

Lual ETEX-basierter Prototyp zum Erstellen barrierefreier Dokumente

Axel Strübing axel.struebing@le-tex.de

12. März 2024

Gliederung

- 1. Motivation
- 2. Anforderungen
- 3. Das Itpdfa-Paket
- 4. LualATFX, Dvips & Distiller
- 5. Ergebnis
- 6. Status
- 7. Appendix

Warum barriefreie Dokumente ...

- Zugänglichkeit zu Informationen
- ► Barrierefreien-Informationstechnik-Verordnung (BITV)
- ► European Accessibility Act (EAA) & BFSG
- ► PDF-UA & WCAG

Warum barriefreie Dokumente ...

- Zugänglichkeit zu Informationen
- ► Barrierefreien-Informationstechnik-Verordnung (BITV)
- European Accessibility Act (EAA) & BFSG
- ► PDF-UA & WCAG

und warum ich?

Warum barriefreie Dokumente ...

- Zugänglichkeit zu Informationen
- Barrierefreien-Informationstechnik-Verordnung (BITV)
- European Accessibility Act (EAA) & BFSG
- PDF-UA & WCAG

und warum ich?

- nutze TEX (und Linux) seit den 90er-Jahren
- bin Verfechter freier Software
- TEX = resourcenschonend, automatisierbar, Verfügbarkeit
- Programmieren als Hobby
- für meinen Arbeitgeber ;-)

- Sprache, XMP-Metadaten, Strukturbaum, OutputIntent (Farbprofil) im Catalogobjekt des PDF
 - Catalog

```
/MarkInfo<</Marked true>> /StructTreeRoot 176 0 R
/OutputIntents [174 0 R] /Metadata 175 0 R /Lang(De)
/ViewerPreferences<</DisplayDocTitle>>
```

- mittels /OutputIntent muss bei Gebrauch von Farbe ein Farbprofil eingebettet werden (z.B. sRGB IEC61966-2.1)
- als XMP(XML) müssen Metadaten u.a. die Konformität zur enthaltenden Version des PDF-Standards ausweisen

- Sprache, XMP-Metadaten, Strukturbaum, OutputIntent (Farbprofil) im Catalogobjekt des PDF
 - Catalog

```
/MarkInfo<</Marked true>> /StructTreeRoot 176 0 R
/OutputIntents [174 0 R] /Metadata 175 0 R /Lang(De)
/ViewerPreferences<</DisplayDocTitle>>
```

- mittels /OutputIntent muss bei Gebrauch von Farbe ein Farbprofil eingebettet werden (z.B. sRGB IEC61966-2.1)
- als XMP(XML) müssen Metadaten u.a. die Konformität zur enthaltenden Version des PDF-Standards ausweisen
- /StructTreeRoot verweist auf den Wurzelknoten des Strukturbaumes, enthält /RoleMap und als Kindelemente /StructElem

- 2. Für ein barrierefreies PDF müssen zusätzlich mindestens noch folgende semantischen Auszeichnungen gewährleistet werden
 - Einbettung von Fonts mit korrekten ToUnicode-Mappings (Textextraktion, Screen-Reader)
 - Worte durch Leerzeichen getrennt sein
 - automatische Trennstellen markiert sein

- 2. Für ein barrierefreies PDF müssen zusätzlich mindestens noch folgende semantischen Auszeichnungen gewährleistet werden
 - Einbettung von Fonts mit korrekten ToUnicode-Mappings (Textextraktion, Screen-Reader)
 - Worte durch Leerzeichen getrennt sein
 - automatische Trennstellen markiert sein
 - komplette Markierung des Contents in der Seitenbeschreibung

```
/H <</MCID 0>> BDC
BT
/F26 20.66252 Tf
1 0 0 1 158.087 504.334 Tm [(Hallo)]TJ
ET
EMC
```

• Kategorisierung in Artefakte, Layoutelemente, Content und den Typ

semantische Anforderungen

Zuweisung von Seiteninhalt zu einer Liste von Standardtypen (Article, H, $P \dots$)

Für viele Inhalte ist eine alternative Repräsentation (Alt, ActualText, Title, Contents etc.) gefordert!

