# 网格 | 原文 | [Mesh](http://learnopengl.com/#!Model-Loading/Mesh) | | ---- | --------------------------------------------------- | | 作者 | JoeyDeVries | | 翻译 | Krasjet | | 校对 | 暂未校对 | 通过使用Assimp,我们可以加载不同的模型到程序中,但是载入后它们都被储存为Assimp的数据结构。我们最终仍要将这些数据转换为OpenGL能够理解的格式,这样才能渲染这个物体。我们从上一节中学到,网格(Mesh)代表的是单个的可绘制实体,我们现在先来定义一个我们自己的网格类。 首先我们来回顾一下我们目前学到的知识,想想一个网格最少需要什么数据。一个网格应该至少需要一系列的顶点,每个顶点包含一个位置向量、一个法向量和一个纹理坐标向量。一个网格还应该包含用于索引绘制的索引以及纹理形式的材质数据(漫反射/镜面光贴图)。 既然我们有了一个网格类的最低需求,我们可以在OpenGL中定义一个顶点了: ``` struct Vertex { glm::vec3 Position; glm::vec3 Normal; glm::vec2 TexCoords; }; ``` 我们将所有需要的向量储存到一个叫做Vertex的结构体中,我们可以用它来索引每个顶点属性。除了Vertex结构体之外,我们还需要将纹理数据整理到一个Texture结构体中。 ``` struct Texture { unsigned int id; string type; }; ``` 我们储存了纹理的id以及它的类型,比如是漫反射贴图或者是镜面光贴图。 知道了顶点和纹理的实现,我们可以开始定义网格类的结构了: ``` class Mesh { public: /* 网格数据 */ vector vertices; vector indices; vector textures; /* 函数 */ Mesh(vector vertices, vector indices, vector textures); void Draw(Shader shader); private: /* 渲染数据 */ unsigned int VAO, VBO, EBO; /* 函数 */ void setupMesh(); }; ``` 你可以看到这个类并不复杂。在构造器中,我们将所有必须的数据赋予了网格,我们在setupMesh函数中初始化缓冲,并最终使用Draw函数来绘制网格。注意我们将一个着色器传入了Draw函数中,将着色器传入网格类中可以让我们在绘制之前设置一些uniform(像是链接采样器到纹理单元)。 构造器的内容非常易于理解。我们只需要使用构造器的参数设置类的公有变量就可以了。我们在构造器中还调用了setupMesh函数: ``` Mesh(vector vertices, vector indices, vector textures) { this->vertices = vertices; this->indices = indices; this->textures = textures; setupMesh(); } ``` 这里没什么可说的。我们接下来讨论setupMesh函数。 ## 初始化 由于有了构造器,我们现在有一大列的网格数据用于渲染。在此之前我们还必须配置正确的缓冲,并通过顶点属性指针定义顶点着色器的布局。现在你应该对这些概念都很熟悉了,但我们这次会稍微有一点变动,使用结构体中的顶点数据: ``` void setupMesh() { glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); glGenBuffers(1, &EBO); glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW); // 顶点位置 glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0); // 顶点法线 glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal)); // 顶点纹理坐标 glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords)); glBindVertexArray(0); } ``` 代码应该和你所想得没什么不同,但有了Vertex结构体的帮助,我们使用了一些小技巧。 C++结构体有一个很棒的特性,它们的内存布局是连续的(Sequential)。也就是说,如果我们将结构体作为一个数据数组使用,那么它将会以顺序排列结构体的变量,这将会直接转换为我们在数组缓冲中所需要的float(实际上是字节)数组。比如说,如果我们有一个填充后的Vertex结构体,那么它的内存布局将会等于: ``` Vertex vertex; vertex.Position = glm::vec3(0.2f, 0.4f, 0.6f); vertex.Normal = glm::vec3(0.0f, 1.0f, 0.0f); vertex.TexCoords = glm::vec2(1.0f, 0.0f); // = [0.2f, 0.4f, 0.6f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f]; ``` 由于有了这个有用的特性,我们能够直接传入一大列的Vertex结构体的指针作为缓冲的数据,它们将会完美地转换为glBufferData所能用的参数: ``` glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW); ``` 自然`sizeof`运算也可以用在结构体上来计算它的字节大小。