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Summary

1. The growing wealth of genomic data is yielding new insights into the genetic basis of adaptation, but it also

presents the challenge of extracting the relevant signal from multi-dimensional datasets. Different statistical

approaches vary in their power to detect selection depending on the demographic history, type of selection,

genetic architecture and experimental design.

2. Here, we develop and evaluate new approaches for combining results frommultiple tests, includingmultivari-

ate distance measures and methods for combining P-values. We evaluate these methods on (i) simulated land-

scape genetic data analysed for differentiation outliers and genetic-environment associations and (ii) empirical

genomic data analysed for selective sweeps within dog breeds for loci known to be selected for during domestica-

tion. We also introduce and evaluate how robust statistical algorithms can be used for parameter estimation in

statistical genomics.

3. On the simulated data, many of the composite measures performed well and had decreased variation in out-

comes across many sampling designs. On the empirical dataset, methods based on combining P-values generally

performed better with clearer signals of selection, higher significance of the signal, and in closer proximity to the

known selected locus. Although robust algorithms could identify neutral loci in our simulations, they did not uni-

versally improve power to detect selection. Overall, a composite statistic that measured a robust multivariate dis-

tance from rank-basedP-values performed the best.

4. We found that composite measures of selection could improve the signal of selection in many cases, but they

were not a panacea and their power is limited by the power of the univariate statistics they summarize. Since gen-

ome scans are widely used, improving inference for prioritizing candidate genes may be beneficial to medicine,

agriculture, and breeding. Our results also have application to outlier detection in high-dimensional datasets and

to combining results inmeta-analyses inmany disciplines. The compoundmeasures we evaluate are implemented

in the R package MINOTAUR.

Key-words: composite signals of selection, genome-wide associations, Mahalanobis distance,

meta-analysis, minimum covariance determinant

Introduction

The rapid improvement of high-throughput sequencing

technologies has stimulated studies that examine the geno-

mic basis of adaptation and of phenotypic traits. This pro-

gress has been paralleled by the development of new

genome scan methods aimed at detecting selection. Genome

scans have implicated many genomic variants with effects

on adaptive traits in plants (e.g. Savolainen, Lascoux &

Merila 2013), animals (e.g. Hoekstra et al. 2006; Barrett,

Rogers & Schluter 2008), and humans (e.g. Hindorff et al.

2009). All genome scans are based on the premise that loci

affected by selection will be ‘outliers’ relative to the gen-

ome-wide distribution. The loci uncovered by genome

scans, however, generally explain a small portion of pheno-

typic variation (Yang et al. 2010; Brachi, Morris & Bore-

vitz 2011). Thus far, the field has been unable to fully

characterize the genetic basis of adaptive traits, hampering

our ability to understand adaptation.

The major limitation of genome scans is that different meth-

ods return inconsistent results (Lotterhos & Whitlock 2015;

Schlamp et al. 2016; Vatsiou, Bazin & Gaggiotti 2016). Most

genome scan methods fall into a univariate framework, in

which outliers are identified as a function of one statistic
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(Hoban et al. 2016; Schlamp et al. 2016; Vatsiou, Bazin &

Gaggiotti 2016). Variation in results occurs because of differ-

ential sensitivity to sampling design (De Mita et al. 2013; Lot-

terhos & Whitlock 2015), to details of the selective sweep (e.g.

Schlamp et al. 2016; Vatsiou, Bazin & Gaggiotti 2016), and to

the demographic history (De Villemereuil et al. 2014; Lotter-

hos &Whitlock 2015; Luu, Bazin &Blum 2016; Schlamp et al.

2016). Thus, the complex and largely unknown evolutionary

histories of most species make it unlikely that a single statistic

can fully capture the genomic signal of interest in the majority

of cases (Verity & Nichols 2014; Vatsiou, Bazin & Gaggiotti

2016).

Another limitation of current genome scan methods is

that parameter estimates used to control inflation of the test

statistic may be biased by genomic regions that are affected

by selection (e.g. ‘outliers’ in the data). For example, back-

ground selection on neutral loci linked to deleterious alleles

can bias demographic inference (Ewing & Jensen 2016). If

the species has widespread linkage disequilibrium, it is still

unclear how non-independence among loci, especially in the

presence of selection, can change statistical outcomes. Few

methods have been developed with the goal of reducing the

effects of outliers on parameter estimation (but see Whitlock

& Lotterhos 2015).