Inhalte in einer korrekten/plausiblen Lesereihenfolge taggen.

Farben und Kontraste müssen deutlich erkennbar sein.

semantische Anforderungen

Probleme:

- ► Wie werden Formeln alternativ dargestellt?
- ▶ Redaktionelle, nicht automatisiserbare Aufgaben.
- ▶ Methoden zur Integration externer Quellen erforderlich.

Das Hauptproblem

T_EX-Input

Aus dem Input

\chapter{Preface} Here comes \ldots

werden in TEX's "Verdauungstrakt" zuerst expandierbare Tokens, dann nicht weiter expandierbare Tokens und letztendlich Boxen/Knotenlisten in der Outputroutine.

Dabei geht jegliche semantische Information über die originäre Bedeutung verloren (chapter, table usw.)!

Aufgabe

Transport der semantischen Eigenschaften bis in die Outputroutine (seitenweise Auszeichnung erforderlich).

Das Hauptproblem

```
Callback: post linebreak filter
-GLUE subtype: baselineskip, width: 4.95pt
HLIST subtype: line, width: 345pt, depth: 0.11pt, height: 7.05pt
 ∟head:
    -LOCAL_PAR
    -HLIST subtype: indent, width: 15pt
    GLYPH subtype: 256, char: P, width: 6.81pt, height: 6.83pt
    GLYPH subtype: 256, char: r, width: 3.92pt, height: 4.42pt
    -GLYPH subtype: 256, char: e, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLYPH subtype: 256, char: f, width: 3.06pt, height: 7.05pt
    -DISC subtype: regular, penalty: 50
     ∟pre:
        GLYPH subtype: 256, char: -, width: 3.33pt, height: 2.45pt
    HGLYPH subtype: 256, char: a, width: 5pt, height: 4,48pt, depth: 0.11pt
    GLYPH subtype: 256, char: c, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLYPH subtype: 256, char: e, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLUE subtype: spaceskip, width: 3.33pt, stretch: 1.66pt, shrink: 1.11pt
    GLYPH subtype: 256, char: H. width: 7.5pt, height: 6.83pt
    GLYPH subtype: 256, char: e, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLYPH subtype: 256, char: r, width: 3.92pt, height: 4.42pt
    GLYPH subtype: 256, char: e, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLUE subtype: spaceskip, width: 3.33pt, stretch: 1.66pt, shrink: 1.11pt
    HGLYPH subtype: 256, char: c. width: 4.44pt, height: 4.48pt, depth: 0.11pt
    GLYPH subtype: 256, char: o, width: 5pt, height: 4.48pt, depth: 0.11pt
    GLYPH subtype: 256, char: m, width: 8.33pt, height: 4.42pt
    GLYPH subtype: 256, char: e, width: 4.44pt, height: 4.48pt, depth: 0.11pt
    HGLYPH subtype: 256, char: s. width: 3.94pt, height: 4.48pt, depth: 0.11pt
    GLUE subtype: spaceskip, width: 3.33pt, stretch: 1.66pt, shrink: 1.11pt
    GLYPH subtype: 256, char: ..., width: 6.7pt, height: 1.06pt
    -PENALTY subtype: linepenalty, penalty: 10000
    -GLUE subtype: parfillskip, stretch: +1fil
    GLUE subtype: rightskip
```


zum Hauptproblem

Attribute als Lösungsansatz

Mit LuaTEX wurden sogenannte Attribute eingeführt.

Diese gehorchen den von TEX bekannten Regeln der Gruppierung, werden bisher wenig genutzt und haben einen großen Wertebereich von 2^{32} .

Im Itpdfa-Code werden zwei neue Attribute alloziert:

parentattr: dient als Strukturzähler typeattr: dient zur Typmarkierung

zum Hauptproblem

Damit erhält jeder Knoten die Information zu seinem Elternelement (parentattr) sowie seinen ursprünglichen, semantischem Typ (typeattr).

