{ "cells": [ { "cell_type": "markdown", "id": "a9a80d6d", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# 查阅文档\n", "\n" ] }, { "cell_type": "markdown", "id": "0be06f74", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "查询随机数生成模块中的所有属性" ] }, { "cell_type": "code", "execution_count": 1, "id": "8f7f4d63", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T07:05:30.519062Z", "iopub.status.busy": "2023-08-18T07:05:30.518501Z", "iopub.status.idle": "2023-08-18T07:05:31.469749Z", "shell.execute_reply": "2023-08-18T07:05:31.468858Z" }, "origin_pos": 6, "tab": [ "pytorch" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'CumulativeDistributionTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'SoftplusTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', 'Wishart', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull', 'wishart']\n" ] } ], "source": [ "import torch\n", "\n", "print(dir(torch.distributions))" ] }, { "cell_type": "markdown", "id": "4b506160", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "查看张量`ones`函数的用法" ] }, { "cell_type": "code", "execution_count": 2, "id": "a16494ed", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T07:05:31.473606Z", "iopub.status.busy": "2023-08-18T07:05:31.472946Z", "iopub.status.idle": "2023-08-18T07:05:31.477780Z", "shell.execute_reply": "2023-08-18T07:05:31.476938Z" }, "origin_pos": 11, "tab": [ "pytorch" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on built-in function ones in module torch:\n", "\n", "ones(...)\n", " ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor\n", " \n", " Returns a tensor filled with the scalar value `1`, with the shape defined\n", " by the variable argument :attr:`size`.\n", " \n", " Args:\n", " size (int...): a sequence of integers defining the shape of the output tensor.\n", " Can be a variable number of arguments or a collection like a list or tuple.\n", " \n", " Keyword arguments:\n", " out (Tensor, optional): the output tensor.\n", " dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.\n", " Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).\n", " layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.\n", " Default: ``torch.strided``.\n", " device (:class:`torch.device`, optional): the desired device of returned tensor.\n", " Default: if ``None``, uses the current device for the default tensor type\n", " (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU\n", " for CPU tensor types and the current CUDA device for CUDA tensor types.\n", " requires_grad (bool, optional): If autograd should record operations on the\n", " returned tensor. Default: ``False``.\n", " \n", " Example::\n", " \n", " >>> torch.ones(2, 3)\n", " tensor([[ 1., 1., 1.],\n", " [ 1., 1., 1.]])\n", " \n", " >>> torch.ones(5)\n", " tensor([ 1., 1., 1., 1., 1.])\n", "\n" ] } ], "source": [ "help(torch.ones)" ] }, { "cell_type": "markdown", "id": "5bb71da8", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "运行一个快速测试" ] }, { "cell_type": "code", "execution_count": 3, "id": "7870b2f5", "metadata": { "execution": { "iopub.execute_input": "2023-08-18T07:05:31.481310Z", "iopub.status.busy": "2023-08-18T07:05:31.480685Z", "iopub.status.idle": "2023-08-18T07:05:31.490398Z", "shell.execute_reply": "2023-08-18T07:05:31.489581Z" }, "origin_pos": 16, "tab": [ "pytorch" ] }, "outputs": [ { "data": { "text/plain": [ "tensor([1., 1., 1., 1.])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.ones(4)" ] } ], "metadata": { "celltoolbar": "Slideshow", "language_info": { "name": "python" }, "required_libs": [], "rise": { "autolaunch": true, "enable_chalkboard": true, "overlay": "
", "scroll": true } }, "nbformat": 4, "nbformat_minor": 5 }