Given that various methods have different strengths and

weaknesses and may be differentially susceptible to outliers,

it is difficult to decide how to prioritize candidates for further

investigations (Franc�ois et al. 2015). A common approach is

to prioritize candidate loci that are outliers in all of the uni-

variate methods (i.e. take the overlap among all univariate

statistics), but this approach may miss loci affected by weak

selection (Lotterhos & Whitlock 2015). Recently, several

composite measures have been proposed based on combining

P-values and these measures generally perform better than

univariate single statistics, but evaluation of their perfor-

mance has been limited to relatively simple scenarios (Gross-

man et al. 2010; Evangelou & Ioannidis 2013; Utsunomiya

et al. 2013; Randhawa et al. 2014, 2015; Franc�ois et al.

2015; Ma et al. 2015).

Here, we describe new approaches for combining signals

across test statistics in multivariate space and compare them

to other composite measures of selection. We also explore

the potential of so-called ‘robust’ algorithms, which aim to

identify a subset of data points that are not outliers in mul-

tivariate space, as a way of improving power and reliability.

We compare the performance of composite measures to

univariate methods for detecting selection on two sets of

data (simulations and empirical data), with and without the

robust algorithms for parameter estimation. The benefit of

the simulated dataset is that the neutral and selected loci

are known, although loci are unlinked and so methods

based on haplotype structure cannot be evaluated. The ben-

efit of the empirical dataset is that methods can be evalu-

ated on their ability to detect loci known to be selected for

during domestication against realistic patterns of linkage

disequilibrium and haplotype structure, although neutral

loci are unknown.

Materials andmethods

COMPOSITE MEASURES BASED ON MULTIVARIATE

DISTANCES

Multivariate-distance measures identify points that are distant from

the main mass of points. These composite measures are directionless

(meaning the idea of upper and lower tails does not apply) and so they

are most appropriate for identifying points that deviate from the mass

of points by a large amount in any direction. In multivariate statistics,

the multivariate mean is known as the ‘location’ (denoted �x in Fig. S1,

Supporting Information) of the data and the covariance among uni-

variate statistics is called the ‘scatter’ (matrix denotedS in Fig. S1).

Multivariate distancemeasures: Mahalanobis distance (Md),

harmonicmean distance (Hd), nearest neighbour distance

(Nd)

The Mahalanobis distance (Md; Mahalanobis 1936) is a widely used

distance measure relating a point to the multivariate location

(Fig. S1a). TheMd differs from the ordinary Euclidean distance due to

the correction for covariance among observations. Because the Maha-

lanobis distance assumes the data can be described by a multivariate

ellipsoid, it will tend to perform poorly when observations have a

nonparametric or multi-modal distribution (see Verity et al. 2017 for

visualization).

Previously we developed other multivariate distance metrics that are

closely related to Md in that they correct for covariance among vari-

ables, but unlikeMd they relax the assumption that data must be para-

metric (Fig. S1, Verity et al. 2017). Here, we evaluate two of these

measures. The first measure is the harmonic mean distance (Hd,

Fig. S1b) from a focal point to all other points in the dataset, which

tends to perform similarly toMd (Verity et al. 2017). The second mea-

sure is the nearest neighbour distance (Nd, Fig. S1d), which measures

the shortest distance from the focal point to any other data point. Nd

behaves differently than Md and Hd because it is much more sensitive

to the density of local points around the focal point (Verity et al. 2017).

A third measure of deviance based on kernel density was not used

because it was too slow to calculate (Fig. S1c).

Hierarchical clustering (Hclust)

Clustering algorithms identify outliers as data points that do not cluster

with other data points. Among available clustering algorithms, a pre-

liminary evaluation found thatWard’s minimum variance method had

the highest performance (results not shown). Agglomeration byWard’s

method joins points into clusters recursively, by choosing the merge

that causes the minimum increase in total within-cluster variance at

successive stages in the clustering process (Ward 1963; Murtagh &

Legendre 2014). The distance between two clusters is calculated from

the ANOVA sum of squares, i.e. the sum of the squared pairwise dis-

tances across all points in the two clusters. We implemented Hclust

using the function outliers.ranking() in the R package DMWR 0.4.1

(Togo 2010).

