
Technical Reference Manual
2.20.16

February 1, 2023

Change Log
This section lists recent changes to the document, with most recent entries
first. Each item line should hyperlink to the relevant place in the document
where the change has been made.

Changes

2023.2.1

Updated docs dynamic label example (Settis)

2021.11.24

from Pat Brady: Adds explanation to ifconst, adds a definition for
ifnconst, and fixes several typos.

2020.09.18

Corrected licensing to GPLv2. Wrote a new dasm.sty file to handle
the formatting of the documentation.

2020.09.15

• Added DC.S endian-swapping magic directive

2020.09.13

• Added some structure (new chapters) to the document for inclusion
of information about the "other" processors and machines. Started to
separate the machine from the processor into separate sections. Should
we do an all-in listing of opcodes for all processors, like for the 6502?

• Removed malformed comments examples as they are no longer
applicable

• Added link to bugs/issue reporting

2020.09.09

• Correction to how the -m option actually works

• Examples for good/bad comment formats added

• Notes about SI unit usage

• Added the -m (Maximum Output File Size) option

• Added the -R (Remove Output File) option

2020.09.08

• Added a new Chapter - Source Code, and inside a description of
the source code format, including line ending format,and the various
commenting styles.

• Clarified the difference in usage of brackets on F8/6502

• Fixed some errors in the Atari 2600 section. Switched to SI standard
units for describing powers of 2 sizes. I suspect people may not like
that!

2020.09.07

• Added the really unusal (and deprecated) definition for labels... "[
]...^[]...label". This is a supported/valid format, but it is likely
to be removed. Do not use.

2020.09.06

• Added the RES directive for the F8 processor. Replaces DS on that
architecture.

• Merged the interesting Channel F documentation. This has highlighted
a few missing things from the main doc (e.g., RES directive)

• Corrected incorrect usage for spaces in filenames.

2020.09.04

• Documented the range checking of byte and word values.

• Much work on the illegal opcodes section of the 6502 chapter. In
particular, all of the mnemonics and opcodes are now checked/cross-
referenced with online sources identifying illegal, but functional
opcodes. These have been checked against the dasm source code to
find out which are actually used/available. The tables section includes
opcode-to-mnemonic, and also cycle timings for all instructions. The
missing opcodes that dasm doesn’t support have been identified. The
next step of all this will be to list the illegal opcodes that are supported
and exactly what they do.

2020.09.03

• Added the information about the broken opcodes in HD6303, retrieved
from the file BUGS in the source code. I’m starting to go through the
code itself to bring the manual up to date.

2020.09.02

• There’s a new chapter where all the special-case stuff for specific
processors is going. In particular, explicit support of 6502 illegal
opcodes is in the process of being documented. Did you even know
dasm explicitly supports many (but not all) of the illegal opcodes and
their addressing modes? I knew about explicit support for “nop 0” and
“lax” but few of the others. Note in this section how I have lifted a
table from an online page, but have attributed it as I was taught when
I was doing my formal research writing, so hopefully this will be OK.

• There’s a new chapter with details for each of the machines that are
explicitly supported with include files, macros, etc. Of course, I only
know the ’2600 so that’s all there is at this stage. Help needed for the
others.

2020.08.31

• Documented the default dasm help message, and in the process spotted
two options (-R and -m) which were not in the documentation. But
then I found that the latest version of dasm doesn’t have these options;
they have recently been removed!

2020.08.29

• Added extensions equivalent substitutions table

• Tried to simplify the format templates for this document’s descriptions
of options

• Actual testing shows the default # passes to be 3, so document has
been updated to this value

• Modified the ’output’ box visuals to black on grey instead of white on
black

2020.08.24

• Removed 0x for hexadecimal. Apparently recently removed from the
code?

• Upgraded license to GPL v3 to be compatible with .STY files used
for generation of this manual NOTE: This change has been
reversed/invalidated by use of a new .STY file compatible
with GPLv2

• Fixed table of processor types to explicitly list PROCESSOR values

• Documented dasm bug in constants signed range checking for 8-bit
operands

• Constants and Numbers duplicate sections merged.

• Corrected error in table - || is logical-OR and && is logical-AND when
used in expressions. They will return 0 or 1 results.

• Clarified the ORG/RORG usage in the -f Output Format table, in
regards to the requirement that data must be in order in initialised
segments

• Revamped the comment about error types

• Mentioned default number of passes

• Clarified the -d option

• Clarified commmand-line format

• Added note about special-casing of negative operands

• Added alternates to unary operator table

• Added section describing Constants

2020.08.23

• Added some usage notes about colon in label names and why it can be
advantageous. I still hate it.

• Added this change log section.

Contents

1 Introduction 1
1.1 About . 1
1.2 Home . 1
1.3 Features . 1
1.4 Conventions in this Document 2

1.4.1 SI Units . 3
1.4.2 Format Description . 3

1.5 Assembler Passes . 3

2 Source Code 5
2.1 Encoding . 5
2.2 Comments . 5

2.2.1 Assembler-style Comments: ;... 5
2.2.2 C-style Comments: /* ... */ 6
2.2.3 Commenting Out Large Blocks 7

3 Command-Line 8
3.1 Usage . 8
3.2 Format . 9

3.2.1 Spaces in Filenames 9
3.2.2 Options . 10

3.3 Options . 10
3.3.1 -d Debug . 10
3.3.2 -D Define Symbol . 10
3.3.3 -E Error Format . 11
3.3.4 -f Output Format . 12
3.3.5 -F Define Symbol . 12
3.3.6 -I Include Directory 13
3.3.7 -l Listing Filename 13
3.3.8 -L Listing Filename (all Passes) 14
3.3.9 -M Define Symbol . 14
3.3.10 -m Maximum Output File Size 14
3.3.11 -o Output File . 15
3.3.12 -p Number of Passes 15
3.3.13 -P Number of Passes (Fewer Checks) 16
3.3.14 -R Remove Output File 16
3.3.15 -s Symbol Table File 16

i

3.3.16 -S Strict Syntax Checking 17
3.3.17 -T Sort Symbol Table 18
3.3.18 -v Verbosity Level 18

4 Numbers, Expressions and Operators 20
4.1 Constants . 20

4.1.1 Magnitude . 20
4.1.2 Base Representation 21

4.2 Expressions . 22
4.2.1 Brackets . 22

4.3 Operators . 23
4.3.1 Operator Precedence 23

4.4 Symbols . 26
4.5 Why-Codes . 26

5 Symbols and Labels 28
5.1 Labels . 28
5.2 Local Labels . 29
5.3 Dynamic Labels . 30
5.4 Deprecated Form . 31

6 Directives 33
6.1 Includes . 34

6.1.1 INCBIN . 34
6.1.2 INCDIR . 34
6.1.3 INCLUDE . 34

6.2 Assignments . 35
6.2.1 EQU, = . 35
6.2.2 EQM . 35
6.2.3 SET . 36
6.2.4 SETSTR . 36

6.3 Data . 37
6.3.1 DC . 37
6.3.2 DS . 38
6.3.3 DV . 38
6.3.4 HEX . 39
6.3.5 RES . 39

6.4 Conditionals . 40
6.4.1 IFCONST . 40
6.4.2 IFNCONST . 41
6.4.3 IF . 41

ii

6.4.4 ELSE . 42
6.4.5 ENDIF, EIF . 42

6.5 Code Generation . 42
6.5.1 REPEAT . 43
6.5.2 REPEND . 44

6.6 Structure . 44
6.6.1 ORG . 44
6.6.2 RORG . 45
6.6.3 REND . 45
6.6.4 SEG . 46
6.6.5 ALIGN . 47

6.7 Control . 48
6.7.1 PROCESSOR . 48
6.7.2 ECHO . 49
6.7.3 SUBROUTINE . 50
6.7.4 ERR . 52
6.7.5 LIST . 53
6.7.6 .FORCE . 53

7 Macros 55
7.1 Usage . 55

7.1.1 MAC, MACRO . 55
7.1.2 ENDM . 57
7.1.3 MEXIT . 58

8 6502 Processor 59
8.1 Endianness . 59
8.2 Illegal Opcodes . 59

8.2.1 Abbreviations and Colours used in Tables 60
8.2.2 Mnemonics, and Opcodes for Addressing Modes 60
8.2.3 Opcode Mnemonics . 64
8.2.4 Instruction Cycle Counts 65

9 68HC11 Processor 66
9.1 Endianness . 66

10 68705 Processor 67
10.1 Endianness . 67

11 6803 Processor 68
11.1 Endianness . 68

iii

12 HD6303 Processor 69
12.1 Endianness . 69
12.2 Broken Opcodes Bug . 69

13 F8 Processor 70
13.1 Endianness . 70

13.1.1 Processor selection . 70
13.1.2 Expressions with parentheses 70
13.1.3 Data definition directives 71
13.1.4 Special register names 71
13.1.5 Scratchpad register access 72
13.1.6 No instruction optimizations are done 73

14 MC68HC908 Processor 74
14.1 Endianness . 74

15 Machines 75
15.1 Atari 2600 . 75

15.1.1 Processor selection . 75
15.1.2 Support Files . 76

15.2 Atari 7800 . 76
15.2.1 Processor selection . 76
15.2.2 Support Files . 76

15.3 Channel F . 77

16 Legal 78
16.1 Authorship . 78

16.1.1 dasm . 78
16.1.2 Manual . 78

16.2 License . 79

iv

"Do you program in Assembly?" she asked.
"NOP", he said. 1

Introduction

1.1 About
This is the Technical Documentation and User Guide for the dasm macro-
assembler. It explains how to use dasm and the supported assembler
directives.

1.2 Home
Since release 2.20.12, dasm has lived at

https://dasm-assembler.github.io/

On that page you can download prebuilt binaries for MacOS, Linux, and
Windows operating systems. You can also download the full source code and
build the program binary yourself.

For bugs and feature requests, please visit

https://github.com/dasm-assembler/dasm/issues

1.3 Features
dasm is packed with features...

• fast assembly

• supports several common 8 bit processor models

• takes as many passes as needed

• automatic checksum generation, special symbol ’...’

1

https://dasm-assembler.github.io/
https://github.com/dasm-assembler/dasm/issues

• several binary output formats available.

• allows reverse indexed origins.

• multiple segments, BSS segments (no generation), relocatable origin.

• expressions, as in C

• expressions are computed using 32 bit integers

• no real limitation on label size

• complex pseudo-ops, repeat loops, macros

1.4 Conventions in this Document
This document uses standardised terminology to describe usage and function.

Should the name be “dasm”, “DASM” or “Dasm”?

Yes. In this document we shall refer to it as dasm.

