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We’ll choke on our vomit and that will be the end

we were fated to pretend

MGMT, Time to pretend



Abstract

The Resource Description Framework (RDF) data model, a W3C recommendation for web meta-
data, has become increasingly popular and is used in the Web of Data and the Semantic Web.
This led to the association of the problem of RDF data management with Big Data manage-
ment. Since RDF database management systems, a.k.a. RDF stores, integrate data analysis
capabilities, in these systems the method used to store RDF triples has a major impact on their
efficiency.

This work proposes an evaluation of the following columnar formats: CarbonData, ORC,
Parquet and Arrow, all Apache open source projects. To evaluate their efficiency, disk footprint
and query time were measured using a popular benchmarking RDF data set, i.e LUBM. To
perform this evaluation, tests were executed using Apache Spark, a Big Data processing engine,
first in a local environment and then using the Amazon Web Services (AWS) infrastructure. The
goal of this work is to evaluate the suitability of the mentioned formats in order to identify the
best fit when dealing with Big Data in a real cloud context.

The results obtained show that ORC and Parquet have the best performances. The former
is better in data compression, while the latter seems to be the best choice when the amount of
data increases and the time required to access them is the main goal. CarbonData was discarded
during the trial due to its overall poor performance. Finally, very surprisingly, Arrow performed

poorly in the local environment and could not be used in the cloud.
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Notes

The discussion of the concepts addressed in the introductory chapter could be very reductive.
Indeed, most of the concepts addressed would require a separate in-depth discussion due to
their complexity and rich literature. However, a thorough knowledge of these concepts, although
recommended, is not necessarily required for the understanding of this work. For this reason,
only the basics of the many technologies and techniques used during this work will be provided.

The first two chapters has been developed drawing a lot of inspiration from the book|7]
written by the supervisor Olivier Curé.

The RDF’s section in the introduction chapter has been developed taking inspiration from
the official W3C recommendation|63].

The columnar storage section has been developed drawing a lot of inspiration from the official
documentation of the formats. For this reason, some parts might look very similar.

The literature review chapter has been developed drawing much inspiration from the survey

of RDF stores conducted by Ali et al.[2].



Chapter 1

Basic concepts

1.1 The Semantic Web

The Semantic Web is an extension of the World Wide Web regulated by the World Wide Web
Consortium (W3C). Tim Berners-Lee, the inventor of the World Wide Web, originally expressed

his vision of the Semantic Web in his book Weaving the Web[3| published in 1999, as follows:

I have a dream for the Web [in which computers] become capable of analyzing all the
data on the Web — the content, links, and transactions between people and computers.
A “Semantic Web”, which makes this possible, has yet to emerge, but when it does,
the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled
by machines talking to machines. The “intelligent agents” people have touted for ages

will finally materialize.

As can be implied from the quote, the goal and the challenge of the Semantic Web is to make
Internet data machine-readable in order to bring structure and meaning to Web contents, then
to create an environment where a machine might interpret more than just the keywords specified
in the header of the pages. To achieve these goals, it is definitely necessary to provide a language
capable to express both the data and the rules for reasoning about them. This language must
also allow the possibility to export these rules to the Web from any knowledge representation

system. Furthermore, the logic brought by the rules has to be powerful enough to describe



complex properties but accurate as well to avoid paradoxes that might lead the machine to make
false assumptions.

The Semantic Web structure is described through Figure in the so-called Semantic Web
Cake:

e The lowest layer provides a global identification solution for web resources: Uniform

or Internationalized Resource Identifiers (URIs/IRIs). URIs and IRIs are interchangeable

e The second layer introduces the definition of a syntax based on the eXtensible Markup
Language (XML). XML allows everyone to add structure to documents through tech-
nologies such as Document Type Definition (DTD) or XML Schema, without specifying

any meaning that the structure might have

e The third layer contains the core of the Semantic Web: the Resource Description

Framework (RDF)

e The fourth layer provides a solution to define metadata on elements of RDF documents

through the RDF Schema (RDFS)

e The fifth layer is composed of the Web Ontology Language (OWL) that enables to define

more expressive ontologies than RDFS does

e Across the fourth and the fifth layer, there are the SPARQL Protocol and RDF Query
Language (SPARQL) and the Resource Interchange Format (RIF). SPARQL is a set of
W3C recommendations that concerns RDF data, but what is relevant for the progress of
this work is its query language. RIF is a set of dialects based on different rule systems

to conduct inferences

The remaining layers are usually not considered when delving in RDF stores and are out of

the scope of this work.
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Figure 1.1: The Semantic Web Cake

1.2 RDF

The Resource Description Framework, from now on RDF, is a data representation model that
was defined in 1996 and adopted as a W3C recommendation in 1999. Originally, RDF was
designed as a metadata data model, but later it has come to be used as a general method for
conceptual description or modeling of information that is implemented in Web resources. Today,
RDF has become an open-world framework that allows everyone to make statements about any
resource. Hence, its goal is to allow the description of the resources that are uniquely identified
in the Web by Internationalized Resource Identifiers, from now on IRIs.

RDF plays a very important role in the Web of Data and the Semantic Web, which are
extensions of the original World Wide Web, and consequently in the Big Data phenomenon. It
has a simple data model that is easy for applications to process and manipulate. The data model
is independent of any specific serialization syntax.

Any expression in RDF is a triple composed by a subject, a predicate and an object. A set
of such triples is called RDF graph, since a triple can be illustrated by two nodes connected by

an arc, as shown in Figure|1.2



Predicate

Figure 1.2: Illustration of an RDF triple

In order to provide the signature of an RDF triple, we consider three disjointed sets:

e ] a set of IRIs

e B a set of blank nodes just corresponding to nodes in an RDF graph which do not have

intrinsic names

e [ a set of literals where a literal is a lexical form and a datatype IRI, with a language
tag in addition if the datatype IRI is http://www.w3.org/1999/02/22-rdf-syntax-

ns#langString. Literals are used for values such as strings, numbers and dates

An RDF triple T is then represented in form of: T'= (I U B) x (I) x (I UB U L). This
indicates that a subject could be a IRI or a blank node, a predicate could only be a IRI and a
object could be a IRI, a blank node or a literal. Each triple represents a relationship between
the subject and the object linked. The direction of the arc is significant: it always points toward
the object.

Since RDF works on the Web, RDF data can originate from multiple sources. This implies a
merging task whenever there are at least two sources. Interestingly, the merging phase is not a
problem, because merging two or more sources means merging set of triples. Instead, the main
problem that could arise is the identification of common resources among multiple sources, for
instance blank nodes. But since RDF uses IRIs, every entity or node is uniquely identified across
the Web.

Here it is possible to get a glimpse about the potential of RDF: any two data source on
the Web can refer to the same resource and add extra information just by using the same IRI.
Obviously, IRIs also solve the problem of disambiguation, since the name that is used to describe
that resource is only the final part of the IRI. The RDF standard provides the specific namespace

often referred to with the rdf prefix name: <http://www.w3.org/1999/02/22-rdf-syntax-ns>.


http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns

1.2.1 RDF/XML

RDF/XML is a syntax recommended by the W3C to express, then to serialize, an RDF graph
as an XML document. Briefly, any resource can be represented using an rdf :Description
XML element, specifying its rdf:about attribute using an URI. Since the same element, i.e a
subject, can have multiple characteristics, the nested structure of XML can be used to add them
to the given subject. To specify the type of the resource represented, the rdf : type attribute has

to be added as nested element in combination with the rdf :resource. See below for an example:

1 <7xml version‘‘1.0’” encoding=*“UTF—-8" 7>
2  <rdf:RDF
3 xmlns:rdf=*http://www.w3.0org/1999/02/22—rdf—syntax—ns#"’
4 xmlns:ub="*"http://swat.cse.lehigh.edu/onto/univ—bench.owl#"’
5 >
6
7 <rdf:Description rdf:about=*‘http://www.University0.edu’’>
8 <rdf:type rdfiresource=‘‘http://swat.cse.lehigh.edu/onto/univ—bench.owl# University”’>
9 <ub:name>University0< /ub:name>
10 < /rdf:Description>
11
12 <rdf:Description rdf:about="*‘http://www.Department0.University0.edu’ >
13 <rdf:type rdfiresource=*‘‘http://swat.cse.lehigh.edu/onto/univ—bench.owl#Department’’ >
14 <ub:name>Department0</ub:name>
15 <ub:subOrganizationOf>
16 <ub:University rdf:about=*http://www.University0.edu’ />
17 < /ub:subOrganizationOf>
18 < /rdf:Description>

19
20 < /rdf:RDF>
21

To make the definition of an element and its type easier and more concise, RDF /XML allows
a shorter expression to combine the rdf:Description element and its rdf:type attribute by
replacing them with an element directly named with the namespaced element corresponding to
the RDF IRI of the rdf:resource attribute. A shorter way to declare the previous example is

shown here:



1 <7xml version=1.0"" encoding="“UTF—-8"" 7>
2  <rdf:RDF
3 xmlns:rdf=*http://www.w3.0rg/1999/02/22—rdf—syntax—ns#"’
4 xmlns:ub="*"http://swat.cse.lehigh.edu/onto/univ—bench.owl#"’
5 >
6
7 <ub:University rdf:about=*"http://www.University0.edu’’>
8 <ub:name>University0</ub:name>
9 < /ub:University>
10
11 <ub:Department rdf:about=*‘http://www.Department0.University0.edu’ >
12 <ub:name>Department0</ub:name>
13 <ub:subOrganizationOf>
14 <ub:University rdf:about=*‘http://www.University0.edu’ />
15 < /ub:subOrganizationOf>
16 </ub:Department>
17

18 </rdf:RDF>
19

Moreover, any predicate having a literal value can be expressed as an XML attribute of the
corresponding subject element. The previous example code can thus be shortened even further

as follows:

1  <7?xml version=‘“1.0" encoding=“UTF—8" 7>

2  <rdf:RDF

3 xmlns:rdf=*http://www.w3.0org/1999/02/22—rdf—syntax—ns#"’
4 xmlns:ub=""http://swat.cse.lehigh.edu/onto/univ—bench.owl#"’
5 >

6
7 <ub:University rdf:about=*http://www.University0.edu’” ub:name="*University0’ />
8  <ub:Department rdf:about=*‘http://www.Department0.University0.edu’” ub:name=‘"Department0’’>

9 <ub:subOrganizationOf>
10 <ub:University rdf:about=*‘http://www.University0.edu’ />
11 < /ub:subOrganizationOf>
12 </ub:Department>
13

14 < /rdf:RDF>

1.2.2 N-Triples

N-Triples is a line-based, plain text format for encoding an RDF graph, and it is the simplest
form of textual representation for RDF data. Its strength is also its greatest weakness: not
allowing abbreviations makes N-Triples very human-readable but space-consuming and quite re-
dundant. The triples are given in subject, predicate, and object order as three complete Ulls

separated by spaces and encompassed by angle brackets, < and >. Each triple takes a single line



ended by a period (.). Here it follows the translation to N-Triples formatEl of the previous lines:

1 <http://www.University0.edu>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#University > .