COMPOSITE MEASURES BASED ON COMBINING

P -VALUES

Methods based on P-values have the advantage of quantifying outliers

using the familiar concepts of probability and statistical significance.
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They also exist on an absolute scale, making comparisons between

methods straightforward. The composite measures we employ are

based on P-values created by ranking the data. These rank-based

P-values are not P-values in the classical statistical sense, but reflect

quantile values from the empirical distribution of the test statistic. The

drawback of the ranking approach is that the P-value distribution is

uniform and loci with a strong signal of selectionmay be less significant

when ranked compared to a well-calibrated statistical test, while on the

other hand the rank transformation may be beneficial if the statistical

test is not well calibrated (shown conceptually in Fig. S2).

Composite selection signals (CSS)

This approach employs Stouffer’s method for combining P-values,

which assumes independence among the statistics being summarized

(Stouffer et al. 1949; Whitlock 2005). The CSS statistic is calculated

from univariate measures as follows: (i) convert univariate statistics to

fractional ranks between 1/(n + 1) and n/(n + 1), where n is the number

of observations, (ii) convert fractional ranks to Z-values using the

inverse normal cumulative distribution function, (iii) take the mean

Z-score and convert to a P-value using the normal N(0,m�1) distribu-

tion, wherem is the number of univariate statistics, (iv) the CSS statistic

is defined as�log10 of the P-value (Randhawa et al. 2014, 2015). Note

that this method does not account for covariance among signals in uni-

variate statistics, nor directionality in the signal.

De-correlated composite ofmultiple signals (DCMS)

TheDCMS is similar toCSS, but does not assume independence among

univariate statistics. DCMS is based on the sum of log10((1�p)/p) over

all univariate statistics divided by a weighting vector for each locus (Ma

et al. 2015). Theweights are determined by the genome-wide correlation

between all pairs of univariate statistics, such that highly correlated

statistics contribute less to the calculation. For example, if two statistics

are perfectly correlated and a third statistic is uncorrelated with the first

two, the respective weights will be (½, ½, 1). For DCMS, we trans-

formed raw statistics into P-values via fractional ranks between

1/(n+1) and n/(n+1), using one-tailed or two-tailed rankings as

required.

Mahalanobis distance based on negative-log rank-based P-

values (Md-rank-P)

Md-rank-P is computed as the Mahalanobis distance on the negative

log10 on the transformation of raw statistics into rank P-values (as

described for DCMS) from a multivariate location of 0 (a non-signifi-

cant value) in all dimensions. Md-rank-P differs from CSS and DCMS

because it measures the distance of an observation from a universally

non-significant value inmultivariate space, and unlikeMahalanobis dis-

tance is it based onP-values and not the test statistic or other effect size.

DEFAULT VS. ROBUST APPROACH

Many of themethods that we evaluate take into account the covariance

structure among test statistics. The presence of outliers, however, may

bias estimation of this covariance matrix. For instance, a small propor-

tion of loci under very strong selection with strong signals across multi-

ple test statistics would increase the overall covariance and bias the

multivariate mean, while there would be no correlation (i.e. no bias) if

only neutral regions were considered (e.g. Grossman et al. 2010).

We evaluated the minimum covariance determinant (MCD) algo-

rithm for identifying ‘robust’ points (i.e. points that are not outliers in

any one dimension) in multivariate genomic data and used these points

in the calculation when relevant. The MCD identifies robust points as

the set of points that minimize the volume of an ellipsoid surrounding

the data in multidimensional space (mathematically the ellipse is

described by the determinant on the covariance matrix, Rousseeuw &

Driessen 1999). The MCD requires the user to input the proportion of

the dataset that will be used for the algorithmwith the requirement that

the proportion is between 0�50 and 1.We implemented theMCDusing

the proportion 0�75, as recommended byRousseeuw&Driessen (1999;

preliminary analyses revealed that the results were not sensitive to this

proportion), with the function CovNAMcd in the R package RRCOVNA

(Todorov & Filzmoser 2009). In preliminary analyses, the MCD out-

performed a different robust method called the projection congruent

subset (Schmitt, Oellerer & Vakili 2014; Vakili & Schmitt 2014, results

not shown).