Usage of directives and command-line options are shown in a box like this...� �
dasm source.asm -f3 -v5 -otest.bin
 	
Items/examples that appear in source code are shown like this...� �

MAC END_BANK
IF _CURRENT_BANK_TYPE = _TYPE_RAM

CHECK_RAM_BANK_SIZE
ELSE

CHECK_BANK_SIZE
ENDIF

ENDM
 	
In 8-bit microprocessors, 16-bit values are represented by pairs of bytes, either
in low/high or high/low ordering. The ordering, called the “endianness”,
differs between processors. In this document, LSB refers to the least-
significant byte, and MSB refers to the most-significant byte, independent
of the endianness of the processor. See the unary operators < and > which
are used to retrieve the LSB or MSB from a symbol/value.

See Unary Operators.

2

1.4.1 SI Units

Computer memory sizes are referred to in this document using SI units.

In particular, kilo (K) is 1000, and kibi (Ki) is 1024. A bit is b, a byte is
B. Thus, 4096 bytes is 4 kibibytes, or 4 KiB.

Historically, disk drive manufacturers were responsible for this change in
meaning of the "kilobyte", as they divided capacity by 1000 instead of 1024
when listing drive size. This not only made their drives seem bigger, it created
an ambiguity when discussing computer and disk memory size. The adoption
of the new SI units for computer memory size removed the ambiguity.

1.4.2 Format Description

The following format templates are used to describe items on the command
line.

Format Result

item one item
item ... one or more items, space-separated
item,... one or more items, comma-separated
{item|...} only one of the items, bar-separated
[item] optional item
[]... optional whitespace(s)

Examples� �
A[{B|C}] "A" or "A B" or "A C"
DC[{.B|.W|.L}] "DC" or "DC.B" or "DC.W" or "DC.L"
DC[.{B|W|L}] the same
 	
1.5 Assembler Passes
dasm is most likely to make multiple passes through the source code to resolve
all symbols. It is not necessary for anything to be resolved in the first pass.
The maximum number of passes (default 3) is controllable.

3

dasm will return an error if it can’t resolve all referenced symbols within the
maximum number of passes.

See -p Number of Passes and -P Number of Passes (Fewer Checks).

Example

The following contrived example will resolve in 12 passes:� �
ORG 1
REPEAT [[addr < 11] ? [addr -11]] + 11

DC.b addr
REPEND

addr:
 	
� �

> dasm test.asm -P11
test.asm (8): error: Label mismatch ...
--> addr 000b

test.asm (8): error: Too many passes (12).
 	
In the above example, the example does not assemble because the number
of passes (set to 11) is insufficient to resolve the value of addr.� �
> dasm test.asm -P12
Complete. (0)
 	

In the above example, 12 passes is sufficient to assemble the code.

There is generally no harm in setting the number of passes to a sufficiently
high value.

Most everything is recursive. You cannot have a macro definition within a
macro definition, but you can nest macro calls, repeat loops, and include
files.

The other major feature in this assembler is the SUBROUTINE directive , which
logically separates Local Labels (starting with a dot). This allows you to
reuse label names (for example, .1, .fail) rather than think up crazy
combinations of letters and numbers to keep it all unique.

See -p Number of Passes, -P Number of Passes (Fewer Checks), and
SUBROUTINE.

4

“Always code as if the guy who ends up maintaining your code will
be a violent psychopath who knows where you live.”

Martin Golding 2
Source Code

2.1 Encoding
Source code files are written as plain-text (generally ASCII encoding) files.

Both Windows-style (carriage-return, line-feed) and Unix-style (line-feed)
line endings are supported by dasm.

2.2 Comments
dasm supports two different comment styles: traditional assembler single-line
semicolon-delimited comments, and C-style “/* ... */” delimited multiline
comments.

Note that comments may contain Unicode characters, as dasm effectively
ignores the contents of comments, but assembled code cannot contain
Unicode.

An open comment directive anywhere on a line (";" or "/*") terminates
dasm’s label/directive/instruction parser for the rest of that line.

2.2.1 Assembler-style Comments: ;...

The presence of a semicolon at any character in a line will flag the rest of
that line (semicolon included) as a comment. It is common when writing
code to place a semicolon at the beginning of lines to disable them from
being assembled.

There may be valid labels, directives, and/or instructions before the
comment. These will be correctly assembled.

5

Examples� �
; this is a comment

; and so is this
label ; this is a label followed by a comment
;label this is a comment , NOT a label

lda #2 ; <-- this instruction IS assembled
;lda #2 <-- this instruction is NOT assembled
 	

� �
MAC TEST ;{1}= value <-- a comment showing params
ENDM
 	

2.2.2 C-style Comments: /* ... */

C-style comments mark all text between and including /* and */ as a
comment.

C-style comments make it easy to disable the assembly of blocks of code
spanning multiple lines.

Correct Examples� �
/* This single line comment is valid */
lda #1 /* And this comment is valid too */

/* And so is this
Multiline comment */
 	
It can sometimes be useful to enable/disable multi-line comments with a
semicolon...� �
;/*
lda #2 ;<-- comment disabled. This IS assembled

;*/

/*
lda #2 ;<-- comment enabled. This is NOT assembled
*/
 	

6

2.2.3 Commenting Out Large Blocks

There are several ways to disable ("comment-out") large parts of the source
code.

• Place a semicolon at the start of every line of the code to disable
(Assembler-style)

• Bracket the part to disable with /* and */ (C-style)

• Surround the block with the conditionals "IF 0" at the start, followed
by "ENDIF" at the end. To re-enable the code, change the 0 to 1. Note
that this method is may fail if the enclosed code has conditionals.

7

3
Command-Line

3.1 Usage
dasm is a command-line tool. It parses the command-line for the input source
file, which must be present, and optional assemble-time options, assembles
the source file, and produces outputs as specified in the options. The source
file must be ASCII-encoded, but comments may contain Unicode characters.

One option you are most likely to need is -o Output File to specify the
binary file for output.

The assembler will return 0 on successful compilation, 1 otherwise.� �
dasm
dasm sourcefile
dasm sourcefile [option ...]
 	
If no sourcefile is given, then dasm will output a short help message, and
exit with an assembly error. Otherwise, the sourcefile becomes the file
that dasm will assemble, and any further parameters are parsed as options.

8

� �
% ./dasm
DASM 2.20.14
Copyright (c) 1988 -2020 by the DASM team.
License GPLv2+: GNU GPL version 2 or later (see file LICENSE).
DASM is free software: you are free to change and redistribute it.
There is ABSOLUTELY NO WARRANTY , to the extent permitted by law.

Usage: dasm sourcefile [options]

-f# output format 1-3 (default 1)
-oname output file name (else a.out)
-lname list file name (else none generated)
-Lname list file , containing all passes
-sname symbol dump file name (else none generated)
-v# verboseness 0-4 (default 0)
-d debug mode (for developers)
-Dsymbol define symbol , set to 0
-Dsymbol=expression define symbol , set to expression
-Msymbol=expression define symbol using EQM (same as -D)
-Idir search directory for INCLUDE and INCBIN
-p# maximum number of passes
-P# maximum number of passes , with fewer checks
-T# symbol table sorting

(default 0 = alphabetical , 1 = address/value)
-E# error format (default 0 = MS, 1 = Dillon , 2 = GNU)
-S strict syntax checking
-R remove binary output -file in case of errors
-m# max. allowed file -size in kB

Report bugs on https :// github.com/dasm -assembler/dasm please!

Fatal assembly error: Check command -line format.
 	
3.2 Format

3.2.1 Spaces in Filenames

If a filename (source, output, listing file) contains spaces, the whole filename
may be surrounded with quotes, or the spaces may be escaped with a
backslash character - depending on your OS support for these.� �
dasm "source file.asm"
dasm source\ file.asm
 	

9

3.2.2 Options

Options are specified on the command-line, after the source file. There may
be zero or more options each separated by whitespace. Some options require
their own parameters. Default values (where an option is not explicitly
defined) are described with each option below.

An option is prefixed by a dash “-” or a slash “/” prefix, and followed by
the option letter and then the parameter (if there is one). There must be no
whitespace between the prefix, option letter or the parameter.

Example� �
> dasm source.asm -f2 -oout.bin -llist.txt -v3 -DVER=4
 	
This example will assemble the file source.asm, using output format 2
(random access segments). The resultant binary will be saved to the file
out.bin and a listing file written to list.txt. During the assembly,
verbosity of the output is set to 3 (unresolved and unreferenced symbols
displayed every pass). The value of the symbol (which will be available in
the source code) VER is set to 4.

3.3 Options

3.3.1 -d Debug� �
-d
 	
This option is for dasm’s developers, and is essentially inactive in release
versions.

3.3.2 -D Define Symbol� �
-Dsymbol=exp
 	
Defines a symbol and sets it to the expression exp.

Can be used to set values for symbols used inside the code.

10

See -F Define Symbol, -M Define Symbol.

Example� �
> dasm source.asm -DSPEED =40
 	

� �
lda #SPEED ; will load 40
sta velocity
 	

� �
; Use the symbol to assemble different code

IF SPEED < 30
jsr FastDraw ; not assembled

ELSE
jsr SlowDraw ; is assembled

ENDIF
 	
3.3.3 -E Error Format� �
-Eformat
 	
Sets the format of the output of error information. Many programmers’
editing environments (IDEs) are able to monitor the output from tools such
as dasm and parse it for information about errors and warnings. If an IDE
is able to resolve file names and line numbers for these errors, then the IDE
can provide quick-links to the user to allow ease of editing.

This option switches the format of error/warning output of dasm between
several “standard” formats.

format Result

0 Microsoft (default)
1 Dillon
2 GNU

11

3.3.4 -f Output Format� �
-fvalue
 	
Defines the format used in the binary output file generated by dasm.

value Function

1 default. The output file contains a two byte origin in little-endian
order, then data until the end of the file. Any instructions which
generate output (within an initialised segment) must do so with
an ascending ORG address (this address being the offset in the
binary/ROM where the output is placed, as opposed to the RORG
which is the address to which the code is assembled). Initialised
segments must occur in ascending order.

2 RAS (Random Access Segment). The output file contains one
or more hunks. Each hunk consists of a 2 byte origin (little-
endian), 2 byte length (little-endian), and that number of data
bytes. The hunks occur in the same order as initialized segments
in the assembly. There are no restrictions to segment ordering
(i.e. reverse indexed ORG statements are allowed). The next hunk
begins after the previous hunk’s data, until the end of the file.

3 RAW. The output file contains data only (format #1 without the
2 byte header). Restrictions are the same as for format #1. No
header origin is generated. You get nothing but data.

It is a common problem to forget the format option on the command line,
especially if you are expecting a pure binary ROM without a header. Use
-f3 if you are assembling ROMs.

3.3.5 -F Define Symbol� �
-Fsymbol
 	
Define a symbol and set its value to 0.

12

This symbol is then usable in the source code as if it were a part of the code
itself. This can be useful for controlling the conditional assembly of parts of
code.