2 <http://www.University0.edu>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#name>
“University0” .

3 <http://www.Department0.University0.edu>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#Department> .

4 <http://www.Department0.University0.edu>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#name>
“Department0” .

ot

<http://www.Department0.University0.edu>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#subOrganizationOf>
<http://www.University0.edu> .

6

1.2.3 Turtle

Turtle, the Terse RDF Triple Language, is becoming increasingly popular and it is now a W3C
recommendation. In Turtle, as a predicate, a is equivalent to the complete IRI corresponding to
rdf :type.

The notation is very similar to N-triples with a few differences. Aside from the fact that
surrounding parentheses have been removed and IRIs can be abbreviated by prefixed names, the
main syntactic difference is an abbreviated syntax for statements that share a predicate and/or

an object:

”

e “subject predicatel x ; predicate2 y stands for “subject predicatel x

”

subject predicate2 y

1Due to text-wrapping and to the meager page width, to facilitate the reading, triples are separated by a
blank line and each triple takes 3 lines. Furthermore, the subject is colored in green, the predicate in blue and
the object in violet



”

e “subject predicate x , y . stands for “subject predicate x . subject

”

predicate y .

Here it follows the translation to Turtle format of the previous example:

@prefix ub: <http://swat.cse.lehigh.edu/onto/univ—bench.owl# >

1
2

3 <http://www.University0.edu> a ub:University ;

4 ub:name “University0” .

5

6  <http://www.Department0.University0.edu>  a ub:Department ;

7 ub:name “Department0”’ ;

8 ub:subOrganizationOf  <http://www.University0.edu> .

©

1.3 SPARQL

SPARQL is the standard query language and protocol for Linked Open Data and RDF databases.
It enables users to query information from database or any data source that can be mapped to
RDF. The SPARQL standard is designed and endorsed by the W3C to help users and developers
focus on what they want to know, and not on how the database is organized. The basic syntax
of a SPARQL is very similar to a simple SQL query with SELECT-FROM-WHERE clauses, but the
query processing is quite different. While most of the time SQL relies on joins between tables,
SPARQL execution consists of navigating RDF graphs, then moving from node to node via edges
until the desired node is reached. In fact, the execution of SPARQL queries is based on graph
pattern matching between the graph of the WHERE clause and the RDF graph to be queried.

In contrast to SQL, SPARQL queries are not limited to working in just one database, but
federated queries accessing multiple data stores (endpoints) are supported. This is technically
feasible because SPARQL is more than just a query language. Indeed, it is also an HTTP-based
transport protocol that can access any SPARQL endpoint through a standardized transport

layer.



1.3.1 Syntax

A SPARQL query consists of a set of triple patterns specified in the WHERE clause, where each
element, i.e. subject, predicate, and object, can be a variable (wildcard). Then, solutions to the
variables are found by matching the pattern in the query with the triples in the data set. A
variable is specified using a question mark (7) followed by its name and it can be used in more
than a triple. The clauses are expressed in Turtle (see Subsection , since it allows a short
textual representation.

SPARQL has four types of queries:

1. ASK: returns a Boolean value indicating whether a query pattern has a solution or not

2. SELECT: returns the variables solution and their bindings directly in a tabular form. It
supports many of the classic SQL options such as LIMIT, DISTINCT, OFFSET, ORDER BY,

GROUP BY and HAVING

3. CONSTRUCT: returns a single RDF graph specified by a graph template, using each query
solution, substituting the variables in these matches, and combining the triples into a

single RDF graph by set union

4. DESCRIBE: asks for any RDF information related to some specific variables of the result

template. It is usually used to discover resources without knowing their schema

Here follows an example for each type of SPARQL queryﬂ

1. ASK {
?X rdf:type ub:GraduateStudent

}

2In order not to be redundant, prefixes have been omitted. The prefixes common to all queries are as follows:

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns# >
PREFIX ub: <http://www.lehigh.edu/ zhp2/2004/0401 /univ—bench.owl# >



2. SELECT ?X
WHERE {
?X rdf:type ub:UndergraduateStudent

}

3. PREFIX foaf: <http://xmlns.com/foaf/spec/>
CONSTRUCT {
?x foaf:name 7y
} WHERE {
?x ub:name 7y

}

4. DESCRIBE 7x
WHERE {
?X rdf:type ub:UndergraduateStudent .
?X ub:memberOf <http://www.Department0.University0.edu>

}

SPARQL also provides the following additional keywords:

e FILTER restricts the solutions of a graph pattern match according to a given expression.

Its use is similar to the SQL’s WHERE clause.

e OPTIONAL provides the possibility to not reject the solution because some parts of the
query pattern do not match. Indeed, if the optional part does not match, it creates no

bindings but it does not eliminate the solution.

e UNION allows to combine several graphs, then to provide different alternatives. Hence, if

more than one of the alternatives matches, all the possible pattern solutions are returned.

e FROM allows to retrieve data and to consider more than one data set, i.e. graph. Then

all data sets declared will be considered as just one.

e SERVICE provides a way to remotely execute a query on a SPARQL endpoint, that is
a web service allowing SPARQL queries, then to perform federated queries. Federated
queries allows to take a query and provide solutions based on information from many

different sources

Lastly, the SPARQL 1.1 Update provides new two categories of operations: graph update,

10



OWL2 Full

Figure 1.3: Expressiveness of OWL2 and RDFS ontology languages

e.g. INSERT, DELETE, LOAD, CLEAR et cetera, and graph management, e.g., CREATE GRAPH and

DROP GRAPH.

1.4 Ontologies

Delving into ontologies and related languages of ontologies is far from the goal of this work, but it
was deemed important to at least give a taste of what an ontology is after the RDF presentation
that has been addressed in the previous two sections, since they provide semantic interpretations
to RDF facts.

So far the values of subjects, properties, and objects have been specified without considering
what their values represent. To solve this problem, ontologies come to the rescue. As Thomas
Gruber, the co-founder of Siri, Apple’s intelligent personal assistant, claimed in 1993, “an ontol-
ogqy is a specification of a conceptualization”. In other words, it aims to conceptualize a domain
by strictly specifying the entities it contains and all the relationships that might exist between
them.

In the Semantic Web context, there are a large number of ontology languages, such as RDFS
and the OWL2 family, and the main difference lies in their expressiveness. Figure describes
it.

What is important is that ontologies provide a mechanism to describe groups of related

11



resources and their relationships defining classes, properties, instances and meta-descriptions
with high accuracy. Therefore, since ontologies carry structure and hierarchies, they make in-
ference about data possible. For example, a query might ask to retrieve all the students of
a university, but the students are stored as instances either of the UndergraduateStudent or
GraduateStudent classes. While in a SQL environment this problem would lead to a rewriting
query process, several current SPARQL engines and RDF stores support rule based inference

using ontologies.

1.5 RDF storage techniques

Because of its recent establishment, the RDF data model is still lacking in terms of storage. In
fact, the search for an efficient storage backend is still considered an open problem.

Because since 1999, the year of the first W3C recommendation, several systems have been
introduced, it is useful to try to classify them. First of all, it is possible to distinguish between
native and non-native approaches. The former are those solutions that are implementing their
own brand-new storage backend. The latter are those solutions that are trying to adopt existing
database management system to the RDF data model.

Figure tries to classify the several main techniques of storage currently used to deal with
the RDF data model.

Describing the several techniques and the many existing systems is out of the goal of this
work since it would require a chapter just to describe the main ones. Thus, only the concepts
useful to the comprehension of this work are about to be deepened. To have a wider overview,

please refer to the book written by the supervisor|7].

1.5.1 Non-native approaches

The non-native approaches benefits from dozens of years of research and development since they
use database management systems, from now on DBMS, to store RDF data. These can be
further divided into schema-free and schema-based approaches. In the former, just a single 3-
column table is created and it stores all the triples. In the latter, the RDF triples are splitted

into different tables.

12
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Figure 1.4: RDF storage techniques classification

Schema-free approaches

As already claimed, in schema-free approaches just one large table, called triples table, is created.
Then, each [subject, predicate, object] RDF statement is stored as a row of a three-column
table. Since all triples are stored in just one table, is very important to arrange them in an
appropriate way to avoid slow queries, which are more than a considerable risk in such systems.
In addition, complex queries with multiple triple patterns may perform poorly because they

require many self-joins on this single large table. Table shows an example of triples tableﬂ

3In the URLs http://wuw. is omitted

13



DepartmentO.University0.edu
University0.edu
Department0.University0.edu/FullProfessorQ
DepartmentO.University0.edu/FullProfessor0
Department0.University0.edu/FullProfessor0
Universityl.edu

DepartmentO.University0.edu/FullProfessor0

University2.edu

subject predicate object
Department0.University0.edu rdf:type ub:Department
Department0.University0.edu ub:name ¢ ‘Department0’’

ub:subOrganization0f
rdf :type
rdf:type
ub:name
ub:undergraduateDegreeFrom
rdf:type
ub:mastersDegreeFrom

rdf:type

University0.edu
ub:University
ub:FullProfessor
¢ ‘FullProfessor0’’
Universityl.edu
ub:University

University2.edu

ub:University

Table 1.1: Example of triples table

1.6 Cloud computing and Big Data

Without a doubt, over the past few years the Big Data phenomenon

and the cloud computing

new technologies brought innovation providing new paradigms to improve and/or enable research

and decision-support applications that few years ago were not feasible due to elevated costs and

the impossibility to collect such a large amount of data. While Big Data and its techniques

provided the possibility to collect, store, process and serve the data, cloud computing gives a

fundamental support to address the challenges with shared computing resource|65]. It is a matter

of fact that nowadays Cloud Computing and Big Data seem to be indissoluble.