LANDSCAPE SIMULATIONS

To test the power of multidimensional outliers for genome scans, we

applied them to published simulated datasets sampled from landscape

simulations (Lotterhos & Whitlock 2014, 2015). Briefly, a landscape

simulator was used to simulate haploid loci in four demographic histo-

ries: island model (IM), isolation by distance (IBD), expansion from

one refuge (1R), and expansion from two refugia (2R). Selected loci

were simulated under varying strengths of selection (sL) to a heteroge-

neous latitudinal cline in an environmental variable that affected fit-

ness. Datasets consisted of 9900 neutral and 100 selected loci in

individuals randomly sampled from the landscape in six different ways.

The distributions of the strengths of selection were varied to make the

response to selection more equivalent across datasets. For IBD, the

dataset included four strengths of selection in each demography at the

following percentages: sL = 0�001 (40% of the loci), sL = 0�005 (30%),

sL = 0�01 (20%) and sL = 0�1 (10%). For IM, 1R and 2R, the dataset

included three strengths of selection at the following percentages:

sL = 0�005 (50%), sL = 0�01 (33%) and sL = 0�1 (17%). For details see

Lotterhos&Whitlock (2015).

Lotterhos &Whitlock (2015) used these datasets to perform univari-

ate genome scans in the programs BAYENV2 (G€unther & Coop 2013)

and LFMM (Frichot et al. 2013; Frichot & Franc�ois 2015). These pro-
grams were designed for landscape genetic datasets with environmental

data. A total of four univariate statistics from these two programs were

combined to produce composite measures: (i) log-Bayes Factor (BF,

association between allele frequency and the environment, BAYENV2),

(ii) Spearman’s q (association between allele frequency and the environ-
ment, BAYENV2), (iii) XTX (genetic differentiation among populations,

BAYENV2), and (iv)Z-score (association between genotype and the envi-

ronment in LFMM). The power of these four univariate statistics varied

with sampling design and demographic history (Lotterhos &Whitlock

2015). Note that given recent improvement to the algorithm in

BAYENV2 has been implemented in the program BAYPASS (Gautier

2015), we compared output from these programs and found only slight

differences in performance (see Dryad Repository). Here, we use the

BAYENV2 results so that this manuscript can be directly compared to

Lotterhos&Whitlock (2015).

Comparison of robust points and neutral loci

For each dataset, we evaluated the mean absolute difference between

the actual multivariate location or scatter of the neutral points, and an
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estimate of the location and scatter based on either all the data or the

MCD subset of points. We also evaluated whether the robust points

contained fewer loci simulated under selection than would have been

expected by chance.

Calculation of empirical power

True positive rate or power is the proportion of loci simulated under

selection that are identified as candidates. The empirical power is calcu-

lated as follows: (i) use all knownneutral loci to generate a null distribu-

tion; (ii) for each locus calculate an empirical P-value based on its

cumulative frequency in this null distribution (for details see Lotterhos

& Whitlock 2015). Empirical power minimizes the false positive rate

and makes it equal across all comparisons, such that test statistics are

compared on common grounds in their ability to separate signals of

neutral vs. selected loci. To control for false discovery rate, we con-

vertedP-values to q-values using the Benjamini &Hochberg algorithm,

and retained loci with a q-value < 0�05 as candidates (a q-value of 0�05
has a desired rate of 5 false positives out of 100 positive hits; Benjamini

& Hotchberg 1995). Using the neutral loci as an empirical distribution,

our P-values are perfectly calibrated and therefore meet the assump-

tions for transformation into q-values. Empirical power also has the

advantage of being inversely related to false discovery rate. Empirical

power is explained inmore detail in Fig. S3.

EMPIRICAL DATASET: DOG BREEDS

We employed a recently published study that evaluated scans for selec-

tive sweeps in 25 dog breed genomes. Schlamp et al. (2016) evaluated

eight selective sweep statistics and found variation in their ability to

detect 12 quantitative trait loci (QTL) with effects on dog phenotypes

known to be under positive selection during domestication. These

statistics measure within-breed haplotype structure and sequence

diversity, and thus represent an application of composite measures in a

different situation from the simulations (and thus the univariate statis-

tics are not cross-compatible).