See related options -D Define Symbol and -M Define Symbol.

Example� �
> dasm source.asm -FTEST
 	

� �
IFCONST TEST

; code here only assembled when TEST is defined
ENDIF
 	

3.3.6 -I Include Directory� �
-Idirectory
 	
This adds the directory to the search path dasm uses when looking for files
when it encounters INCLUDE and INCBIN directives. Use of this option on the
command line is equivalent to an INCDIR directive placed at the beginning
of the source file.

See INCDIR for the format of the directory name.

3.3.7 -l Listing Filename� �
-lfilename
 	
dasm is able to produce a comprehensive and extremely useful listing of the
assembled source code. This file includes symbol values, code locations, and
the source code itself. To enable generation of a listing file, use the -l option.

See alternate: -L Listing Filename (all Passes).

13

3.3.8 -L Listing Filename (all Passes)� �
-Lfilename
 	
This option behaves the same as -l Listing Filename, but lists the code
on every pass. Warning: this can lead to some very big listings if dasm needs
to perform many passes on your code!

See alternate: -l Listing Filename.

3.3.9 -M Define Symbol� �
-Msymbol=exp
 	
Deprecated.

Defines a symbol and sets it to the expression exp.

See similar: -D Define Symbol, -F Define Symbol.

3.3.10 -m Maximum Output File Size� �
-msize
 	
The -m switch is not intended to limit the size of the created binary. Instead,
it provides a safety-halting mechanism to prevent erroneous/recursive code
from creating huge binaries, in situations that may not otherwise be detected.

The size parameter is the halting condition. dasm will halt with an error if
the size of the generated binary exceeds this value. The default maximum
size is 640 KiB.

This switch is generally useful for architectures with more than 10 memory
banks. It can be used in conjunction with -R Remove Output File to detect
assembly anomalies and clean-up afterwards.

Example� �
> dasm source.asm -orom.bin -m128
 	

14

This example will assemble the file source.asm and write the file rom.bin,
halting with an error if the output binary exceeds 128 KiB (an indication of
a potential recursion error in the code generation).

See aslo -R Remove Output File.

3.3.11 -o Output File� �
-ofilename
 	
Set the name of the filename for the output binary result of the assembly.
If no name is specified, dasm will write to the file “a.out”. See -f Output
Format for the format of the output file. If you want a pure binary output
file without headers, you must add option -f3.

Example� �
> dasm source.asm -orom.bin -f3
 	
This example will assemble the file source.asm and write the file rom.bin
with the binary results of the assembly, without header information.

3.3.12 -p Number of Passes� �
-pvalue
 	
Sets the maximum number of passes performed by dasm to value.

dasm will keep performing passes until all references are resolved, or until
the maximum number of passes is reached (in which case it will exit with an
unresolved symbol error). Typically on machines these days, dasm is so fast
that a high number of passes is acceptable.

The default number of passes is 3.

See -P Number of Passes (Fewer Checks).

15

3.3.13 -P Number of Passes (Fewer Checks)� �
-pvalue
 	
Sets the maximum number of passes performed by dasm to value.

This is the same as -p Number of Passes, but instructs dasm to perform
fewer checks.

And these are...?

See -p Number of Passes.

3.3.14 -R Remove Output File� �
-R
 	
Removes the binary output file if dasm encounters an error during assembly.

Can be used in conjunction with -m Maximum Output File Size to remove
erroneous binaries, for example if a ROM size limit is exceeded.

See aslo -m Maximum Output File Size.

3.3.15 -s Symbol Table File� �
-sfilename
 	
At the conclusion of assembly, the -s option directs dasm to save a symbol
table to the specified file. A symbol table is a table listing all the symbols
encountered during an assembly, and their values if known. By default, no
symbol table file is generated.

The symbol table may be sorted alphabetically or numerically with the -T
Sort Symbol Table option.

16

Example� �
> dasm source.asm -ssource.sym
 	
After the execution of the above, the file source.sym would contain the
symbol table in the format as shown in the example below. Each line gives
a symbol name, its final resolved address/value, and a flag field. In the
flag field, (R) indicates the symbol has been used/referenced and not just
defined.� �
--- Symbol List (sorted by symbol)
AUDC0 0015
StartAddress 1000 (R)
TIA_BASE_ADDRESS 0000 (R)
TIM1T 0294
TIM64T 0296
TIM8T 0295
TIMINT 0285
var1 0080
var2 0081
varn 008b
VBLANK 0001
VERSION_VCS 0069
WSYNC 0002
--- End of Symbol List.
 	
3.3.16 -S Strict Syntax Checking� �
-S
 	
This option switches on more stringent checking of source code issues.

Duplicate macro definitions are flagged as errors.

TODO complete list of strict checks

17

3.3.17 -T Sort Symbol Table� �
-Tvalue
 	
Controls the sorting of lines in the symbol table.

See -s Symbol Table File to enable symbol table output.

value Sort By

0 Symbol Alphabetically (default)
1 Address/Value

3.3.18 -v Verbosity Level� �
-vvalue
 	
The -v option controls the amount of information output by dasm while it is
assembling your code. This information includes warnings, errors, a segment
table, a symbol table, unresolved and unreferenced symbols, and reasons for
performing extra passes. Use of the -v option can assist with diagnosing
anomalous behaviour.

18

value Result

0 Only warnings and errors (default)

1 Segment table information generated after each pass
Include file names are displayed
Item statistics on why the assembler is going to make another pass
R1,R2 reason code: R3
where R1 is the number of times the assembler encountered
something requiring another pass to resolve. R2 is the
number of references to unknown symbols which occurred in the
pass (but only R1 determines the need for another pass). R3
is a BITMASK of the reasons why another pass is required.

2 Mismatches between program labels and symbols are displayed
on every pass (usually none occur in the first pass unless you
have re-declared a symbol name).

Displayed information for symbols:

???? = unknown value
str = symbol is a string
eqm = symbol is an eqm macro
(R) = symbol has been referenced
(s) = symbol created with SET or EQM directive

3 Unresolved and unreferenced symbols are displayed every pass
4 Symbol table displayed to STDOUT every pass

19

“If you have the words, there’s always a chance that you’ll find the
way.”

Seamus Heaney 4
Numbers, Expressions and Operators

4.1 Constants

4.1.1 Magnitude

All numbers and addresses in dasm are represented internally as signed 32-bit
values.

Numbers are range-checked at point of usage. Signed byte values should be
between $80 (-128) and $FF (+127) inclusive, as these values are the extremes
of what can be represented with signed 8-bit values. Unsigned byte values
should be between 0 and $FF (255). Signed word values should be between
$8000 (-32768) and $FFFF (+32767) as these are the extremes of signed 16-bit
values. Unsigned word values should be between 0 and $FFFF (65535).

Note that the assembler cannot tell the difference between the representation
(in 8 and 16 bits) of signed/unsigned representation of negative and positive
numbers, as they share the same bit patterns.� �
lda #%11111111 ; is this 255 or -1?
 	

The answer to the above question is that it depends on what the programmer
does with the value, as in signed 8-bit arithmetic, %11111111 is -1, and in
unsigned 8-bit arithmetic it is 255. This is not as confusing as it sounds, as
the assembler works in signed 32-bit arithmetic and the signedness of these
values (particularly when taking the low byte/word) is unambiguous.

It is common for programmers who want all bits set to simply use -1.

20

4.1.2 Base Representation

Values in dasm can be specified in base 2 (binary), 8 (octal), 10 (decimal), 16
(hexadecimal), or as ASCII characters. It doesn’t matter to dasm which
format you use, so use what makes the most sense in your code. The
interpretation of the value is determined by the prefix and digits used, as
shown in the following table.

Type Format Content

Binary %n 0-1

Octal 0n 0-7

Decimal n 0-9, first digit non-0

Hexadecimal $n case insensitive 0-9,A-F

Character ’c ASCII character

String “cc..” zero-terminated ASCII character string
not zero-terminated when used in DC/DS/DV.

[exp]d The constant expressions is evaluated and its
decimal result converted into an ASCII string.
Useful in conjunction with ECHO diagnostic output.

Even though decimal numbers can’t start with 0, as that describes an octal
number, the octal 0 is equivalent. In other words, 010 = 08.

Negative signs are placed before the number prefix (e.g., -$123).

21

Examples� �
lda #%101 ; binary = 5 decimal
lda #%10101010 ; binary = 170 decimal
lda #015 ; octal = 13 decimal
lda #$FF ; hexadecimal = 255 decimal (unsigned)

; = -1 decimal (signed)
lda #’A ; ASCII character = 65 decimal
lda #’A’ ; ERROR - no trailing quote allowed!
 	

� �
VAL = -129
lda #VAL ; ERROR - outside byte range
 	

� �
; A great approximation for Pi is 355/113
PIDIGITS = 1000000 * 355/113

ECHO "PI DIGITS: ", PIDIGITS ; obscure
ECHO "PI DIGITS: ",[PIDIGITS]d ; aha!
 	

� �
PI DIGITS: $2fefd8
PI DIGITS: 3141592
 	

4.2 Expressions
Expressions are calculations involving symbols and numbers. These
calculations are performed by dasm during the assembly process. Often,
symbols will have unknown values during an assembly pass, and thus an
expression cannot be evaluated. dasm will, in these cases, perform another
assembly pass - often, unknown values are resolved later in the assembly.
A successful assembly is one where no errors have been detected, and all
referenced symbols have been resolved.

4.2.1 Brackets

The precedence of operators is the same as for the C-language in almost all
respects.

Either square brackets [] or round brackets () may be used to group

22

expressions and to clarify/adjust precedence, depending on which PROCESSOR
is in effect for the assembly. Differences are related to the use of round
brackets in assembler instructions.

F8 and Other Processors

Either bracket type may be used in all situations.

6502 Processor

Use square brackets [] when you are unsure. The reason round brackets ()
cannot be used to group expressions is due to a conflict with 6502 assembly
language which use them to specify indirect memory access (for example,
“lda (zp),y”).

It is possible to use round brackets () instead of square brackets [] in
expressions following directives, but not following mnemonics.

So this works:� �
IF target & (pet3001 | pet4001) ; OK
 	

but this doesn’t:� �
lda #target & (pet3001 | pet4001) ; fails
 	

4.3 Operators
Some operators, such as || (logical-OR), can return a resolved value even if
one of the expressions is not resolved.

4.3.1 Operator Precedence

Operators in any expression are evaluated in order of precedence. The
following tables list the various operators, their function, and precedence
(PR). Operators are handled in precedence order high to low.