Die zu lösenden Aufgaben sind nun:

- \structStart, \structEnd einzufügen
 Anpassung von TEX-Makros und -Styles
- Analyse der umbrochenen Seite und Zuordnung allen Inhalts zu den bereits existierenden Strukturelelementen
 - => \ShipoutBox aus AtBegshi-Paket
- 3. eine Menge "Housekeeping"
- 4. am Ende des Dokumentes generieren aller nötiger PDF-Strukturen (oder der Vehikel dafür)

Features

Der Code von Itpdfa nutzt diesen Ansatz, definiert ein schlankes TEX-Paket und springt so direkt wie möglich nach Lua. Es wurden folgende Fähigkeiten umgesetzt:

- DVI oder PDF-Backend wählbar
- globale Sprachangabe, Konfiguration der XMP-Daten, Angabe des Farbprofils
- Anpassung des ToUnicode-Mappings (DVI)
- automatische Markierung von Wortzwischenräumen als Leerzeichen
- ebenso Trennstellen

Features

- visual debug erkannter Leerzeichen und Trennstellen
- automatisches Schließen von Sections konfigurierbar
- verschieben, löschen und ignorieren von Strukturen
- "Autotagging" durch Hooks in \begin und \end Makros
- Anpassungen an grundlegenden Lagender Lagend

Beispiel

```
\documentclass[12pt,a4paper,twoside]{book}
%% want dvi output
\outputmode=0
\RequirePackage{makeidx}
\RequirePackage{tabularx}
\RequirePackage{fongtable}
\RequirePackage{multirow}
\RequirePackage{graphicx}
\RequirePackage[table]{xcolor}
\RequirePackage[multicol]
\RequirePackage[distps,pdflang=De,dospaces,debug,nodetree]{ltpdfa}
%headnums,showspaces,nodetree
\RequirePackage{lmodern}
\renewcommand\encodingdefault{OT1}
\toUnicode{LMMathSymbols,LMMathExtension}
```


L Funktionsweise

```
├GLUE width: 23pt, attr: 4=114 5=27
 -VLIST width: 390pt, height: 653.87pt, shift: 52pt, attr: 4=114 5=27
   -VLIST width: 390pt, height: 12pt, attr: 4=114 5=27
     head:
       ⊢GLUE stretch: +1fil, attr: 4=114 5=27
       HLIST subtype: box, width: 390pt, depth: 0.25pt, height: 8.45pt, attr: 4=114 5=27
            -WHATSIT subtype: pdf colorstack, data: 0 g 0 G, attr: 4=114 5=27
            HLIST subtype: box, width: 390pt, depth: 0.25pt, height: 8.45pt, attr: 4=114 5=27
             ∟head:
               HHATSIT subtype: pdf literal, mode: 1, data: /Artifact <</Type/Pagination/Subtype/Header>> BDC, attr: 4=113
               GLYPH subtype: 256, char: i, width: 3.26pt, height: 7.84pt, attr: 4=113 5=30
               -GLYPH subtype: 256, char: v, width: 6.2pt, height: 5.17pt, depth: 0.12pt, attr: 4=113 5=30
               -GLYPH char: , width: 3.33pt, attr: 4=113 5=30
               -KERN subtype: userkern, kern: -3.33pt, attr: 4=113 5=30
               -GLUE stretch: +1fil, attr: 4=113 5=30
               HGLYPH subtype: 256, char: C. width: 8.48pt, height: 8.45pt, depth: 0.25pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: 0, width: 9,14pt, height: 8,45pt, depth: 0,25pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: N. width: 8.81pt, height: 8.2pt, attr: 4=113 5=30
               -DISC subtype: regular, penalty: 50, attr: 4=113 5=30
                 Lepre:
                   GLYPH subtype: 256, char: -, width: 3.91pt, height: 2.92pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: T, width: 8.48pt, height: 8.14pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: E, width: 7.99pt, height: 8.17pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: N, width: 8.81pt, height: 8.2pt, attr: 4=113 5=30
               GLYPH subtype: 256, char: T, width: 8.48pt, height: 8.14pt, attr: 4=113 5=30
               -GLYPH subtype: 256, char: S, width: 6.53pt, height: 8.45pt, depth: 0.25pt, attr: 4=113 5=30
               GLYPH char: , width: 3.33pt, attr: 4=113 5=30
               KERN subtype: userkern, kern: -3,33pt, attr: 4=113 5=30
           WHATSIT subtype: pdf colorstack, data: . attr: 4=114 5=27
    GLUE width: 19.87pt, attr: 4=114 5=27
    GLUE subtype: lineskip, attr: 4=114 5=27
    -VLIST height: 592pt, attr: 4=114 5=27
       -WHATSIT subtype: write, stream: 129, data: , attr: 4=114 5=27
       -GLUE subtype: topskip, width: 12pt, attr: 4=114 5=27
       HLIST subtype: box, attr: 4=114 5=27
        GLUE stretch: +1fil, attr: 4=114 5=27
       GLUE attr: 4=114 5=27
   GLUE subtype: baselineskip, width: 30pt, attr: 4=114 5=27
   HLIST subtype: box, width: 390pt, attr: 4=114 5=27
       HHATSIT subtype: pdf colorstack data: 0 0 0 G atts: 4=114 5=27
```