The Big Data definition is often associated with the so-called 3 Vs: Volume, Velocity and

Variety. These three Vs summarize the key aspects in this context well enough:

e Volume emphasises that the size of the data cannot be stored and/or processed with an

everyday and usual machine, but it requires a powerful server or a cluster of machines

e Velocity indicates the speed with which the data arrive and therefore should be

processed. It may require new paradigms to allow algorithms to run in clusters, e.g. a

stream processing engine such as Flink or Spark

14



e Variety concerns the format in which the data are presented. Three formats are possible:
structured, semi-structured and unstructured. Data stored in relational RDBMS are
surely an example of structured data, while examples of semi-structured formats are
XML, JSON and RDF files. Unstructured data are those data poorly characterized such

as images and textual documents.

As the amount of Web data increases every day, there is a need for technologies and techniques
to handle the enormous amount of Semantic Web that arise. These technologies must provide
scalable and high performance storage solutions for these Web data. In this context, Cloud
computing providers such as Amazon Web services|37], from now on AWS, Microsoft Azure[46]
and Google Cloud Platform[40|, come into play by offering cloud computing capabilities.

Cloud computing is the on-demand availability of computer system resources, in particular
computing power and data storage, based on the sharing of resources. Indeed, the largest cloud
providers, predominant today, usually have data centers distributed over several locations. They
usually adopt the “pay-as-you-go” model where users pay just for services and resources they
use. Thus, among the advantages of cloud platforms there are surely their ease of use that avoids
tedious management, the ease of scaling systems, both horizontally and vertically, and their low
costs.

Since an increasing number of organizations and communities keep their data available in the
RDF format, there is the need of an efficient RDF storage system for querying these data in a

scalable and efficient way, and cloud solutions might fit well.

1.6.1 Apache Hadoop and Apache Spark

Among distributed systems, Apache Hadoop in combination with Apache Spark have been the
most used for some time now. The Apache Hadoop project develops open-source softwares
for reliable, scalable, distributed computing. Indeed, the Apache Hadoop software library is a
framework that allows distributed processing of large data sets across clusters of computers using
simple programming models. It has been designed to scale up from single servers to thousands
of machines, each offering local computation and storage, using a shared-nothing architecture.

The library itself is designed to detect and handle failures at the application layer, so to deliver

15
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Figure 1.5: Apache Spark stack

a highly-available service on top of a cluster of computers, each of which may be prone to fail-

ures[17]. The Hadoop project includes the following modules:

e The Hadoop Common utilities that support the other Hadoop modules

e The Hadoop Distributed File System, from now on HDFS, that provides high-

throughput access to application data

e The Hadoop YARN (Yet Another Resource Negotiator) framework to handle job

scheduling and cluster resource management

e The Hadoop MapReduce|8] system for parallel processing of large data sets.

On the other hand, Apache Spark is a unified analytics engine for large-scale data processing.
It provides high-level APIs in Java, Scala, Python and R. It also supports a rich set of higher-
level tools including Spark SQL and structured data processing. Furthermore, it features an
optimised engine that supports general graph processing.

The main abstraction Spark provides is the Resilient Distributed Data set (RDD), which is a
collection of elements distributed on a cluster of machines that can be managed in parallel and
maintained in a fault-tolerant manner. Figure shows a minimal representation of the Spark
stack.

Spark applications run as independent sets of processes on a cluster, coordinated by the
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Figure 1.6: Apache Spark architecture

SparkContext object in the main program, called the driver program. More in detail, to run
on a cluster, the SparkContext connects to several types of cluster managers, which allocate
resources across applications. Once connected, Spark acquires executors on nodes in the cluster,
which are processes that run computations and store data for applications. Next, it sends
the application code to the executors. Finally, the SparkContext sends tasks to run to the

executors[27]. Figure shows a simplified representation of the Spark architecture.

1.7 Columnar storage

While a relational storage is optimized for storing rows of data and to access very quickly singular
rows, typically for transactional applications, a columnar database is optimized for fast retrieval
of columns of data, typically in analytical applications. The purpose of transactional data is to
support day-to-day operations of the business and it is exceedingly valuable for that purpose. In
contrast, analytical data is used for managerial analysis and decision making. Storing data in a
columnar format allows to read, decompress, and process only those values that are required for
the current query.

To give an example, while the row format is stored as Row 1 > Row 2 > Row 3, the colum-
nar format is stored to disk as Column 1 > Column 2 > Column 3. Figure shows a very

simplified table to highlight the differences between the two different storage techniques.
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Figure 1.7: Row vs column based storage

Thus, when the goal is usually to recover the punctual data, e.g. all data of a row, row
storage is undoubtedly the best solution. But, when the goal is to access large amounts of data
stored in few columns to help the decision making process, so to access analytical data, e.g the
average of a column, columnar storage is clearly a better solution. This happens because in a
relational storage all rows must be read to extract just one column value, while in a columnar
storage all data are read in one-shot because they are stored in contiguous blocks.

Hence, column-oriented storage for tables is an important factor in analytic query performance
because it drastically reduces the overall disk I/O requirements and reduces the amount of data
needed to be loaded from disk. Furthermore, column-oriented databases are designed to scale-out
using distributed clusters of low-cost hardware to increase throughput, making them ideal for
data warehousing and Big Data processing.

Some of the most famous and used columnar storage formats are, in chronological order:
ORC, Parquet, CarbonData and Arrow. All of these formats are supported by the Apache
Software Foundationﬂ All formats are optimized for storage on Apache Hadoop, hence they
enable scalability, parallel processing and provide some degrees of compression, that is a very
important factor when using a non-free cloud provider.

Furthermore, Arrow is something more than just a columnar format. Indeed, it is a cross-

4From this point onward, the term “Apache” will be omitted not to be redundant
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language development platform for in-memory analytics|11]. For this reason it can be used on

top of other formats, such as Parquet.

1.7.1 Glossary

In order to facilitate the reader’s understanding, some definitions of very common terms in the

columnar storage context are provided below:

e File: a HDFS file that must include the metadata for the file. It does not need to

actually contain the data
e Stripe: a collection of row groups

e Row group: a logical horizontal partitioning of the data into rows. There is no physical
structure that is guaranteed for a row group. It consists of a column chunk for each

column in the data set

e Column chunk: a chunk of the data for a particular column. It is contained in a

particular row group and is guaranteed to be contiguous in the file

e Page: column chunks are divided up into pages. A page is conceptually an indivisible
unit, in terms of compression and encoding. Unless specified, there can be multiple page

types that interleave in a column chunk

Hierarchically summarised, a file consists of one or more row groups. A row group contains

exactly one column chunk per column. Column chunks contain one or more pages.

1.7.2 Apache CarbonData

Apache CarbonData is an indexed columnar binary data format for fast analytics on Big Data
platforms|15], such as Apache Hadoop and Apache Spark. It aims to take advantage of its ad-
vanced columnar storage index for fast interactive querying. To achieve this, it uses compression
and encoding techniques to improve computational efficiency.

As pointed out by Figure CarbonData enables users to access the whole data using a
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Figure 1.8: CarbonData unified file format

single copy. The challenge is then to answer efficiently all different types of queries:

e OLAP (OnLine Analytical Processing) queries, which are complex queries that use
large amounts of data. These queries are used to perform complex analysis of the data,

typically in a data warehouse

e Big scan and small scan queries, which are queries that require scans of larger or limited

areas respectively

e Point queries that consume a small portion of the big table

The CarbonData files are stored in the location specified by the carbon.storelocation
configuration. Figure shows the file directory structure, that is the structure of the directory

containing all the files related to the original file. More in details:

e ModifiedTime.mdt records the timestamp of the metadata with the modification time

attribute of the file. It is common to all databases and it is used to keep them updated

e The database name is default, unless specified otherwise, and it contains the so-called

user_table

e There are three types of metadata files. Indeed, the Metadata directory stores informa-

tion about schema files, tablestatus and dictionary files
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Figure 1.9: CarbonData file directory structure
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Carbon Data File

Figure 1.10: CarbonData file structure

e The data and index files are stored in the Fact directory. This folder contains the
partitions identified by the number following the name Part. In turn, the partition
folder contains the segments, identified by a number as well. FEach segment folder

contains then two types of files: CarbonData and carboninder.

Then, when a table is created, the user_table directory and the schema file for recording
the table structure are generated.

CarbonData files have 3 main components: a header, a groups of data called blocklets and a
footer. The header contains the CarbonData file version number, a list of column schema and
the schema updating timestamp. The footer is used to build the indices in memory, which can
be exploited for optimizing the scans and processing for all subsequent queries. Figure m
shows the main structure of a CarbonData file. As already mentioned, a CarbonData file consists
then of multiple blocklets. A blocklet is the data set inside the CarbonData file, whose size is
usually 64MB.

There are three version of CarbonData file available, V1, V2 and V3, and they differ mainly
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Figure 1.11: CarbonData file V3

for the blocklet structure. Figure describes the structure of the most recent one.
The blocklet is composed of ColumnChunks of all columns. ColumnChunk consists of one or

more ColumnPages. Each ColumnPage includes:

e the data chunk header, which records the length information of all pages

the Data Page, which contains the encoded data

the RLE page, which contains some additional meta-information. It is used when the

Data Page uses RLE encoding

the rowID page, which contains the mapping of the row id. It is used when the Data

Page is stored in the form of an inverted index

a BlockletMinMaxIndex

Since the header part records the length information of all the pages, the footer part only

needs to record the offset and length of the ColumnChunk. Indeed, it contains all blocklet data
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Figure 1.12: CarbonData footer structure

distribution information and statistical related metadata information.

Figure shows the structure of the footer. It contains most of the information used to
index the data. More in details, the CarbonData index is composed of multi-level indexes includ-
ing multi-dimensional (BT trees), min/max and inverted index. With BlockletBtreeIndex, the
range of blocklets satisfying the conditions in each block are delineated, while BlockletMinMaxIndex

is used to record the min/max value of all columns in the blocklet.

1.7.3 Apache ORC

The Optimized Row Columnar, from now on ORC, is a self-describing binary type-aware columnar
file format designed for Apache Hadoop workloads. It is optimized for large streaming reads,
with integrated support for retrieving required rows quickly. Since ORC files are type-aware, the
writer chooses the most appropriate encoding for the type and builds an internal index as the
file is written. These indexes are then used to determine which stripes in a file need to be read
for a particular query. The row indexes are used to narrow the search to a particular set of rows.

Usually, ORC files are divided into stripes that are 64 MB by default. The stripes in a file are
independent. Within each stripe, the columns are separated from each other so the reader can
read just the columns required. As already specified, all ORC files are self-contained, i.e. it

does not depend on the user’s environment to correctly interpret the file’s contents. To achieve
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this goal, every ORC file includes all of the type and encoding information for the objects stored.

ORC supports many primitive types, such as boolean, int, float, string, et cetera. But,
it includes also more complex types such as structs, lists, maps, and unions. This is relevant
because ORC files are logically sequences of identically typed objects.

Another important feature of ORC is its support for ACID transactions. But, as specified in
the official documentation, although it supports ACID transactions, it is not designed to support
OLTP requirements. ORC can support millions of rows updated per a transaction, but it cannot
support millions of transactions per hour. Since HDFS is a write once file system and ORC is a
write-once file format, edits are implemented using base files and delta files where insert, update,
and delete operations are recorded. However, when deltas are too many or too large, merging
and re-basing mechanisms are required and performed.

In order to provide light-weight compression techniques such as dictionary encoding, bit pack-
ing, delta encoding and run length encoding, ORC uses type specific readers and writers. This
makes the resulting files considerably smaller. Additionally, ORC can apply generic compression
algorithm such as Snappy[43| on top of the light-weight compression for even smaller files.

ORC provides three level of indexes within each file:

e File level indexes, which contain statistics about the values in each column across the

entire file

e Stripe level indexes, which contain statistics about the values in each column for each

stripe

e Row level indexes, which are light-weight indexes that contain statistics about the values
in each column for each set of 10000 rows within a stripe and the position for seeking to
the start of the row group. Moreover, row level indexes include both the minimum and

maximum values for the entire file as well

Beyond the statistics that record the count and, depending on the type, other useful fields
such as min/max, the indexes may include Bloom filters, which provide a much more selective
filter. Indeed, Bloom filters are used to speed up the process of finding equalities.

To easily determine which files need to be accessed and to avoid multiple passes during
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writing, the file and stripe level column statistics are in the file footer. Then, using pushdown
filters, which are a way to enable the execution of certain filters at the data source before it is
loaded to an executor process, the file reader can skip entire sets of rows that are not important
for the current query|21].

There have been two released ORC file versions:

e ORC v0 was released in Hive 0.11

e ORC vl was released in Hive 0.12 and ORC 1.x

Furthermore, the Apache Software Foundation is currently working on a new version of the file

format: ORC v2[23].

ORC v1 format

Figure shows the overall structure of an ORC v1 file. The file can be broken down into
three parts: header, body, and tail.

The header consists just of the bytes ¢ ‘ORC’’ to specify immediately the type of the file.
This is useful for those tools that scan the front of the file to determine its type.

The body is divided into stripes which contains rows. Each stripe is self-contained. Then,
to read those rows just the stripe bytes combined with the file’s Footer and Postscript data are
required. As specified in Figure [I.13] each stripe is composed of three parts: a set of indexes for
the rows within the stripe, the data itself, and a stripe footer. Once again, both the indexes and
the data sections are divided by columns so that only the required data columns need to be read.

The tail gives the file level information useful to index. Indeed, since HDFS does not support
changing the data in a file after it is written, ORC stores the top level indexes at the end of
the file. The file’s tail consists of 3 parts: the file metadata, file footer and postscript. All
metadata in ORC are stored using Protocol Buffers|42|, which provides the ability to add new
fields without breaking readers.

The file metadata section contains column statistics with stripe level granularity. These

statistics enable input split elimination based on the predicate pushdown evaluated per a stripe.
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Figure 1.13: ORC file format
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Instead, the file footer contains data about the layout of the file body, the type-schema informa-
tion, the number of rows and statistics about each of the columns as well.

Finally, the Postscript section provides the necessary information to interpret the rest of the
file including the length of the file metadata and file footer sections, the version of the file and
the compression algorithm used. The Postscript is never compressed and ends one byte before
the end of the file. Hence, this is the first section that is read. Once it is parsed, the compressed

serialized length of the footer is known and then it can be decompressed and parsed.

1.7.4 Apache Parquet

Apache Parquet is a binary columnar storage format available to any project in the Hadoop
ecosystem, regardless of the choice of data processing framework, data model or programming
language|24].

The goal of Parquet is to take advantage of compressed and efficient columnar data repre-
sentation. To achieve this, it uses the record shredding and assembly algorithm described in the
Dremel paper[51].

Parquet has been built to support very efficient compression and encoding schemes. Multi-
ple projects have demonstrated the performance impact of applying the right compression and
encoding schema to the data. Parquet allows compression schemes to be specified on a per-
column level, and is future-proofed to allow adding of more encodings as they are invented and
implemented|25].

Here it follows the structure of a sample Parquet file containing N columns, split into M row

groups:
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Figure 1.14: Parquet file structure

4—byte magic number “PAR1”

<Column 1 Chunk 1 4+ Column Metadata>
<Column 2 Chunk 1 4+ Column Metadata>
<Column N Chunk 1 + Column Metadata>
<Column 1 Chunk 2 4+ Column Metadata>
<Column 2 Chunk 2 + Column Metadata>
<Column N Chunk 2 + Column Metadata>

<Column 1 Chunk M + Column Metadata>
<Column 2 Chunk M + Column Metadata>

<Column N Chunk M + Column Metadata>
File Metadata

4—byte length in bytes of file metadata
4—byte magic number ‘“‘PAR1”’

As in ORC, in Parquet it is possible to specify the type of a column in order to speed up
serialization/deseralizaton processes, but with a smaller set of types allowed, i.e boolean, integer,
floating point and byte array. Logical types are used to extend this small set of types by specifying

how the primitive types should be interpreted. For instance strings are stored as byte arrays.
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In addition to data types, as described in Figure Parquet stores metadata at three levels:

file metadata, column chunk metadata and page header metadata. The file metadata contains:

The version of the Parquet format

The data schema

The column metadata, which include its type, the number of values, its location and the

encoding schema

Additional key-value pairs

The file metadata are written after the data to allow single pass writing. Then, to determine
which column chunks should be read, the readers first check the file metadata to find them. The
columns chunks should then be read sequentially.

The row group column chunk metadata are contained in the footer as well and include statis-
tics for their data pages such as min/max, and can be used to skip pages when scanning data
in ordered and unordered columns. In the previous versions of the format this was not possible,
since statistics were stored in the column and data page headers. Thus, when reading pages, a
reader had to process the page header to determine whether the page could be skipped based on
the statistics or not.

It is important to emphasise that the format is explicitly designed to separate the metadata
from the data. This allows splitting columns into multiple files, as well as having a single
metadata file reference multiple parquet files. Indeed, Parquet allows to split the files in any
desirable size. This may be particularly advantageous when working with gigabytes or terabytes
of data and in parallel environments.

As already stated, Parquet has been developed taking inspiration from Dremel. Then Parquet
uses its encoding with definition and repetition levels. For data pages, three pieces of information
are encoded back to back, after the page header: the definition levels data, the repetition levels
data and the encoded values. However, if the column is non-nested and required, the data in the
page are just the encoded values. The size of a data page is specified in its header and it includes

all its 3 parts combined, with the information about compression and encoding. Data pages
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share also a common column header to allow readers to skip over pages they are not interested

in.

1.7.5 Apache Arrow

Apache Arrow is a software development platform for building high performance applications
that process and transport large data sets. It aims to improve the performance of analytical
algorithms and the efficiency of transferring data from one system or programming language to
another.

In other words, Arrow is a cross-language development platform for in-memory analytics.
Indeed, its in-memory binary columnar format is a standardized, language-agnostic specification
for representing structured, table-like data sets, in-memory. It is important to emphasise that
Arrow does not provide any compression and encoding mechanisms. Arrow used alone is just a
way to represent data in-memory. It is therefore not surprising that a data set represented in
Arrow format is larger in size than a data set represented in .csv or any other textual format.

As in ORC, this format has a rich data type system that includes nested and user-defined
data types, designed to support the needs of analytic database systems, data frame libraries, and

more. The key aspects of Arrow are the following:

e Using a columnar storage format al-

lows execution engines such as Apache
Spark to maximize their efficiency when
scanning and iterating large chunks of
data. To achieve this goal, the contigu-
ous columnar layout supports vectoriza-
tion using the latest SIMD (Single In-
struction, Multiple Data) operations in-

cluded in modern processors
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e Due to the lack of a standard colum-

nar data format, every database and lan-
guage has to implement its own internal
data format. This implies a lot of waste
when moving data from one system to an-
other and causes costly serialization and
de-serialization processes, as shown in the
first image on the right. In addition, com-
mon algorithms must often be rewritten

for each data format.

As remarked in the second image on
the right, Arrow’s in-memory columnar
data format represent then an out-of-the-
box solution to these problems. Indeed,
systems using or supporting Arrow can
transfer data between them at little-to-
no cost and do not need to implement
custom connectors for every other sys-
tem. On top of these savings, a standard-
ized memory format facilitates re-use of
libraries of algorithms, even across lan-

guages
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As Arrow can be used in very different systems and projects, its native libraries are
available for the following programming languages: C++, C#, Go, Java, JavaScript,
Julia and Rust. However, Arrow’s libraries are also available for C, MATLAB, Python,
R and Ruby. These libraries are built on top of the C++ library. The project also
contains utilities for reading and writing it to many common storage formats, among
which Parquet. Finally, the Arrow libraries contain many software components that
solve system problems related to retrieving and sending data to and from remote storage
systems and moving data in Arrow format over network interfaces. Indeed, some of these
components can be used even in scenarios where the columnar format is not used at

all[14]

In order to store data, Arrow uses arrays, i.e. a sequence of values with known length all

having the same type. Arrays are defined by a few pieces of metadata and data. They contain:

A logical data type

A sequence of buffers, which are sequential virtual address spaces with a given length

A length as either 64-bit or 32-bit signed integer

A null count as a 64-bit signed integer

An optional dictionary for dictionary-encoded arrays

Nested types, which are data types whose full structure depends on one or more other child

types such as lists, use nested arrays. These nested arrays additionally have a sequence of one

or more sets of these items, called child arrays.

Each logical data type has a well-defined physical layout. Here are the different physical

layouts defined by Arrow|12]:

Primitive, a sequence of values that all have the same width of bytes or bits
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e Variable-size binary, a sequence of values each with a variable byte length. This layout

supports 32-bit and 64-bit encoding

e Fixed-size list, a nested layout where each value has the same number of elements taken

from a child data type.

e Variable-size list, a nested layout where each value is a sequence of values each with a

variable byte length of values taken from a child data type

e Struct, a nested layout consisting of a collection of named child fields each having the

same length, possibly having different types

e Sparse and dense union, nested layouts representing a sequence of values possibly having

different types

e Null, a sequence of all null values

Each logical type uses one of the physical layouts described above. However, nested logical
types may have different physical layouts depending on the particular realization of the type. As
stated in the official Arrow documentation, the list of supported logical types can be found at
the following link: https://github.com/apache/arrow /blob/master/format/Schema.fbs

However the Arrow columnar memory layout only applies to data and not to metadata.

Metadata serialization is obtained using the Google’s Flatbuffers|41].

Comparison to CarbonData, Parquet and ORC

While Parquet and ORC are examples of on-disk columnar data formats, Arrow is a runtime
in-memory format. The former file formats almost always have to be deserialized into some
in-memory data structure for processing. The goal of Arrow is to be that in-memory data
structure and to be a complement to these formats[13]. On-disk columnar formats are designed
to maximize space efficiency, using advanced compression and encoding techniques. Then they
are the best choice when the goal is to minimize disk usage while storing tons of data. However,
this efficiency comes at the cost of relatively expensive reading into memory. Conversely, Arrow

is an in-memory format meant for direct and efficient use for computational purposes. Indeed,
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default Arrow data are not compressed.
Currently, Arrow and Parquet complement each other since both projects includes libraries

that allow reading and writing data in the other format.

1.8 Compression algorithms

All the formats described use Snappyl43| as default compression algorithm, but since Carbon-
Data, ORC and Parquet compress the data to provide an highly efficient way to store them, the
choice of the compression algorithm is a key aspect that has to be analyzed, as it affects both
storage and query efficiency. Indeed, compression helps to reduce the resources required to store
and transmit data.

Each columnar storage format supports its own compression algorithms. In details:

e CarbonData supports snappy, zstd and gzip
e ORC supports snappy, lzo and zlib

e Parquet supports snappy, 1z4, brotli[39], gzip, zstd, 1zo

All the algorithms supported are therefore, to a greater or lesser extent, dictionary-based
compression algorithms. In other words, all supported algorithms are lossless data compression
algorithms that operate by searching for matches between the text to be compressed and a set
of strings contained in a data structure called “dictionary”.

Snappy|43| is a fast open-source data compression and decompression library implemented
in C++ and developed by Google, based on LZ77. Its encoding is byte-oriented and does not use
entropy encoder. It is not only fast, but also stable and robust. For these reasons, Snappy is
widely used inside Google solutions.

ZStandard|38], better known as zstd, is a fast open-source compression algorithm imple-
mented in C and developed by Facebook. ZStandard combines the ideas of LZ77 with a large
search window and entropy encoding. Despite its youth, it is already used in several systems.

ZIib|A7] is a software library implemented in C used for data compression, written by Jean-

loup Gailly and Mark Adler. It provides the DEFLATE algorithm, a replacement for LZW, which
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is a combination of LZ77 and Huffman encoding. Its compression and decompression procedures
are used by zip, gzip, png, et cetera.

GNU Gzip[56] is a popular compression and decompression wrapper for zlib written for the
GNU project[60] by Jean-loup Gailly and Mark Adler. It is free and it was designed to replace
the compress program used in early Unix systems.

Lempel-Ziv—Oberhumer[55| is an open-source compression algorithm implemented in C by
Markus F.X.J. Oberhumer, focused on decompression speed. LZO compresses a block of data
using a LZ77 sliding dictionary. It is also based on the DEFLATE algorithm. It is used in various
systems.

Lz4[5] is a fast data compression algorithm implemented in C by Yann Collet, with the aim
to provide a good trade-off between speed and compression ratio. Unlike other compression
algorithms, it uses only a dictionary-matching stage based on LZ77 avoiding to combine it with
an entropy encoding.

Brotli[39] is a compression algorithm implemented in C by Google. It uses a combination of
a modern variant of the LZ77 algorithm, Huffman coding and 2nd order context modeling. It
works best for text compression and it is widely used in web contexts.

Despite the formats supports these algorithms, some of of them still lack the implementation
in the Hadoop environment and are not easy-to-use.

In order to detect those algorithms that work best, the Squash Compression Benchmark|58]
it has been used. This tool is part of the Squash library, that is an abstraction layer for com-
pression algorithms. Indeed, Squash provides a single API to access many compression libraries,
allowing applications a great deal of flexibility in choosing compression algorithms. The Squash
Compression Benchmark currently consists of 28 data sets and is currently running on 9 different
machines.

The choice of the data set urls. 10K [44] has been rather obvious as RDF triples are mostly
composed of URIs, whereas the running machine has been assigned randomly.

The following factors were taken into account when evaluating the different algorithms:

uncompressed size

e ratio = compressed size
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Figure 1.15: Compression ratio vs. compression speed

uncompressed size

e compression speed = B50C
compression time

uncompressed size

* decompressmn Speed = decompression time

Figures show the results obtained using the satellite-a205 machine, equipped
with an Intel Celeron 540 running at 1.86 GHz with 1 GB RAMH

Obviously, which algorithm works best depends on the trade-off between space and speed to
be achieved, but it is possible to identify some algorithms that work better than others and draw

the following conclusions:

5The plots show for each compression algorithm either different levels of application or different variants of
the same core algorithms. The level indicates how aggressively the algorithms work to compress a file. The
conclusions drawn are therefore to be understood in terms of average performance
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Figure 1.17: Compression speed vs. decompression speed
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e Surely, 1z4 seems to perform better than snappy in all three comparison metrics, and it is
the best choice when the key aspect is the compression/decompression speed. Moreover
it is preferable to 1zo as well, given the minimal disk footprint advantage achieved with

it
e Overall, snappy and lzo seems to perform really similar
e In terms of disk footprint, brotli performs best and it is preferable to zlib and lzo
e Overall, zstd might be good compromise among the different evaluation metrics

e Overall, zlib seems to perform poorly
Nonetheless, brotli and zstd still lack the implementation in the Hadoop environment and

are not easy-to-use. Hence, Parquet has been evaluated using snappy and 1z4, ORC with snappy

and 1zo, while CarbonData just with snappy.
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Chapter 2

Literature Review

The objective of this concise chapter is to describe some of the most famous RDF stores based
on the triples table which are currently used, in order to make the reader aware of current
alternatives. However, unlike the RDF storage analyzed in this work, most of them use other
tables in order to speed up the data retrieval mechanism and perform joins and have a heavier
indexing mechanism. An important source of information for this chapter is the survey conducted
by Ali et al.[2].

3store|30] is a MySQL based triple store and it uses 3 additional tables. Indeed, beyond
the triples table there are the models, the resource and the literal table. Those tables have
two-columns that encode data models, resources and literals respectively. As in this work, the
SPARQL queries are translated to SQL before being executed.

RDF-8X[54] stores its triples table using compressed indexes, which are based on clustered
BTtrees. RDF-3X does not rely on a classical RDBMS, but rather depends on its own storage
system, specifically designed to accommodate RDF data. In addition to the classic triple table, it
stores all its possible permutations. Thus, by identifying the subject column with S, the predicate
column with P and the object column with O, RDF-3X stores the tables SPO, SOP, OSP, OPS,
PSO and POS. It uses these table to perform fast indexing but on the other hand the memory
footprint is not insignificant. To reduce it, RDF-3X uses a dictionary-based encoding.

LuposDate|28] is a semantic web DBMS that stores the table of triples by annotating them
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with a rank. These ranks are constructed from the six permutations of the triple and are used
for fast sorting when applying sort-merge joins. Moreover, it also uses 7 hash indexes: S, P, O,
SP, SO, PO, SPO.

Apache Jena TDB|20] is a component of the Apache Jena|48| framework for RDF storage and
query. It can be used as a high performance RDF store on a single machine. To store the data,
it uses custom BYtrees while the SPARQL engine is implemented in the custom Jena ARQ|18]
query processor. Jena TDB, that is now the recommended RDF store for Jena, was preceded by
Jena SDBJ19|, another relation-based storage that is no longer supported. It stores the data in
a three or four columns table.

Virtuoso|10] is a system produced by OpenLink which has encountered many changes in the
previous years. It was originally developed as an RDBMS, but now is probably one of the most
famous RDF storage. It was implemented with a row-storage approach, but now presents a
hybrid approach by supporting column-store features. Virtuoso stores RDF data as a quad table
instead of the classic three-column table. The fourth column describes the triple membership
graph. Identifying the fourth column with G, the quad table includes five indexes by default
in the most recent version: PSOG, POGS, SP, OP and GS. All elements except the objects
are dictionary encoded. The query engine needs to translate SPARQL queries into SQL before
executing them in the underlying database.

RDFJoin[49] is a persistent column-store database. It stores the triples using three types
of tables: dictionary, triples and join tables. The two dictionary tables are used to encode and
decode the elements. The triples table are three. Each of them uses two columns as primary
key, while the remaining column is encoded as a bit vector. The join tables store the results of
S-S, O-O and S-O column joins. RDFJoin relies on either MonetDB or LucidDB. It supports
SPARQL but not inference.

RDFKBI50| is a RDBMS implemented as a column-store that uses the RDFJoin technology.
The key feature of this solution is the fact that for each triple RDFKB infers all possible additional
RDF triples, stores and makes them accessible to queries. However, this implies redundant
information, then more storage space and memory consumption.

RDFoz[53] is a highly scalable in-memory RDF store and a semantic reasoning engine as well.

The storage is implemented using linked lists that beyond the subject, predicate and object, store
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three pointers to the next triple with the same subject, predicate and object respectively. The
indexes are built using hash tables. RDFox’s key feature is its support to shared memory parallel
reasoning and to SPARQL 1.1.

TripleID-Q[4] is a RDF store that uses a triples representation called Triple-ID. This repre-
sentation is based on dictionary encoding. It is smaller than the original representation 3-4 times
and allows query processing on GPUs. Indeed, rather than indexing the triples, small chunks
of the table can be loaded on GPU. The key features of TripleID-Q are then: the compact rep-
resentation suitable for GPU, the simple representation conversion method which optimizes the

pre-processing and the parallel algorithms which use GPUs to seek specific data.
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Chapter 3

Research methodology,

experiments and results

The objective of this work is to evaluate the suitability of some columnar storage formats, namely
CarbonData, ORC, Parquet and Arrow, for the RDF data model, in terms of disk footprint and
query time, when dealing with Big Data in a real cloud context. Thus, this experimentation
conducted using Apache Spark first in a local environment and then in a cluster of machines
using AWS|37| as cloud provider, should allow the identification of the most suitable format in
the context of Big Data and cloud computing.

The ease of use of each format in the different environments used will also be discussed and
evaluated, since in some cases, for some formats, it was not possible either to store the data using
the current format or to execute the queries due to the lack of support and documentation, or

to the non-compatibility with the environment.
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3.1 Research methodology and experiments

While the method used to obtain disk footprint information changes depending on the environ-
ment and will be discussed later, the method of collecting query time information was always
the same. Indeed, once the storages were queried using the Spark SQL framework, query time
information was collected using the SQL tab of Spark UI. This tab displays information, such as
the duration, jobs, and physical and logical plans for queries. Accurately, each query has been
executed just one time to avoid the exchange re-use of Spark. Indeed, when Spark runs shuffling
(i.e. aggregation, join, et cetera), it stores a copy of the shuffle data on local worker nodes for
potential re-use. This, obviously, allows Spark to re-use cached result for potentially faster query
performance.

In order to evaluate the formats and their performances a famous benchmark RDF data set,
i.e. the Lehigh University Benchmark dataset, from now on LUBM has been used. But before
being usable, it needed pre-processing as the data set triples were distributed over thousand
files. Therefore, the first step was to merge the triples into a single unique file using a simple
Python script. Later, as the LUBM dataset was obtained in RDF /XML, it has been converted to
N-Triples using the tool rdf2rdf [52] to avoid further pre-processing, since its data representation
is really similar to the one obtained using columnar storage, i.e. a 3 column-table.

Then, the data set has been tested using simple SPARQL queries, i.e queries without FILTER,
JOIN, OPTIONAL et cetera. In order to execute them using the Spark SQL framework, all the
queries have been translated to the classic SQL syntax. To achieve this, the Basic Graph Pattern,
from now on BGP, of all queries has been retrieved using the Apache Jena ARQ query engine|18].
BGPs are sets of triple patterns. Then, the SPARQL graph pattern matching mechanism is de-
fined in terms of combining the results from matching basic graph patterns. Once BGPs have
been obtained, a simplification of the BGPtoSQL algorithm has been implemented to translate

to SQL the easy-to-translate queries. Here it follows the basic procedure:

1. Assign a unique table alias to every triple pattern

2. Construct the FROM clause to contain all table aliases
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3. Construct the SELECT clause to contain every relation attribute that corresponds to a

distinct variable

4. Construct the WHERE clause to restrict attribute values to the corrisponding URIs and

literals

5. Finalize the WHERE clause to ensure that the same variables used in different triple

patterns must have the same value

3.1.1 LUBM

The Lehigh University Benchmark, i.e. LUBM, has been developed to facilitate the performance
evaluation of Semantic Web repositories in a standard and systematic way, with respect to
extensional queries over a large dataset that commits to a single ontology[29]. It consists of 2

softwares, a university domain ontology, a set of test queries and several performance metrics.

Pre-processing

As already claimed, the LUBM does not contain a data set, but a software to generate it over the
Univ-Bench|62] ontology in the unit of a university. The data generation process is repeatable
and customizable, by specifying seed for random number generation, the number of universities
and the starting index of the universities. Using this software, the following data sets have been
generatedﬂ lubm1, lubm10, lubm100 and lubm1000. The numbers associated with LUBM, refers
to the number of universities setted during the data set generation.

However, the software generates thousands of files. Then, as mentioned above, these files have
been merged using a simple Python script and then translated from RDF /XML to N-Triples using
the rdf2rdf tool.

1Tt was originally planned to generate also lubm10000, but due to the high computational complexity, it was
decided to evaluate data sets under 30 GB
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Queries

The benchmark currently provides 14 test queries written in SPARQL 1.0 syntax. Here it follows

the list of the simple queriesﬁ

1. SELECT 7X
WHERE {
?X rdf:type ub:GraduateStudent .
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>

2. SELECT ?X ?Y 7Z
WHERE {
?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?7Z .
?7Z ub:subOrganizationOf 7Y .
?X ub:undergraduateDegreeFrom 7Y

3. SELECT ?X
WHERE {
?X rdf:type ub:Publication .
?X ub:publicationAuthor <http://www.Department0.University0.edu/AssistantProfessor0>

4. SELECT ?X ?7Y1 ?Y2 ?7Y3
WHERE {
?X rdf:type ub:Professor .
?X ub:worksFor <http://www.Department0.University0.edu> .
?X ub:name ?7Y1 .
?X ub:emailAddress 7Y2 .
?X ub:telephone ?7Y3

5. SELECT 7X
WHERE {
?X rdf:type ub:Person .
?X ub:memberOf <http://www.Department0.University0.edu>

2In order not to be redundant, the following common prefixes have been omitted:

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns# >
PREFIX ub: <http://www.lehigh.edu/ zhp2/2004/0401/univ—bench.owl# >
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10.

11.

12.

SELECT 7X
WHERE {
?X rdf:type ub:Student

}

SELECT 77X 7Y
WHERE {
?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse 7Y .
<http://www.Department0.University0.edu/AssociateProfessor0> ub:teacherOf 7Y

SELECT 7X 7Y ?Z
WHERE {
?X rdf:type ub:Student .
?Y rdf:type ub:Department .
?X ub:memberOf 7Y .
7Y ub:subOrganizationOf <http://www.University0O.edu> .
?X ub:emailAddress ?Z

SELECT X ?Y ?Z
WHERE {
?X rdf:type ub:Student .
7Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor 7Y .
7Y ub:teacherOf ?7Z .
?X ub:takesCourse ?Z

SELECT ?X
WHERE {
?X rdf:type ub:Student .
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>

SELECT ?7X
WHERE {
?X rdf:type ub:ResearchGroup .
?X ub:subOrganizationOf <http://www.University0.edu>

SELECT 7X 7Y
WHERE {
?X rdf:type ub:Chair .
?7Y rdf:type ub:Department .
?X ub:worksFor 7Y .
7Y ub:subOrganizationOf <http://www.University0.edu>
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13. SELECT ?X
WHERE {
?X rdf:type ub:Person .
<http://www.University0.edu> ub:hasAlumnus 7X

14. SELECT ?X
WHERE {
?X rdf:type ub:UndergraduateStudent

}

As already mentioned, these queries had to be translated into SQL before being executed.

Below are the translated queries obtained by running the BGPtoSQL algorithm:

1. SELECT tl.subject AS X
FROM triples AS t1, triples AS t2
WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#GraduateStudent>"’
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#takesCourse>"’
AND t2.0bject = “<http://www.Department0.University0.edu/GraduateCourse0>"’
AND tl.subject = t2.subject

2. SELECT tl.subject AS X, t2.subject AS Y, t3.subject AS Z
FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4, triples AS t5, triples AS t6
WHERE tl.object = ‘“‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#GraduateStudent>"’
AND tl.predicate = “‘<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl# University>"’
AND t2.predicate = “<http://www.w3.0org/1999/02/22—rdf—syntax—ns#type>"’
AND t3.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Department>"’
AND t3.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t4.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#memberOf>"’
AND t5.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#subOrganizationOf>"
AND t6.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#undergraduateDegreeFrom>"’
AND tl.subject = t4.subject
AND t4.subject = t6.subject
AND t2.subject = t5.0bject
AND t5.object = t6.0bject
AND t3.subject = t4.object
AND t4.object = t5.subject

3. SELECT tl.subject AS X
FROM triples AS t1, triples AS t2
WHERE tl.object = ‘“‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Publication>"
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#publicationAuthor>"
AND t2.object = “<http://www.Department0.University0.edu/AssistantProfessor0>"’
AND tl.subject = t2.subject
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SELECT tl.subject AS X, t3.object AS Y1, t4.object AS Y2, t5.object AS Y3

FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4, triples AS t5

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Professor>"’
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.predicate = ‘“<http://swat.cse.lehigh.edu/onto/univ—bench.owl#worksFor>"
AND t2.object = “<http://www.Department0.University0.edu>"’

AND t3.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#name>"’
AND t4.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#emailAddress>"’
AND t5.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#telephone>"’
AND tl.subject = t2.subject

AND t2.subject = t3.subject

AND t3.subject = t4.subject

AND t4.subject = t5.subject

SELECT tl.subject AS X

FROM triples AS t1, triples AS t2

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Person>"
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

AND t2.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#memberOf>"’
AND t2.object = “<http://www.Department0.University0.edu>"’

AND tl.subject = t2.subject

. SELECT tl.subject AS X

FROM triples AS t1
WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Student>"’
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

SELECT tl.subject AS X, t2.subject AS'Y

FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Student>"’
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Course>"’

AND t2.predicate = “‘<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t3.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#takesCourse>"’
AND t4.subject = ‘“‘<http://www.Department0.University0.edu/AssociateProfessor0>"
AND t4.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#teacherOf>"
AND tl.subject = t3.subject

AND t2.subject = t3.object

AND t3.object = t4.object

SELECT tl.subject AS X, t2.subject AS Y, t5.object AS Z

FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4, triples AS t5

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Student>"’
AND tl.predicate = “<http://www.w3.org/1999/02/22—rdf—syntax—ns#type>"’

AND t2.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Department>"’
AND t2.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

AND t3.predicate = ‘“‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#memberOf>"
AND t4.object = “<http://www.University0.edu>"’

AND t4.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#subOrganizationOf>"
AND t5.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#emailAddress>"’
AND tl.subject = t3.subject

AND t3.subject = t5.subject

AND t2.subject = t3.object

AND t3.object = t4.subject
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9.

