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Emails: {paul.templier, lucas.hervier}@student.isae-supaero.fr
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Abstract—In this work we present an evolution-based approach
applied to Dota 2 in the Project Breezy challenge [4]. The goal
of this project is to train an agent to play a 1v1 Midlane match
against the game’s bots of varrying difficulties, with both sides
playing Shadow Fiend.
The approach we implemented relies on the MAP-elites algorithm
assisted with a neural-based simulator of the game to increase
behavior diversity and reduce computation load, using CGP
agents or NEAT networks as individuals.

I. AN EVOLUTIONNARY APPROACH

Finding the best policy to win a Dota2 1v1 against a bot can
be assimilated to a Reinforcement Learning (RL) problem. To
adress this issue we chose to turn to evolutionary algorithms
which have shown promising results on the Atari benchmark
(1).

Fig. 1. Game Scores Comparisons Atari Gamesa

aextract from Evolving simple programs for playing Atari games

In this project we chose to train both CGP Individuals
[1] and NEAT Individuals [5], as defined in the respective
papers, in a MAP-Elites algorithm. They were implemented
in Julia using the Cambrian.jl framework, CartesianGenet-
icProgramming.jl for the CGP agent and a custom NEAT
agent developed at NEAT.jl for this challenge.

As we believed the best way to find interesting individuals,
either with NEAT or with CGP, was to explore the behavorial
space defined in Section III, we based the exploration on the
Illuminating search spaces by mapping elites [2] paper.
However, a limiting factor in training evolutionary algorithms
for Dota appeared to be evaluation time.

II. DEALING WITH EVALUATION COST

We quickly realized that one of the main difficulty of
this challenge was to deal with the evaluation cost of the
fitness. Indeed, in order to evaluate an agent we need him
to play a full DOTA2 game which can take up to several
minutes in real time, even with a tenfold speeding. Since
Evolutionnary Algorithms (EAs) require a large number of
function evaluations, we had to find a way to cope with this
issue.

A. Early Stopping

A simple but efficient way of reducing the evaluation time
was to use an Early Stopping mechanism. We decided to stop
the evaluation of an agent if he did not kill a creep after
5min of DOTA time. This functionality reduced the time loss
due to static individual, and the evaluation length of ”coward
individuals” avoiding fights.

B. Neural-base Simulator

Since an evaluation is time consuming, we developped
a Dota Simulator to predict game state evolutions from
previous state and chosen action, using a neural network based
on the UNet [3] architecture which we trained on random play.
It was used in the offsprings generation phase:

• offsprings are generated for 10 times the size of popula-
tion

• 100 game steps are simulated for each offspring, and the
actions stored

• the actions taken by each individual are used to select the
population size most unique offsprings based on behavior

• those individuals are added to the new population and
evaluated in the real game

By doing so we are seeing much more mutation and/or
crossover. Moreover, taking the individuals the more distant
from each other increases our chances to cover the behavior
space.

III. PROBLEM MODELING

A. Fitness Function

In order to win a 1v1, a player needs to kill the opponent
twice or to take his first mid tower. Consequently, we took
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into account the number of times we killed the opponent
champion and the opponent tower health in the individual
evaluation. Moreover, to succeed in one of those two tasks
one would also need good laning skills. Therefore, we also
took into account the amount of gold collected (net worth),
the number of last hits, and the number of denies. We also
punished being killed and behaviors causing an early stopping.
The final fitness function is hence as follows:

fitness = netWorth+ 100 ∗ lastHits+ 100 ∗ denies
+ 2000 ∗ ratioTowerHealth+ 1000 ∗ nbKill

− 250 ∗ nbDeath− 500 ∗ earlyStop

B. Behavior Space

As mentionned in Section I our goal was to observe indi-
viduals with highly diverse behaviors to increase our chances
of finding interesting ones. Therefore, we needed a character-
ization of the behavior space to differenciate playstyles. We
described the behavior in a discretized 2-dimensional space
featuring the total damage made to the opponent champion
and the percentage of the opponent tower health taken as axes,
since the objective is either to kill the opponent champion or
to take his tower.

C. Procedure

The approach we present relies on 3 main phases: initial-
ization, step, and run. The implementation of these algorithms
is available in the Project Breezy - SUPAERO repository.
The first phase aims at creating the map and a first population,
as seen in Algorithm 1.

Algorithm 1: Initialization
Input: IndType the type of individual, cfg file
containing evolution parameters

begin
# we create a population of CGP or Neat Individual
population = InitPopulation(IndType, cfg)
# we create an empty Map of Elites
mapelites =
MapElites(feature dim, grid mesh)

# we evaluate all individual
evaluate!(population)
# we add all the new individual to the map
add to map!(population,mapelites)
return population,mapelites

The fitness of an Individual is part of its features and
is initialized to −∞ before evaluation. The add to map
function adds an individual to a position determined by the
damage he made to the tower and the opponent champion
only if no other individual is already register at this position,
or if the individual we want to add has a better fitness

Algorithm 2 is the procedure followed to create one
generation from another. The simulate! and select diverse!

Algorithm 2: Step Function
Input: mutation function, crossover function, mapelites

begin
# we generate a huge amount of offsprings
huge new pop = []
for i in 1 : 10 ∗ pop size do

# select random return a random individual
# from the map
p1 = select random(mapelites)
p2 = select random(mapelites)
child = deepcopy(p1)
if mutation happen then

mutation(child)

if crossover happen then
crossover(child, p2)

push!(huge new pop, child)

simulate!(huge new pop)
new pop = select diverse(huge new pop)
evaluate!(new pop)
add to map!(new pop,mapelites)

functions used the Dota Simulator and allowed us select a
more diverse population of size population size from the
huge new pop list.

Finally, Algorithm 3 is a wrapper of the 2 previous algo-
rithms:

Algorithm 3: Run Function
Input: cfg config file, mutation function, crossover

function
begin

population,mapelites =
Initialization(IndType, cfg)

for i in 1 : cfg[”n gen”] do
Step(mutation, crossover,mapelites)

A run of this algorithm does not return a single best
individual but a mapping of the behavior space filled with
elites in each discretized area, hence yielding multiple
potentially interesting agents with diverse playstyles.
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