23

Unary Operators

Operator Alternate Function PR

∼exp exp^-1 one’s complement 20
-exp [exp^-1]+1 mathematical negation 20
!exp exp==0 logical NOT 20

(0 if exp is non-zero, 1 if exp is zero)
<exp exp&$FF take LSB of the low word 20
>exp [exp> >8]&$FF take MSB of the low word 20

Table 4.1: Unary Operators

Special Case

Some operations will result in non-byte values when a byte value was wanted.
For example: ∼1 is not $FF, but instead $FFFFFFFF. Preceding it with a <
(take LSB of) will solve the problem.

However, there is a special-case for negative numbers used in operands.
Although internally 32-bit, numbers in the range -1 to -128 are treated as
two’s complement 8-bit numbers in this situation. Another way of thinking
of this - it is not necessary to take the LSB of the number if it is in the
range -128 to 255, as dasm will recognise this as a valid signed/unsigned 8-bit
number and do this automatically.

Bug: Currently dasm allows values in the range -$FF to +$FF. This is
incorrect. The correct range is -$80 to +$FF.

Examples� �
; Special case handling of 8-bit negatives

lda #-1 ; OK
lda #$FF ; same as -1
lda #-129 ; ERROR - outside 8-bit size
 	

24

� �
; Extracting low and high byte of value

lda #<addr ; low byte of symbol address/value
lda #>$12345678 ; = $56 , the high byte of the low word
 	

Binary Operators

Operator Function PR

* Multiplication 19
/ Division 19
% Modulus 19
+ Addition 18
- Subtraction 18
> > Arithmetic shift right 17
< < Arithmetic shift left 17
> Greater than 16
>= Greater than or equal to 16
< Less than 16
<= Less than or equal to 16
== Logical equal to. 15
= Logical equal to. Deprecated! (use ‘==’) 15
!= Not equal to 15
& Arithmetic AND 14
ˆ Arithmetic exclusive-OR 13
| Arithmetic OR 12
&& Logical AND. Evaluates as 0 or 1 11
|| Logical OR. Evaluates as 0 or 1 10
? If the left expression is TRUE, result is the right 9

expression, else result is 0. [10?20] returns 20.
The function of the C conditional operator a?b:c
can be achieved by using [a?b-c]+c.

[] Group expressions 8
, Separates expressions in list (also used in 7

addressing mode resolution, so be careful!

Table 4.2: Binary Operators

25

4.4 Symbols

Symbol Meaning

... Checksum so far (of actually-generated data)

.. Evaluated value in DV directive
. Current program counter
* Synonym for ‘.’ when not confused as an operator.

.name Represents a local label name. Local labels may be reused
inside MACROs and between SUBROUTINE directives, but may not be
referenced across MACRO or SUBROUTINE scope.
(as of the beginning of the instruction)

name Represents a global symbol name. Beginning with an alpha
character and containing letters, numbers, or underscores.
Symbol definitions may end with a colon, but reference must
omit the colon.

nnn$ Local label, much like ‘.name’, except that defining
a non-local label has the effect that SUBROUTINE has on‘.name’.
They are unique within MACROs, like ‘.name’.
Note that ‘0$’ and 00$ are distinct, as are 8$ and 010$

(mainly for compatibility with other assemblers).

Table 4.3: Symbols

4.5 Why-Codes
dasm can display the reason (via -v Verbosity Level) it needs to do another
pass. Internally, these reasons are stored in the “why” word.

The list of available reasons include:

26

Bit Usage

0 expression in mnemonic not resolved
1 -
2 expression in a DC not resolved
3 expression in a DV not resolved (probably in DV’s EQM symbol)
4 expression in a DV not resolved (could be in DV’s EQM symbol)
5 expression in a DS not resolved
6 expression in an ALIGN not resolved
7 ALIGN: Relocatable origin not known (if in RORG at the time)
8 ALIGN: Normal origin not known (if in ORG at the time)
9 EQU: expression not resolved
10 EQU: value mismatch from previous pass (phase error)
11 IF: expression not resolved
12 REPEAT: expression not resolved
13 a program label has been defined after it has been

referenced (forward reference) and thus we need another pass
14 a program label’s value is different from that of the

previous pass (phase error)

There are three types of error; those that cause the assembly to abort
immediately, those that complete the current pass and then abort assembly,
and those that allow another assembly pass in the hope that the error will
self-correct.

27

“No symbols where none intended.”
Samuel Beckett 5

Symbols and Labels

5.1 Labels
The terms symbols and labels are synonymous. However, common usage is to
use “label” for a symbol referring to a memory address, and that convention
is generally used in this document. Otherwise, it is referred to as a symbol.

Labels are and symbols assigned addresses or values by dasm. These values
are calculated during the assembly process by resolving the location or value
of expressions defining the label. Often this may take multiple assembly
passes to resolve.

Label definitions start at the beginning of a line and are encoded in ASCII;
they must start with a letter or @ or _, and can include letters, numbers,
and some symbols.

Colon Usage

Label definitions can end with a colon, but the usage of the label must not
include the colon. This can be helpful when you are editing your code if you
want to search for your label definition label: which will return just one
result (unless it’s a local label, which may be duplicated), or label which
will return all instances.

Examples� �
; Usage of colon in label names
loop: jmp loop ; OK

jmp loop: ; error: Illegal character ’:’
 	
28

� �
; Examples of label/symbol definitions
Label1 ; standard
Label2: ; optional colon
lab3 = %101010 ; life , the universe , and everything
LAB4 SETSTR "Hello" ; allocated as string
.lab6 ; local
lab ,{1} ; dynamic , inside macro
lab@ ; some symbols are valid too
labWhoops ; invalid - not in 1st column

lab SET -INFINITY ; SET: initial definition
lab SET 0 ; SET: and re-use!
 	
5.2 Local Labels
Local labels begin with a dot “.”. They are local to the scope of the current
SUBROUTINE directive boundary, and may be re-used in other subroutine
scopes. Note that the usage of the term subroutine can be misleading; local
labels are local to blocks defined by usage of the directive SUBROUTINE, not
to code-subroutines.

Usually local labels are used in macros and within actual code subroutines.
This is handy where simple names such as ‘.loop’ can be re-used many times.
It is particularly useful in macros, where global labels are problematic due
to the inability to declare a global label more than once.

29

Example� �
; Define macro

MAC DO
; Implicit SUBROUTINE inserted here!

.mac jmp .mac ; OK - local macro label
ENDM

; elsewhere in the code ...

.local jmp .local ; OK - local label
global jmp global ; OK - global label

DO ; use macro

; implicit new scope has happened
; after macro instantiated

jmp global ; OK - global scope
jmp .local ; error - outside scope
jmp .mac ; error - outside scope
 	

The example above shows the result of the use of local and global labels, and
the effects of implicit SUBROUTINE as a result of a macro instance.

5.3 Dynamic Labels
When used in a symbol name, the “,” operator indicates one or more
arguments that follow should be evaluated, and the resulting values should
be concatenated to the label, to create a dynamic symbol name.� �
symbol ,arg1[,argn ...]
 	
String literals in arguments must be specified with quotes around the string
text. Expression operators can also be used, but due to label parsing
constraints, they should not contain spacing.

The concat-eval “,” operator also works on the expression side of EQU/SET
directives, so dynamic labels can be used with opcodes.

30

Examples� �
; define and use a dynamic label
CON ,"cat" ; define label

jmp CONcat ; use the generated label
 	
� �
; Use a dynamic label inside a macro

N SET 0 ; instance number

MAC dynm ; {1}= base name
{1},"_",N ; define label using {1} and instance #
N SET N+1

ENDM

dynm fna
jmp fna_0 ; OK

dynm fna
jmp fna_1 ; OK

dynm fnb
jmp fnb_2 ; OK
jmp fnb_0 ; ERROR - does not exist
 	

5.4 Deprecated Form
dasm currently supports labels defined as per the following...� �
[]...^[]... label
 	
That might look a bit weird because, basically, it is. Essentially, whitespace
carat whitespace and then the label name. This is a deprecated format
that may not be supported by future versions of dasm. Do not use.� �

^ weirdLabel ; this is a weird way to define a label
normalLabel ; this is a normal way
 	

31

“Success is often the result of taking a misstep in the right direction.”
Al Bernstein 6

Directives

Also known as pseudo-ops, directives appear in the source code. They
instruct dasm what to do during assembly. These are distinct from
the mnemonics in the source code, which contains the human-readable
instructions for the microprocessor itself. Directives include macros, segment
definitions, setting the origin/location of code, etc. They are not case-
sensitive.

There must be whitespace before a directive. Thus, directives must not
appear in the first column of any line. Directives are not case-sensitive, but
in this document they are shown in uppercase.

Some directives cannot have labels on the same line - for example, those where
there is no possibility of evaluating a label’s value because no origin/segment
has yet been defined. For directives where a label is illegal, or does not make
sense, this is explicitly stated.

If a label is present, then its value will be set to the current ORG/RORG either
before or after a directive is processed. Most of the time, the label to the left
of a directive is set to the current ORG/RORG. The following directives’ labels
are given their value after execution of the directive: SEG, ORG, RORG, REND,
ALIGN.

All directives (and incidentally also the mnemonics) can be prefixed with
a dot “.” or a crosshatch “#” for compatibility with other assemblers. So,
“.IF” is the same as “IF” and “#IF”. In the case of the dot, this works only
because unattached, lone .FORCE extensions are meaningless.

32

6.1 Includes

6.1.1 INCBIN� �
INCBIN "filename" [,SkipBytes]
 	

Include the binary contents of another file literally in the output.

If provided with the second argument, the first <SkipBytes> bytes of the
file will be excluded. This can be useful for skiping unwanted headers, e. g.
load address indicators, SID tune headers, etc.

6.1.2 INCDIR� �
INCDIR "directory"
 	

Add the given directory name to the list of places where INCLUDE and INCBIN
search their files. Multiple directories can be added through multiple INCDIR
commands. When the other includes directives look for files, first the names
are tried relative to the current directory, if that fails and the name is not
an absolute pathname, the directory list is tried. You can optionally end the
directory name with a “/”.

AmigaDOS filename conventions imply that two slashes at the end
of a directory indicates the parent directory, and so this does an
INCLUDE "/directory"

The command-line option -Idirectory is equivalent to an INCDIR "directory"
directive placed at the beginning of the source file.

The directory list is not cleared between passes, but each exact directory
name is added to the list only once.

6.1.3 INCLUDE� �
INCLUDE "file name"
 	

Effectively inserts the contents of another file at the point of the INCLUDE
and continues assembling the original as if it were one merged file.

33

Example� �
; Typical first few lines in an Atari 2600 program ...

processor 6502
include "vcs.h"
include "macro.h"
 	

6.2 Assignments

6.2.1 EQU, =� �
symbol EQU exp
symbol = exp
 	
The expression is evaluated and the result assigned to symbol.

EQU, = are equivalent.

You can use the common idiom of “.=.+3” - in other words, you can assign
to “.” or “*” directly, instead of using an ORG or RORG directive.