For each of the 25 breeds, we evaluated composite signals based on

four of the single measures applied within breeds: iHS (Voight et al.

2006), H12 (Garud et al. 2015), Tajima’s D (Tajima 1989a), and

nucleotide diversity (p; Nei & Li 1979). iHS is a measure of the extent

of haplotype homozygosity, and infers selection by identifying haplo-

types that are much larger than expected under neutrality. H12 repre-

sents a composite haplotype frequency of the first and second most

abundant haplotypes and is designed to detect soft selective sweeps.

Tajima’s D is a variance-standardized measure that may indicate a

selective sweep when it is negative. p is the nucleotide diversity and is

also expected to have low values under a selective sweep. We excluded

four other measures evaluated by Schlamp et al. from our analysis:

HAPFLK (Fariello et al. 2013), because the statistic is calculated across

breeds and we were interested in evaluating power within each breed;

nSL (Ferrer-Admetlla et al. 2014), because the univariate statistic

showed no meaningful signal; and the measures H (Messer 2015) and

composite likelihood ratio (CLR; calculated, using method of Pavlidis

et al. 2013; but also see Kim & Stephan 2002 and Nielsen et al. 2005),

because of minimal overlap with other statistics, resulting in large

amounts of missing data. Schlamp et al. (2016) compared calculation

of these statistics under different window sizes (based on the number of
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segregating sites) and found that window sizes of 25 or 51 single-

nucleotide polymorphisms (SNPs) generally had clearer signals of

selection. We therefore used the 51-SNP window sizes to leverage this

increased power while deriving smoother results.

Evaluation of statistics

Because neutral loci in this dataset are unknown, we cannot calcu-

late empirical power in the same manner as the simulated data.

Instead, we compared the ability of different measures to detect

known QTL that had risen to a frequency of at least 50% in each

breed (following Schlamp et al. 2016, hereafter: focal SNP), based

on whether there was a signal in the region surrounding the focal

SNP. We quantified the signal of selection in three ways (shown

conceptually in Fig. S4):

1. The significance of the signal wasmeasured as the observed quantile

of the SNP with the most extreme signal (maximum or minimum,

depending on the tail of the test) within a 51-SNP window centred on

the focal SNP. The quantile of the extreme SNP was calculated from

ranking all SNPs on that chromosome and transformed to a �log10
P-value as described in theDCMS section.

2. The clarity of the signal in the window on either side of the extreme

SNP was quantified based as a steepness measure (hereafter: steepness,

Fig. S4). The slope (m) on either side of the extreme SNPwas calculated

from a linear model for a 20-SNP window either upstream or down-

stream of the extreme SNP, and averaged as steep-

ness = (mup 9 Iup + mdown 9 Idown)/2, where Ix is an indicator

variable depending on whether the test is in the upper or lower tail of

the test statistic (visualized in Fig. S4). This steepness value has the

desirable property that it is large and positive if there is a peak near the

extreme SNP (indicating a signal of selection), that it is near zero if

there is no signal, and it is negative if the concavity of the signal is in the

opposite direction (Fig. S4). For the calculation of steepness, for each

slope we tested if it was significant atP < 0�01 and if it was not signifi-
cant then the slope was assigned a value of 0 (to avoid averaging spuri-

ously large slopes with large standard error). Note that steepness

should be interpreted with caution because LDwill affect the steepness

of the sweep.

3. The distance (in Kb) between the extreme SNP and the focal SNP

(Fig. S4).

Results

LANDSCAPE SIMULATIONS

Comparison between robust and neutral estimates

A typical comparison between the MCD estimate of the

covariance, the neutral estimate of the covariance, and the esti-

mate using all the data is visualized in Fig. 1 for the 2Rmodel.

In this case, the MCD estimates of location and scatter more

accurately captured the neutral estimates compared to the esti-

mates that used all the data. Figure 1 also shows how many

neutral loci were not identified as robust points by the MCD

because of statistical noise.

For all the simulated datasets, the robust estimates of

location and scatter from the MCD was generally a more

reliable estimate of neutral location and scatter (Fig. 2,

‘MCD’) than the estimate, using all the data (Fig. 2, ‘All’).

