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Collaborative Filtering beyond the User-Item Matrix: A Survey
of the State of the Art and Future Challenges

YUE SHI, MARTHA LARSON, and ALAN HANJALIC, Delft University of Technology

Over the past two decades, a large amount of research effort has been devoted to developing algorithms
that generate recommendations. The resulting research progress has established the importance of the
user-item (U-I) matrix, which encodes the individual preferences of users for items in a collection, for
recommender systems. The U-I matrix provides the basis for collaborative filtering (CF) techniques, the
dominant framework for recommender systems. Currently, new recommendation scenarios are emerging
that offer promising new information that goes beyond the U-I matrix. This information can be divided
into two categories related to its source: rich side information concerning users and items, and interaction
information associated with the interplay of users and items. In this survey, we summarize and analyze
recommendation scenarios involving information sources and the CF algorithms that have been recently
developed to address them. We provide a comprehensive introduction to a large body of research, more than
200 key references, with the aim of supporting the further development of recommender systems exploiting
information beyond the U-I matrix. On the basis of this material, we identify and discuss what we see as the
central challenges lying ahead for recommender system technology, both in terms of extensions of existing
techniques as well as of the integration of techniques and technologies drawn from other research areas.
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1. INTRODUCTION

The ability of recommender systems to generate direct connections between users and
items that represent matches in interests and preferences makes them an important
tool for alleviating information overload for Web users. Recommender systems are
now ubiquitous online, where they support media consumption and also sales, such
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3:2 Y. Shi et al.

as with e-commerce platforms, for example, Amazon1 and eBay.2 The most successful
and widely used recommendation technique is collaborative filtering (CF), which is
based on the core assumption that users who have expressed similar interests in the
past will share common interests in the future [Goldberg et al. 1992]. In the past
few decades, significant progress has been made in recommender system performance
by deploying CF to exploit user-item (U-I) relations, which are typically encoded in
a U-I matrix [Adomavicius and Tuzhilin 2005; Burke 2002; Ekstrand et al. 2011;
Herlocker et al. 2004]. However, in recent years, a large number of recommendation
scenarios have emerged in which various additional information sources are available
in addition to the U-I matrix. In such cases, CF can be either enhanced to improve
recommendation performance further or else be utilized to pursue different tasks other
than product/item recommendation.

The goal of this survey is to provide an overview and analysis of recommender
scenarios that involve additional information sources beyond the U-I matrix and the
recommender system techniques that support them. Regarding the additional infor-
mation sources, we refer in particular to the rich side information related to users
and items and the information related to the interaction between users and items. We
pursue our goal by elucidating the connection between the problem in a given recom-
mender scenario and the algorithms that have been developed to address it. Then, we
assess the state of the art and on this basis formulate future challenges and identify
the most productive opportunities for further research and development in the field of
recommender systems.

Our intention is also to complement and extend the information coverage of pre-
vious recommender systems surveys. For instance, Adomavicius and Tuzhilin [2005]
reviewed not only the CF-based recommendation methods but also the alternative
paradigms, such as the content-based and hybrid recommendation methods. Their
work can be considered to anticipate our survey because they predicted, in their out-
look, that the information derived from the context of a recommendation scenario will
play a growing role in the future of recommender systems. We follow up on this predic-
tion and investigate how this and other additional information available beyond the U-I
matrix can help improve the CF-based recommendation. We do not go in depth into the
fundamentals and realization possibilities of the CF-based recommender paradigm, be-
cause this paradigm was covered extensively in the works of Ekstrand et al. [2011] and
Konstan and Riedl [2012]. These surveys include an analysis of the connection between
CF-based recommender algorithms and domain-specific applications, as well as an
overview of evaluation frameworks. Another category of surveys includes experimen-
tal analysis of different recommendation algorithms, as well as their characteristics
and usefulness with respect to different recommendation scenarios [Breese et al. 1998;
Cacheda et al. 2011; Cremonesi et al. 2010; Herlocker et al. 2004]. We do not perform
an empirical study but instead choose to focus on the following main contributions:

—We survey and analyze the key theoretical and empirical contributions of CF deploy-
ing the sources of information beyond the U-I matrix that have been exploited and
the types of algorithms that have been developed to integrate them.

—We present and discuss a series of key challenges in the direction of CF that can be
anticipated to be valuable for future research.

The remainder of this survey is structured as follows. In the next section, we briefly
review the conventional CF. Then, in Section 3, we present the categories of additional
information that can be used to expand the CF paradigm beyond the techniques relying

1http://www.amazon.com/.
2http://www.ebay.com/.
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Collaborative Filtering beyond the User-Item Matrix 3:3

Table I. An Example Movie Recommendation Scenario with Four Users and Six Movies
User preferences are indicated by a 1–5 rating scale.

Titanic Inception Toy Story Taken Skyfall Matrix
Alice 5 ? 3 ? ? 1
Bob ? 1 ? 4 ? ?
Jim 2 4 ? ? ? 5
Kate ? 2 ? ? 3 ?

solely on the U-I matrix. We then introduce and analyze in Section 4 the key research
contributions proposed so far to take this information into account when developing
recommender systems. Based on this analysis, we identify and discuss in Sections 5
through 7 a series of key challenges that we consider to be important for future work.
Concluding remarks can be found in Section 8.

2. BACKGROUND ON CONVENTIONAL COLLABORATIVE FILTERING

In this section, we briefly introduce conventional CF—that is, CF that exploits solely
the U-I matrix in order to generate recommendations for individual users. We first
formally define the problem of CF and then cover the two major categories of traditional
CF approaches, the memory-based CF and model-based CF [Adomavicius and Tuzhilin
2005; Ekstrand et al. 2011].

2.1. Problem Definition

In a standard setting of CF, we have a set of users (e.g., M users) and a set of items
(e.g., N items). The preferences of users to individual items can be denoted by a U-I
matrix R, in which the value of Rij denotes the preference of user i to item j, if Rij > 0.
The user preferences can be expressed either directly, such as by ratings, or indirectly
using binary values indicating whether the user has clicked, viewed, or purchased the
items. Note that the known preferences of users to items are usually very limited,
which makes the matrix R typically sparse. Conventionally, we use Rij =? to denote
the case that the preference of user i to item j is unknown. Under this setting, the
problem of CF can be defined as such: Given a U-I matrix R that represents a known
set of M users’ preferences to N items, recommend to each user a list of items that are
ranked in a descending order of relevance to the user’s interest. One note is that the
items with known preferences from a user are not considered for recommendation,
assuming that the user would not like to appreciate a recommended item that she has
already consumed before. For example, as shown in Table I, a U-I matrix is presented,
consisting of ratings from four users to six items. Then, a CF method is to generate
recommendations (in terms of a ranked list of unseen movies) based on the U-I matrix
to each user—for example, the movies Inception, Taken, and Skyfall need to be ranked
in a descending order of predicted relevance as the recommendations to Alice.

2.2. Memory-Based Collaborative Filtering

Memory-based approaches to CF are categorized as user based or item based. Given
a U-I rating matrix, a typical user-based CF approach predicts a user’s rating on a
target item by aggregating the ratings that a few similar users have previously given
to that item [Resnick et al. 1994]. Similar users are identified using a similarity metric,
usually the Pearson correlation or the cosine similarity [Singhal 2001], applied to rating
vectors, each containing ratings of items in the collection that have been assigned by
one particular user. Usually, the K nearest neighbors—that is, the K users with the
highest similarities to the given user—are selected, and their ratings on the target
item are aggregated in order to generate a predicted rating for the given user on that
item. Following the notations in Section 2.1, we can formulate the predicted rating of
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user i to item j as follows:

R̂ij = 1
C

∑
k∈Zi

sim(i, k)Rkj, (1)

where Zi is the set of K neighboring users of user i, C is a normalizing constant,
and sim(i, k) designates the similarity (in terms of a predefined similarity measure)
between user i and user k. The computed similarities represent the key characteristic
of memory-based CF. They form the “memory” of the system, which is used to produce
later recommendation. Note that Eq. (1) is the simplest form of representing user-
based CF and that many adjustments can be applied, as reported by Adomavicius and
Tuzhilin [2005].

Extending this core mechanism, modifications and enhancements have been pro-
posed to improve user-based CF, such as by introducing fine-grained neighbor-
weighting factors [Herlocker et al. 1999], by exploiting a recursive neighbor-seeking
scheme [Zhang and Pu 2007], and by using user-user similarity based on a subspectrum
of user preferences [Shi et al. 2009].

In contrast to user-based CF, item-based CF approaches recommend items on the
basis of information about other items that a user has previously rated [Deshpande
and Karypis 2004; Linden et al. 2003; Sarwar et al. 2001]. The recommended items
for the given user are ranked by aggregating the similarities between each candidate
item and the items that the user has rated. Item similarity is defined by a similarity
metric, usually the cosine similarity [Linden et al. 2003] or adjusted cosine similarity
[Sarwar et al. 2001], between vectors that represent each item by the scores assigned
by users. Similar to Eq. (1), we can also formulate item-based CF in the simplest form
as follows:

R̂ij = 1
C

∑
k∈Zj

sim( j, k)Rik, (2)

where Zj is the set of K neighboring items of item j, C is a normalizing constant,
and sim( j, k) designates the similarity (in terms of a predefined similarity measure)
between item j and item k.

Two drawbacks are typical for memory-based CF approaches. First, the computation
of similarities between all pairs of users or items is expensive due to its quadratic time
complexity. Second, the recommendation accuracy depends on the adopted similarity
measure, which is usually based on a suboptimal relation between users or between
items. On the other hand, the paradigm of conventional memory-based CF provides
an elegant opportunity for integrating the rich side information of users and items for
refining similarities, as will be discussed further in Section 4. This expansion can help
compensate for the disadvantages mentioned previously.

2.3. Model-Based Collaborative Filtering

Model-based CF approaches are based on prediction models that have been trained
using the U-I matrix, in whole or in part, as input [Adomavicius and Tuzhilin 2005;
Ekstrand et al. 2011]. The trained prediction models can then be used to generate
recommendations for individual users. In a simple and general form, we can represent
model-based CF as follows:

f (pi, qj) → Rij, i = 1, 2, . . . M, j = 1, 2, . . . N, (3)

in which pi and qj denote a set of model parameters for user i and item j, respectively.
f is a function that maps the model parameters to the known data (e.g., ratings). Thus,
the task of model-based CF is to estimate the model parameters p and q from the known
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Fig. 1. Example of the side information and the interaction-associated information that can be deployed by
a recommender system.

data R under the function f . Examples of conventional model-based CF approaches
include the Bayesian network model [Breese et al. 1998], which models the conditional
probability between items; the latent semantic model [Hofmann 2004], which clusters
users and items around latent classes of U-I interactions; and the mixture model [Si and
Jin 2003; Kleinberg and Sandler 2008], which models probability distributions of items
within each cluster of like-minded users. Recently, matrix factorization (MF) techniques
have attracted considerable attention due to their advantages with respect to scalability
and accuracy, as witnessed by the algorithms developed within the Netflix contest
[Koren et al. 2009]. Generally, MF models learn low-rank representations (also referred
as latent factors) of users and items from the information in the U-I matrix, which are
further used to predict new scores between users and items. For the convenience of
readability, we include the most common formulation of MF as shown next, with the
notations partly defined in Section 2.1:

U ∗, V ∗ = arg min
U,V

⎧⎨
⎩

1
2

M∑
i=1

N∑
j=1

Iij
(
Rij − U T

i Vj
)2 + λU

2

∥∥U
∥∥2

F + λV

2

∥∥V
∥∥2

F

⎫⎬
⎭ , (4)

in which U and V are two matrices of latent factors, and U ∗ and V ∗ stand for their
optimal values obtained from the minimization. Specifically, Ui is a column vector of
U , representing the latent factors of user i. Likewise, Vj represents the latent factors
of item j. Iij is an indicator function that is equal to 1 if Rij > 0, otherwise 0. ‖U‖F de-
notes the Frobenius norm of the matrix, and λU and λV are regularization parameters
that are usually set to alleviate model overfitting. MF is also formulated from a prob-
abilistic perspective—that is, as a probabilistic matrix factorization (PMF) problem
[Salakhutdinov and Mnih 2008a, 2008b]. The PMF framework models the conditional
probability of latent factors given the observed ratings and includes priors that handle
complexity regularization. Model-based CF, in particular the MF approaches, can be ex-
tended to incorporate additional information into recommender systems. In Section 4,
we will review these extensions in detail.

3. ALTERNATIVE INFORMATION SOURCES FOR COLLABORATIVE FILTERING

As mentioned in the Introduction, we look beyond the U-I matrix to include two types
of additional information that is considered useful for improving the recommendations:
rich side information about users and items, and information about the situation in
which users interact (e.g., rate, click, or purchase) with items. The two types of infor-
mation are illustrated by a toy example in Figure 1 and will be discussed in more detail
in the remainder of this section.
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3:6 Y. Shi et al.

3.1. Rich Side Information of Users and Items

The range of sources of side information on users and items stretching beyond the U-I
matrix is quite broad and varied. One of the most common side information sources is
attribute information [Agarwal and Chen 2009; Bao et al. 2009; Gantner et al. 2010a;
Koenigstein et al. 2011; Li et al. 2010; Moshfeghi et al. 2011; Shi et al. 2010a]. User
attributes may include information such as the user’s gender, age, and hobbies. Item at-
tributes reflect properties of the item, such as category or content. However, two sources
of information that have recently increased in importance in the recommender system
research are social networks and user-contributed information. In the remainder of
this subsection, we discuss these information sources in more detail.

3.1.1. Social Networks. The emergence of social networks has impacted a wide range of
research disciplines in the past years [Grossman 2006; Lazer et al. 2009; Watts 2007],
and recommender systems are no exception. Specifically to the recommender system
area, social networks introduce information in the form of user-user relationships,
which may be particularly useful for improving the quality of recommendation. In
general, the social relationships between users can be either directed or undirected.
Social trust and distrust relationships are among the most studied of directed social
relationships [Guha et al. 2004; Leskovec et al. 2010c; Ma et al. 2008, 2009a; Massa
and Avesani 2007]. The trust/distrust relationship can usually be described as an
asymmetric user-user graph/matrix, which indicates whether one user trusts/distrusts
another, as exemplified by the Web of Trust in Epinions.3 Another important directed
social relationship is follow, exemplified by the follow relationship used by Twitter4

[Kwak et al. 2010]. The follow relationship is similar to the trust relationship in that it
reflects the appreciation of one user (the follower) for another (the followee). In the case
of Twitter, the follower receives the followee’s microblog posts. The canonical example
of an undirected social relationship is friendship, as used in Facebook.5 Friendship can
be represented as a symmetric user-user graph/matrix [Konstas et al. 2009], which
encodes whether two users are friends of each other. It is also possible to extract
more complex relationships, such as tie strength and similarity, between users in
a social network by analyzing the link structure and the common patterns of user
behavior [Backstrom and Leskovec 2011; Gilbert and Karahalios 2009; Liben-Nowell
and Kleinberg 2003]. Recommender system algorithms that attempt to leverage social
relationships, both directed and undirected, apply the assumption that users who stand
in a positive relationship with each other may also share similar interests, as will be
discussed further in Section 4.1.

3.1.2. User-Contributed Information. User-contributed information has become widely
available in most recommender systems, and its volume has grown steadily since the
introduction of Web 2.0 technology. Strictly speaking, the user ratings contained in
the U-I matrix can be considered as one type of user-contributed information as well.
Here, we introduce four types of user-contributed information that go beyond the U-I
matrix: tags, geotags, multimedia content, and free-text reviews and comments, which
are increasingly used in recommender systems:

—Tags: Tags are short textual labels that users assign to items [Robu et al. 2009;
Sen et al. 2006]. Tags differ from conventional category labels in that users can
assign them freely—that is, they are not constrained by a preset list. Users tag items
for different reasons. Some tags describe item properties, and others express how

3http://www.epinions.com/.
4http://twitter.com/.
5http://www.facebook.com/.
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Collaborative Filtering beyond the User-Item Matrix 3:7

users feel about an item. Tags are recognized as an information source that can be
highly beneficial for improving the performance of recommender systems [Sen et al.
2009; Tso-Sutter et al. 2008; Zhen et al. 2009]. In addition to exploiting tags for
recommending items, personalized tag recommendation has also become an active
research topic [Hotho et al. 2006; Jäschke et al. 2008], which, however, falls outside
the scope of this survey.

—Geotags: Since GPS positioning has become a standard functionality of mobile digital
devices (e.g., cell phones or digital cameras), location information becomes abundant
in social media sites [Luo et al. 2011], such as photo and video sharing sites and
microblogging sites. The location information of an item in those sites is usually in
the form of geotags—that is, explicit latitude and longitude coordinates. As reflected
in its name, geotag can be regarded as a special class of tags that are particularly
used for geographical positions. In a photo sharing site, geotags of a photo may
indicate that the uploader of the photo has been to that location (or nearby) [Arase
et al. 2010; Kurashima et al. 2010; Lu et al. 2010]. Similarly, the geotags of a user’s
tweets may be used to trace the location of the user [Cheng et al. 2010]. Due to the
availability of large quantities of geotags, remarkable progress has been achieved in
both the research on exploiting location information for improving recommendation
and on facilitating location/travel recommendation.

—Multimedia Content: Social media sites, such as Flickr6 and YouTube7 [Davidson
et al. 2010], have facilitated their users for uploading and sharing multimedia content
(e.g., images and videos). The user-contributed multimedia content serves as another
type of side information for the online users. For example, the categories of the photos
in a user’s album may reflect what kinds of items she likes to see. The particular type
of videos that a user usually posts may indicate her interest in a particular item.
Such information can be exploited for more elaborately modeling the user interests
and thus contributing to content recommendation.

—Reviews and Comments: Last but not least, moving beyond tags and geotags, free-
text reviews and comments that are published by users online are another impor-
tant source of community contributions. They are valuable not only because of their
semantics but also because of the sentiment dimension. For this reason, it is not sur-
prising that reviews and comments have been exploited as a type of side information
for improving recommender systems [Aciar et al. 2007; Jakob et al. 2009; Levi et al.
2012; Moshfeghi et al. 2011].

3.2. Interaction-Associated Information

The category of interaction-associated information includes information sources that
are directly related to the event of a user interacting (e.g., rating, purchasing) with an
item [Adomavicius et al. 2011]. The most common information source in this category
is timestamps, which record the time at which a user interacted with an item [Gantner
et al. 2010b; Koren 2009, 2010; Xiong et al. 2010]—for example, the time of a day
when a user gave a rating to a movie. In addition, other information sources associated
with U-I interactions are also exploited for recommender systems, such as the hunger
status of a user when she rated a food menu [Ono et al. 2009], or the location where
a user downloaded a mobile application [Böhmer et al. 2011]. Note that reviews and
comments, as discussed in previous subsection, together with other types of users’
feedback to items, can also be categorized as interaction-associated information as
long as they provide additional information about the U-I interaction. For example, a

6http://www.flickr.com/.
7https://www.youtube.com/.
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Fig. 2. A conceptual view of the algorithms incorporating the rich side information of users and items to
extend memory-based CF.

user’s comment on a hotel that explains why she gave a 5-star rating to the hotel may
indicate her preference to hotels in a particular situation.

4. STATE-OF-THE-ART ALGORITHMS

For each of the categories of information sources that have just been discussed, a
category of algorithms can be identified that have been developed to exploit it. The two
categories of algorithms are discussed in this section.

4.1. Collaborative Filtering Using Side Information on Users and Items

4.1.1. Extending Memory-Based Collaborative Filtering. Recall that traditional memory-
based CF approaches measure the similarity between users or items based on the
U-I matrix. As mentioned earlier, side information can be exploited for calculating or
refining the similarities and thereby improving recommendations. Conceptually, we
can represent the algorithms that extend memory-based CF for incorporating the rich
side information in a diagram, as shown in Figure 2. For instance, in a movie recom-
mendation domain, a user can be represented by the tags that she assigned to movies
in the past, whereas a movie can be represented by its genres.

To the best of our knowledge, the first work in this direction was carried out by
Melville et al. [2002], who proposed first predicting the missing values in the U-I matrix
by using the side information of items (e.g., categories like title and genre, referred
to in this work as “content features”) and then deploying user-based CF to generate
recommendations. Similar approaches have been studied for different use cases [Burke
2002; Tso-Sutter and Schmidt-Thieme 2006]. Another category of approaches focused
on tags as side information [Firan et al. 2007; Shepitsen et al. 2008]. Similar to ratings,
tag-derived information also encodes connections between users and items. Tso-Sutter
et al. [2008] proposed a similarity fusion strategy that calculates the user-user (or item-
item) similarity based on both tags and ratings within a memory-based CF framework.
Subsequently, Tagommenders [Sen et al. 2009] were proposed as a group of tag-based
recommendation algorithms that utilize the inferred preferences for tags to predict the
users’ preferences for items. In order to address the noisiness of tags, schemes for tag
enhancement have been introduced. For example, different weights have been used
for different tags, which are then combined with traditional memory-based CF [Liang
et al. 2010]. In addition to tags, geotags have also been exploited. Specifically, they have
been used to extend memory-based CF for personalized location prediction [Clements
et al. 2010b], shop recommendation [Takeuchi and Sugimoto 2006], and restaurant
recommendation [Horozov et al. 2006].

ACM Computing Surveys, Vol. 47, No. 1, Article 3, Publication date: April 2014.
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Fig. 3. A conceptual view of the algorithms incorporating the rich side information of users and items to
extend model-based CF.

As mentioned in Section 3.1.1, social networks are one of the most important sources
of side information. In analogy to nearest neighbors in user-based CF, a social net-
work naturally provides the neighborhood (i.e., similar users) for each user—for ex-
ample, the trustees of each user in a trust network [Massa and Bhattacharjee 2004].
TidalTrust [Golbeck 2005] and MoleTrust [Massa and Avesani 2007] are the two most
well known models that predict a user’s rating on an item by aggregating the ratings
from the user’s trustees (or connected users in other types of networks). Subsequently,
TrustWalker [Jamali and Ester 2009a], a random walk model that integrates trust
information with traditional item-based CF, has also been proposed. Using both the
social network and the user-contributed tags, item recommendations can be generated
by taking into account user-user similarities based on the two different information
sources, as proposed by Guy et al. [2010].

4.1.2. Extending Model-Based Collaborative Filtering. In addition to memory-based CF, ex-
tensive work has also been devoted to extending model-based CF approaches to in-
corporate rich side information. In general, the algorithms in this direction provide
recommendations to individual users by training a predictive function that is based
on all of the variables, including the U-I matrix and the side information of users and
items, as illustrated in Figure 3.

The earliest work in this direction focused on the classification perspective. For
example, each user can be treated as a separate classification problem [Basu et al.
1998; Billsus and Pazzani 1998]. Under this approach, each item is treated as a training
instance and is represented by a set of features, such as its ratings from all users and
associated side information (e.g., attributes). Then, a classifier is trained for each user
and used to predict relevant items for recommendation. Similarly, one can treat each
item or each rating as a classification problem [Basilico and Hofmann 2004; Pazzani
1999] by taking all available ratings and/or side information of users and items as
features of training instances. The key drawback of these classification models lies in
their limited ability to generalize, and specifically, in the danger of overfitting, because
these classifiers are usually trained on a limited number of high-dimensional feature
vectors.

In addition to classification models, models that are based on topics have also been
proposed. Popescul et al. [2001] have extended the aspect/topic model of Hofmann
et al. [1999] to incorporate the item side information. Wang et al. [2006] proposed a
generalization of latent semantic analysis (LSA) [Hofmann 2004] for this purpose. CF
with side information was shown to be an application of this generalized LSA model.
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3:10 Y. Shi et al.

Similar to this work, Wetzker et al. [2009] proposed to extend probabilistic latent
semantic analysis (PLSA) [Hofmann 1999] to integrate item-tag relations with the
U-I matrix for item recommendation. In step with the increasing amount of location
data that has recently become available, such as geotags, geographical topic discov-
ery/modeling has been proposed to extract (latent) topics for locations. Geographical
topics have proved themselves to be a particularly useful form of rich side information.
One of the earliest contributions on extracting geographical topics from social media
was reported by Rattenbury and Naaman [2009], who studied place semantics based on
Flickr tags. More extensive and general work was subsequently presented by Yin et al.
[2011], who compared different geographical topic modeling strategies (i.e., based on
location, text, and the combination of location and text). These authors proposed latent
geographical topic analysis, which was shown to effectively discover the topics repre-
senting a region. Work by Hong et al. [2012] has proposed a new algorithm to discover
geographical topics from geotagged Twitter messages and pointed out its usefulness
for location recommendation.

Apart from topic models, several other conventional model-based CF approaches have
also been adapted to exploit rich side information. One example is the unified relevance
models that were first introduced by Wang et al. [2008] using only the U-I matrix.
Subsequently, Moshfeghi et al. [2009] showed that those models can be extended to
incorporate additional rich side information for improved item recommendation. As
another example, Boltzmann machines were applied to CF by Salakhutdinov et al.
[2007], first using only the U-I matrix and later extending the approach to incorporate
item content features into a unified recommendation model [Gunawardana and Meek
2009]. The work of Salakhutdinov et al. [2007] and Tran et al. [2009] on exploiting
Boltzmann machines for CF have first established links between CF and the emerging
field of deep learning [Hinton and Salakhutdinov 2006; Hinton et al. 2006], the links
we expect to be explored more intensively in the future.

Although most of the conventional model-based CF approaches can be extended to
take into account the side information from users and items, a particular family of
model-based approaches, MF, has drawn the most attention from the recommender
system research community in this respect. Recommender system research that ex-
tends MF with rich side information can be considered to have begun with collective
matrix factorization (CMF) [Singh and Gordon 2008], which simultaneously factorizes
multiple related matrices, including the U-I matrix and matrices containing the side
information. Note that CMF is sometimes also referred to as joint matrix factorization
(JMF). For example, in a movie recommendation scenario, CMF can jointly factorize
both the user–movie rating matrix and a matrix containing movie side information
(e.g., a movie-genre matrix). The advantage of CMF lies in that the side information
that is incorporated during MF serves to alleviate the sparseness in the U-I matrix,
leading to more effective latent factors. Due to the particular importance and wide
influence of the CMF framework in the area, we present a conceptual view of CMF
in Figure 4. Corresponding to Figure 3, model parameters in CMF are specified as
latent factors of users, items, the user side information entity, and the item side in-
formation entity (i.e., U , V , P and Q). Note that there could be multiple types of the
user/item side information; however, we only keep here one type for the purpose of
illustration. The latent factors are derived from the U-I matrix, the relation matrix of
the user and its side information entity, and the relation matrix of the item and its side
information entity. We also note that the work related to CMF was proposed slightly
earlier than Singh and Gordon [2008] and applied to the task, not of recommendation
but of document classification [Zhu et al. 2007]. In this work, the authors introduce
JMF of both the document-feature matrix and the document-document link matrix.
Here, we would also like to emphasize that CMF discovers the latent representations
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Collaborative Filtering beyond the User-Item Matrix 3:11

Fig. 4. A conceptual view of the algorithms incorporating the rich side information of users and items by
CMF. U : Latent factors of users; V : Latent factors of items; P: Latent factors of the user side information
entity; Q: Latent factors of the item side information entity.

of different entities (e.g., users, movies, genres) by decomposing the relations of each
paired entities (e.g., relations between users and movies, relations between movies
and genres). In contrast, another technique, tensor factorization (TF; to be detailed in
Section 4.2.2) discovers the latent representations of different entities by decomposing
the relations of all entities simultaneously, which suits to the case of incorporating
interaction-associated information.

Various algorithms have been proposed that use CMF as their foundation and in-
troduce various extensions that incorporate different types of side information. In
particular, a large amount of work has been devoted to approaches that adapt CMF to
integrate the side information derived from social networks. Based on the framework
of PMF [Salakhutdinov and Mnih 2008b], approaches have been proposed that improve
item recommendations by jointly factorizing a social trust network and the U-I matrix
[Ma et al. 2008, 2011b]. Although differences exist between different algorithms, the
basic constraint is similar—that is, the latent factors of a user should be similar to the
latent factors of her trustees. Other work seeks to exploit distrust relationships. Specif-
ically, Ma et al. [2009a] carries out joint factorization on the social distrust network
and the U-I matrix. This approach imposes a penalty when the latent factors of a user
are similar to those of her distrustees. Subsequent contributions of Ma et al. [2011,
2011a] extended their previous work from only exploiting social trust relationship to
exploiting general (both explicit and implicit) social relationships.

In addition to the large effort devoted to exploiting social networks with MF, other
types of side information have also been exploited for improving recommendation
performance over MF that solely uses the U-I matrix. Zhen et al. [2009] exploited
tags in their algorithm, TagiCofi, which jointly factorizes the U-I matrix and the tag-
based user-user similarity matrix in order to improve item recommendations. Shi et al.
[2010a] proposed joint factorization of the mood-specific movie similarity matrix and
the U-I matrix for the purpose of mood-specific movie recommendation. Zheng et al.
[2010] proposed joint factorization of the user activity correlation matrix, the location
correlation matrix, and the location-activity matrix for the purpose of both location
and activity recommendation. Shi et al. [2011c] exploited landmark category infor-
mation from Wikipedia to build a category-landmark matrix. Joint factorization of
the category-landmark matrix and user-landmark matrix leads to an effective land-
mark recommendation approach for travelers who like to share their geotagged photos
online.
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3:12 Y. Shi et al.

We also mention here another category of algorithms [Porteous et al. 2010; Shan and
Banerjee 2010], which can be regarded as being related to those mentioned earlier.
Shan and Banerjee [2010] present a probabilistic interpretation of CMF that models
the conditional probabilities of the latent factors of users and items given not only the
U-I matrix but also the additional matrices containing the side information about users
and items. However, the work of Porteous et al. [2010] is different from the general CMF
framework in an important respect. Porteous et al. [2010] proposed to fit the observed
ratings in the U-I matrix with not only the latent factors of users and items but also
with user-wise regression against item side information and the item-wise regression
against user side information. This model can also be regarded as an ensemble in which
pure MF is combined with metadata- or content-based regression predictors.

Several other algorithms that extend MF to incorporate side information have also
been proposed beyond the CMF paradigm. In particular, one of the most influential
frameworks is regression-based latent factor models [Agarwal and Chen 2009], which
were proposed to integrate attributes of both users and items with U-I preference data
into a generalized linear model for preference prediction. Based on the framework
of regression-based latent factor models, social trust relationship of users has been
incorporated into MF for improving the learning of latent user factors and, as a result,
improving the recommendation performance [Jamali and Ester 2010; Ma et al. 2009].
fLDA [Agarwal and Chen 2010] can be regarded as a specific extension of regression-
based latent factor models that targets the recommendation scenarios with rich side
information. fLDA makes use of latent Dirichlet allocation (LDA) [Blei et al. 2003] to
regularize a factorization model and suits to the cases in which side information can
be represented in the form of a “bag of words” (i.e., with statistics of the occurrences
of individual words). fLDA fits the relevance scores in the U-I matrix based on the
regression predictor against user features and the regression predictor of item features,
in combination with the inner product of the user’s interest in the latent topics and the
degrees of latent topics estimated from item metadata. fLDA and the work of Porteous
et al. [2010] are similar to each other with respect to the use of an ensemble. The key
difference lies in their mechanisms of modeling the interaction between latent user
factors and latent item factors. In the work of Porteous et al. [2010], this interaction is
incorporated directly during MF, whereas fLDA incorporates it through LDA [Agarwal
and Chen 2010]. Further work that extends MF to incorporate side information is
the localized matrix factorization (LMF) [Agarwal et al. 2011]. This approach employs
local latent factors for each entity under different types of side information, referred
to as contexts [Agarwal et al. 2011]. The local latent factors from different contexts are
linked to each other. It should be emphasized that LMF was designed to specifically
overcome the drawback of CMF, which uses only global latent factors for each entity,
running the danger of introducing severe bias due to unbalanced information sources.

4.1.3. Graph-Based Approaches. Memory-based and model-based approaches to CF rep-
resent the largest body of work in this domain. However, there is also another category
of approaches, the graph-based approaches, the importance of which has rapidly grown
with the increasing availability of additional information that can be of use for recom-
mendation. Graph-based approaches have been well studied and intensively developed
in the field of link prediction in social networks [Liben-Nowell and Kleinberg 2003]—a
typical example is the random walk and its variants [Tong et al. 2006]. Researchers
in the area of recommender systems have exploited random walks in various ways in
order to improve CF based on the U-I matrix. Examples include the use of random
walks to improve item-item similarity matrix for item-based CF [Gori and Pucci 2007;
Yildirim and Krishnamoorthy 2008] to infer social trust relationship for trust-based
recommendation [Jamali and Ester 2009a, 2009b].
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Collaborative Filtering beyond the User-Item Matrix 3:13

Fig. 5. A conceptual view of graph-based recommendation approaches incorporating the rich side informa-
tion of users and items.

Graph-based approaches have moved beyond the U-I matrix and have been exploited
to incorporate side information into CF algorithms. Figure 5 presents a conceptual view
of graph-based algorithms, which consists of two major steps—that is, combining the
U-I matrix and all other relations between the user/item and the side information en-
tities into one graph and then applying a graph mining technique. In general, these
approaches involve extending the bipartite graph, which consists of user nodes and item
nodes, to a multipartite graph, which consists of user nodes, item nodes, and nodes rep-
resenting other entities. Pioneering work in this area was presented by Konstas et al.
[2009], who proposed using random walk with restarts to mine relationships in a multi-
partite graph including users, items, and tags. Along the same line of this work, graph-
based approaches have also been exploited for investigating the effect of social tagging
on different ranking tasks [Clements et al. 2010a], for providing music recommenda-
tion by combining user social relationship and music content features [Bu et al. 2010],
and for improving recommendations of new users by inferring users’ preferences not
only for items but also for item attributes [He et al. 2011]. Although successful exam-
ples are presented earlier, one of the key issues in generating recommendations using
multipartite graphs is the treatment of different scales that are used for the weights
of relationships (edges) between different entities (nodes). For example, the relation-
ship between a user and an item could be weighted by a rating (e.g., a 5-scale number),
whereas the relationship between any two users is weighted by the friendship (i.e., a bi-
nary indicator). Apart from using heuristic normalizations to attain comparable scales
of edge weights [Bu et al. 2010; Clements et al. 2010a], Shi et al. [2011a] have made an
attempt to address this issue by adding scalars as additional entities to the graph and
introducing the interaction frequency between different entities in the graph so that it
serves as the common scale. Although that work focuses on the rater identification prob-
lem rather than item recommendation, the idea could still be applied to graph-based
recommendations.

Because algorithms based on graphs can be used not only for integrating side in-
formation into CF but also for integrating interaction-associated information, we will
return to the topic of graph-based recommendation algorithms in Section 4.2.4.

4.1.4. Summary of Properties. In Table II, we summarize and assess the main properties
of the algorithms falling in the three discussed categories. The properties are assessed
based on the general realizations and evaluations of these algorithms as reported
in literature. We analyze five properties, data exploitation, model complexity, space
complexity, time complexity, and results explanation, and grade each of them at three
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3:14 Y. Shi et al.

Table II. Properties of the Algorithms for CF Using Side Information on Users and Items

Extending Memory-Based CF Extending Model-Based CF Graph-Based CF
Data exploitation Low High Medium
Model complexity Medium High Low
Space complexity High Low Medium
Time complexity High High High
Results explanation High Low Medium

levels, low, medium, and high. Specifically, data exploitation indicates the ability of an
algorithm to exploit the known data. Model complexity indicates how many parameter
settings need to be considered for deploying an algorithm. Space complexity indicates
how much memory space an algorithm requires. Time complexity indicates how many
operations an algorithm needs to take for generating recommendations for individual
users. Finally, results explanation indicates the ability of an algorithm to explain the
recommendation results. We explain the grading levels in the table on the example of
the algorithms extending the memory-based CF. These algorithms are usually based
on the similarities derived from the known data—that is, both the preference data
and the side information data. As a result, the ability of these algorithms in exploiting
the data usually depends on the adopted similarity measure, which may not always
be optimal for deriving useful information from the data. In addition, the time com-
plexity of computing all of the similarities is typically quadratic, and a large space is
required for storing the similarities. However, the similarities can naturally serve as
a basis for explaining the recommendation results to users—for example, a movie was
recommended to a user because the user liked movies of similar genres and with the
same actors. In addition, the algorithms in this category usually involve only a limited
number of parameters—that is, often only the choice of similarity measure and the size
of neighborhood. Thus, those algorithms may not require too much effort for parameter
tuning.

In the previous analysis, we did not take into account the potential of exploiting
parallel or distributed computing for reducing the time complexity of the algorithms.
It is namely so that some of the algorithm categories may be easier to parallelize than
the others, which may result in changes in the assessment in Table II. However, the
research on parallel and distributed recommender systems is still in its infancy, and it
is difficult to draw conclusions in this respect at this time.

4.2. Collaborative Filtering Using Interaction-Associated Information

The early work that exploited interaction-associated information for recommenda-
tion integrated this information in a step separated from recommendation generation
[Adomavicius et al. 2005, 2011; Baltrunas and Ricci 2009; Panniello et al. 2009]. The
separate step is either a prefiltering step that preprocesses the input of the recommen-
dation algorithm or a postfiltering step that processes its output. Subsequent work fo-
cused on modeling this information together with the users and items. Generally, these
algorithms can be divided into four groups. First, with the availability of timestamps
that are associated with U-I interactions, a group of algorithms have been proposed
for time-dependent CF. These algorithms mainly focus on improving CF performance
by modeling the dynamics of user preference over time. Next, the presence of various
sources of situational information (also referred to as contexts in the literature) that are
associated with the U-I interactions gives rise to three additional groups of algorithms
that can be distinguished on the basis of the underlying approach they choose: TF, fac-
torization machines (FM), and graph-based approaches. In the following subsections,
we cover these four groups in turn.
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4.2.1. Time-Dependent CF. Temporal or time-dependent CF refers to CF algorithms
that utilize time information for modeling and predicting user preferences on items. For
example, in order to recommend movies that fit a user’s present-day preferences, a time-
dependent CF algorithm usually has more focus on the user’s recent ratings on movies
rather than the user’s ratings from 1 year ago. Note that in this survey, we specifically
distinguish time-dependent CF, which generates recommendations that are sensitive
to a particular timeline, from time-aware CF, which generates recommendations for
phases in a temporal cycle. A simple example of a time-aware CF algorithm is an
algorithm that recommends movies to a user that are appropriate to watch on Friday
evening. This subsection focuses not on time-aware CF but rather on time-dependent
CF.

Some of the earliest research on time-dependent CF was carried out by Ding and Li
[2005], who exploited a decay function for the ratings so that more influence was given
by the more recent ratings. The benefit of exploiting the temporal dynamics of U-I
interactions was highlighted through the winning solution for the Netflix competition
[Koren 2009]. In this work, latent factors of users and items are designed as decay
functions of time and also linked to each other based on time. Then, the latent factors
of users and items at different time are learned individually and fine grained for
improved prediction accuracy. A simplified and incremental version of this work was
presented by Liu et al. [2010] for online recommendation over time. Xiong et al. [2010]
proposed a time-dependent CF algorithm by exploiting TF, which models each rating
as the inner product of the latent factors of users, items, and time slices, with an
imposed constraint that the adjacent time slices should share similar latent factors.
TF is discussed in more depth in the next subsection.

4.2.2. Tensor Factorization. TF models have been widely studied and have been produc-
tively exploited in a wide variety of applications [Kolda and Bader 2009]. A tensor is a
multidimensional or multimode array. A matrix is then, in fact, a two-mode tensor. In
light of the importance of MF approaches for CF, it is not surprising that TF approaches
have also proven to be of significant value, especially in cases in which sources of sit-
uational information associated with U-I interactions are available. In other words,
in analogy to the use case of MF where the data take the form of [user, item, rating],
TF is appropriate for use in scenarios in which the data take the form of [user, item,
interaction context, rating]. Among various existing TF models, two are the most often
used for CF—that is, the CANDECOMP/PARAFAC (CP) model, which decomposes a
tensor as a sum of rank-one tensors, and the Tucker model, which decomposes a ten-
sor into a core tensor multiplied by a factor matrix along with each mode [Kolda and
Bader 2009]. A major difference between two TF models can be understood as follows.
Although the factor matrices resulting from the CP model have the same rank, they are
typically not column/row orthonormal. Compared to this, the factor matrices resulting
from the Tucker model are column/row orthonormal but usually have different ranks.
A conceptual view at the algorithms based on TF models is depicted in Figure 6, in
which the CP TF model is used for illustration.

Inspired by the work on personalized Web search [Sun et al. 2005], where the [user,
query, webpage, click (boolean)] data is modeled by Tucker TF, researchers in recom-
mender systems have exploited the Tucker TF model for processing [user, item, tag,
usage (boolean)] data for the purpose of either item recommendation [Xu et al. 2006], or
tag recommendation [Symeonidis et al. 2008b], or both [Symeonidis et al. 2010]. Rendle
et al. [2009a] also exploited the Tucker model for tag recommendation. Their approach
imposes a pairwise ranking criterion—that is, the latent factors of users, items, and tags
are optimized for ranking. These authors later formalized this ranking criterion with
their Bayesian personalized ranking (BPR) [Rendle et al. 2009b] approach. In addition,
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3:16 Y. Shi et al.

Fig. 6. A conceptual view of the algorithms incorporating the interaction-associated information by tensor
factorization (the CP model in this case). U : Latent factors of users; V : Latent factors of items; W : Latent
factors of interaction-associated information.

the authors further proposed a pairwise interaction tensor factorization (PITF) model
[Rendle and Schmidt-Thieme 2010] to improve the performance of tag recommenda-
tion. PITF is substantially different from both the Tucker model and the CP model
in that it involves low-order interactions explicitly (i.e., pairwise interactions between
all the three modes instead of one ternary interaction). Subsequently, Cai et al. [2011]
have proposed low-order tensor decomposition that combines multiple-order TF mod-
els to decompose [user, item, tag, usage (boolean)] data. The model achieved further
improvement on the task of tag recommendation.

In addition to producing a significant amount of work on TF models that exploit tags,
researchers have also studied the use of TF models for exploiting other information
sources that are associated with U-I interactions. Karatzoglou et al. [2010] proposed a
comprehensive algorithm that exploits the Tucker TF model for incorporating multi-
ple information sources that are associated with U-I interactions. Probabilistic tensor
factorization (PTF), an approach that combines PMF and TF, was developed and em-
ployed with the CP model for incorporating time information for time-dependent CF
[Xiong et al. 2010], and with the Tucker model for the purpose of review recommen-
dation [Moghaddam et al. 2012]. It is also worth mentioning that the work of Chi
et al. [2008], who proposed a probabilistic polyadic factorization model developed from
the latent semantic/aspect model [Hofmann et al. 1999; Hofmann 2004] to incorporate
multiple sources with U-I interactions, was demonstrated to converge with the Tucker
TF model. Last but not least, the work by Shi et al. [2012] has proposed to train the
CP TF model to directly optimize an evaluation metric—mean average precision—for
top-N context-aware recommendation.

4.2.3. Factorization Machines. Factorization machines (FM) [Rendle 2010] is a class of
models that combines the advantages of support vector machines (SVM) and factor-
ization models. The key difference between FM and SVM lies in that FM models
variable interactions with a factorized parametrization, which allows estimation of
reliable parameters for sparse interactions typical in recommender systems. FM has
been demonstrated to successfully incorporate various information sources associated
with the U-I interactions and enable context-aware recommendation at a low com-
putational cost [Rendle et al. 2011]. The innovative idea of FM is to transform the
multidimensional data associated with each U-I interaction into a real-valued feature
vector. An SVM-like learning algorithm can then be used for regression against the
observed U-I interactions. For example, the three-dimensional data [user, movie, time]
associated with a rating is transformed to a (M + N + K)-element feature vector, in
which M denotes the number of users in the collection, N the number of movies, and K
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Fig. 7. A conceptual view of incorporating the interaction-associated information by FM.

Table III. Properties of the Algorithms for CF Using Interaction-Associated Information

Tensor Factorization Factorization Machines Graph-Based CF
Data exploitation High High Medium
Model complexity High High Low
Space complexity Low Low Medium
Time complexity High High High
Results explanation Low Low Medium

the number of time slices/bins. We also illustrate in Figure 7 a conceptual view of FM
for incorporating interaction-associated information.

FM allows the modeling of higher-order interactions in a way different from TF
models and thus provides another promising framework for utilizing multiple infor-
mation sources with U-I interactions to learn recommendation models [Rendle 2012].
Moreover, it is also shown by Rendle [2012] that FM can recover many other models
equivalently under special cases, such as the CP TF model [Kolda and Bader 2009],
the PITF model [Rendle and Schmidt-Thieme 2010], and regression-based latent fac-
tor models [Agarwal and Chen 2009]. FM models also allow users to include the side
information on users and items as additional features into the feature vectors and to
address the recommendation scenarios as discussed in Section 4.1.

4.2.4. Graph-Based Approaches. Finally, graph-based approaches, which have been ex-
ploited for incorporating side information, as already discussed in Section 4.1.3, have
also been exploited for extending CF with interaction-associated information. Concep-
tually, the process is rather similar to that illustrated in Figure 5, with the only differ-
ence in the input information sources—that is, the interaction-associated information
instead of the side information. There have been a few contributions in this category.
The session-based temporal graph was proposed to capture the U-I interactions over
time and simultaneously model users’ long-term and short-term preferences. Temporal
recommendations are mined from the graph using random walk with restarts [Xiang
et al. 2010]. Time intervals associated with user preferences for movies have also been
used in the graph in the work of Shi et al. [2011a], as mentioned in Section 4.1.3.
This work unifies the relations between different entities. In addition, Lee et al. [2011]
have proposed to use random walk with restarts on a graph involving users and items
together with interaction-associated information sources, such as location and time.

4.2.5. Summary of Properties. In analogy to the summarization and assessment of the
main properties of CF using side information (c.f. Section 4.1.4), we now summarize
and assess the same five properties, graded at three levels, for the algorithms of CF
using interaction-associated information, as shown in Table III. For example, in the
case of TF and FM models, the space complexity refers to the number of latent factors
to be stored in the memory. This number can be considered relatively low because it
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Fig. 8. Overview of the challenges for CF.

is only linear to the number of all the entities (users, items, interaction-associated
variables). However, in graph-based approaches, we have to store all of the transition
probabilities for modeling the edge connections between different entities, which makes
the space complexity higher than for TF and FM. Regarding the model complexity, the
number of model parameters in TF and FM models is much higher than in graph-based
models, because in TF and FM models, many parameters need to be defined, such as
those for regularization, learning rate, and latent dimensionality. As opposed to this,
graph-based approaches such as random walk with restarts only require one parameter
determining the restart probability. As mentioned in the beginning of this section,
time-dependent CF differs from the other three categories of algorithms due to the
unique information source, time, in which it does not represent a general framework for
incorporating a variety of interaction-associated information sources. For this reason,
we leave this category of approaches aside. However, we provide more information on
exploiting temporal information for recommendation in Section 4.2.1.

5. OVERVIEW OF CHALLENGES

In the first half of this survey, we provided an overview of recommender system tech-
niques that use the information reaching beyond the U-I matrix. We now turn to
consider the future of these techniques. We maintain our focus on additional informa-
tion, which includes both rich side information concerning users and items as well as
the interaction information associated with the interplay of users and items. Based on
this focus as well as the existing recommender system techniques that we have just
covered, we identify a series of challenges that face the recommender system research.

We group the challenges into two main categories in the following two sections, as
structured in Figure 8. We refer to the first category of challenges as the Challenges of
New Conditions and Tasks. They are covered in Section 6 and have their origins within
the recommender system research community. Initial work has been carried out in
these areas, but they can still be considered to be newly emergent, as they have just
started to attract significant research attention. We point out that these challenges
are general challenges in the sense that they are independent of specific applications
and appear across the range of recommender system domains. As recommender system
research moves forward, innovative new techniques and frameworks must be developed
in order to face these challenges. We refer to the second category of challenges as the
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Challenges of New Perspectives and Models. They are covered in Section 7 and have
their origins outside the recommender system research community. Their emergence
is due to the interaction between recommender systems and other areas of research.
In contrast to the first class of challenges, the second class of challenges serves as
sources of techniques and frameworks. If recommender system research succeeds in
harnessing these sources, conventional recommender system concepts could change
considerably, bringing about a new era of success and productivity for the recommender
system technology. In the next two sections, we present a discussion for each of the
challenges in the two categories. The discussion is organized at three levels. At the
level of Significance, we illustrate the importance of the challenge being discussed.
Then, at the level of Open Issues, we discuss a set of specific issues that must be faced
for addressing each challenge. Finally, at the level of State of the Art, we summarize
the achievements of the existing work in addressing each challenge. In order to better
highlight the challenges and provide a clearer view of the possibilities for addressing
these challenges, we also discuss the relationship between each challenge and the past
contributions to CF as presented in the first part of the survey.

6. CHALLENGES OF NEW CONDITIONS AND TASKS

Rapid growth and the emerging new concepts of systems and platforms accommodat-
ing recommendation mechanisms have resulted in increasing demands posed on these
mechanisms to adjust to new conditions and tasks. Innovative recommendation con-
cepts are required that can operate in the Web context, which is becoming increasingly
social, where much more can be derived about relations between users or between a
user and an item than from the traditional U-I matrix. Furthermore, increasing acces-
sibility of the Web to new social groups, like elderly people, opens new perspectives for
designing recommendation algorithms, like those that can satisfy not a single user but
groups of users, such as those in elderly homes. In the same way, increasing demands for
improved and personalized (mobile) services, like travel location recommendation, force
the recommender systems to get the most from the available information resources,
such as by focusing on the long tail of the popularity-based item list. Finally, service
providers exploiting different commercial domains have discovered a high potential
of learning user preferences across these domains, which gives rise to cross-domain
recommendation. For each of these challenges, we describe in the following subsections
its significance, open issues to be addressed by new research, and the state-of-the-art
approaches that in one way or the other have attempted to address these challenges.

6.1. Social Recommendation

Significance. As discussed in Section 3.1.1, social networks are a valuable side infor-
mation source about users for CF. Their ability to improve recommendations has been
demonstrated by multiple research contributions, reviewed in Section 4.1. Adopting
the dominant usage in the literature, we use the term social recommendation to refer
to recommender systems that incorporate a social aspect. Figure 9 illustrates a typical
scenario of social recommendation, in which we have observations of both users’ social
connections to (such as friendship) and users’ preferences for different items.

Social recommendation naturally plays a central role in social networks and social
media sites. One example is contact recommendations People You May Know that
are offered to users of the LinkedIn professional network.8 Another example, is the
Recommendations Bar offered by the Facebook social network. In addition, in more
general social media sites, users’ social relationships can be exploited together with
CF approaches for recommending content items, such as videos, photos, and news. We

8http://www.linkedin.com/.
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Fig. 9. An example of a social recommendation scenario. Kate may like movie Matrix because Jim, who
shared similar interest in Inception and is also a friend to her, liked this movie.

anticipate that increasingly more information and content sources that are derived
from social networks will be exploited by recommender systems in the future.

Open Issues. Here, we discuss two major issues faced by social recommendation and
sketch the possibilities for future research directions.

—How do inherent properties of social networks interact with social recommendation?
Existing work in this direction, as discussed in Section 4.1, generally neglects the
intrinsic nature of social networks and its influence on recommendation. For example,
connectivity in online social networks is known to be characterized by Power Law
distributions [Clauset et al. 2009; Newman 2005]. In other words, it is a defining
characteristic of social networks that few users have many connections, whereas
many users only have few connections. If social recommendations are influenced
by users’ connectivity degrees, some users stand to benefit much more than others
from the integration of a social network into recommender system algorithms. The
impact of varying levels of connectivity on recommender system performance is, of
yet, only poorly understood and deserves further investigation. Similar questions can
be raised concerning the impact of other social network properties on recommender
systems, such as their “small world” property [Watts and Strogatz 1998] or their
“shrinking diameters” property [Leskovec et al. 2005]. In short, researchers have yet
to fully explore the benefits that social relationship can bring to recommendation. An
example of a method that can be used to investigate this issue has been introduced in
preliminary work by Shi et al. [2010b]. This work proposes to exploit social network
modeling techniques, such as those of Leskovec et al. [2010a], to simulate the social
relationship between users in the recommender system. The simulation makes it
possible to investigate the upper bounds of the benefit that the exploitation of social
networks can be expected to provide for recommender system algorithms.

—How can mutual benefits between recommender systems and social networks be pro-
moted? In other words, how can we improve both the content item recommendation
and user social engagement via social recommendation? As discussed in Section 4.1,
recommender system researchers have devoted significant effort to exploiting user
social relationship for improving recommendation performance, whereas research
on how to exploit recommendations for learning more about social relations has
remained relatively limited. For this reason, an open issue is to investigate the
potential of using the U-I matrix simultaneously for social relationship prediction
and recommendation. A pioneering contribution in this area was made by Yang et al.
[2011a], who demonstrated the mutual benefit between recommenders and social
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networks in terms of product recommendation and social connection prediction.
However, a fundamental question that researchers need to address in this direction
is the exact nature of the correlation between the similarity of users’ interests and
the social relationship. This question is important because the core assumption that
must hold in order to guarantee mutual benefit is that socially related users share
similar interests. Previous work has shown that there is a correlation between user
online communication behavior and social relationships [Singla and Richardson
2008], which may also indicate the potential correlation between recommender
system users and their social relationships. An initial study, performed by Said et al.
[2010], investigated the impact of user social relationships on their tastes in movies
and showed a positive correlation between the two. However, more convincing
research in this direction is still needed to provide evidence for understanding
the predictability between the users’ interests in recommender systems and their
social relationships. A productive avenue for exploring this predictability could be to
address the question, How should negative social relationships be exploited for social
recommendation? Examples of negative relationships in social networks involve
distrust and blacklisting. One example of the relatively limited work in this area is
by Ma et al. [2009a], who proposed to regularize the factorization of the U-I matrix by
imposing a constraint that users with distrust relationships should have dissimilar
latent factors. This work suggests that exploiting distrust relationships could have a
positive effect for improving recommendation performance. However, another recent
study by Victor et al. [2011] has compared several trust-based and distrust-based
recommendation approaches, and observed that distrust relationships make only a
marginal contribution. In the future, we believe that one of the challenging issues
that researchers need to tackle in order to effectively use negative relationships for
recommendation is the propagation of negative relationships in social networks. We
expect this propagation to demonstrate a fundamentally different dynamics than the
propagation of positive relationships. The simple assumption that “a friend’s friend
is a friend” captures the natural propagation of positive relationships relatively well.
However, the assumption that “an enemy’s enemy is a friend” is less reliable and
suggests that the propagation of negative relationship is much more complicated.
The research on social network analysis has started investigating the propagation
of the negative relationships and its predictability [Guha et al. 2004; Leskovec et al.
2010b]. It can be expected that findings from research in this related area could
inform the exploitation of the negative relationship for social recommendation.

State of the Art. In the literature, in addition to using social networks for item recom-
mendation, as presented in Section 4.1, a few contributions have been made to social
connection recommendation. One of the first contributions to use recommender system
techniques for people recommendation in social networks was conducted in the domain
of an enterprise social network by Guy et al. [2009]. This work empirically investigated
user profile representations by structured information sources, for example, the user’s
co-authorship, and the effectiveness of content-based recommendation approaches. The
results demonstrated the feasibility and the usefulness of exploiting rich side informa-
tion sources for online connection recommendation. Inspired by this work, Hannon
et al. [2010] have carried out comprehensive research on followee recommendation in
the Twitter social network, by means of content-based approaches, CF approaches, and
the combination of the two. Their work also demonstrated the usefulness of the con-
tent features from tweets (which, in contrast to the information sources used by Guy
et al. [2009], consist of unstructured data) for improving recommendation over that
solely based on the social graph. We also notice that other similar work investigated
different user profile representations with structured data in Flickr social network for
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Fig. 10. An example of a group recommendation scenario. Family 1 seems to have no interest in Sci-Fi
movies (Matrix and Inception), which, however, may be preferred by Family 2.

a variety of recommendation purposes, including friend recommendation [Siersdorfer
and Sizov 2009]. In the area of social tagging networks, Symeonidis et al. [2010] and
Zhou et al. [2010] exploited user tagging data for user connection recommendation but
did not examine the usefulness of the social graph. As mentioned previously, more re-
cent work related to the topic of people recommendation has been carried out by Yang
et al. [2011a]. This work proposed to jointly exploit both the user-service/item relations
and the user-user social graph for both service/item and friend recommendation. In
addition to people recommendation, community recommendation in social networks
has also been attempted. Combinational CF [Chen et al. 2008] was one of the first
attempts proposed for community recommendation. Vasuki et al. [2011] investigated
both MF and graph-based approaches for community recommendation, exploiting both
the user-user friendship network and the user-community network.

Summarizing, research work in social recommendation has mainly focused on
the exploitation of social networks for item recommendation; however, an effective
model/framework of social recommendation that can introduce mutual benefits be-
tween social networks and recommender systems is still missing. As addressed in
Section 4.1, social networks can be taken as a type of side information for improving
CF-based recommender systems. In turn, we would expect that the user behavior in
the recommendation context can be taken as a type of side information for a social
network, for which similar approaches as presented in Section 4.1 can be developed
for analyzing and predicting social connections. In addition, we may explore side infor-
mation sources about users to link their different behaviors in a recommender domain
and a social network. Since social recommendation, due to its myriad applications, is
expected to remain a productive research topic in recommender systems, the effort
toward addressing the two open issues covered here holds the potential for high payoff
in terms of impact on the recommender system community.

6.2. Group Recommendation

Significance. Although most recommender systems aim at providing quality recom-
mendations for individual users, in some scenarios, recommendations are required
that satisfy the needs of a group, for example, as movie recommendation for a family,
restaurant recommendation for dating partners, and event recommendation for online
communities. Figure 10 illustrates a scenario of group recommendation, which involves
four users affiliated with two groups (i.e., families) and their preferences for different
items. The item recommendations are expected to be provided to each group so as to be
enjoyed by all group members. Therefore, the success of a given recommendation does
not depend on the opinion of one user, but rather on the group as a whole. Because the
recommendation needs of groups are complex and go beyond the sum of the needs of the
individual group members, group recommendation has been identified as a research
challenge in recommender systems [Jameson and Smyth 2007].
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Open Issues. We cover three issues that distinguish group recommendation from rec-
ommendation for individual users. These issues constitute the key aspects that need to
be addressed for this research challenge. We note that a recent overview work by Pazos
Arias et al. [2012] has also discussed the new perspectives on group recommendation.
In this survey, we restrict ourselves to highlighting only those group recommendation
issues that are most critical in our viewpoint, with the goal of complementing the
information already provided by Pazos Arias et al. [2012].

—How to model group-level preference? Intuitively, a good recommendation for a group
should be something that fits the group-level preference. However, modeling the
group-level preference is difficult, because in most scenarios we only have the pref-
erences of individual users, and the side information of individual users and items.
A simple model could take the group-level preference to be the intersection of all
members’ individual preferences [Masthoff 2011]. However, such an aggregation ap-
proach potentially suffers from two drawbacks. First, it might result in more severe
data sparseness for CF, as the common interests among all the members could be
rather limited. Second, it might overlook the relationship between the members and
the group, as members can possibly adjust their personal preference to accommo-
date those of other group members, who they know to enjoy or consume different
sorts of items. To overcome the drawbacks of this simple model, significant research
effort toward effective recommendation algorithms that can model the group-level
preference in a reasonable and interpretable manner is needed.

—What is the impact of group structure, and how to exploit it for group recommenda-
tion? Members in a social system/organization sometimes have different roles, such
as leaders and followers. In this case, members in a group should have different types
of influence on the items recommended to the group as a whole. Here, again, we note
that a good group recommendation is not necessarily the “common” interest of all
group members. For example, if plenty of research themes are available/relevant to
be recommended to a research group, the group leader, who holds a 10-year strategic
view on this group but also understands the expertise among the group members,
should have much stronger opinion on the relative importance of different themes
than the group members with less experience, who may only consider the relevance of
those themes based on their own expertise and a significantly narrower understand-
ing of the field. In this case, a good recommendation should be more biased to the
group leader’s preference. Another example is if a parent takes a young child to see
a movie, in which case the recommendation should be more heavily based on what
will interest the child rather than the parent. Because of such asymmetries, group
structure needs to be investigated and exploited for steering group recommendation.
Although the explicit group structures may not be available for individual groups,
there could exist possibilities for mining group structures from the side information
about group members, such as the interaction information and the social relation-
ship. Then, one could further study how the inferred group structures benefit group
recommendation. To the best of our knowledge, the issue of group structures has not
been raised or studied in the community, although it is clear that research addressing
this issue stands to make a significant contribution to group recommendation.

—How to take into account the dynamics of a group for group recommendation? This
issue has been raised in the work of Pazos Arias et al. [2012]. We also highlight
this issue because we consider dynamics to be a key characteristic that makes group
recommendation different from other recommendation tasks. For example, it is nat-
ural that online groups can be growing (i.e., new members joining in) or dying (i.e.,
members leaving) [Kairam et al. 2012]. Little is known about the impact of such
trends on group recommendation. Further, research has yet to explore how changes
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in the group structure can best be deployed to inform recommendations. For example,
the information that a particular member left a group could potentially shed light
on the ways in which recommendation could be improved for the remaining group
members. The challenge is how to infer the implications of the changes, for example,
if the member dropped out due to interests that diverged with those of the group.
Conversely, if a member is observed to join the group, this information could be useful
for improving recommendations as long as the reason for joining can be inferred.

State of the Art. A few research contributions have been made to address the challenge
of group recommendation. Most of them have focused on the first open issue mentioned
earlier, namely preference modeling. Two strategies have been attempted—that is, one
is to first generate a group profile by aggregating the user profiles in the group and
then make recommendations for the group profile, and the other is to first generate
recommendations for all users in the group and then aggregate the results as the final
output for the group [Amer-Yahia et al. 2009; Campos et al. 2009]. The effectiveness of
the two strategies for group recommendation has been investigated in recent studies
by using either simulated data of user groups [Baltrunas et al. 2010] or real data about
families of users [Berkovsky and Freyne 2010]. In addition, some recent work has
exploited the social relationship of group members for group recommendation [Gartrell
et al. 2010]. Other recent work has exploited items’ content features or metadata for
modifying group recommendation that is solely based on the joint preferences of group
members [Seko et al. 2011]. However, the two challenges—namely, the increasing data
sparseness and conditional relationship between the members and their group—have
not been addressed, nor have they even been widely recognized. A recent competition
focusing on the group recommendation task [Said et al. 2011] has, again, highlighted
the difficulty of addressing these challenges.9 Finally, we emphasize that the other two
open issues, group structure and dynamics, also present challenges in need of attention
from the research community. We notice that the group information can be regarded
as a type of side information about users (in the case that users’ group memberships
are stable) or a type of interaction-associated information (in the case that users’ group
memberships are dynamic). For this reason, we may expect that the algorithms as
discussed in Sections 4.1 and 4.2 could be investigated, modified, or specialized for
addressing the challenge of group recommendation as well.

6.3. Long Tail Recommendation

Significance. According to the terminology introduced by Anderson [2006], the long
tail within the area of recommender systems refers to the items that have low popu-
larity. In other words, those items have only been rated or viewed by very few users. In
Figure 11, we show the long tail phenomenon in two datasets, the MovieLens 10 million
dataset10 and the Netflix dataset, which are commonly used in recommender system
community. As can be observed in both datasets, there are a small number of items
that received a huge number of ratings from users (e.g., in the Netflix dataset, one item
may have more than 200,000 ratings), but many items only received a few ratings (e.g.,
in the Netflix dataset, one item may have fewer than 10 ratings). Note that the tail
items are different from cold-start items, which are typically new items in a system,
but they may become more and more popular (receiving more interactions from users)
over time. The ability of a recommender system to recommend items from the long tail
is a critical indicator of the usefulness of recommender systems. For example, a user
may like a popular movie (she may already know it) that suits her interest but may

9http://2011.camrachallenge.com/news/.
10http://www.grouplens.org/node/73.
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Fig. 11. The long tail distribution in the MovieLens dataset and the Netflix dataset. Note: A point (x, y) in
the plot means that there are x items in the dataset that have y ratings.

be more in favor of a movie recommendation that is less obvious and surprises her.
The ability to recommend items that users would not have otherwise found or thought
of raises their appreciation of the system. Similarly in the travel domain, a traveler
could appreciate a recommendation for a place hidden in the long tail more than a
popular location that is described in every tour guide. In short, long tail recommenda-
tion plays an important role in most recommendation applications because it helps, to
a large extent, to improve users’ satisfaction and, by stimulating curiosity, also their
engagement.

Open Issues. We summarize our perspective on three issues that make long tail
recommendation challenging:

—How to promote the recommendation of tail items? As mentioned previously, the
difficulty of recommending long tail items lies in the fact that such items have very
limited user preferences in their history. One possibility is to address this problem
by taking into account either content information derived from the items or rich side
information associated with them when applying CF approaches. Another possibility
is to first explicitly identify the tail items in a given collection and then generate
recommendations intentionally biased to those tail items [Park and Tuzhilin 2008].
However, both of these options involve heuristics.

—What is the added value of tail items, and how to exploit it in recommendation algo-
rithms? We also notice that there has been little investigation on how recommenda-
tion of tail items can influence user satisfaction, or how additional revenue can be
generated by the recommender systems from the tail items. In general, principled
answers are lacking to the question of why, and in which cases, recommending a tail
item is more important than a head item. Extensive experimental research may be
necessary in order to understand and explain the potential added value to be derived
from long tail recommendation. Pioneering work on this issue was carried out by
Oestreicher-Singer and Sundararajan [2012], who studied the revenue influenced by
recommendation of tail items and head items in Amazon.com. They found that the
recommender system helps to improve the revenue from the tail items but at the
same time reduces the revenue from the head items, resulting in a decreased overall
revenue. Although this survey does not directly address the challenge of improving
tail recommendations, it serves as an example of a work that could inform future
research that addresses the underlying question, Why recommend tail items?
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—How to match long tail recommendations and users’ topical needs? Recommendation
in the long tail may not only mean recommending items receiving less overall user
attention but also satisfying user needs that are, relatively speaking, more exotic.
Adapting recommender systems not only to niche items but also to niche preferences
is a formidable research challenge. Consider a travel recommender system that rec-
ommends that a user visit a relatively popular destination, the London Eye. The user
can be satisfied with this recommendation for a relatively popular reason, namely
because of a general desire to visit famous attractions. However, the user can also be
satisfied with this recommendation because of a technical interest in large observa-
tion wheels, which is shared by relatively fewer people. Because this interest applies
to a very small group of users, it will not be well represented in the traditional U-I
matrix. In other words, the matrix does not contain the information on the rationale
behind the ratings. Facing the challenge of recommending items for long tail reasons
requires methods capable of adapting recommendations to a user’s topical interests.
Approaches to this challenge could derive benefit from analyzing user’s topical in-
terests from various information sources in order to determine the specific nature of
the long tail adaptation that would best suit a user. One of the recent contributions
exploited the category information of geographic landmarks from Wikipedia11 for
the purpose of nontrivial landmark recommendation [Shi et al. 2013]. However, in a
broad scope, awareness of the importance of this open issue is not widespread, and
significant efforts are necessary to understand the nature of highly specialized user
interests and also how to adapt recommendation to address them.

State of the Art. The long tail problem in recommender systems was first formulated
by Park and Tuzhilin [2008], who specifically focused on improving recommendations
of items in the long tail. The authors proposed to first split the item set into head items
and tail items and then only use the ratings in the clusters of tail items to generate the
recommendations for the tail items. The effectiveness of their approach relies, however,
on achieving the proper split between head and tail items. More recently, Steck [2011]
has proposed to specifically exploit item popularity (i.e., the number of ratings for an
item) for refining the evaluation metric used to measure recommendation accuracy
so that it places more emphasis on successful recommendations of tail items. We also
note that long tail recommendation is closely related to the issue of novelty/serendipity
in recommender systems [Grossman 2010]. Researchers focusing on this issue have
argued that it is important to recommend items that are not only relevant but also
can provide users with a positive sense of surprise [Hurley and Zhang 2011; Nakatsuji
et al. 2010; Oh et al. 2011; Onuma et al. 2009]. In short, the contributions that have
been made thus far in this area have mainly focused on mechanisms that promote
the recommendation of tail items—that is, they address the first technical problem
discussed earlier. There has been a marked shortage of contributions that treat the
theoretical aspects of long tail recommendation models and the second and the third
issues discussed previously remain, therefore, open research challenges. As discussed
in Section 4.1, the side information of users and items usually has the effect of compen-
sating for data sparseness in recommender systems. For this reason, it is promising
to explore possible side information sources of long tail items for discovering their po-
tential match with the users’ topical interests. In addition, the additional information
about the interaction between users and tail items may indicate the reason why a user
likes a tail item and the particular value that this item brings to the user. In this sense,
long tail recommendation is also in need of exploring interaction-associated informa-
tion sources and may benefit from previous contributions as discussed in Section 4.2.

11http://www.wikipedia.org/.
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Fig. 12. An example of CDCF scenario. In Domain A, Alice’s preferences are not similar to any of the other
users in this domain. However, in Domain B, we discover that users who like “My Heart Will Go On” (the
theme song to Titanic) may also like “There You’ll Be” (the theme song to Pearl Harbor). This knowledge can
be exploited for recommending the movie Pearl Harbor to Alice.

6.4. Cross-Domain Collaborative Filtering

Significance. Cross-domain collaborative filtering (CDCF) has recently started to
draw significant research attention [Li 2011]. The core concept of CDCF is to exploit
information from multiple U-I matrices (i.e., domains) in order to allow the recommen-
dation performance of one domain to benefit from the information from one or more
other domains. In other words, we can regard CDCF as CF on one U-I matrix/domain
that takes other U-I matrices as additional information sources. The CDCF techniques
hold particular importance for recommender systems for two reasons. First, they can
be exploited by megadata owners (e.g., Internet companies with a variety of online
services) for further optimizing recommendations for their users under different sites.
Second, they can introduce mutual benefit for different data owners (e.g., two compa-
nies running businesses that offer different online products) for further improving their
service quality. We illustrate in Figure 12 an exemplified scenario where two domains
(A and B) are involved. The two domains may have different users and also different
category of items (e.g., movies vs. music). Then, it is expected to have knowledge trans-
fer between different domains so as to introduce benefits for recommendation in both
domains. Recently, a new online application, Tipflare,12 has been developed at MIT as
a pioneering application of cross-domain recommendation.

Open Issues. As a new research topic in recommender systems, CDCF is in search
of answers to two fundamental questions: first, what could be the common knowledge/
data that can be transferred/shared between different domains, or simply, “What to
share?” and, second, what could be the optimal way to transfer/share knowledge be-
tween different domains, or simply, “How to share?” [Pan and Yang 2010; Pan et al.
2010]. In the following, we elaborate on our understanding of these two issues:

—What to share? This problem focuses on the usefulness and the reliability of informa-
tion patterns that could be exploited for CDCF. Users (or items) in different domains
could be mutually exclusive, thus making it difficult to establish links between users
(or items) from different domains. In that case, an interesting direction is to explore
the user-contributed information, such as tags shared between domains [Shi et al.
2011b]. In addition, since social networks can interconnect users across different do-
mains, it might also be promising to derive knowledge that is common between two

12https://www.tipflare.com/.
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domains by analyzing information, such as votes/likes on different domain products,
contributed by socially connected users. It is important to pay careful attention to
the reliability of information that is common between two domains. In other words,
in cases in which it is possible to automatically identify information about character-
istics shared between two domains, it is still questionable whether, or which of, those
characteristics are reliable enough to improve CDCF. For this reason, it is important
that researchers also gain an understanding of cases in which CDCF could degrade
the recommendation quality.

—How to share? Addressing this issue requires the development of new algorithms
for maximizing the mutual benefit from multiple domains. On one hand, the link
(or the correlation) between user preferences in different domains may be hidden.
Methods that focus on discovering cross-domain correlations hold promise to improve
the performance of CDCF. On the other hand, there might be multiple links between
different domains that could be used for knowledge transfer. In this case, algorithms
are needed that are not only capable of exploiting multiple links simultaneously
but that are also able to automatically discover the relative importance of different
links. In addition, as mentioned earlier, there are typically many information sources
available in each of the individual domains. Individually, the domains may already
be large, and taken together they may pose an even more serious scale challenge for
CDCF. Massive amounts of information from multiple domains need to be processed
with a reasonable computational cost.

State of the Art. Some of the earliest work on CDCF was carried out by Berkovsky
et al. [2007], who deployed several mediation approaches for importing and aggregat-
ing user rating vectors from different domains. Recently, research on CDCF has been
influenced by, and has benefited from, the progress in the area of transfer learning [Pan
and Yang 2010], a machine learning paradigm for sharing knowledge among different
domains. For example, the approach called coordinate system transfer [Pan et al. 2010]
first learns latent features of users and items from an auxiliary domain (which has rel-
atively more user preference data) and then adapts them to a target domain (which has
relatively less user preference data). Further, an extension of this approach has been
proposed that exploits implicit user feedback, rather than explicit user ratings, to con-
stitute the auxiliary domain [Pan et al. 2011]. However, these approaches require that
either users or items are shared between the domains, which is a condition not com-
monly encountered in practical applications. Codebook transfer (CBT) [Li et al. 2009a]
and the rating-matrix generative model (RMGM) [Li et al. 2009b] are two approaches
that transfer the knowledge from an auxiliary domain by learning an implicit cluster-
level rating pattern that can be shared with a target domain. Similarly, multidomain
CF is an approach that extends PMF to multiple domains involving explicit user pref-
erence [Zhang et al. 2010] or implicit user feedback [Tang et al. 2011] by learning an
implicit correlation matrix, which links different domains for knowledge transfer. One
of the latest contributions has adopted the CDCF framework of RMGM [Li et al. 2009b]
to address the problem of dynamic CF [Li et al. 2011]. However, those approaches rely
on implicit domain correlations that are mined solely from user preference data, and no
explicit links are exploited. Shi et al. [2011b] have proposed tag-induced cross-domain
collaborative filtering (TagCDCF), which uses common tags as bridges to link different
domains for improving CDCF. On the whole, very limited work has been devoted to
exploiting explicit links between different domains for CDCF. For this reason, the first
technical problem—that is, what to share—is still a significant open issue. In addition,
as discussed with respect to the second CDCF issue, the exploitation of various in-
formation sources and the consideration of multiple cross-domain links have not been
fully explored by the research community. Thus, many opportunities remain open for
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addressing the challenge of CDCF. We would like to emphasize that the side informa-
tion of users and items may be one of the most critical information sources for CDCF,
as it can serve as a common background for different domains (e.g., movies and books
may share the same genre space). For this reason, we expect that previous contribu-
tions of incorporating side information, as discussed in Section 4.1, can be exploited for
addressing the challenge of CDCF.

7. CHALLENGES OF NEW PERSPECTIVES AND MODELS

Outside of the core research area of recommender systems, there are a number of
other research areas that are rapidly developing and that have the potential to inform
and stimulate innovation and progress in the recommender system research. In this
section, we cover three of these areas that we consider to be particularly promising
sources of the new perspectives and models.

7.1. Search and Recommendation

Significance. Search and recommendation are two technologies that have come in to
their own with the rise of the Internet. From the application perspective, the difference
between the two lies in whether or not users are required to express their information
need explicitly, that is, via queries (as in search), or whether the information needs are
implicit, for example, encoded in rating and consumption behavior (as in recommenda-
tion). Because the function and benefit of the two technologies are complementary, it
can be expected that many online applications will have the need for both, with various
levels of integration. A recent example of the convergence of search and recommenda-
tion is the +1 button offered by Google+13 that allows users to vote on search results.
The quality of search results stands to benefit significantly from integrating explicit
feedback from human users with similar search needs. In addition, another recent
Google application, Google Now,14 aims to achieve personalized search by integrating
context-aware recommendation. Because of the wide reach and enormous importance
of search engines, the integration of search and recommendation technologies has be-
come an attractive research topic and presents a substantial challenge for researchers
from both communities.

Open Issues. We would like to discuss two challenges that we expect to be of central
importance for the future research on the integration of search and recommendation:

—How can recommendation techniques help improve the quality of search results in the
long tail? In the case of Web search, which involves billions of webpages, millions
of which can be relevant to a single query, there could be a tremendous number of
webpages that are only visited by users an extremely limited number of times. If
webpages are infrequently viewed, they will be infrequently voted upon by users,
even when voting is effortless, as with Google+ as described earlier. There is a real
danger that a given relevant webpage does not accumulate any votes at all. We
note that this challenge can be regarded as a special case of the general Long Tail
Recommendation challenge (see Section 6.3) in the search scenario. However, we
emphasize that one major/particular issue here is that the result webpages (which
correspond to items) are conditioned on particular queries. It is important to keep
in mind that in search scenarios, the long tail involves the interaction between the
frequency of user votes and the frequencies of the queries. Note that there are many
queries that are issued only infrequently, and for this reason, low voting volume

13http://www.google.com/+1/button/.
14http://www.google.com/landing/now/.
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might fail to reinforce not only the importance of the webpage but also the relevance
relationship between the webpage and the query. Another danger is that user votes
will create a snowball feedback effect. In other words, a few user votes will lead
to certain webpages being ranked higher, where they will be more easily seen and
accumulate more votes. Webpages that are relevant but happen not to establish
their popularity early risk falling to the bottom of the ranking and never being
discovered. We would suggest two directions for addressing this problem. First, one
could develop methods to predict votes for webpages and then use the inferred votes
for improving search results. These methods would create a minimum vote volume
for tail webpages and could also prevent webpages from being lost in the snowball
voting patterns. Second, instead of the voting system for the search results, one
could consider developing a voting system for queries so as to avoid the constraint
from tail webpages. In this way, the search results are expected to improve not
by the collaboratively recommended results, but by means of using collaboratively
recommended queries [Sun et al. 2005; Yan et al. 2011].