More formally, a directive of the form “. EQU exp” is interpreted as if it were
written “ORG exp” or “RORG exp”. The RORG is used if a relocatable origin is
already in effect, otherwise ORG is used. Note that the first example is not
equivalent to “DS 3” when the RORG is in effect.

A symbol can also be defined through the command-line options -D Define
Symbol, -F Define Symbol and -M Define Symbol.

6.2.2 EQM� �
symbol EQM exp
 	
The string representing the expression is assigned to the symbol. Occur-
rences of the label in later expressions causes the string to be evaluated for
each occurrence. Also used in conjunction with the DV psuedo-op.

34

6.2.3 SET� �
symbol SET exp
 	
Same as EQU, =, but the symbol may be reassigned later.

Example� �
; Using SET to do calculations
N SET 1
SUM SET 0

REPEAT 10
SUM SET SUM+N
N SET N+1

REPEND
ECHO "Sum of 1 to 10 is", [SUM]d
 	

� �
Sum of 1 to 10 is 55
 	
6.2.4 SETSTR� �
symbol SETSTR exp
 	
The expression is converted to a string, and assigned to the symbol. Typical
use-case is within a macro, to allow the macro to echo or otherwise use the
name of an argument.

Example� �
; Use SETSTR to output a parameter as a string

MAC CALL ; {1} = function name
.FNAME SETSTR {1}

ECHO "This is the function name:", .FNAME
ENDM

CALL HelloWorld ; test it...
 	
35

� �
This is the function name: HelloWorld
 	
6.3 Data

6.3.1 DC� �
DC[{.B|.W|.L|.S}] exp ,...
 	

Declare data in the current segment. No output is generated if within
a uninitialised .U segment. The byte ordering (the endian order) for the
selected processor is used for each entry. It is possible to "swap endianness"
(the byte order of wide-characters) using DC.s

The default size extension (.B, .W, .L) is .B (byte).

Alternates� �
BYTE exp ,...
WORD exp ,...
LONG exp ,...
 	

Examples� �
; various ways of defining data ...

DC 0,1,2,3
BYTE -1,1,2,3, <Value
.WORD 100 ,1000 ,10000 , VectorTable
LONG 100000 , 50*50*50
dc ’a’ ; ERROR - should be ’a
dc.s "unicode" ; endian -swapped character words
 	

� �
; generate the bytes 0 to 9 inclusive
VAL SET 0

REPEAT 10
.byte VAL

VAL SET VAL + 1
REPEND
 	

36

6.3.2 DS

Not available for the F8 processor - use RES� �
DS[{.B|.W|.L}] exp[,fillvalue]
 	

Declare space and fill with a fillvalue (if specified, otherwise default is 0).
The optional size extender (.B, .W, .L) defines the data size (1, 2 or 4) bytes.
Data is not generated if within an uninitialized segment, but the origin still
changes accordingly (this is very useful for defining variables). The number
of bytes generated is exp × data size (1, 2, or 4)

The default size extension is a byte.

The fill value is not related to the fill value used by ORG.

Examples� �
ds 2 ; 2 bytes of default value 0
ds 2,10 ; 2 bytes of value 10
ds 10,2 ; 10 bytes of value 2
ds.w 2 ; 4 bytes (2 words) of default value 0
ds.l 0 ; define no space at all
 	

� �
; Declare some zero page variables
; in an uninitialised segment

SEG.U variables
ORG $80

var1 ds 2 ; 2 bytes @ $80 -$81
var2 ds.w 10 ; 20 bytes (10 words) @ $82 -$8B
varn ds.w 2 ; 4 bytes (2 longs) @ $8C -$8F
 	
6.3.3 DV� �

DV[{.B|.W|.L}] eqmlabel exp ,...
 	
This is equivalent to DC, but each exp in the list is passed through the

37

symbolic expression specified by the eqmlabel. The expression is held in
a special symbol dotdot ’..’ on each call to the eqmlabel.

See EQM.

6.3.4 HEX� �
HEX {hh...}
 	

This sets down raw hexadecimal data. Whitespace is optional between each
hh byte. No expressions are allowed. Note that you do NOT place a “$”
in front of the hexadecimal digits. This is a short form for creating tables
compactly. Data is always laid down on a byte-by-byte basis.

Example� �
HEX 1A45 45 13254F 3E12
 	

produces the following sequence of decimal values in the binary...� �
26 69 69 19 37 79 62 18
 	
6.3.5 RES

Not available for 6502 - use DS

Since DS is an F8 instruction (decrement scratchpad register), the DS directive
isn’t available anymore if dasm assembles F8 code, and this RES directive is
provided as an alternative.� �

RES[{.B|.W|.L}] exp[,fillvalue]
 	
Declare space and fill with a fillvalue (if specified, otherwise default is 0).
The optional size extender (.B, .W, .L) defines the data size (1, 2 or 4) bytes.
Data is not generated if within an uninitialized segment, but the origin still
changes accordingly (this is very useful for defining variables). The number
of bytes generated is exp × data size (1, 2, or 4)

The default size extension is a byte.

38

The fill value is not related to the fill value used by ORG.

Examples� �
res 2 ; 2 bytes of default value 0
res 2,10 ; 2 bytes of value 10
res 10,2 ; 10 bytes of value 2
res.w 2 ; 4 bytes (2 words) of default value 0
res.l 0 ; define no space at all
 	

6.4 Conditionals
Conditionals allow selected selections of code to be assembled.

6.4.1 IFCONST� �
IFCONST exp
 	

A useful method is to use IFCONST or IFNCONST to check for the definition
of a symbol and then conditionally assemble code based on the result. This
can be especially useful with symbols defined via the command-line.

Examples� �
IFCONST PI

IF PI=3
ECHO "Are you sure?"

ENDIF
ENDIF
 	

� �
> dasm source.asm -DPI=3
Are you sure?
 	
Is TRUE if the expression result is defined, FALSE otherwise and no error is
generated if the expression is undefined.

39

Example� �
symbol ; defined!

IFCONST symbol
ECHO "Defined !" ; we’ll see this!

ENDIF
 	
6.4.2 IFNCONST� �

IFNCONST exp
 	
Example� �
IFNCONST symbol

ECHO "Not defined !" ; we’ll see this!
ENDIF
 	
6.4.3 IF� �

IF exp
; block TRUE

[ELSE
; block FALSE

]
ENDIF
 	

Evaluates exp and if TRUE (exp is defined and non-zero) will insert the
following block of code.

Neither IF nor ELSE will be executed if the expression result is undefined. In
that case, another assembly pass is performed and phase errors (in the next
pass only) will not be reported unless the verbosity is set to 1 or more.

Examples

IF is a handy way to comment out large sections of code or text. There
is a caveat to this method - the code is still parsed by dasm while looking

40

for the ENDIF, EIF, so this can have some unexpected side-effects if further
conditionals are encountered.� �

IF 0
; disabled block that won ’t assemble

ENDIF
 	
Paired with ENDIF, EIF, ELSE.

6.4.4 ELSE� �
ELSE
 	

Begin an ELSE block for the current conditional.

If the current conditional is IF and exp is undefined, the ELSE will not be
executed.

Paired with IF, IFCONST, IFNCONST.

6.4.5 ENDIF, EIF� �
ENDIF
EIF
 	

Terminate a conditional block.

ENDIF, EIF are equivalent.

Paired with IF, IFCONST, IFNCONST.

6.5 Code Generation
There are two sets of directives that provide ways to insert meta-blocks of
code and/or data. These are the REPEAT/REPEND pair, and MAC, MACROs, which
are described in their own chapter.

See MAC, MACRO.

41

6.5.1 REPEAT� �
REPEAT exp

;body ...
REPEND
 	

exp copies of the body are inserted at the current location, and assembled.

This looks like a loop, but it isn’t. It’s a text-insert of exp blocks of code, so
beware of code bloat when using this construct. REPEAT/REPEND can be very
useful for data table generation.

If exp==0, the body is ignored.

If exp<0, a warning “REPEAT parameter < 0 (ignored)” is output and the
body is ignored.

Example� �
YV SET 2

REPEAT 2
XV SET 2

REPEAT 4
.byte XV, YV, XV*YV

XV SET XV+1
REPEND

YV SET YV+1
REPEND
 	

The above example generates the following code, which is then assembled:� �
.byte 2, 2, 4
.byte 3, 2, 6
.byte 4, 2, 8
.byte 5, 2, 10
.byte 2, 3, 6
.byte 3, 3, 9
.byte 4, 3, 12
.byte 5, 3, 15
 	

Labels within a REPEAT block should be local labels, preceded by a
SUBROUTINE directive to keep them unique.

42

Example� �
; Use SUBROUTINE to delineate local label usage
VAL SET 0

REPEAT 4
SUBROUTINE

cmp #VAL
bne .reused ; reused local label
; do something here
jmp .exit

.reused
VAL SET VAL+1

REPEND
.exit
 	
The above example generates 4 blocks of code, each comparing with a specific
immediate value and branching to a re-used local label which is made distinct
by the use of the SUBROUTINE directive.

Paired with REPEND.

6.5.2 REPEND� �
REPEND
 	

Bottom or a REPEAT/REPEND block. They must be in matched pairs.

Any label to the left of a REPEND is assigned after the complete text insert
for the REPEAT/REPEND block has finished.

Paired with REPEAT.

6.6 Structure

6.6.1 ORG� �
ORG exp[,fill]
 	

This directive sets the current origin. You can also set the global default fill
character (a byte value) with this directive. No filler data are generated until

43

the first data-generating opcode/directive is encountered after this one.

Sequences like:� �
org 0,255
org 100,0
org 200
dc 23
 	

... will result in 200 zeroes and a 23. This allows you to specify some ORG,
then change your mind and specify some other (lower address) ORG without
causing an error (assuming nothing is generated in-between).

Normally, DS and ALIGN are used to generate specific filler values.

Any label on the ORG line will be allocated its value after the directive is
processed.

6.6.2 RORG� �
RORG exp
 	

This activates the relocatable origin. All generated addresses, including
‘.’, although physically placed at the true origin, will use values from the
relocatable origin. While in effect both the physical origin and relocatable
origin are updated.

The relocatable origin can skip around (no limitations). The relocatable
origin is a function of the segment. That is, you can still SEG to
another segment that does not have a relocatable origin activated, do other
(independent) stuff there, and then switch back to the current segment and
continue where you left off.

Any label on the RORG line will be allocated its value after the directive is
processed.

6.6.3 REND� �
REND
 	

44

Deactivate the relocatable origin for the current segment. Generation uses
the real origin for reference.

Any label on the REND line will be allocated its value after the directive is
processed.

