{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Frequencies of words in novels: a Data Science pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this code-along session, you will use some basic Natural Language Processing to plot the most frequently occurring words in the novel _Moby Dick_. In doing so, you'll also see the efficacy of thinking in terms of the following Data Science pipeline with a constant regard for process:\n", "1. State your question;\n", "2. Get your data;\n", "3. Wrangle your data to answer your question;\n", "4. Answer your question;\n", "5. Present your solution so that others can understand it.\n", "\n", "For example, what would the following word frequency distribution be from?\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pre-steps\n", "\n", "Follow the instructions in the README.md to get your system set up and ready to go." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. State your question\n", "\n", "What are the most frequent words in the novel _Moby Dick_ and how often do they occur?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Get your data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Your raw data is the text of Melville's novel _Moby Dick_. We can find it at [Project Gutenberg](https://www.gutenberg.org/). \n", "\n", "**TO DO:** Head there, find _Moby Dick_ and then store the relevant url in your Python namespace:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Store url\n", "url = 'https://www.gutenberg.org/files/2701/2701-h/2701-h.htm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "You're going to use [`requests`](http://docs.python-requests.org/en/master/) to get the web data.\n", "You can find out more in DataCamp's [Importing Data in Python (Part 2) course](https://www.datacamp.com/courses/importing-data-in-python-part-2). \n", "\n", "\n", "\n", "According to the `requests` package website:\n", "\n", "> Requests is one of the most downloaded Python packages of all time, pulling in over 13,000,000 downloads every month. All the cool kids are doing it!\n", "\n", "You'll be making a `GET` request from the website, which means you're _getting_ data from it. `requests` make this easy with its `get` function. \n", "\n", "**TO DO:** Make the request here and check the object type returned." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "requests.models.Response" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import `requests`\n", "import requests\n", "\n", "# Make the request and check object type\n", "r = requests.get(url)\n", "type(r)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a `Response` object. You can see in the [`requests` kickstart guide](http://docs.python-requests.org/en/master/user/quickstart/) that a `Response` object has an attribute `text` that allows you to get the HTML from it! \n", "\n", "**TO DO:** Get the HTML and print the HTML to check it out:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Extract HTML from Response object and print\n", "html = r.text\n", "#print(html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK! This HTML is not quite what you want. However, it does _contain_ what you want: the text of _Moby Dick_. What you need to do now is _wrangle_ this HTML to extract the novel. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have now scraped the web to get _Moby Dick_ from Project Gutenberg.\n", "\n", "**Up next:** it's time for you to parse the html and extract the text of the novel." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Wrangle your data to answer the question" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Part 1: getting the text from the HTML" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Here you'll use the package [`BeautifulSoup`](https://www.crummy.com/software/BeautifulSoup/). The package website says:\n", "\n", "\n", "\n", "\n", "**TO DO:** Create a `BeautifulSoup` object from the HTML." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "bs4.BeautifulSoup" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import BeautifulSoup from bs4\n", "from bs4 import BeautifulSoup\n", "\n", "\n", "# Create a BeautifulSoup object from the HTML\n", "soup = BeautifulSoup(html, \"html5lib\")\n", "type(soup)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From these soup objects, you can extract all types of interesting information about the website you're scraping, such as title:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", " Moby Dick; Or the Whale, by Herman Melville\n", " " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get soup title\n", "soup.title" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or the title as a string:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\n Moby Dick; Or the Whale, by Herman Melville\\n '" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get soup title as string\n", "soup.title.string" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or all URLs found within a page’s < a > tags (hyperlinks):" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[ ETYMOLOGY. ,\n", " EXTRACTS (Supplied by a Sub-Sub-Librarian).\n", " ,\n", " CHAPTER 1. Loomings. ,\n", " CHAPTER 2. The Carpet-Bag. ,\n", " CHAPTER 3. The Spouter-Inn. ,\n", " CHAPTER 4. The Counterpane. ,\n", " CHAPTER 5. Breakfast. ,\n", " CHAPTER 6. The Street. ]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get hyperlinks from soup and check out first 10\n", "soup.findAll('a')[:8]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What you want to do is to extract the text from the `soup` and there's a souper helpful `.get_text()` method precisely for this. \n", "\n", "**TO DO:** Get the text, print it out and have a look at it. Is it what you want?" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Get the text out of the soup and print it\n", "text = soup.get_text()\n", "#print(text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that this is now nearly what you want. You'll need to do a bit more work." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have scraped the web to get _Moby Dick_ from Project Gutenberg;\n", "* you have also now parsed the html and extracted the text of the novel.\n", "\n", "**Up next:** you'll use Natural Language Processing, tokenization and regular expressions to extract the list of words in _Moby Dick_." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Part 2: Extract words from your text using NLP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You'll now use `nltk`, the Natural Language Toolkit, to\n", "\n", "1. Tokenize the text (fancy term for splitting into tokens, such as words);\n", "2. Remove stopwords (words such as 'a' and 'the' that occur a great deal in ~ nearly all English language texts.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Step 1: Tokenize\n", "\n", "You want to tokenize your text, that is, split it into a list a words.\n", "\n", "To do this, you're going to use a powerful tool called _regular expressions_, or _regex_.