—How to allow search results to benefit from user votes but also maintain attack re-
sistance? Conventionally, attacks in recommender systems refer to cases in which
malicious users (attackers) assign high ratings deliberately to particular items in
order to promote (or denigrate) those items [Lam and Riedl 2004; Mobasher et al.
2007]. In the case of a voting system for search results, malicious users could also
shill the system by giving deliberate votes to particular results (e.g., webpages). We
emphasize that this issue could be more severe than that in recommender systems
because the queries are used to express the users’ information needs. For example,
the query “New York” is often used by users who are planning travel to New York.
This information need can be easily used by malicious users who may deliberately
promote some results (e.g., a particular hotel) by assigning a lot of votes to them. This
issue also opens plenty of opportunities for future research toward attack-resistant
mechanisms for collaboratively recommending search results.

State of the Art. The relationship between search and recommendation was formally
raised in a panel discussion in 2010 [Guy et al. 2010]. A few recent research con-
tributions have demonstrated the possibilities of exploiting information from search
engines for item recommendation [Li et al. 2010; Smyth et al. 2011], especially in social
settings. However, to the best of our knowledge, there have been no specific attempts
that address the open issues for the integration of search and recommendation that
we have identified here. We anticipate that a sizable number of studies on this chal-
lenge will be carried out in the near future, leading to significant new developments
in online applications. We would like to emphasize that there is a remarkable amount
of interaction-associated information generated in the intersection of search and rec-
ommendation. For example, if a user is interested in an advertisement on a Web site,
then, the query that was used by the user to find the Web site can be a valuable piece
of information for the advertisement recommendation. In this sense, there is great
potential to exploit the interaction-associated information from users’ search patterns,
by referring to previous contributions in Section 4.2, for improving recommendation
performance, and vice versa.

7.2. Interaction and Recommendation

Significance. Today, the interaction between users and recommender systems is no
longer focused on ratings, and most recommender systems have become more interac-
tive than before. Note that the term interaction in this subsection refers to a process in
which the system and the user are engaged in an information exchange. On one hand,
the system may elicit particular information/reactions from the user and integrate this
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information to refine the recommendation results. On the other hand, the system may
allow the user to assess the recommendation based on the explanations that it provides
to the user.

Conversation has been recognized as one of the most important types of interaction
for recommender systems [Tunkelang 2011]. Typically, a conversation is used to guide
the users to express their information needs more explicitly, providing a basis for
fine-grained adaption of recommendation to user needs [Mahmood and Ricci 2009]. For
instance, a movie recommender may first ask the user some situational questions, such
as “Are you alone or with friends?” before generating recommendations. The answers to
this kind of questions could help the system increase the relevance of recommendations.
Another example is that the system can ask the user for feedback on recommendations.
One possibility would be that if a user did not choose any of the top (e.g., top 10)
recommended items, the system may ask the user why she was disappointed. The
answer to this question could also be used in improving recommendation algorithms
by allowing them to adjust the recommendations for this user [Chen and Pu 2012].

Explanation of recommendations has also been considered as a critical function
for recommender systems. Explanations provide the users with rationale that moti-
vates why the items/products have been recommended [Friedrich and Zanker 2011;
Herlocker et al. 2000; Knijnenburg et al. 2012; Symeonidis et al. 2008a]. Two main
effects can be attained by explaining recommendation results. First, it helps users to
better understand the mechanism of the system. Understanding, in turn, potentially
improves user satisfaction, because users could learn to adjust their behavior and ex-
pectations to the system [Ye and Johnson 1995]. In addition, it also builds trust because
the users can tell if they agree with the factors influencing recommendations produced
by the system. Second, it may allow recommender systems to serve users better with
serendipitous results, as the users may discover new interest inspired by the explana-
tions [Yoo and Gretzel 2011]. For example, in the case that a user wants to enjoy some
movies and consults a movie recommender, the user may like the recommended movies
that are popular at that moment and fit his interest well. However, if the user has
never heard of the recommended movie but the recommender system provides a con-
vincing explanation as to why the user might like the movie, the user might prefer to
watch this movie instead of other “predictable” suggestions. In view of the advantages
sketched previously, the integration of interaction and recommendation is expected to
become a trend for most online services. At the same time, it will remain a challenging
research topic that requires effort from different research areas.

Open Issues. Although various types of interaction exist between recommenders
and users, the key issue that we would like to highlight is how can the information
from the interactions, such as conversations and explanations, be exploited effectively
for improving the recommendation quality? In other words, we need to address the
question, “Which algorithms/paradigms would be the most promising for interactive
recommender systems?” One possibility to address this problem is to consult the results
from the field of decision-making theory [Roe et al. 2001], which has been identified as a
viable basis for developing new recommendation algorithms [Jameson 2011]. Another
aspect of this problem is whether researchers should seek a generalized mechanism
that can handle all kinds of interactions for recommendation, or whether different
mechanisms that are specialized for different types of interaction are needed. This
challenge also provides valuable opportunities for future research on interactive rec-
ommendation with different types of interaction data. Looking back on the past re-
search progress in CF, we see that major innovations have been made in the face of
the rise of new types of data, such as the information sources reviewed in this survey.
We anticipate that along with the growing availability of various types of interaction
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data, a wave of new contributions to CF will be proposed for integrating interaction
and recommendation.

State of the Art. In the most basic case, interactive recommendation is studied as
a case of the problem of online CF [Liu et al. 2010; Stern et al. 2009]. Under such a
view, the key issue is how to constantly take into account new user preference data for
improving recommendation results. One recent contribution has exploited the informa-
tion of user choice in recommendation sessions for model training [Yang et al. 2011b].
Here, a key constraint imposed is that the chosen items in a session should have higher
relevance for the user than the unchosen items. In general, however, current research
remains in a stage that focuses on users’ explicit preference data. Research has yet
to turn its attention to use cases in which information about a variety of interactions
between users and recommenders is available. Clearly, the challenge of leveraging
multiple information sources of interaction for recommendation calls for further in-
vestigation beyond current research of CF with interaction-associated information as
presented in Section 4.2, including the aspects of both interpreting and exploiting the
interactions.

7.3. Economics and Recommendation

Significance. The study of economics provides a valuable source of models and insights
that can be used to improve recommender systems. In economic systems, for example,
in commodity markets, actors pursue specific objectives under the limitations of spe-
cific constraints. Recommender systems are also characterized by interactions between
actors with objectives and constraints. As recommender system scenarios grow more
complicated, multiple objectives of multiple actors and a growing number of constraints
must be taken into consideration. For example, recommender systems play a key role in
e-commerce because they mediate the interaction between buyers and sellers. Recom-
mendations must be optimized in order to satisfy both sellers business metrics, such as
sales and customer retention, and also to generate recommendations that buyers find
interesting and useful. Economic models are ideally suited for capturing these com-
plex interactions. The ability of economic models to reflect and explain the dynamics
underlying recommendation scenarios makes them uniquely suited for understanding
and improving recommender systems.

Open Issues. The main challenge that must be faced in order to allow recommender
systems to productively exploit economic models is selecting and integrating economic
models to optimize the recommender system output. Obviously, different economic the-
ories may relate to different aspects of recommender systems. The discussion in this
survey has focused on recommender systems that exploit context. We would like to ex-
plicitly point out that the availability of additional information, such as item categories
or item prices, increases the complexity of the recommendation problem and thereby
also of the ways in which economic models can be exploited by recommender systems.

State of the Art. Here we mention a few examples of the work in the area of rec-
ommender systems that has drawn on economic theories. These examples are chosen
to illustrate the diversity of economic models that are relevant for recommendation
scenarios.

Early work connecting economic models and recommender systems highlighted the
correspondence between CF and social choice theory [Pennock et al. 2000]. Social choice
theory is a framework for analyzing how the preferences of individuals can be combined
to obtain decisions at the level of the social collective. Pennock et al. [2000] suggest that
voting mechanisms provide a valuable source of possibilities for refined CF. Economic
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models have been used by Harper et al. [2005] in order to explain user rating behav-
ior in recommender systems. These authors adopt a straightforward economic model
that models raters as a set of agents who work to maximize their objectives given con-
straints. The model integrates factors that influence users’ willingness to rate movies,
including their desire for high-quality movie recommendations and the limited time
and effort that they are willing to spend rating movies. The model is able to explain a
significant portion of users’ rating behavior. However, the authors caution that a thor-
ough understanding of the user population under investigation is required in order to
create economic models that explain user behavior. A marketplace model has been used
by Wei et al. [2005]. This work is based on the insight that the strengths of multiple
recommender systems can be combined, if these systems are allowed to compete in a
marketplace for positions within the recommendation list that is presented to the user.

A consumer behavior model has been used by Wang and Zhang [2011]. This work
makes use of the economic concept of utility, which is defined as the satisfaction or
pleasure that an individual derives as a result of purchasing a product. In the work
of Wang and Zhang [2011], an existing recommender system is extended to take into
account the dependence of a product’s utility on the user’s past purchasing behavior. For
example, a user who has just purchased a consumable item such as diapers will soon
derive high additional utility from another similar purchase. For durable items, such
as consumer electronics like cameras, more time must elapse before similar purchases
provide high additional utility. Portfolio theory has been exploited by Shi et al. [2012]
to improve the lists of recommended items. This work observes that the usefulness
of an item recommendation depends not only on that particular recommendation but
rather on the entire list of recommended items. The approach takes this list to be an
investment portfolio and applies optimization techniques used in the financial world.
The optimization handles uncertainty and also maximizes the diversity of the list in a
way that respects the user’s preference for topical breadth.

We envision that future research for addressing this challenge would build on previ-
ous contributions to CF with both side information and interaction-associated informa-
tion. The side information of users and items can serve to identify the economic value
of a recommendation, which, in turn, could be used for refining the recommendation
model. The interaction-associated information, on the other hand, may be exploited for
selecting a proper economic model in terms of specific interaction patterns.

8. CONCLUSIONS

We have presented a comprehensive survey on recent progress in CF methods that
make use of various sources of information that stretch beyond the traditional U-I
matrix. We have categorized different algorithmic contributions into different groups
based on the type of information that is processed and the type of fundamental
paradigm exploited. We have also discussed the challenges that we anticipate to be
most significant to the future of research on CF and have discussed potential opportu-
nities for addressing each of these challenges. The treatment that we have given the
challenges presented in this survey is based on our understanding of application de-
mands, fundamental problems, and outreach connections in the area of recommender
systems. We expect that these challenges will attract significant research efforts and
lead to productive research outcomes in the following 5 to 10 years.

Without a doubt, new challenges in the scope of CF with information, above and
beyond those discussed in this survey, will continue to arise in the coming years. The
emergence of new challenges is influenced by a variety of factors. These factors in-
clude the availability of new types of additional information in recommender systems,
the development of new applications involving recommendation technology, the reform
of evaluation methodologies for recommendation performance, the exploration of new
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crossovers between recommender systems and other areas, and the recognition of new
fundamentals and theories in recommender systems. As a result of these new devel-
opments, we believe that recommender systems will continue to be a productive and
interesting research field, and that the opportunities for research work to achieve high
impact in this area will remain ample and attractive.
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