17.768697Z", "iopub.status.idle": "2023-08-18T06:58:17.777622Z", "shell.execute_reply": "2023-08-18T06:58:17.776303Z" }, "origin_pos": 26, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "def get_net(devices):\n", " finetune_net = nn.Sequential()\n", " finetune_net.features = torchvision.models.resnet34(pretrained=True)\n", " finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),\n", " nn.ReLU(),\n", " nn.Linear(256, 120))\n", " finetune_net = finetune_net.to(devices[0])\n", " for param in finetune_net.features.parameters():\n", " param.requires_grad = False\n", " return finetune_net" ] }, { "cell_type": "markdown", "id": "8e5c7a5f", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "计算损失" ] }, { "cell_type": "code", "execution_count": 9, "id": "d6936a15", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.783286Z", "iopub.status.busy": "2023-08-18T06:58:17.782296Z", "iopub.status.idle": "2023-08-18T06:58:17.791061Z", "shell.execute_reply": "2023-08-18T06:58:17.789830Z" }, "origin_pos": 30, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "loss = nn.CrossEntropyLoss(reduction='none')\n", "\n", "def evaluate_loss(data_iter, net, devices):\n", " l_sum, n = 0.0, 0\n", " for features, labels in data_iter:\n", " features, labels = features.to(devices[0]), labels.to(devices[0])\n", " outputs = net(features)\n", " l = loss(outputs, labels)\n", " l_sum += l.sum()\n", " n += labels.numel()\n", " return (l_sum / n).to('cpu')" ] }, { "cell_type": "markdown", "id": "e391dd8f", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "训练函数" ] }, { "cell_type": "code", "execution_count": 10, "id": "4a196c68", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.796668Z", "iopub.status.busy": "2023-08-18T06:58:17.795696Z", "iopub.status.idle": "2023-08-18T06:58:17.813822Z", "shell.execute_reply": "2023-08-18T06:58:17.812372Z" }, "origin_pos": 34, "tab": [ "pytorch" ] }, "outputs": [], "source": [ "def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,\n", " lr_decay):\n", " net = nn.DataParallel(net, device_ids=devices).to(devices[0])\n", " trainer = torch.optim.SGD((param for param in net.parameters()\n", " if param.requires_grad), lr=lr,\n", " momentum=0.9, weight_decay=wd)\n", " scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)\n", " num_batches, timer = len(train_iter), d2l.Timer()\n", " legend = ['train loss']\n", " if valid_iter is not None:\n", " legend.append('valid loss')\n", " animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],\n", " legend=legend)\n", " for epoch in range(num_epochs):\n", " metric = d2l.Accumulator(2)\n", " for i, (features, labels) in enumerate(train_iter):\n", " timer.start()\n", " features, labels = features.to(devices[0]), labels.to(devices[0])\n", " trainer.zero_grad()\n", " output = net(features)\n", " l = loss(output, labels).sum()\n", " l.backward()\n", " trainer.step()\n", " metric.add(l, labels.shape[0])\n", " timer.stop()\n", " if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n", " animator.add(epoch + (i + 1) / num_batches,\n", " (metric[0] / metric[1], None))\n", " measures = f'train loss {metric[0] / metric[1]:.3f}'\n", " if valid_iter is not None:\n", " valid_loss = evaluate_loss(valid_iter, net, devices)\n", " animator.add(epoch + 1, (None, valid_loss.detach().cpu()))\n", " scheduler.step()\n", " if valid_iter is not None:\n", " measures += f', valid loss {valid_loss:.3f}'\n", " print(measures + f'\\n{metric[1] * num_epochs / timer.sum():.1f}'\n", " f' examples/sec on {str(devices)}')" ] }, { "cell_type": "markdown", "id": "befc0634", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "训练和验证模型" ] }, { "cell_type": "code", "execution_count": 11, "id": "d407d036", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T06:58:17.819464Z", "iopub.status.busy": "2023-08-18T06:58:17.818676Z", "iopub.status.idle": "2023-08-18T07:00:28.078597Z", "shell.execute_reply": "2023-08-18T07:00:28.077772Z" }, "origin_pos": 38, "tab": [ "pytorch" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train loss 1.237, valid loss 1.503\n", "442.6 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2023-08-18T07:00:28.024498\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.5.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4\n", "lr_period, lr_decay, net = 2, 0.9, get_net(devices)\n", "train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,\n", " lr_decay)" ] }, { "cell_type": "markdown", "id": "c96fe52c", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "对测试集分类" ] }, { "cell_type": "code", "execution_count": 12, "id": "747e6641", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T07:00:28.083877Z", "iopub.status.busy": "2023-08-18T07:00:28.083216Z", "iopub.status.idle": "2023-08-18T07:02:07.445306Z", "shell.execute_reply": "2023-08-18T07:02:07.444197Z" }, "origin_pos": 42, "tab": [ "pytorch" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train loss 1.273\n", "710.0 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2023-08-18T07:02:07.394559\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.5.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "net = get_net(devices)\n", "train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,\n", " lr_decay)\n", "\n", "preds = []\n", "for data, label in test_iter:\n", " output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=1)\n", " preds.extend(output.cpu().detach().numpy())\n", "ids = sorted(os.listdir(\n", " os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))\n", "with open('submission.csv', 'w') as f:\n", " f.write('id,' + ','.join(train_valid_ds.classes) + '\\n')\n", " for i, output in zip(ids, preds):\n", " f.write(i.split('.')[0] + ',' + ','.join(\n", " [str(num) for num in output]) + '\\n')" ] } ], "metadata": { "celltoolbar": "Slideshow", "language_info": { "name": "python" }, "required_libs": [], "rise": { "autolaunch": true, "enable_chalkboard": true, "overlay": "
", "scroll": true }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "05d481bdab484ccfb68104e67a56f0da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "07e8ce70ebdd4559861a53d673e2ab0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_426e00de12584ffaa3d44a3e93eea652", "placeholder": "​", "style": "IPY_MODEL_0fc52730af0b4d46981292e17b21881b", "tabbable": null, "tooltip": null, "value": " 83.3M/83.3M [00:00<00:00, 178MB/s]" } }, "0fc52730af0b4d46981292e17b21881b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "426e00de12584ffaa3d44a3e93eea652": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "62f56dcf4a5143feb9096688694380bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c71d6d9028d74e1ab55487a6028970a5", "IPY_MODEL_6aa8082311944890a8b240d3a40133d6", "IPY_MODEL_07e8ce70ebdd4559861a53d673e2ab0c" ], "layout": "IPY_MODEL_9b1361574f2b4f1dae8ae76858d73d89", "tabbable": null, "tooltip": null } }, "6aa8082311944890a8b240d3a40133d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_955d26cae5294b2ea621e20082681646", "max": 87319819.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7bfcb307c3fd4d4c9a3c70d7eeca097d", "tabbable": null, "tooltip": null, "value": 87319819.0 } }, "7bfcb307c3fd4d4c9a3c70d7eeca097d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "955d26cae5294b2ea621e20082681646": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9b1361574f2b4f1dae8ae76858d73d89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c71d6d9028d74e1ab55487a6028970a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_feb254b14115426a87721b8d7c742bd2", "placeholder": "​", "style": "IPY_MODEL_05d481bdab484ccfb68104e67a56f0da", "tabbable": null, "tooltip": null, "value": "100%" } }, "feb254b14115426a87721b8d7c742bd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }