
Automated linear algebra program optimization
using ML

Learning “Learning to Optimize Tensor Programs”

Daniel Zheng
Purdue University

Abstract
Traditionally, the deep learning community uses libraries

like cuBLAS and cuDNN to achieve high performance. These
libraries provide manually optimized linear algebra primi-
tives for a narrow set of hardware architectures. However,
there is an increasing demand to bring deep learning to
new hardware architectures, each with diverse memory and
compute characteristics. Optimizing operations for each ar-
chitecture requires significant effort and hardware expertise.
An alternative to high performance libraries is compiler-

based approaches, which can compile arbitrary computation
to various hardware backends and apply hardware-specific
optimizations. TVM [3] is one such deep learning compiler:
it features scheduling primitives for transforming low-level
program execution details. TVM also provides an autotuning
framework which uses statistical cost models that predict
program performance to search for optimal program sched-
ules.
This project aims to improve TVM autotuning via im-

provements to the statistical cost model and search proce-
dure. These improvements are evaluated on single operator
tuning and transfer learning tasks.

1 Introduction
Deep learning has become ubiquitous, achieving success

in a wide range of real-world applications from computer
vision to natural language processing. Tensor operations, like
matrix multiplication and convolution, are essential building
blocks for deep learning models.

High-performance libraries likeMKL, cuBLAS, and cuDNN
are commonly used in the machine learning community for
their efficient tensor operation implementations. operations.
These libraries are integrated into popular machine learning
frameworks and have led to improved performance and re-
duced memory consumption for production deep learning
models [4]. However, such libraries have some limitations:
• Library functions are manually optimized and highly
specialized for specific hardware architectures. Thus,
they cannot easily be ported to other architectures
with different memory and compute capabilities. This

Purdue CS590-DLS, Dec 2019, West Lafayette, Indiana
2019.
Copyright held by the authors.

is an important challenge given the growing need to
support deep learning on new architectures from mo-
bile devices to custom accelerators. Manual optimiza-
tion approaches requires significant effort and must
be done for each architecture.
• Libraries provide only a limited set of primitives. Imple-
menting custom functions that deviate from library-
supported primitives requires significant effort and
expertise. This makes it difficult for machine learning
researchers to bring experimental tensor operations
to production-grade performance.

Recently, there has been a trend towards “deep learning
compilers”, which take a general and composable approach
towards tensor program optimization. TVM [3] is one such
deep learning compiler. It features a set of scheduling com-
mands for exploring common program transformations, like
loop ordering and loop tiling. Schedules can be parameter-
ized with tunable knobs to create a search space of possible
schedules. Thus, program optimization is defined as the prob-
lem of searching for optimal schedules. TVM provides an
autotuning module with various schedule exploration strate-
gies, including a statistical cost model approach that uses
simulated annealing to find good schedules.
This project aims to improve automated program opti-

mization in TVM, specifically via improvements to statistical
cost models and the search procedure. These improvements
are evaluated in-domain for single operator tuning and cross-
domain for transfer learning tasks to test cost model gener-
alization.

2 Related work
Halide [7] is a high-performance image processing lan-

guage. It introduced the idea of explicitly decoupling com-
putation from scheduling. This enables programmers to de-
fine algorithms and explore optimizations separately and
provides a natural setting for program optimization. Halide
provides an autoscheduling tool that automatically identify
schedules that improve parallelism and locality [6]; however,
it currently only works well for a limited set of CPU pro-
grams. Halide is not a polyhedral framework: it uses intervals
to represent iteration bounds.

TensorComprehensions (TC) [10] compiles a high-level
mathematical language to Halide IR, then lowers to a polyhe-
dral representation and applies polyhedral transformations

1

https://arxiv.org/abs/1805.08166

Preprint, Dec 2019 Daniel Zheng

to generate optimized code. Tensor Comprehensions sup-
ports autotuning using genetic search rather than cost model
based techniques: this limits tuning efficiency. A key feature
of TC is automatic scheduling, which alleviates the burden
of manual schedule space specification.

Tiramisu[1] is a polyhedral compiler that generates ef-
ficient code for heterogeneous architectures. It features a
four-stage IR with a clear separation of concerns. Staging
enables optimizations to be applied in a logical order (sched-
uling, memory, synchronization), avoiding phase conflicts.
Currently, Tiramisu does not provide any mechanism for
automatic scheduling.

PlaidML 1 is a framework that provides automatic kernel
generation for GPUs. It uses a hardware-aware cost model to
generate code for CPU and GPU. This is in contrast to TVM,
which intentionally performs hardware-agnostic tuning.

3 TVM overview
3.1 TVM architecture
TVM [3] is a deep learning compiler infrastructure that

compiles high-level neural network specifications to various
hardware targets. Following from Halide, TVM adopts the
principle of separating computation from scheduling. This
enables programmers to define and optimize programs sepa-
rately: the computation of an algorithm is defined once, then
optimization is simply a matter of searching over possible
schedules.

TVM uses a tensor expression language for defining com-
putation. Tensor operations are defined in the language using
index-based formulas, which specify output tensor shapes
and expressions for computing output elements.

TVM also features a rich set of scheduling primitives that
map high-level computation is to low-level code. Scheduling
commands involve loop transformations (e.g. loop ordering
and tiling), mapping loop levels to hardware (e.g. vector-
ization), and memory manipulation (e.g. caching, shared
memory, latency hiding), among other transformations.

Additionally, schedules can be parameterized: rather than
specifying concrete arguments to scheduling primitives, one
can define schedules with tunable knobs to create a sched-
ule search space. An example tunable schedule is shown in
Figure 1.

3.2 TVM autotuning
Given a schedule search space, program optimization be-

comes a matter of finding the optimal schedule for a spe-
cific input and hardware configuration. One natural strategy
is blackbox autotuning: exhaustively evaluate all possible
schedules to find the fastest one. However, blackbox autotun-
ing may take many iterations to find fast schedules. It does
not leverage any program- or hardware-specific knowledge
to accelerate tuning.
1https://github.com/plaidml/plaidml

Define computation: specify output expression and shape.

C = tvm.compute((512, 512), lambda x, y:

tvm.sum(A[x, k] * B[k, y], axis=k))

Create schedule.

s = tvm.create_schedule(C.op)

Define parameterized schedule search space:

split loop axes to perform tiling.

cfg = autotvm.get_config()

cfg.define_split("tile_x", x, num_outputs=2)

cfg.define_split("tile_y", y, num_outputs=2)

Use schedule from search space.

xo, xi = cfg["tile_x"].apply(s, C, x)

yo, yi = cfg["tile_y"].apply(s, C, y)

s[C].reorder(yo, xo, k, yi, xi)

Figure 1. An example tunable schedule in TVM. First, com-
putation is defined in the tensor expression language. Then,
a schedule space for the computation is defined via tun-
able parameters. In this example, the schedule space size is
10 × 10 = 100. For practical deep learning operations, the
schedule space size is on the order of 107.

Another strategy is to develop hardware-specific cost mod-
els that predict good schedules based on hardware charac-
teristics that affect performance, like cache sizes and com-
pute/memory bandwidths. This approach is adopted by some
autotuning frameworks 2. Ideally, a perfect hardware cost
model can predict schedule costs exactly; but in practice,
developing such models is difficult and non-portable due to
the complexity and diversity of hardware.

Instead, TVM uses statistical cost models to perform auto-
tuning. Cost models are trained to predict the running time
of low-level programs.

The detailed autotuning process works as follows (Figure
2):
• Propose a batch of program schedules for exploration.
• Compile the proposed schedules and measure their
running times. Add schedules/running times to data.
• Train the cost model on all collected data.
• Perform simulated annealing to propose new sched-
ules. The cost model is used as the energy function, so
programs predicted to have a low cost are more likely
to be explored.
• Repeat n iterations. Return the best explored schedule
at the end.

Comparedwith blackbox optimization and hardware-specific
cost models, the statistical cost model approach used by TVM
is hardware-agnostic, has a relatively low search cost, and
learns from historical performance data.

4 Experiments
This paper explores three experiments in automated pro-

gram optimization within the context of TVM:
• A replication of TVM results and comparison with
cuDNN baselines.

2https://ai.intel.com/automatic-kernel-generation-in-plaidml
2

CS590-DLS Final Report Preprint, Dec 2019

Figure 2. TVM autotuning pipeline. Note that the cost model
performs supervised learning on schedule/cost data.

• Improvements to the statistical cost model.
• An evaluation of cost model transfer learning between
operator domains.

4.1 TVM replication
First, the TVM autotuning framework was evaluated on

conv2d operators fromResNet-18 and comparedwith cuDNN
baselines to identify bottlenecks. conv2d configuration de-
tails are shown in Table 1.

Operator name C7 C12
H, W 28, 28 7, 7
IC, OC 128, 256 512, 512
K, S 3, 2 3, 1
Schedule space size 7.46 · 107 1.04 · 107

Table 1. conv2d operator configurations used in evaluation.
These configurations come from ResNet-18 inference. H ,W :
input height and width. IC,OC : number of input and output
channels. K , S : kernel size and stride.

TVM claims that search strategies can readily find conv2d

operator schedules that surpass performance of cuDNN: ran-
dom search can surpass cuDNN in 350 trials and ML cost
model based tuning can surpass cuDNN in just 60 trials [3].
This is surprising given that cuDNN functions are manually
tuned and highly optimized.

C7 C12
cudNN baseline 0.0000744 0.000153
ML cost model (after 100 trials) 0.0002260 0.000255
ML cost model (after 1000 trials) 0.0000752 0.000173
ML cost model (after 2000 trials) 0.0000636 0.000126

Table 2. conv2d operator performance comparison (sec-
onds). The average operator performance from three tuning
attempts is shown. Tuned operator performance exceeds
cuDNN only after 2000 trials. Tuning starts with no training
data using the itervar feature type.

Experiments confirm the effectiveness of TVM’s approach
to autotuning: by specializing on input sizes, it is possible to
achieve faster than cuDNN performance on specific operator
configurations. Cost model based tuning exceeds cuDNN
performance on conv2d operators, but only after 1000-2000
tuning iterations (Table 2). This is significantly more iter-
ations than reported in the original TVM paper. A likely
explanation is that the original experiments used a smaller
schedule space, enabling search strategies to find good sched-
ules much more quickly. This suggests that good schedule
space specifications are crucial for efficient autotuning. How-
ever, TVM currently has no mechanism for automatically
extracting good schedule spaces for arbitrary computation:
users have the burden of manually selecting schedule knobs.
Experiments also show a high variance in tuning results:

tuners take an inconsistent number of tuning iterations to
converge on good schedules. This may be due to the nature
of simulated annealing, which uses random exploration to
propose new schedules. Hyperparameter tuning for simu-
lated annealing (e.g. a temperature cooling schedule) may
yield more consistent tuning results.
Operator performance also varies greatly between invo-

cations: operators must be run many times for an accurate
cost measurement. Overally, tuning is quite time-intensive:
it takes 40 minutes to 2 hours to tune 1000 iterations for
specific conv2d configuration on a GeForce GTX 1080 Ti.

4.2 Cost model improvements
TVM uses statistical cost models to guide schedule space

search. These cost models learn to predict schedule costs
by extracting features from schedules and generated loop
programs ASTs.

Currently, cost models use one of three feature types:

• knob, which extracts features directly from a schedule
configuration (e.g. loop split sizes, ordering permuta-
tions, annotations).
• itervar, which extracts features from the loop pro-
gram AST generated from a schedule (e.g. memory
access count and memory buffer reuse ratio).
• curve, which samples points from distributions model-
ing the relation between various AST features (e.g. the
relation between loop axis length and memory reuse
ratio).

In theory, AST-related features like itervar and curve

have better potential to generalize across domains than knob,
which uses schedule-space specific features.

The implementation of curve did not match the descrip-
tion by TVM authors. In particular, the implementation sam-
ples only one point from the feature relation curve: this
results in sparse features (with many zeros) that is unlikely
to capture much information. The implementation of curve
was fixed to sample multiple points from relation curves
(n = 30 was used in experiments).

3

Preprint, Dec 2019 Daniel Zheng

Figure 3. Tuning comparison for the C12 operator. The fixed
curve-fix feature type performs significantly better than
curve.

Feature type C12
knob 34:42.13
itervar 51:40.81
curve 1:21:33.69
curve-fix 1:13:34.58

Table 3. Feature type tuning time comparison (1000 tuning
iterations).

Additionally, an ablation study was performed to find the
best combination of features for the curve feature. In the
end, a combination of orthogonal features yielded the best
performance: memory buffer touch count vs memory reuse
ratio. The corrected curve-fix feature performed signifi-
cantly better than curve during tuning. Though curve-fix

samples more points from feature relation distributions than
curve, the impact on tuning time was negligible as tuning
time is vastly dominated by operator execution time.

4.3 Transfer learning evaluation
An effective deep learning compiler must optimize tensor

programs for different input sizes and data layout configura-
tions. The similar structure of tensor programs offers a great
opportunity for cost model transfer learning: a statistical
cost model trained on one program configuration should be
able to accurately predict schedule costs for another program
configuration. This cross-domain transfer is important for
creating cost models that learn general program features
affecting performance.
Cost model transfer learning was evaluated in two sce-

narios. First, in-domain tuning was performed on the C7
operator without history. Then, transfer learning was per-
formed: a pretrained model on the C12 operator was used as
a base for tuning the C7 operator.
Results confirm that cost model transfer learning works

well for all feature types: tuning performance improves sharply
within the first 100 iterations, suggesting that the transfer
learning model can accurately predict schedule costs in the
target domain.