\n", "\n", "* Example: you have the string 'peter piper picked a peck of pickled peppers' and you want to extract from the list of _all_ words in it that start with a 'p'. \n", "\n", "The regular expression that matches all words beginning with 'p' is 'p\\w+'. Let's unpack this: \n", "\n", "* the 'p' at the beginning of the regular expression means that you'll only match sequences of characters that start with a 'p';\n", "* the '\\w' is a special character that will match any alphanumeric A-Z, a-z, 0-9, along with underscores;\n", "* The '+' tells you that the previous character in the regex can appear as many times as you want in strings that you're trying to match. This means that '\\w+' will match arbitrary sequences of alphanumeric characters and underscores.\n", "\n", "**You'll now use the built-in Python package `re` to extract all words beginning with 'p' from the sentence 'peter piper picked a peck of pickled peppers' as a warm-up.**\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['peter', 'piper', 'pick', 'peck', 'pickled', 'peppers']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import regex package\n", "import re\n", "\n", "# Define sentence\n", "sentence = 'peter piper pick a peck of pickled peppers'\n", "\n", "# Define regex\n", "ps = 'p\\w+'\n", "\n", "\n", "# Find all words in sentence that match the regex and print them\n", "re.findall(ps, sentence)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This looks pretty good. Now, if 'p\\w+' is the regex that matches words beginning with 'p', what's the regex that matches all words?\n", "\n", "**It's your job to now do this for our toy Peter Piper sentence above.**" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['peter', 'piper', 'pick', 'a', 'peck', 'of', 'pickled', 'peppers']" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Find all words and print them\n", "re.findall('\\w+', sentence)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TO DO:** use regex to get all the words in _Moby Dick_:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Moby', 'Dick', 'Or', 'the', 'Whale', 'by', 'Herman', 'Melville']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Find all words in Moby Dick and print several\n", "tokens = re.findall('\\w+', text)\n", "tokens[:8]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have scraped the web to get _Moby Dick_ from Project Gutenberg;\n", "* you have parsed the html and extracted the text of the novel;\n", "* you have used tokenization and regular expressions to extract the list of words in _Moby Dick_.\n", "\n", "**Up next:** extract the list of words in _Moby Dick_ using `nltk`, the Natural Language Toolkit.\n", "\n", "Go get it!" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Moby', 'Dick', 'Or', 'the', 'Whale', 'by', 'Herman', 'Melville']" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import RegexpTokenizer from nltk.tokenize\n", "from nltk.tokenize import RegexpTokenizer\n", "\n", "# Create tokenizer\n", "tokenizer = RegexpTokenizer('\\w+')\n", "\n", "\n", "\n", "# Create tokens\n", "tokens = tokenizer.tokenize(text)\n", "tokens[:8]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TO DO:** Create a list containing all the words in _Moby Dick_ such that all words contain only lower case letters. You'll find the string method `.lower()` handy:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['moby', 'dick', 'or', 'the', 'whale', 'by', 'herman', 'melville']" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Initialize new list\n", "words = []\n", "\n", "\n", "# Loop through list tokens and make lower case\n", "for word in tokens:\n", " words.append(word.lower())\n", "\n", "\n", "# Print several items from list as sanity check\n", "words[:8]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have scraped the web to get _Moby Dick_ from Project Gutenberg;\n", "* you have parsed the html and extracted the text of the novel;\n", "* you have used tokenization and regular expressions to extract the list of words in _Moby Dick_.