10.

11.

12.

13.

SELECT tl.subject AS X, t2.subject AS Y, t3.subject AS

FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4, triples AS t5, triples AS t6
WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Student>"
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

AND t2.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Faculty >’

AND t2.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

AND t3.object = ““<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Course>"’

AND t3.predicate = ‘“‘<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

AND t4.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#advisor>"’
AND t5.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#teacherOf>"
AND t6.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#takesCourse>"’
AND tl.subject = t4.subject

AND t4.subject = t6.subject

AND t2.subject = t4.object

AND t4.object = t5.subject

AND t3.subject = t5.object

AND t5.0bject = t6.0bject

SELECT tl.subject AS X

FROM triples AS t1, triples AS t2

WHERE tl.object = ‘“‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Student>"
AND tl.predicate = “<http://www.w3.0org/1999/02/22—rdf—syntax—ns#type>"’

AND t2.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#takesCourse>"
AND t2.object = ‘““<http://www.Department0.University0.edu/GraduateCourse0>"’
AND tl.subject = t2.subject

SELECT tl.subject AS X

FROM triples AS t1, triples AS t2

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#ResearchGroup>"’
AND tl.predicate = “<http://www.w3.0org/1999/02/22—rdf—syntax—ns#type>"’

AND t2.0bject = “<http://www.University0.edu>"

AND t2.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#subOrganizationOf>"’
AND tl.subject = t2.subject

SELECT tl.subject AS X, t2.subject AS'Y

FROM triples AS t1, triples AS t2, triples AS t3, triples AS t4

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Chair>"’
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t2.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Department>"’
AND t2.predicate = “‘<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’
AND t3.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#worksFor>"
AND t4.object = “<http://www.University0.edu>"’

AND t4.predicate = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#subOrganizationOf>"’
AND tl.subject = t3.subject

AND t2.subject = t3.object

AND t3.object = t4.subject

SELECT tl.subject AS X

FROM triples AS t1, triples AS t2

WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#Person>"
AND tl.predicate = “<http://www.w3.org/1999/02/22—rdf—syntax—ns#type>"’

AND t2.subject = “<http://www.University0.edu>"’

AND t2.predicate = ‘‘<http://swat.cse.lehigh.edu/onto/univ—bench.owl#hasAlumnus>"’
AND tl.subject = t2.0bject
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14. SELECT tl.subject AS X
FROM triples AS t1
WHERE tl.object = “<http://swat.cse.lehigh.edu/onto/univ—bench.owl#UndergraduateStudent>"
AND tl.predicate = “<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#type>"’

However, the results obtained by running these queries are quite different from those that
would be obtained using a SPARQL endpoint, listed at the following link provided directly
by Lehigh Universityﬂ http://swat.cse.lehigh.edu/projects/lubm /answers.htm. This occurs be-
cause of the lack of a semantic reasoner, that is a software capable to infer logical consequences
from a set of asserted facts or axioms, during the translation. Example of semantic reasoners are
Requiem|[31] or Clipper|61], but integrating either of these tools into this work was considered

non-essential at this time, as it would not, at least explicitly, foster any format.

3.1.2 Local environment

All results marked as obtained in the local environment have been collected using a DELL XPS
15 laptop with a 6-core 10*" gen Intel i7-10750H CPU running at 2.60 GHz with 12 MB of smart
cache, 16GB DDR4-SDRAM, 1 TB SSD and NVIDIA GeForce GTX 1650 Ti GPU, running
Microsoft Windows 11 Home 64-bit. Because of compatibility issues with CarbonData, the
Spark version that has been used is the 3.1.2 pre-built for Apache Hadoop 2.7, instead of the
most recent pre-built version for Apache Hadoop 3.2.

CarbonData, ORC and Parquet have been used through the Scala|l] Spark shell, while Arrow
through the Python Spark shell, since Arrow libraries are not available in Scala and the Python
ones are the most documented and used. The installation of the tools to use the different formats
was different for some formats. Indeed, Parquet and ORC are directly accessible from the Spark
Session, while CarbonData 2.2.0 was downloaded and added to the Spark Session through
the --jars argument. Arrow 5.0.0 has been installed through pip|9], the package installer for
Python.

The data set used during the experiments in the local environment were: lubm1, lubm10 and

3the results refer to the lumb! data set
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lubm100. Tt should be noted that CarbonData takes a considerable amount of time to generate
files compared to ORC, Parquet and Arrow.

After saving the data in the four formats using Spark, the disk footprint information in the
local environment has been collected using the du Linux/Unix command. This command allows

users to gain disk usage information quickly, including the actual size of files.

3.1.3 Cloud environment

The data set used during the experiments in the cloud environment was the lubm1000, that has
been uploaded using the AWS CLI|32]. It was originally planned to use two other data sets,
i.e LUBM1000 and YAGO (Yet Another Great Ontology), but due to the high computational
complexity and the cost involved, it was decided to evaluate data sets under 30 GB.

To store these data, the AWS S3 service was used. S3, which stands for Simple Storage
Service, is an object storage service that offers industry-leading scalability, data availability,
security and performance|36]. Then, after saving the data in the well-known formats using
Spark, the disk footprint information in the cloud environment has been collected using the
AWS S3 UI and for this reason the data are less accurate.

To process the data, the AWS EMR service was used. EMR, that stands for Elastic MapRe-
duce, is a managed cluster platform that simplifies running Big Data frameworks, such as Apache
Hadoop and Apache Spark, on AWS to process and analyze large amounts of data|35]. EMR
allows large amounts of data to be moved into and out of other AWS data stores and databases,
such as S3. To run the workloads, EMR has been used in combination with AWS EC2. EC2,
which stands for Elastic Compute Cloud, is a web service that provides secure, resizable com-
pute capacity in the cloud. It is designed to facilitate web-scale cloud computing for developers.
Indeed, its simple web service interface allows to obtain and configure capacity very easily|34].

The experiments have been conducted setting up two different configurations of clusters in
order to evaluate the differences between cloud environments as well. Here it follows the descrip-

tion of the two configurations:
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e A master m5.8xlarge machine, equipped with 32 vCore, 128 GiB memory and 512 GiB
EBS|33] (Elastic Block Store) storage. This configuration will be referred to as “single

powerful machine”

e A master and 7 core mb.xlarge machine, each one equipped with 4 vCore, 16 GiB
memory and 64 EBS storage. This configuration will be referred to as “cluster of

machines”

As an attentive reader would have already noticed, the two modus operandi have been chosen
in such a way to have the same globally available resources, i.e. 32 vCore, 128 GiB memory and
512 GiB EBS storage.

As can be easily guessed, the query time required regarding the cluster of machines is expected
to be higher than the one regarding the single powerful machine, due the data exchanges.

As claimed in Section CarbonData takes a huge amount of time compared to the
other formats. Because of this slowness, its poor performances in local experiments that will
be described in Tables and compared to its competitors ORC and Parquet, its
difficulty of use and the smaller community respect all other formats, it has been decided not to
carry out the experiments concerning CarbonData on AWS.

The use of Arrow alone was also discarded, because as good as its performance in the cloud
may be, it does not compress files and instead increases their size and this would imply a
significant storage cost.

ORC and Parquet have been used through the Scala implementation of Spark. To submit
the jobs, it was necessary to generate a jar package. To achieve this goal, the IDE IntelliJ
IDEA[59] with the Scala plugin and the interactive build tool sbt[45] have been used. Once the
jar package was generated, it was added to the cluster runtime.

Arrow was installed by connecting directly to the master machine using SSH. Once the
connection was established, it was therefore possible, despite the many difficulties encountered,
to install Arrow via pip|9] and submit the Spark jobs. However, it was only possible to test the

disk footprint, as query execution ran Spark out of memory despite the powerful machines.
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3.2 Results

3.2.1 Disk footprint

Tables and show the disk footprint of the data sets used and generated. The ratio is

computed as follows:

play-text dataset size
columnar format dataset size

The term columnar format dataset size refers to the size of the data set represented with
the format identified by the row. It should be noted that the data in Table were collected
in the local environment and are therefore more accurate than the data in Table 3.2 which are

rounded, as they were collected using the AWS S3 UI|36].