Figure 4. In-domain tuning for the C7 operator.

Figure 5. Transfer learning from the C12 operator to the C7
operator: initial performance improves sharply. This demon-
strates cost model generalization and has the potential to
greatly reduce tuning time.

In the transfer learning scenario, the itervar and knob

feature types seem to outperform curve and curve-fix. This
is likely due to the low domain distance between the C7
and C12 operators: specialized features that directly capture
schedule-specific information perform better than domain
invariant features.

Future work is necessary to investigate cost model trans-
ferability across operator domains (e.g. transferring matmul

cost model to conv2d). This is currently difficult in TVM
given that feature lengths dffer between schedule spaces for
different operators. TVM authors explored the use of recur-
sive program embeddings as cost model features but did not
evaluate them on cross-operator transfer tasks.

5 Future work
One direction for future work involves improvements to

the search procedure. TVM uses a vanilla implementation
of parallel simulated annealing to explore new schedules.
Optimization techniques like cooling schedules and restarts
may help tuning converge more quickly and consistently
[5, 8]. Also, the role of cost models in tuning is quite limited:
they are used only to predict specific schedule costs to guide
search. Expanding the scope of cost models in tuning (e.g.

4

CS590-DLS Final Report Preprint, Dec 2019

extending models to directly predict good schedules) can
improve transferability and accelerate tuning performance.
Another direction involves improvements to the search

specification. Currently, TVM relies on manually defined
schedule space templates that capture a wide range of pro-
gram transformations. Suboptimal templates limit both opti-
mal program performance and tuning speed. There is much
prior work on automatically identifying schedules that op-
timize parallelism and locality [2, 6, 9]: these approaches
could help guide automatic schedule space generation and
improve autotuning search spaces.

6 Conclusion
The project was an exploration of learning to optimize

programs within the context of the TVM deep learning com-
piler. Experiments compared TVM performance with cuDNN
baselines and evaluated cost model feature improvements on
single operator tuning and transfer learning tasks. Results
show that autotuned operators are able to surpass cuDNN
performance by specializing on input sizes. Schedule- and
AST-specific features outperform relational features on same-
operator transfer learning tasks due to the low domain dis-
tance. Overall, TVM autotuning is a sound approach for
automated program optimization: cost models are able to sig-
nificantly decrease tuning time without relying on hardware
details. Further improvements to the search procedure and
search specification have the potential to decrease tuning
time and improve cost model transferability.

5

Preprint, Dec 2019 Daniel Zheng

References
[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del

Sozzo, Patricia Suriana, Shoaib Kamil, and Saman P. Amarasinghe. 2018.
Tiramisu: A Code Optimization Framework for High Performance
Systems. CoRR abs/1804.10694 (2018).

[2] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A practical automatic polyhedral
parallelizer and locality optimizer. In Acm Sigplan Notices, Vol. 43.
ACM, 101–113.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
Learning. CoRR abs/1802.04799 (2018).

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).

[5] F Mendivil, R Shonkwiler, and MC Spruill. 2001. Restarting search
algorithms with applications to simulated annealing. Advances in
Applied Probability 33, 1 (2001), 242–259.

[6] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-
Kelley, and Kayvon Fatahalian. 2016. Automatically scheduling halide
image processing pipelines. ACM Transactions on Graphics (TOG) 35,
4 (2016), 83.

[7] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

[8] D Janaki Ram, TH Sreenivas, and K Ganapathy Subramaniam. 1996.
Parallel simulated annealing algorithms. Journal of parallel and dis-
tributed computing 37, 2 (1996), 207–212.

[9] Nicolas Vasilache, Benoit Meister, Muthu Baskaran, and Richard Lethin.
2012. Joint scheduling and layout optimization to enable multi-level
vectorization. IMPACT, Paris, France (2012).

[10] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018).

6

	Abstract
	1 Introduction
	2 Related work
	3 TVM overview
	3.1 TVM architecture
	3.2 TVM autotuning

	4 Experiments
	4.1 TVM replication
	4.2 Cost model improvements
	4.3 Transfer learning evaluation

	5 Future work
	6 Conclusion
	References