6.6.4 SEG� �
SEG[.U] [name]
 	

This switches to a new segment, creating it if necessary. If the optional .U
extension is present, the segment is an uninitialised segment. Segments
may be defined in parts; the .U is not needed when going back to an already
created uninitialized segment, though it makes the code more readable.

Uninitialised segments are particularly useful for declaring variable locations
without writing data to the binary output. They have no origin restrictions.
This is useful for determining the size of a certain assembly sequence without
generating code, and for assigning RAM addresses to labels.

An uninitialised segment with a name will result in the generation of a warning
for a reference to an unknown symbol. This is harmless, but a good reason
not to name uninitialised segments.

For segments which are not uninitialised, the segment name is used when
producing the diagnostic output at the end of each pass to indicate the
memory usage of the named segments. For uninitialised segments, use of a
segment name will generate a “reference to undefined symbol” warning that
can be ignored.

Any label on the SEG line will be allocated its value after the directive is
processed.

The following should be considered when generating ROMs:

• The default fill character when using ORG (and -F Define Symbol -f1
or -f3) to skip forward in segments is 0. This is a global default and
affects all segments.

• The fill value for DS has nothing to do with segment space padding, so
don’t confuse them!

45

Example� �
; Declaration of zero page variables

SEG.U variables
ORG $80

foo1 ds 1
bar2 ds 10
varn ds 2
 	
In the example shown above, the variables segment is uninitialised. The
zero-page variables (starting at location $80) foo1, bar2, and varn are
declared using DS directive to “reserve/allocate” appropriate amounts of
memory. Their addresses are automatically calculated by dasm. The relevant
part of the symbol table is shown below, to make clear that although the
segment is uninitialised, the labels/variables have correct values.� �
foo1 0080
bar2 0081
varn 008b
 	
6.6.5 ALIGN� �

ALIGN n[,fill]
 	
Align the current program counter to an n-byte boundary. If the fill option
is present, then that value will be used to fill the space generated. The default
fill value is 0. The ALIGN default value should not be confused with the ORG
directive’s default fill value.

Any label on the ALIGN line will be associated its value after the directive is
processed.

46

Example� �
; using ALIGN to move to 256-byte page boundary

ORG $1000
DS 10
; origin now $100A
ALIGN 256
; origin now $1100
 	

6.7 Control

6.7.1 PROCESSOR� �
PROCESSOR type
 	

dasm needs to know the target microprocessor for which it is assembling the
code.

This is indicated via the PROCESSOR directive, which should be the first line
(other than whitespace and comments) in your source code file. Only one
PROCESSOR directive may be declared in the entire assembly.

The PROCESSOR directive appears in the source code before the declaration
of code origin, and thus any label present on the same line will remain
unresolved at the end of assembly, causing an error.

Thus, do not place a label on the PROCESSOR line.

47

Supported Microprocessors

type Identity Endian Byte Order

6502 Processor MOS Technology 6502 little-endian LSB, MSB
68HC11 Processor Motorola 68HC11 big-endian MSB, LSB
68705 Processor Motorola 68705 big-endian MSB, LSB
6803 Processor Motorola 6803 big-endian MSB, LSB
HD6303 Processor Hitachi HD6303 big-endian MSB, LSB
F8 Processor Fairchild F8 big-endian MSB, LSB
MC68HC908 Processor Motorola MC68HC908 big-endian MSB, LSB

Example� �
PROCESSOR 6502
 	

For the 6507 microprocessor (as used in the Atari 2600 machine), use
“PROCESSOR 6502” as these two microprocessors are identical except for their
addressing range.

Different processor models use different endianness (byte ordering of word
values, being little-endian or big-endian). The processor’s endianness does
not affect the header in the output files (-f1 and -f2), which are always
little-endian (LSB, MSB). The processor byte ordering affects all address, word,
and long values.

6.7.2 ECHO� �
ECHO exp[,exp ...]
 	

The expressions (which may also be strings), are echoed on the screen and
into the list file.

To output values in decimal use the format [exp]d

48

Example� �
answer = 42

ECHO "Hex=",answer ," Decimal =",[answer]d
 	
� �
Hex= $2a Decimal= 42
 	
6.7.3 SUBROUTINE� �

SUBROUTINE [name]
 	
This isn’t really a subroutine, but a boundary that resets the scope of Local
Labels. Those which are defined before the SUBROUTINE directive are not
visible after it.

Local labels must be unique within the scope of the subroutine in which they
are defined, and cannot be accessed outside of that scope. Local label names
do not need to be unique, provided that they are not duplicated within a
single scope. In other words, names can be re-used.

Macros implicitly define a new subroutine scope both at their beginning, and
end. Local labels defined inside a macro are not available outside it, and local
labels defined before a macro usage instance are also no longer visible after
the instantiation. Automatic new local label scope boundaries occur for each
macro level.

49

Example� �
Fn10

SUBROUTINE
.loop dex ; 1st definition of .loop

bne .loop ; branches to 1st .loop
.exit rts

Fn20 SUBROUTINE

; new scope here because of the SUBROUTINE directive
; previous local labels are no longer reachable

.loop dex ; 2nd definition of .loop
bne .loop ; branches to 2nd .loop

jmp .exit ; ERROR - out of scope
 	
The above example defines two functions (Fn10, Fn20) which both use the
local label .loop. The correct label for each is used by the branch, by way
of the SUBROUTINE directive setting local scope. If the second SUBROUTINE
directive was removed, the assembler would generate an error because of the
duplicate label.

Note that the function name label can be on the same line as the directive,
if desired.

An implicit SUBROUTINE scope is in effect when Macros are instantiated, so
local labels cannot be accessed spanning a macro instantiation.

50

Example� �
MAC DO
; body
ENDM

.lab
jmp .lab ; OK

DO ; instantiate macro

jmp .lab ; ERROR
 	
See MAC, MACRO.

6.7.4 ERR� �
ERR
 	

Abort assembly. Useful in conjunction with Conditionals to end an assembly
if required.

Example� �
MAC CALL ; function name

IFNCONST {1}
FNAME SETSTR {1}

ECHO FNAME ," does not exist!"
ERR

ELSE
jsr {1}

ENDIF
ENDM

test

CALL test ; OK
CALL test2 ; "test2 does not exist!" then halts
 	

51

� �
test2 does not exist!
source.asm (37): error: ERR pseudo -op encountered
 	
6.7.5 LIST� �

LIST ON|OFF
 	
Globally turns listing on or off, starting with the current line.

When you use LIST the effect is local to the current macro or included file.
For a line to be listed both the global and local list switches must be on.

6.7.6 .FORCE� �
mnemonic [.force]
 	

FORCE extensions (placed after a mnemonic) are used to force an addressing
mode. In some cases, you can optimize the assembly to take fewer passes
by telling it the addressing mode. Force extensions are also used with DS,DC,
and DV to determine the element size.

Not all extensions are available for all processor types.

52

Extension Function

.0 Implied
.0x Implied indexing (0,x)

.0y Implied indexing (0,y)

.a Absolute (equivalent to .e, .w)

.b byte (equivalent to .d, .z)
.bx byte address indexed x

.by byte address indexed y

.d Direct (equivalent to .b, .z)

.e Extended (equivalent to .a, .w)

.i Implied
.ind Indirect word

.l long word (4 bytes) (DS/DC/DV)

.r Relative

.u Uninitialized (SEG)

.w word address (equivalent to .a, .e)
.wx word address indexed x

.wy word address indexed y

.z Zero page (equivalent to .b, .d)

First character equivalent substitutions:

Orig Alt Alt Meaning

b z d byte, zeropage, direct
w e a word, extended, absolute

53

“Everyone is against micro managing but macro managing means
you’re working at the big picture but don’t know the details.”

Henry Mintzberg 7
Macros

Macros are user-defined Directives, and when used well they can provide
extremely powerful code constructs and simplify programming.

A macro is effectively a text-substitution template. Wherever the name of
a macro is used, the body of the macro is inserted. During the insertion,
parameters passed to the macro may be substituted inside the body as
specified by the macro definition.

Macros automatically generate an implicit SUBROUTINE when instanti-
ated, which guarantees distinct local labels for that macro instance.

This can sometimes be inconvenient, as it can “hide” local labels in code
using the macro, but there is currently no way known to prevent this.

7.1 Usage

7.1.1 MAC, MACRO� �
; Declaration
; parameters available as {1}, {2}, etc.
; {0} = full instantiation line

MAC name
; body line 1
; ...
; body line n

ENDM
 	

54

� �
; Instantiation

name param1 , param2 , ...
 	
MAC, MACRO are equivalent.

Source code lines between MAC, MACRO and ENDM are the macro’s body. You
cannot recursively declare a macro. You can, however, recursively use a
macro (reference a macro in a macro).

No label is allowed on the macro declaration line.

The macro name is not case-sensitive, either in declaration or use.

Macros can be redefined, so beware of potential issues related to unexpected
usage.

You should always use Local Labels (e.g., .loop) inside macros which you
use more than once.

Macros are instantiated by using the macro’s name (case-insensitive),
followed by an optional list of arguments. The body of the macro definition
can refer to arguments passed with the format “{#}”, where # is replaced by
the argument number. The first argument passed to a macro is therefore
{1}. {0} represents an exact substitution of the entire instantiation line.

Examples� �
; Generate low/high tables pointing to functions

; Uses a macro to contain the list of functions ,
; and the parameter to declare low byte or high byte

MAC VECTORS
; usage: {1} is < or >

.byte {1} Routine1

.byte {1} Routine2

.byte {1} Routine3
ENDM

LoTable VECTORS <
HiTable VECTORS >
 	
In the above example, a list of pointers to functions is generated in two tables

55

(one containing the low addresses of the functions, and the other the high
addresses). These two tables are always in-synch (no extra or missing entries)
through the single-point definition in the macro itself.

The two calls to the macro generate the low bytes and the high bytes into
two separate tables. This will result in the following code being generated,
and then inserted into the source code in place of the macro calls...� �
LoTable

.byte <Routine1

.byte <Routine2

.byte <Routine3
HiTable

.byte >Routine1

.byte >Routine2

.byte >Routine3
 	
Example� �
; Inserts a page break if the object would overlap a page

MAC OPTIONAL_PAGEBREAK ; { labelString , size }
IF (>(* + {2} -1)) > (>*)

.EARLY_LOCATION SET *
ALIGN 256

ECHO "Page break for", {1}
ECHO "wasted", [* - .EARLY_LOCATION]d, "bytes"

ENDIF
ENDM
 	

Paired with ENDM.

7.1.2 ENDM� �
ENDM
 	

End of macro definition.

No label is allowed to the left of the directive.

56

Paired with MAC, MACRO.

7.1.3 MEXIT� �
MEXIT
 	

Used in conjunction with conditionals. Exits the current macro level.

See Conditionals.

57

8
6502 Processor

This chapter describes features of the 6502 processor that may be relevant
to the use of dasm.

8.1 Endianness
The 6502 is a little-endian machine. Byte ordering in words is low, then high.

8.2 Illegal Opcodes
The effects of the “unused” opcodes on the 6502 are by now relatively well
documented. These are variously described as illegal, undocumented, invalid,
and unspecified. Modern programs use some of these, as they provide
additional capabilities (particularly speed improvements) over the use of
the standard opcodes. dasm explicitly supports some of the commonly used
‘stable’ illegal opcodes.

http://www.oxyron.de/html/opcodes02.html was used as a reference for
most of the data shown in the following tables. They have been cross-
referenced with the dasm source code to determine what instructions and
opcodes are supported.

58

http://www.oxyron.de/html/opcodes02.html

8.2.1 Abbreviations and Colours used in Tables

Addressing Modes

Abbreviation Mode Example

abs Absolute LDA $F000

abx Absolute indexed by X LDA $F000,x

aby Absolute indexed by Y LDA $F000,y

idx Indexed indirect X LDA ($23,x)

idy Indirect Y LDA ($23),y

imm Immediate LDA #1

imp Implied. Operates on register or flag LSR

ind Indirect absolute JMP ($F000)

rel Relative to PC BCS addr

zp Zero-page LDA 1

zpx Zero-page indexed by X LDA $23,x

zpy Zero-page indexed by Y LAX 0,y

8.2.2 Mnemonics, and Opcodes for Addressing Modes

Opcode Colour Key

Stable. Supported by dasm.
Stable. Not supported.
Unstable in some situations. Not supported.
Highly unstable. Not supported.

59

imp imm zp zpx abs abx aby idx idy zpy rel ind
ADC ✗ $69 $65 $75 $6D $7D $79 $61 $71 ✗ ✗ ✗

AHX ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $93 ✗ ✗ ✗

ANC ✗ $0B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

$2B

AND ✗ $29 $25 $35 $2D $3D $39 $21 $31 ✗ ✗ ✗

ANE ✗ $8B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ARR ✗ $6B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ASL $0A ✗ $06 $16 $0E $1E ✗ ✗ ✗ ✗ ✗ ✗

ASR ✗ $4B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

AXS ✗ $CB ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

BCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $90 ✗

BCS ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $B0 ✗

BEQ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $F0 ✗

BIT ✗ ✗ $24 ✗ $2C ✗ ✗ ✗ ✗ ✗ ✗ ✗

BMI ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $30 ✗

BNE ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $D0 ✗

BPL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $10 ✗

BRK $00 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

BVC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $50 ✗

BVS ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ $70 ✗

CLC $18 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CLD $D8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CLI $58 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CLV $B8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CMP ✗ $C9 $C5 $D5 $CD $DD $D9 $C1 $D1 ✗ ✗ ✗

CPX ✗ $E0 $E4 ✗ $EC ✗ ✗ ✗ ✗ ✗ ✗ ✗

CPY ✗ $C0 $C4 ✗ $CC ✗ ✗ ✗ ✗ ✗ ✗ ✗

DCP ✗ ✗ $C7 $D7 $CF $DF $DB $C3 $D3 ✗ ✗ ✗

DEC ✗ ✗ $C6 $D6 $CE $DE ✗ ✗ ✗ ✗ ✗ ✗

DEX $CA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DEY $88 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

EOR ✗ $49 $45 $55 $4D $5D $59 $41 $51 ✗ ✗ ✗

INC ✗ ✗ $E6 $F6 $EE $FE ✗ ✗ ✗ ✗ ✗ ✗

INX $E8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

INY $C8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ISB ✗ ✗ $E7 $F7 $EF $FF $FB $E3 $F3 ✗ ✗ ✗

60

imp imm zp zpx abs abx aby idx idy zpy rel ind

JMP ✗ ✗ ✗ ✗ $4C ✗ ✗ ✗ ✗ ✗ ✗ $6C

JSR ✗ ✗ ✗ ✗ $20 ✗ ✗ ✗ ✗ ✗ ✗ ✗

KIL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

LAS ✗ ✗ ✗ ✗ ✗ ✗ $BB ✗ ✗ ✗ ✗ ✗

LAX ✗ ✗ $A7 ✗ $AF ✗ $BF $A3 $B3 $B7 ✗ ✗

LDA ✗ $A9 $A5 $B5 $AD $BD $B9 $A1 $B1 ✗ ✗ ✗

LDX ✗ $A2 $A6 ✗ $AE ✗ $BE ✗ ✗ $B6 ✗ ✗

LDY ✗ $A0 $A4 $B4 $AC $BC ✗ ✗ ✗ ✗ ✗ ✗

LSR $4A ✗ $46 $56 $4E $5E ✗ ✗ ✗ ✗ ✗ ✗

LXA ✗ $AB ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

NOP $EA $80 $04 $14 $0C $1C ✗ ✗ ✗ ✗ ✗ ✗

$1A $44 $34 $3C

$3A $64 $54 $5C

$5A $74 $7C

$7A $D4 $DC

$82 $F4 $FC

$89

$C2

$DA

$E2

$FA

ORA ✗ $09 $05 $15 $0D $1D $19 $01 $11 ✗ ✗ ✗

PHA $48 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PHP $08 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PLA $68 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PLP $28 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RLA ✗ ✗ $27 $37 $2F $3F $3B $23 $33 ✗ ✗ ✗

ROL $2A ✗ $26 $36 $2E $3E ✗ ✗ ✗ ✗ ✗ ✗

ROR $6A ✗ $66 $76 $6E $7E ✗ ✗ ✗ ✗ ✗ ✗

RRA ✗ ✗ $67 $77 $6F $7F $7B $63 $73 ✗ ✗ ✗

RTI $40 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RTS $60 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SAX ✗ ✗ $87 ✗ $8F ✗ ✗ $83 ✗ $97 ✗ ✗

SBC ✗ $E9 $E5 $F5 $ED $FD $F9 $E1 $F1 ✗ ✗ ✗

$EB

61

imp imm zp zpx abs abx aby idx idy zpy rel ind

SBX ✗ $CB ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SEC $38 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SED $F8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SEI $78 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SHA ✗ ✗ ✗ ✗ ✗ ✗ $9F ✗ $93 ✗ ✗ ✗

SHS ✗ ✗ ✗ ✗ ✗ ✗ $9B ✗ ✗ ✗ ✗ ✗

SHX ✗ ✗ ✗ ✗ ✗ ✗ $9E ✗ ✗ ✗ ✗ ✗

SHY ✗ ✗ ✗ ✗ ✗ $9C ✗ ✗ ✗ ✗ ✗ ✗

SLO ✗ ✗ $07 $17 $0F $1F $1B $03 $13 ✗ ✗ ✗

SRE ✗ ✗ $47 $57 $4F $5F $5B $43 $53 ✗ ✗ ✗

STA ✗ ✗ $85 $95 $8D $9D $99 $81 $91 ✗ ✗ ✗

STX ✗ ✗ $86 ✗ $8E ✗ ✗ ✗ ✗ $96 ✗ ✗

STY ✗ ✗ $84 $94 $8C ✗ ✗ ✗ ✗ ✗ ✗ ✗

TAX $AA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TAY $A8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TSX $BA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TXA $8A ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TXS $9A ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TYA $98 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

62

8.2.3 Opcode Mnemonics

$x0 $x1 $x2 $x3 $x4 $x5 $x6 $x7 $x8 $x9 $xA $xB $xC $xD $xE $xF

$0x BRK ORA KIL SLO NOP ORA ASL SLO PHP ORA ASL ANC NOP ORA ASL SLO
$1x BPL ORA KIL SLO NOP ORA ASL SLO CLC ORA NOP SLO NOP ORA ASL SLO
$2x JSR AND KIL RLA BIT AND ROL RLA PLP AND ROL ANC BIT AND ROL RLA
$3x BMI AND KIL RLA NOP AND ROL RLA SEC AND NOP RLA NOP AND ROL RLA
$4x RTI EOR KIL SRE NOP EOR LSR SRE PHA EOR LSR ALR JMP EOR LSR SRE
$5x BVC EOR KIL SRE NOP EOR LSR SRE CLI EOR NOP SRE NOP EOR LSR SRE
$6x RTS ADC KIL RRA NOP ADC ROR RRA PLA ADC ROR ARR JMP ADC ROR RRA
$7x BVS ADC KIL RRA NOP ADC ROR RRA SEI ADC NOP RRA NOP ADC ROR RRA
$8x NOP STA NOP SAX STY STA STX SAX DEY NOP TXA XAA STY STA STX SAX
$9x BCC STA KIL AHX STY STA STX SAX TYA STA TXS TAS SHY STA SHX AHX
$Ax LDY LDA LDX LAX LDY LDA LDX LAX TAY LDA TAX LAX LDY LDA LDX LAX
$Bx BCS LDA KIL LAX LDY LDA LDX LAX CLV LDA TSX LAS LDY LDA LDX LAX
$Cx CPY CMP NOP DCP CPY CMP DEC DCP INY CMP DEX AXS CPY CMP DEC DCP
$Dx BNE CMP KIL DCP NOP CMP DEC DCP CLD CMP NOP DCP NOP CMP DEC DCP
$Ex CPX SBC NOP ISC CPX SBC INC ISC INX SBC NOP SBC CPX SBC INC ISC
$Fx BEQ SBC KIL ISC NOP SBC INC ISC SED SBC NOP ISC NOP SBC INC ISC

Stable. Supported by dasm.
Stable. Not supported.
Unstable in some situations. Not supported.
Highly unstable. Not supported.

63

8.2.4 Instruction Cycle Counts

$x0 $x1 $x2 $x3 $x4 $x5 $x6 $x7 $x8 $x9 $xA $xB $xC $xD $xE $xF

$0x 7 6 ∞ 8 3 3 5 5 3 2 2 2 4 4 6 6
$1x 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7
$2x 6 6 ∞ 8 3 3 5 5 4 2 2 2 4 4 6 6
$3x 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7
$4x 6 6 ∞ 8 3 3 5 5 3 2 2 2 3 4 6 6
$5x 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7
$6x 6 6 ∞ 8 3 3 5 5 4 3 3 3 5 4 6 6
$7x 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7
$8x 2 6 2 6 3 3 3 3 2 2 2 2 4 4 4 4
$9x 2+ 6 ∞ 6 4 4 4 4 2 5 2 5 5 5 5 5
$Ax 2 6 2 6 3 3 3 3 2 2 2 2 4 4 4 4
$Bx 2+ 5+ ∞ 5+ 4 4 4 4 2 4+ 2 4+ 4+ 4+ 4+ 4+
$Cx 2 6 2 8 3 3 5 5 2 2 2 2 4 4 6 6
$Dx 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7
$Ex 2 6 2 8 3 3 5 5 2 2 2 2 4 4 6 6
$Fx 2+ 5+ ∞ 8 4 4 6 6 2 4+ 2 7 4+ 4+ 7 7

(+) add 1 cycle if branch instruction performed
(+) add 1 cycle if page boundary is crossed

∞ = Instruction never completes

64

9
68HC11 Processor

9.1 Endianness
The 68HC11 is a big-endian machine. Byte ordering in words is high, then
low.

No content yet

65

10
68705 Processor

10.1 Endianness
The 68705 is a big-endian machine. Byte ordering in words is high, then low.

No content yet

66

11
6803 Processor

11.1 Endianness
The 6803 is a big-endian machine. Byte ordering in words is high, then low.

No content yet

67

12
HD6303 Processor

12.1 Endianness
The HD6303 is a big-endian machine. Byte ordering in words is high, then
low.

12.2 Broken Opcodes Bug
The AIM, OIM, EIM, and TIM opcodes are broken. These instructions are three
bytes long according to the data sheets, yet in dasm they are treated as two
byte instructions.