The difference, however, was quite variable across all simu-

lations and sampling designs (Fig. 2). The MCD gave better

estimates of neutral location and scatter because it con-

tained a smaller proportion of selected loci than expected

by chance (Fig. S5). The probability that the locus was

included in the list of MCD robust points was negatively

Fig. 3. The difference in empirical power of the statistic to detect selec-

tion with the minimum covariance determinant minimum covariance

determinant (MCD) minus the default value for the four demogra-

phies: island model (IM), isolation by distance (IBD), range expansion

from one refuge (1R), range expansion from two refugia (2R). (a)

Mahalanobis distance, (b) harmonic mean distance, (c) nearest neigh-

bour distance, (d) de-correlated composite of multiple signals (DCMS,

combines rank P-values), (e) Mahalanobis distance based on rank

P-values.
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correlated with the simulated strength of selection on that

locus, and the MCD never identified loci simulated under

strong selection as robust (Fig. S5).

Comparison of empirical power with andwithout a robust

approach

Incorporating the MCD algorithm into the calculation

could improve power to detect selection, but this effect was

not universal (Fig. 3). For Mahalanobis distance and har-

monic mean distance, the MCD improved power in the 1R

and 2R models (cases with stronger correlations among

loci), and had variable effects on power in the IM and IBD

models (cases with weaker correlations among loci)

(Fig. 3a,b). For nearest neighbour distance, the increase in

power was most pronounced (from a 10% to 100%

increase, Fig. 3c) because with the MCD the closest neigh-

bour to a locus under selection would be a robust point

(i.e. a neutral locus with high probability), whereas without

the MCD, the closest neighbour to a locus under selection

would be another locus under selection (visualized in

Fig. 1). For DCMS, the MCD improved power for the

IBD case (Fig. 3d), which is the case with the most variable

power in univariate statistics (see next section), and did not

substantially change power for the other demographies. For

Md-rank-P, the MCD always had a moderate improvement

in power (5% to 35% increase, Fig. 3e).

Comparison of empirical power for univariate vs. composite

measures

For the univariate statistics, power varied greatly among the

demographies. For example, XTX had high empirical power

under the IBDmodel compared to the IM (Fig. 4, grey boxes).

Each of the bars plotted in Fig. 4 is summarized over the 6 ran-

dom population sampling designs, and so the height of the
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combining P-values include: decorrelated composite of multiple signals (DCMS), composite signal of selection (CSS), and Mahalanobis distance

based on rank P-values (Md-rank-P). Note that forMd, Hd, Nd,DCMS andMd-rank-Pwe plot the minimum covariance determinant (MCD) esti-

mate because it either improved or did not affect the overall average power.
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boxplots illustrates how sampling design can cause variation in

outcomes. For instance, Z-score and BF had higher variance

in results under IBD but lower variance under the 2R model,

while XTX showed the opposite pattern (compare height of

grey box plots in Fig. 4b–d).
The power of the compound measures compared to the uni-

variate statistics varied among demographies. For the IM, all

compound measures had similar power and variance to the

univariate statistics (Fig. 4a). For the IBDmodel, multivariate

distances and hierarchical clustering had higher power and

lower variance in power compared to methods that combine

P-values (DCMS, CSS, Md-rank-P) (Fig. 4b). Hclust per-

formed the best in this model by capitalizing on the perfor-

mance of the XTX statistic, which was highly informative (in

contrast to the IM case). Ward’s minimum variance method

clustered neutral loci together before merging any of the loci

under selection into this ‘neutral’ cluster, because this kept the

total within-cluster variance at a minimum. Methods that

combinedP-values performed poorly in IBD, possibly because

of the large variation in the performance of the univariate

statistics (Fig. 4b). For the refugia models, all composite mea-

sures performed as well as or better than the univariate mea-

sures, with substantially lower variance in power across

sampling designs and demographies (Fig. 4c,d). The methods

that combinedP-values performed slightly better in the refugia

scenarios than themultivariate distances.

EMPIRICAL DATASET: DOG BREEDS

Empirical signals of selection for steepness, significance, and

distance of the signal from two causal SNPs in the maltese

breed are show in Fig. 5 (also shown conceptually in Fig. S4).