ltpdfa.sty

- 1. ltpdfa.sty definiert Optionen, lädt ltdraft.sty und benötigte Pakete, 'ltpdfa.lua'
- 'ltpdfa.init()' lädt und initialisiert das "Backend", alloziert die Attribute
- Befehle aus ltdraft.sty real definieren (meist \directlua), dann sichern, \@restoreLtpdfa sowie \@disableLtpdfa zur Verfügung stellen
- 4. für "Autotagging" angepasste Styles laden (\begin, \end)

"Autotagging"

oder

"Fini"

- Tracking der Umgebungen => /StructElement (typeattr)
- monotone, fortlaufende Nummerierung neuer Elemente (parentattr)

- manuelle Auszeichnung erforderlich
- ansonsten analoger
 Ablauf

\AtBeginShipoutBox

- Nodeliste traversieren, je nach Knotentyp verschiedene Funktionen (49)
- Content zuordnen u.a.
- Trennstellen und Leerzeichen ermitteln und taggen
- ermitteln der Bounding Boxen (Abb., Tabellen u.a.)
- letztes Element schließen bzw. wieder öffnen

Die Backends ergänzen vor dem Shipout jeweils strukturerzeugende "Anweisungen".

\AtEndDocument

- Artefakte und leere /StructElem entfernen
- Verschiebungen von Elementen
- XMP-Metadaten
- /OutputIntent
- /StructTreeRoot mit /RoleMap, /ParentTree usw.

DVI-Output

- \special toUnicode.pro (Unicodemapping /GlyphNames2Unicode)
- \special dviwriter.pro (Farbprofil, Leerzeichen)
- \special jobname.pro (pdfmark-Anweisungen, erzeugt Elemente)

```
[/Type/StructElem/Subtype/TOCI/_objdef{TOCI62}/At 22/StPNE pdfmar: [/Popped/TOCI62/StPop pdfmark [/Popped/TOC27/StPop pdfmark [/Popped/chapter25/StPop pdfmark
```

• dvips -j0 jobname.dvi => Acrobat Distiller

Was ist noch zu gewährleisten? Wie?

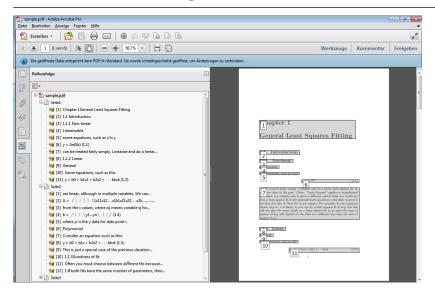
Die komplette Auszeichnung des Seiteninhaltes ist eine Fleißarbeit und kann gelöst werden durch:

- durch Anpassung vom Makros, welche Inhalt auf der umbrochenen Seite erzeugen (Styles)
- 2. kontextspezifische, manuelle Eingriffe direkt im TFX-Dokument
- 3. Kontrolle mit dem Preflight von Acrobat oder PAC2024
- 4. wieder zu Punkt 1
- 5. ...u.v.m.