These instructions are supposed to work as follows:� �
tim #$10 ,$C2
tim #$80 ,$00 ,x
 	

So there’s an immediate value and a zero-page address for these instructions!
dasm, however, only accepts these:� �

tim $10
tim $10 ,x
 	

These opcodes simply don’t fit into the "regular pattern" of 8-bit CPUs we
deal with in dasm. Fixing this will require changes to dasm beyond just fixing
the instruction table, and the parser code is not even remotely ready for this.

The "workaround" for now is to use macros instead of the actual instructions,
see ../test/broken6303hack.asm for macro templates.

68

13
F8 Processor

The F8 processor is used by the Channel F machine.

13.1 Endianness
The F8 is a big-endian machine. Byte ordering in words is high, then low.

13.1.1 Processor selection

With DASM, the target CPU is selected with the PROCESSOR directive
inside the source file that should be assembled. The F8 CPU is selected like
this:� �

processor f8
processor F8 ; case insensitive
 	

13.1.2 Expressions with parentheses

Some of DASM’s backends, for instance the one for the 6502, don’t allow
parentheses in expressions that are part of a mnemonic’s operand, because
parentheses are used in the 6502’s assembly language to denote indirect
addressing. Instead, you have to use brackets.

This is not the case with the F8 backend. Both parentheses and brackets can
be used everywhere, so the following lines are parsed and assembled correctly:� �

as (2+2)*2 ; Assembles to $c8
as [2+2]*2 ; Assembles to $c8
 	

69

13.1.3 Data definition directives

Since DS is an F8 instruction (decrement scratchpad register), the DS directive
isn’t available anymore if dasm assembles F8 code. Instead, use the RES
directive, which works just like the DS directive:� �

ds.b 4,$33 ; Would assemble to $33 $33 $33 $33 ,
; but isn ’t available in F8 mode

res.b 4,$33 ; Assembles to $33 $33 $33 $33
 	
Of course RES.W and RES.L do exist as well.

For source code compatibility with f8tool (another F8 assembler), some
additional data definition directives are available : DB, DW and DD. These
work just like DC.B, DC.W and DC.L:� �

dc.b $f8 ; Assembles to $f8
db $f8 ; Assembles to $f8
 	

13.1.4 Special register names

For some of the special registers, multiple names are accepted:

Register Accepted Names
DC0 DC, DC0
PC0 P0, PC0
PC1 P, PC1
J J, Any expression that evaluates to 9

(This may seem strange, but J is really
just an alias for scratchpad register 9)

The names DC, P0, P and J are standard syntax, the other forms have been
introduced for compatibility with other assemblers.

Thus, the following lines assemble all correctly:

70

� �
lr h,dc ; Assembles to $11
lr h,dc0 ; Assembles to $11
lr p0,q ; Assembles to $0d
lr pc0 ,q ; Assembles to $0d
lr p,q ; Assembles to $09
lr pc1 ,q ; Assembles to $09
lr w,j ; Assembles to $1d
lr w,3*3 ; Assembles to $1d
 	

13.1.5 Scratchpad register access

There are several ways to access scratchpad registers:

Access Mode Accepted Syntax

Direct access to registers 0..11 Any expression that evaluates to 0..11

Access via ISAR S, (IS), any expression that evaluates to 12

Access via ISAR, ISAR incremented I, (IS)+, any expression that evaluates to 13

Access via ISAR, ISAR decremented D, (IS)-, any expression that evaluates to 14

The (IS), (IS)+ and (IS)- forms are not standard syntax and have been
mainly introduced for compatibility with f8tool.

For some of the directly accessible scratchpad registers aliases exist:

Register Alias Name
9 J

10 HU

11 HL

Originally, J was only used with the LR instruction when accessing the flags,
but since J is just an alias for register 9, J can also be used in normal
scratchpad register operations.

The following lines assemble all correctly

71

� �
xs 2+2 ; Assembles to $e4
xs s ; Assembles to $ec
xs (is) ; Assembles to $ec
xs 12 ; Assembles to $ec
xs i ; Assembles to $ed
xs (is)+ ; Assembles to $ed
xs 13 ; Assembles to $ed
xs d ; Assembles to $ee
xs (is)- ; Assembles to $ee
xs 14 ; Assembles to $ee
xs 9 ; Assembles to $e9
xs j ; Assembles to $e9
xs hu ; Assembles to $ea
xs hl ; Assembles to $eb
 	

13.1.6 No instruction optimizations are done

The assembler doesn’t optimize instructions where a smaller instruction could
be used. It won’t optimize between OUT/OUTS, IN/INS and LI/LIS.

For instance, the following line assembles to $20 $00, even though the LIS
instruction could be used, which would need only one byte.� �

li 0 ; Assembles to $20 $00
 	

72

14
MC68HC908 Processor

14.1 Endianness
The MC68HC908 is a big-endian machine. Byte ordering in words is high, then
low.

No content yet

73

15
Machines

dasm supports specific machines and processors through the provision of
companion source-code files that can assist with programming each platform.
These files are located in the machines subdirectory. Machine-specific
support is provided for...

• Atari 2600

• Atari 7800

• Channel F

• 68hc11

• 68hc908

15.1 Atari 2600
The Atari 2600 is a game console from 1977 that uses a 6507 processor.
This processor is similar to the 6502 processor (supported by dasm). The
difference in the processors is the number of hardware address lines on the
chips; these being 16 on the 6502, and 13 on the 6507. Thus, the 6502 can
directly address 64 KiB of memory and the 6507 only 8 KiB of memory.
From the point of view of dasm, the machines are identical, as the 6502 and
6507 share a common instruction set.

15.1.1 Processor selection

The target CPU is selected with PROCESSOR as the first directive inside the
source file that should be assembled.

74

� �
processor 6502
 	

15.1.2 Support Files

The Atari 2600 is explicitly supported with two files generally included in
most programs for that machine.

vcs.h

Contains the standardised register definitions for the RIOT and TIA chips,
defined with uninitialised segments. The implementation allows relocation
of the TIA base address to a shadow register address.

macro.h

Contains some useful macros.

15.2 Atari 7800
The Atari 7800 ProSystem, or simply the Atari 7800, is a home video game
console officially released by the Atari Corporation in 1986. It is almost fully
backward-compatible with the ??. It uses a variant of the 6502 processor.

15.2.1 Processor selection

The target CPU is selected with PROCESSOR as the first directive inside the
source file that should be assembled.� �

processor 6502
 	
15.2.2 Support Files

The Atari 7800 is explicitly supported with two files generally included in
most programs for that machine.

vcs.h

Contains the standardised register definitions.

75

macro.h

Contains some useful macros.

15.3 Channel F
No content yet

See F8 Processor

76

16
Legal

16.1 Authorship

16.1.1 dasm

The dasm Macro Assembler is...

• Copyright ©1988-2002 by Matthew Dillon.

• Copyright ©1995 by Olaf "Rhialto" Seibert.

• Copyright ©2003-2008 by Andrew Davie.

• Copyright ©2008 by Peter H. Froehlich.

• Copyright ©2019-2020 by the DASM team.

16.1.2 Manual

This manual is authored by Andrew Davie and is...

• Copyright ©2020 by the DASM team.

77

16.2 License
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see https://www.gnu.org/licenses/

78

https://www.gnu.org/licenses/

	Introduction
	About
	Home
	Features
	Conventions in this Document
	SI Units
	Format Description

	Assembler Passes

	Source Code
	Encoding
	Comments
	Assembler-style Comments: ;...
	C-style Comments: /* ... */
	Commenting Out Large Blocks

	Command-Line
	Usage
	Format
	Spaces in Filenames
	Options

	Options
	-d Debug
	-D Define Symbol
	-E Error Format
	-f Output Format
	-F Define Symbol
	-I Include Directory
	-l Listing Filename
	-L Listing Filename (all Passes)
	-M Define Symbol
	-m Maximum Output File Size
	-o Output File
	-p Number of Passes
	-P Number of Passes (Fewer Checks)
	-R Remove Output File
	-s Symbol Table File
	-S Strict Syntax Checking
	-T Sort Symbol Table
	-v Verbosity Level

	Numbers, Expressions and Operators
	Constants
	Magnitude
	Base Representation

	Expressions
	Brackets

	Operators
	Operator Precedence

	Symbols
	Why-Codes

	Symbols and Labels
	Labels
	Local Labels
	Dynamic Labels
	Deprecated Form

	Directives
	Includes
	INCBIN
	INCDIR
	INCLUDE

	Assignments
	EQU, =
	EQM
	SET
	SETSTR

	Data
	DC
	DS
	DV
	HEX
	RES

	Conditionals
	IFCONST
	IFNCONST
	IF
	ELSE
	ENDIF, EIF

	Code Generation
	REPEAT
	REPEND

	Structure
	ORG
	RORG
	REND
	SEG
	ALIGN

	Control
	PROCESSOR
	ECHO
	SUBROUTINE
	ERR
	LIST
	.FORCE

	Macros
	Usage
	MAC, MACRO
	ENDM
	MEXIT

	6502 Processor
	Endianness
	Illegal Opcodes
	Abbreviations and Colours used in Tables
	Mnemonics, and Opcodes for Addressing Modes
	Opcode Mnemonics
	Instruction Cycle Counts

	68HC11 Processor
	Endianness

	68705 Processor
	Endianness

	6803 Processor
	Endianness

	HD6303 Processor
	Endianness
	Broken Opcodes Bug

	F8 Processor
	Endianness
	Processor selection
	Expressions with parentheses
	Data definition directives
	Special register names
	Scratchpad register access
	No instruction optimizations are done

	MC68HC908 Processor
	Endianness

	Machines
	Atari 2600
	Processor selection
	Support Files

	Atari 7800
	Processor selection
	Support Files

	Channel F

	Legal
	Authorship
	dasm
	Manual

	License