3.2.2 Query time

Tables and describe the execution time required for each query for each

storage techniques. At the end of each column is the sum of the times required for all 14 LUBM
queries specified in Subsection [3.1.1

As already specified in Chapter the query times were collected using the SQL tab of
Spark UL It should be remembered that the data in the first three tables were collected using
Apache Spark in the local environment while the data in the remaining two tables were collected

using Apache Spark in the cloud environment.
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| Dataset | Storage | Compression algorithm | Size (bytes) [ Ratio (%) |
plain-text / 17.484.457 100,00
snappy 522.698 2,99
parquet T4 513.690 2,01
orc snappy 451.057 2,568
lumb1 1zo 467.702 2,67
carbondata snappy 573.963 3,28
arrow / 18.206.802 104,13
snappy 531.987 3,04
Arrow + parquet T4 520.053 2.07
plain-text / 223.611.611 100,00
snappy 8.581.819 3,84
parquet 24 6.020.219 3,00
orc snappy 5.509.511 2,46
lumb10 1zo 5.749.021 2,57
carbondata snappy 11.008.640 4,92
arrow / 232.826.690 104,12
snappy 10.603.991 4,74
Arrow + parquet 24 7.463.438 3,34
plain-text / 2.376.289.253 100,00
snappy 93.281.326 3,93
parquet 24 73.727.950 3,10
orc snappy 58.729.654 2,47
lumb100 1zo 60.457.071 2,54
carbondata snappy 117.495.164 4,94
arrow / 2.473.421.778 104,09
snappy 117.586.999 4,95
arrow + parquet 24 80.089.605 3,37

Table 3.1: Comparison of disk footprint measured in bytes of columnar storage formats

Dataset Storage Compression algorithm | Size (Mb) | Ratio (%)
plain-text / 22.200,0 100,00
snappy 1.012,0 4,56
parquet 174 737.0 3,32
lumb1000 orc snappy 550,0 2,48
1zo 553,0 2,49
snappy 1.100,0 4,95
ArTow + parquet T2l 1.100,0 195

Table 3.2: Comparison of disk footprint measured in Megabytes of columnar storage formats
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Columnar storage

text parquet orc carbon | arrow | arrow + parquet
/ snappy lz4 snappy lzo snappy / snappy 1z4
1 2.000 | 2.000 | 1.000 | 1.000 | 1.000 | 2.000 3.000 3.000 3.000
2 5.000 600 400 400 500 500 6.000 7.000 6.000
3 600 200 200 300 200 200 2.000 1.000 1.000
4 1.000 500 400 500 400 400 3.000 3.000 3.000
0 500 200 100 100 100 100 400 400 500
o ﬂg' 200 95 88 100 100 94 80 93 90
g5 [ 1.000 300 200 300 300 300 2.000 2.000 2.000
S, 3 2.000 400 200 200 300 500 3.000 3.000 3.000
9 2.000 300 400 200 400 700 4.000 3.000 3.000
10 300 300 100 100 100 200 300 300 300
11 400 200 200 100 100 200 400 400 400
12 900 200 200 300 200 400 900 800 900
13 300 100 100 200 200 200 200 300 300
14 200 88 93 72 72 100 96 80 80
16.400 | 5.483 | 3.681 | 3.872 | 3.972 | 5.894 | 25.376 | 24.373 | 23.570
Table 3.3: Comparison of query time measured in ms for lubmI
Columnar storage
text parquet orc carbon | arrow | arrow + parquet
/ snappy | lz4 | snappy | lzo | snappy / snappy 1z4
1 3 2 2 2 2 2 4 4 4
2 13 2 2 2 2 2 15 14 14
3 1 0,4 0,4 0,5 0,4 0,5 2 2 2
4 3 1 1 0,9 0,9 1 4 4 4
5 0,9 0,3 0,3 0,3 0,3 0,3 0,8 0,8 0,8
o ﬂg 0,6 0,2 0,2 0,2 0,3 0,2 0,3 0,5 0,3
5 [ 3 0,6 0,4 0,4 0,3 0,5 3 3 3
S, 3 4 0,7 0,7 0,5 0,5 0,7 4 4 4
9 4 0,7 0,6 0,6 0,6 0,7 7 5 6
1 0,8 0,3 0,2 0,2 0,4 0,2 0,7 0,7 0,7
11 1 0,3 0,3 0,3 0,3 0,4 1 1 1
12 2 0,5 0,4 0,3 0,5 0,5 2 2 2
13 0,8 0,2 0,3 0,4 0,3 0,3 0,8 0,7 0,7
14 0,4 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,2
37,5 9,3 9 8,8 9 9,5 448 41,9 427

Table 3.4: Comparison of query time measured in s for lubm10
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Columnar storage
text parquet orc carbon | arrow | arrow + parquet
/ snappy | lz4 snappy | lzo snappy / snappy 1z4
1 12 6 6 5 5 6 11 10 11
2 72 46 46 45 45 47 50 50 52
3 10 3 3 2 2 3 9 11 10
4 26 7 7 5 5 7 19 21 22
5 5 2 1 1 1 1 10 12 10
o 6 3 0,9 0,7 0,5 0,5 0,5 4 4 3
5 i 19 5 4 3 3 5 18 22 20
S, 3 22 6 6 ) 5 7 20 21 20
9 33 8 8 6 6 9 21 24 23
10 6 1 1 0,8 0,9 1 10 10 10
11 9 2 2 2 2 2 10 10 9
12 14 4 4 3 3 4 14 17 15
13 ) 0,9 0,8 0,8 0,9 1 12 9 10
14 0,4 0,2 0,1 0,1 0,1 0,2 0,3 0,3 0,2
236.,4 92 89,6 79,2 79,4 93,7 208,3 221,3 215,2

Table 3.5: Comparison of query time measured in s for lubm100

Columnar storage
text parquet orc
/ snappy | lz4 snappy | lzo

1 90 16 10 23 20
2 660 474 468 480 486
3 96 16 14 20 20
4 222 26 26 43 52
5 96 15 10 19 19
., § 84 18 16 33 32
5|7 168 19 18 33 32
S, S 222 26 25 43 43
9 258 32 30 54 53
10 96 11 9 19 18
11 102 12 10 18 19
12 174 24 19 33 34
13 96 9 9 20 20
14 5 2 3 2 1
2.369 700 667 840 849

Table 3.6: Comparison of query time measured in s for lubm1000 (single powerful machine)
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Columnar storage
text parquet orc
/ snappy | lz4 snappy | lzo

1 90 17 15 26 25
2 900 720 720 720 720
3 90 28 27 48 48
4 204 36 34 60 60
5 78 15 14 25 26
., § 49 19 18 36 36
g5 |7 162 22 21 46 45
S, 8 204 32 30 60 58
9 246 39 38 72 72
1 84 14 14 24 25
11 84 14 14 24 25
12 162 26 25 46 48
13 84 10 11 24 26
14 5 2 1 1 2
2.442 994 982 1.212 1.216

Table 3.7: Comparison of query time measured in s for lubm1000 (cluster of machines)

58



Chapter 4

Conclusions and further research

4.1 Conclusions

The first conclusions that can be drawn are those concerning the compression algorithms. Some
of the hypotheses drawn in Section are partially valid. In fact, as can be seen from Tables
B.Iand 3.2t

e 174 performs better than snappy

e snappy and 1zo perform similarly, but snappy seems to have a small advantage

However, it was neither possible to compare 1z4 with 1zo using the same format nor to evaluate
brotli and zstd in action, due to the lack of implementations.

The experiment conducted to compare the different storage techniques shows that, in the
local environment, ORC in combination with the snappy compression algorithm is probably the
best format storage-wise. On average, the ORC files are about 2,5% of the plain-text ones while
Parquet files, compressed using 1z4, are about the 3%. Then a Parquet file is on average a 20%
larger than an ORC one. Arrow used in combination with Parquet and the 1z4 algorithm needs
about 3,6% of the original space, whereas CarbonData using snappy 4,4%. It is not surprising
that Arrow alone requires more space than the original file. Indeed, on average, a file represented

with Arrow requires about 104,1% of the original space. As already claimed in Subsection [1.7.5]
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Arrow does not provide any compression algorithm if used alone.

As is well known, Parquet was designed inspired by Dremel[51] and it could be very convenient
to use it when there is a need to store nested data structures and not a simple 3-column table,
although, as already specified, if the columns are not nested, it only stores the data. In addition
to this, ORC is able to compress files more than CarbonData and Parquet because it supports
a larger data types set. In fact, unlike other formats that support a less extensive set, ORC
also supports complex nested types such as lists and maps. Furthermore, compared to its direct
competitor Parquet, ORC’s indexing is less aggressive than Parquet’s one and therefore saves
some space, but at the expense of the other evaluation metric discussed below, i.e query time.

It should be remembered from Section [3.1.3] that CarbonData and Arrow used alone were not
tested on the cloud environment, while Arrow in combination with Parquet was tested partially.

Also with regard to query time, the formats which perform the best are ORC and Parquet,
and surprisingly, not Arrow. All formats except Arrow perform better than the plain-text rep-
resentation. More in detail, ORC seems to have a small advantage in comparison to Parquet
in local environment. However, when larger files approach in the cloud environment, Parquet
in combination with 1z4 compression seems to be clearly the best choice, and this is valid both
using a single powerful machine and a cluster of machines. Most likely, this is due to the more
aggressive indexing mechanism that Parquet uses compared to ORC’s one.

Although it was not possible to test Arrow combined with Parquet in the cloud environment
due to its requirements, it is really surprising how poorly Arrow performs in the local environ-
ment. This is probably due to the lack of native support to queries. Indeed, to execute an SQL
query using Arrow it is necessary to first read the Arrow table, then convert it to a Pandas|6]
data frame and finally convert it to a Spark data frame. Despite the excellent integrations be-
tween Arrow and Pandas and Pandas and Spark are excellent, this leap probably results in a
degradation of performances.

In order to find the right trade-off between space used and speed of query execution, Fig-
ure plots the experiment results concerning the data set lubm1000 obtained using the AWS
infrastructure. The x-axis describes the space used measured in megabytes, while in the y-axis

is showed the time, measured in seconds. required to execute the 14 LUBM queries specified in

Subsection B.1.1]
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Figure 4.1: Comparison of results obtained for lubm1000

4.2 Further research

To extend the reliability of this work, it might be useful to refine the algorithm of translation
from SPARQL to SQL presented in Chapter by integrating a reasoner. It might be useful
also to test the formats with bigger data sets and different compression algorithms once they
would be implemented.

Surely, a following useful experiment might compare the results obtained in this work with
those of the systems presented in Chapter [2] using the same hardware, to find out if the perfor-
mances are comparable. Following this, if the results were good enough, it might also be useful to
compare the obtained performances with other kinds of systems that do not use the schema-free
approach as well.

Another experiment might evaluate the four formats tested in this work with other ap-

proaches, such as property tables.
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