Das Musterbuch

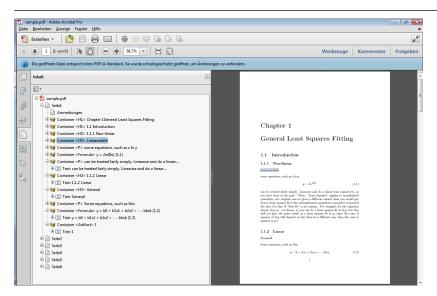
Unter Verwendung des Itpdfa-Paketes wurde beispielhaft ein bei le-tex produziertes Buch angepasst. Die technische Barierefreiheit (-armut) konnte durch Ergänzung im Style sowie direkte Einträge im Quelldokument erreicht werden.

Die DZB (https://dzblesen.de) prüfte das Dokument erfolgreich.

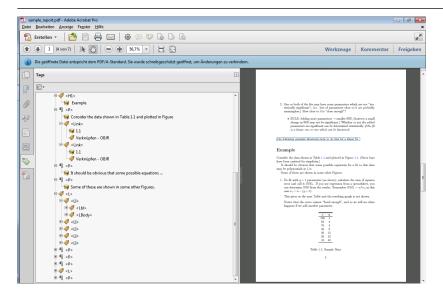

Als mögliche Verbesserung bzw. Kritik wurden nummerierte Überschriftenebenen (/H1, /H2 ...) sowie die schiere Gesamtanzahl der enthaltenen Strukurelemente angemerkt.

Das Musterdokument kann unter

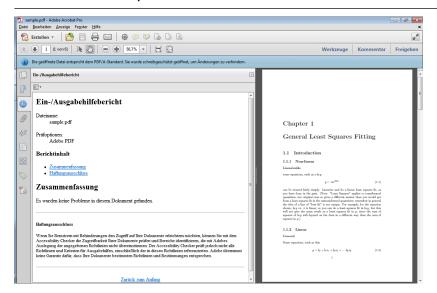
https://www.le-tex.de/de/img/a11y-sample-book.pdf heruntergeladen werden.



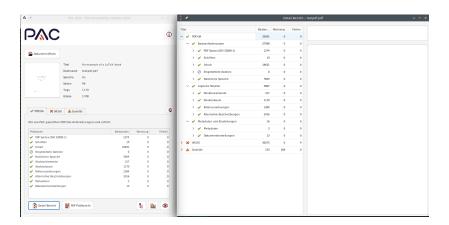
Acrobat X – Reihenfolge



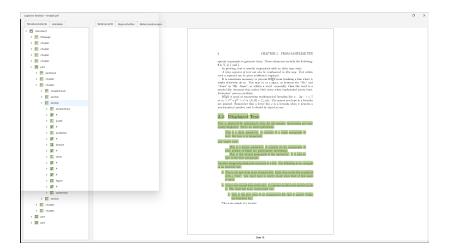
Acrobat X – Inhalt



Acrobat X – Struktur



Acrobat X – Report



PAC2024 - Report

PAC2024 – Struktur

Status – Tagged PDF mit Lua \LaTeX + Dvips

- b die Anpassungen an Styles ist ggf. (mega-)mühsam
- ▶ die verwendeten Fonts spielen noch eine große Rolle
- ► Tabellen sind aufwändig
- korrekte Auszeichnung von Mathe nicht immer eindeutig
- ▶ die Preflight-Prüfung ist aufwändig in Hinblick auf die Automatisierung bzw. Produktion größeren Umfangs

Der Aufwand wäre momentan noch hoch, aber die Produktion relativ einfacher Dokumente vorstellbar.

Software & Quellen

Die Ausführungen basieren auf:

pdfTEX/TEX-Live 2021

Adobe Acrobat Professional X/DC

PDFMark Reference

PDF Reference

PAC 2024

le-tex Musterbuch

Anregungen, Korrekturen und Fragen gern unter axel.struebing@le-tex.de