这个应该是32字节的(8个float * 每个4字节)。 结构体的另外一个很好的用途是它的预处理指令`offsetof(s, m)`,它的第一个参数是一个结构体,第二个参数是这个结构体中变量的名字。这个宏会返回那个变量距结构体头部的字节偏移量(Byte Offset)。这正好可以用在定义glVertexAttribPointer函数中的偏移参数: ``` glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal)); ``` 偏移量现在是使用offsetof来定义了,在这里它会将法向量的字节偏移量设置为结构体中法向量的偏移量,也就是3个float,即12字节。注意,我们同样将步长参数设置为了Vertex结构体的大小。 使用这样的一个结构体不仅能够提供可读性更高的代码,也允许我们很容易地拓展这个结构。如果我们希望添加另一个顶点属性,我们只需要将它添加到结构体中就可以了。由于它的灵活性,渲染的代码不会被破坏。 ## 渲染 我们需要为Mesh类定义最后一个函数,它的Draw函数。在真正渲染这个网格之前,我们需要在调用glDrawElements函数之前先绑定相应的纹理。然而,这实际上有些困难,我们一开始并不知道这个网格(如果有的话)有多少纹理、纹理是什么类型的。所以我们该如何在着色器中设置纹理单元和采样器呢? 为了解决这个问题,我们需要设定一个命名标准:每个漫反射纹理被命名为`texture_diffuseN`,每个镜面光纹理应该被命名为`texture_specularN`,其中`N`的范围是1到纹理采样器最大允许的数字。比如说我们对某一个网格有3个漫反射纹理,2个镜面光纹理,它们的纹理采样器应该之后会被调用: ``` uniform sampler2D texture_diffuse1; uniform sampler2D texture_diffuse2; uniform sampler2D texture_diffuse3; uniform sampler2D texture_specular1; uniform sampler2D texture_specular2; ``` 根据这个标准,我们可以在着色器中定义任意需要数量的纹理采样器,如果一个网格真的包含了(这么多)纹理,我们也能知道它们的名字是什么。根据这个标准,我们也能在一个网格中处理任意数量的纹理,开发者也可以自由选择需要使用的数量,他只需要定义正确的采样器就可以了(虽然定义少的话会有点浪费绑定和uniform调用)。 像这样的问题有很多种不同的解决方案。如果你不喜欢这个解决方案,你可以自己想一个你自己的解决办法。 最终的渲染代码是这样的: ``` void Draw(Shader shader) { unsigned int diffuseNr = 1; unsigned int specularNr = 1; for(unsigned int i = 0; i < textures.size(); i++) { glActiveTexture(GL_TEXTURE0 + i); // 在绑定之前激活相应的纹理单元 // 获取纹理序号(diffuse_textureN 中的 N) string number; string name = textures[i].type; if(name == "texture_diffuse") number = std::to_string(diffuseNr++); else if(name == "texture_specular") number = std::to_string(specularNr++); shader.setFloat(("material." + name + number).c_str(), i); glBindTexture(GL_TEXTURE_2D, textures[i].id); } glActiveTexture(GL_TEXTURE0); // 绘制网格 glBindVertexArray(VAO); glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0); glBindVertexArray(0); } ``` 我们首先计算了每个纹理类型的N-分量,并将其拼接到纹理类型字符串上,来获取对应的uniform名称。接下来我们查找对应的采样器,将它的位置值设置为当前激活的纹理单元,并绑定纹理。这也是我们在Draw函数中需要着色器的原因。我们也将`"material."`添加到了最终的uniform名称中,因为我们希望将纹理储存在一个材质结构体中(这在每个实现中可能都不同)。 注意我们在将漫反射计数器和镜面光计数器插入`stringstream`时,对它们进行了递增。在C++中,这个递增操作:`variable++`将会返回变量本身,**之后**再递增,而`++variable`则是**先**递增,再返回值。在我们的例子中是首先将原本的计数器值插入`stringstream`,之后再递增它,供下一次循环使用。 你可以在[这里](https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/mesh.h)找到Mesh类的完整源代码 我们刚定义的Mesh类是我们之前讨论的很多话题的抽象结果。在[下一节](https://learnopengl-cn.github.io/03%20Model%20Loading/03 Model/)中,我们将创建一个模型,作为多个网格对象的容器,并真正地实现Assimp的加载接口。