Figure 5 also shows how a compound measure can reflect sig-

nals from different univariate statistics. In the first case (left

column Fig. 5), H12 and Tajima’s D had a signal at the focal

SNP, while in the second case (right columnFig. 5) Tajima’sD
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and p had a signal at the focal SNP. The Md-rank-P com-

pounded these signals into a single measure and captured sig-

nals from multiple statistics (the MCD was incorporated into

this calculation).

Incorporating the MCD had varying results on the signals

of selection, but the results for the empirical data were consis-

tent with the results from the simulations. TheMCD generally

decreased the performance ofMd, Hd, andNd, had no effect on

DCMS, and resulted in more significant signals for Md-rank-

P (Fig. S6). For the remaining results, we use the default Md,

the default DCMS, and theMCDwithMd-rank-P.

For all the compound measures tested, we found that

Md-rank-P had the best signals of selection with more

significant signals (Fig. 6), steeper signals (Figs 7 and S7),

and closer signals to the causal SNP (Fig. S8). Although

DCMS performed well, Md-rank-P outperformed DCMS

at measures of steepness (Fig. S9). Generally Md-rank-P

and DCMS performed well when there was a signal in at

least two of the univariate statistics (Figs 6, S7 and S8).

On the other hand, CSS performed poorly across all met-

rics because it did not account for directionality of the Z-

score. Multivariate distances generally performed poorly

on the dog data, regardless of whether the MCD was

implemented.

Discussion

Our study took novel steps to compare compound measures

for genome scans and explore the utility of robust statistics in

the calculation of compound measures. Compound measures

can provide an objective criterion to prioritize candidates (in

contrast to taking the overlap among different methods) and

provide increased resolution to identify selected genomic

regions by integrating the signal provided by univariate test

statistics (Grossman et al. 2010; Ma et al. 2015). We found

that compound measures could improve the signal of selection

and decrease variation in results, though they are not a

panacea.
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Fig. 6. Heatmap of statistical significance

(�log10 fractional rank) evaluated for each

individual locus in the empirical dog dataset.

The univariate statistics include iHS, H12, p
(nucleotide diversity), and Tajima’s D.

The compound measures include: the

Mahalanobis distance based on negative-log

rank P-values (Md-rank-P), the decorrelated

composite of multiple signals (DCMS), the

Mahalanobis distance based on the raw statis-

tics (Md raw), and the composite signal of

selection (CSS). The row labels indicate the

dog breed, chromosome, base pair of the focal

single-nucleotide polymorphisms (Mb), and

the allele frequency of the focal SNP.
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BEST PRACTICES WHEN USING COMPOSITE MEASURES

FOR GENOME SCANS

A single genome scan method may output many variables and

the first decision is to choose a variable to represent that

method in a composite measure. For example, a genome-wide

association study may output an effect size of an SNP, a test

statistic for significance of that SNP, and a P-value of that test

statistic. Ideally, the best variable to choose will measure evi-

dence against an effect size of zero, which is typically the test

statistic or the P-value. Once the investigator has decided

which values to combine, the next decision is which composite

measure to apply.

If the goal is to identify outliers regardless of directionality,

then a multivariate distance is a good choice for a composite

measure.When applying amultivariate distance,Mahalanobis

distance or harmonic mean distance should be used if data are

parametric and nearest-neighbour distance should be used if

data are non-parameteric.

However, for many variables directionality is meaningful

(e.g. larger test statistics and smaller P-values reflect higher sig-

nificance), and in this case combining P-values would capture

this directionality in the composite measure. Note, however,

that our demography simulations showed that methods for

combining P-values may perform worse than multivariate dis-

tances when there is high variance in the signal among statis-

tics, as there was in the isolation-by-distance model. When

combining P-values, the next issue is whether to use

P-values calculated by the univariate method or to use a

rank-basedP-value. If your data satisfy the assumptions of the

statistical method implemented in the program, then the

P-values will be well calibrated and this is the best case scenario

(Fig. S2b). On the other hand, if the univariate method does

not calculate P-values or makes liberal or conservative

assumptions (Fig. S2a,c), then using a rank-based P-value

would be a better approach (Fig. S2d). These assumptions can

be evaluated by both using QQ-plots to check the distribution

of P-values and by calculating the genomic inflation factor

(Franc�ois et al. 2015).
When combining rank-based P-values, our analysis of the

dog data showed that Md-rank-P (with MCD) performed the

best of all the statistics, and DCMS performed the next best.

The higher performance of Md-rank-P over DCMS may have

occurred in this case because it is more sensitive to detecting a

signal that is significant by only a single univariate statistic,

whereas DCMS will tend to reflect signals that are significant

by more than one univariate statistic and exhibits odd beha-

viour depending on the correlation structure of the data (see

toy example in Fig. S10). Composite selection signal generally

performed poorly because it assumed independence and did

not take into account directionality. Take, for example, the

combination of a statistic in which a negative signal is indica-

tive of selection (such as Tajima’sD) with a statistic in which a

positive signal is indicative of selection (such as FST). The for-

mer statistic would have a negativeZ-score and the latter statis-

tic would have a positive Z-score, yielding an average Z-score

for the CSSmethod near 0, which would not be significant.

Most importantly, all compound measures will reflect the

sensitivities of the statistics that they summarize. For instance,

extraordinarily large or small values of Tajima’s D can be

caused by changes in population size, and not by selection

(Tajima 1989b). While we used Tajima’sD in this study for the

purposes of illustration, investigators should take care when

choosing the statistics used in the calculation of the compound

measure.

INCORPORATING A ROBUST APPROACH

Despite their apparent utility for identifying genomic outliers,

robust statistics have rarely been applied to genome scans. The

goal of applying a robust approach is to better capture the neu-

tral expectation, and we found that although the MCD could

identify neutral loci in our simulated datasets it did not univer-

sally improve the signal of selection in composite measures.

Incorporating the MCD typically improved performance of

the nearest neighbour distance and Md-rank-P, and had no

effect on DCMS. In the other cases, incorporating the MCD

could improve or decrease performance by as much as 30%.

This may have occurred because for many statistics the varia-

tion around neutrality is dominated by statistical noise rather

than signal, and hence inferring covariances from a too strict a
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‘robust’ set may result in too weak correlations. This may have

a profound influence on results and lead to many false posi-

tives. Consistent with this reasoning, we found that the MCD

generally improved power for Mahalanobis distance in the 1R

and 2R models (stronger covariance patterns among loci) and

had variable effects on power for the IM and IBD models

(weaker covariance patterns among loci). Also consistent with

this reasoning, we found that theMCDdecreased performance

of the multivariate distances in the dog data, where each data-

set was based on a single population (weaker covariance pat-

terns among loci). On the other hand, we found that theMCD

improved or did not affect power for methods that combined

rank P-values (Md-rank-P and DCMS) in both simulated and

empirical data, which suggests that incorporating a robust

approach into thesemethods would be an improvement.While

the work presented here has been an important first step into

incorporating robust algorithms into the statistical genomics

framework, we recommend that investigators evaluate robust

approaches for specific scenarios before incorporating them.

Conclusions

Compound measures may provide a tractable, powerful

approach for prioritizing candidate regions or loci for further

investigation. On the other hand, the univariate statistics that

they summarize typically test a specific null hypothesis based

on theoretical population genetic models, and therefore offer

information about an underlying evolutionary process. Com-

pound measures are na€ıve to this information and simply infer

outliers based on their position in multivariate space. There-

fore, it is important for investigators to interpret multivariate

outliers in the light of the theoretical models that the univariate

statistics are based on, and use functional validation to gather

important information on the mode or strength of selection.

Given the stochasticity of natural selection and demography,

plus the complexities stemming from experimental design, data

collection, and univariate analyses, assessing the significance of

a compound measure alone is almost certain to remain a

difficult task.

Software

The Mahalanobis distance, harmonic mean distance, nearest

neighbour distance, CSS, and DCMS measures are imple-

mented in the R package MINOTAUR v1.1.0, which is available

via GitHub (https://github.com/NESCent/MINOTAUR) and

described in Verity et al. 2017. When relevant, the functions

also allow users to supply their own covariance matrix or a list

of robust points, thereby allowing them to take advantage of

robust algorithms.
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