\n", "\n", "**Up next:** remove common words such as 'a' and 'the' from the list of words." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Step 2: Remove stop words\n", "\n", "It is common practice to remove words that appear alot in the English language such as 'the', 'of' and 'a' (known as stopwords) because they're not so interesting. For more on all of these techniques, check out our [Natural Language Processing Fundamentals in Python course](https://www.datacamp.com/courses/nlp-fundamentals-in-python). \n", "\n", "The package `nltk` has a list of stopwords in English which you'll now store as `sw` and print the first several elements of.\n", "\n", "If you get an error here, run the command `nltk.download('stopwords')` to install the stopwords on your system." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['i', 'me', 'my', 'myself', 'we']" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import nltk\n", "import nltk\n", "\n", "# Get English stopwords and print some of them\n", "sw = nltk.corpus.stopwords.words('english')\n", "sw[:5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You want the list of all words in `words` that are *not* in `sw`. One way to get this list is to loop over all elements of `words` and add the to a new list if they are *not* in `sw`:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "['moby', 'dick', 'whale', 'herman', 'melville']" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Initialize new list\n", "words_ns = []\n", "\n", "# Add to words_ns all words that are in words but not in sw\n", "for word in words:\n", " if word not in sw:\n", " words_ns.append(word)\n", "\n", "# Print several list items as sanity check\n", "words_ns[:5]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have scraped the web to get _Moby Dick_ from Project Gutenberg;\n", "* you have parsed the html and extracted the text of the novel;\n", "* you have used tokenization and regular expressions to extract the list of words in _Moby Dick_.\n", "* you have removed common words such as 'a' and 'the' from the list of words.\n", "\n", "**Up next:** plot the word frequency distribution of words in _Moby Dick_." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Answer your question" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "Our question was 'What are the most frequent words in the novel Moby Dick and how often do they occur?' \n", "\n", "You can now plot a frequency distribution of words in _Moby Dick_ in two line of code using `nltk`. To do this,\n", "\n", "* Create a frequency distribution object using the function `nltk.FreqDist()`;\n", "* Using the plot method of the resulting object." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEgCAYAAACuDOSlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8S/f/B/DXSdKktxS9KlraUlp0q7bulxljhqGstBT7\nzr7M2Beby4y6jJlt+rOZMWa2VSmGzWbYUJeiLnVvUa1bq9qm9zZt01zO749IpqS5aZJe3s/Hw6PN\n6fnkvKNp3udzZ1iWZUEIIYQ8g2PpAAghhNRNlCAIIYRoRAmCEEKIRpQgCCGEaEQJghBCiEaUIAgh\nhGjEs3QAtUkkKjW6bHp6Cnx8/E1axhzXoLgorroWlzFlKC7Tx/U0FxehxuNUg3hCIqk0eRlzXMOY\nMhQXxVXXylBcpo9LH5QgCCGEaEQJghBCiEaUIAghhGhECYIQQohGlCAIIYRoRAmCEEKIRpQgADzI\nLkVhmdzSYRBCSJ3SoCbKGUMmV2BlzEXYChj0DGHBMIylQyKEkDqh0dcguBwGAisuSsoVKCqrsnQ4\nhBBSZzT6BMEwDDxc7QEAD3KMX6qDEEIamkafIACgdXPlOiQPKUEQQogaJQgAnm6qBFFm4UgIIaTu\noASBfxPEg2yqQRBCiAolCADujrbgcYH8kkqUVUgtHQ4hhNQJJk0QV69eRWRkJADg5s2biIiIQGRk\nJN555x3k5eUBAHbt2oXQ0FCEhYUhPj4eAFBZWYmZM2ciIiIC7777LgoKCkwZJjgcBi4OXABABvVD\nEEIIABMmiM2bN2PRokWQSCQAgJUrV2Lx4sWIiYnBa6+9hs2bN0MkEiEmJgZxcXHYsmULoqOjUVVV\nhR07dsDX1xfbt2/HyJEj8d1335kqTDXXJsoE8YD6IQghBIAJE4SnpyfWrVunfhwdHQ0/Pz8AgFwu\nh0AgwLVr1xAYGAg+nw+hUAhPT0/cunULSUlJ6NOnDwCgb9++OHv2rKnCVHN7kiBoJBMhhCgxLMuy\npnryzMxMzJkzB7t27VIfu3TpEj755BPExsbi1KlTSE1Nxdy5cwEA8+bNw8iRI7Fp0yYsXrwYPj4+\nUCgUeOWVV3Dy5Emd10tMPGf0zkrZRTJsO1kGR3sO/vOqg1HPQQgh9VG/fv00HjfrUht//fUXNmzY\ngE2bNsHR0RH29vYQi8Xqn4vFYgiFwmrHxWIxHBz0+8B+kT1ZZdeTwOUwKBQr4NP2JQj4XJ1lUlIu\nwd+/i97XMPR8c5WhuCiuulaG4jJ9XPow2yim33//Hdu2bUNMTAw8PDwAAAEBAUhKSoJEIkFpaSnS\n09Ph6+uLLl264MSJEwCAkydPIigoyOTx8bgM3J3swLJAhoj6IQghxCw1CLlcjpUrV8Ld3R0zZ84E\nAISEhOCDDz5AZGQkIiIiwLIsZs+eDYFAgPDwcMyfPx/h4eGwsrLCmjVrzBEmWrvZI1NUhoc5pWjb\nsolZrkkIIXWVSRNEq1at1P0P58+f13hOWFgYwsLCqh2zsbHBN998Y8rQNPJsLsTpG9nUUU0IIaCJ\nctW0Vs2opqGuhBBCCeJpqlVdH4nKIJMrLBwNIYRYFiWIp9gIeHBrZgOZnEVWnlh3AUIIacAoQTyD\nVnYlhBAlShDP8HSjzYMIIQSgBPGc1m60eRAhhACUIJ6jbmLKLYPCdKuQEEJInUcJ4hkOdnw0Ewog\nqZJDVFhh6XAIIcRiKEFo4OlK/RCEEEIJQgP1FqSUIAghjRglCA1aN6ehroQQQglCA9VQ14c5pTDh\ndhmEEFKnUYLQwMnBGnbWPJSWS1FYKrF0OIQQYhGUIDRgGIZmVBNCGj1KEDWgCXOEkMaOEkQNaMkN\nQkhjRwmiBp5UgyCENHKUIGrQ3NEWfCsO8kskKKuQWjocQggxO0oQNeBwGPUGQlSLIIQ0RpQgtKAZ\n1YSQxowShBataagrIaQRowShBQ11JYQ0ZpQgtGjhbAcuh0F2fjkqq2SWDocQQsyKEoQWVjwOWjjb\ngQWQmSu2dDiEEGJWlCB0oAlzhJDGihKEDtQPQQhprChB6EBDXQkhjRUlCB08XO3BAHgkEkMmV1g6\nHEIIMRtKEDrYCHhwdbSFXMEiK486qgkhjQclCD20po5qQkgjRAlCD+qVXbNpRjUhpPGgBKEH9VDX\nXKpBEEIaD0oQelDVIDJyyqBgWQtHQwgh5mHSBHH16lVERkYCAB48eIDw8HBERERgyZIlUCiUI4J2\n7dqF0NBQhIWFIT4+HgBQWVmJmTNnIiIiAu+++y4KCgpMGaZODrZ8NBMKIJHKkVNQbtFYCCHEXEyW\nIDZv3oxFixZBIpEAAFatWoVZs2Zh+/btYFkWR48ehUgkQkxMDOLi4rBlyxZER0ejqqoKO3bsgK+v\nL7Zv346RI0fiu+++M1WYeqOVXQkhjY3JEoSnpyfWrVunfpycnIyuXbsCAPr27YszZ87g2rVrCAwM\nBJ/Ph1AohKenJ27duoWkpCT06dNHfe7Zs2dNFabeVP0QNKOaENJY8Ez1xIMHD0ZmZqb6McuyYBgG\nAGBnZ4fS0lKUlZVBKBSqz7Gzs0NZWVm146pz9ZGengKJpNLomFNSLtX4M06VctvRlLtZSHEr0auM\nodewZBmKi+Kqa2UoLtPHpdKvXz+Nx02WIJ7F4fxbWRGLxXBwcIC9vT3EYnG140KhsNpx1bn68PHx\nNzq+lJRL8PfvUuPP3VpW4rcLZ5BfxsDPLxAMw+gsY+g1LFWG4qK46loZisv0cenDbKOY/P39ce7c\nOQDAyZMnERwcjICAACQlJUEikaC0tBTp6enw9fVFly5dcOLECfW5QUFB5gqzRo4OAthZ81BWIUVh\nqcTS4RBCiMmZLUHMnz8f69atw9ixYyGVSjF48GC4uLggMjISERERmDRpEmbPng2BQIDw8HDcuXMH\n4eHh2LlzJ2bMmGGuMGvEMAxaN6eF+wghjYdJm5hatWqFXbt2AQC8vLywbdu2584JCwtDWFhYtWM2\nNjb45ptvTBmaUTzdhEi5X4iHOWUIbOdi6XAIIcSkaKKcAdQzqrOpBkEIafgoQRhAPReCltwghDQC\nlCAM4NbMFgIrLgpKJCgtr7J0OIQQYlKUIAzA4TDwcFVNmKMZ1YSQho0ShIFoRjUhpLGgBGEg2qOa\nENJYUIIwEC3aRwhpLChBGKilix24HAY5BeWoktHeEISQhosShIF4XA5aOtuBBSAqlls6HEIIMRlK\nEEZQ9UPklFCCIIQ0XJQgjKBakymnSGbhSAghxHQoQRjBu4Vy+fHHhVSDIIQ0XJQgjODhag8rHgcF\nZQqUVUgtHQ4hhJgEJQgj8LgctHnSzHQ3q9jC0RBCiGlQgjCST8smAIC0RyU6ziSEkPqJEoSRfJ70\nQ1ANghDSUFGCMJKqBnE3qwQKBU2YI4Q0PJQgjNTUXgAHGwaVVXJk5YktHQ4hhNQ6ShAvoIWjcsfW\nNGpmIoQ0QJQgXkCLZsoEkf6IEgQhpOGhBPEC3JtxAQDpNJKJENIAUYJ4Aa5NuLDicZBdUE4T5ggh\nDQ4liBfA5TA0YY4Q0mBRgnhBNGGOENJQUYJ4QTRhjhDSUFGCeEE0YY4Q0lBRgnhBTe0FcHKwpglz\nhJAGhxJELfBpqWxmoglzhJCGRO8EkZubCwC4ePEiYmNjUV5ebrKg6htVMxNNmCOENCR6JYglS5Zg\nw4YNSEtLw4cffojk5GTMnz/f1LHVG23VCYJGMhFCGg69EsT169cRFRWFgwcPYsyYMfjss8+QlZVl\n6tjqDdUOczRhjhDSkOiVIORyORQKBY4ePYq+ffuioqICFRUVpo6t3qAd5gghDZFeCWLkyJHo3bs3\nWrZsiZdeegmhoaEYO3asqWOrV2jCHCGkoeHpc1Lv3r0xceJEcLnKxeliY2Px8OFDgy8mlUqxYMEC\nPHr0CBwOB59++il4PB4WLFgAhmHQrl07LFmyBBwOB7t27UJcXBx4PB7ee+899O/f3+DrmRNNmCOE\nNDRaE0RSUhIUCgUWLVqElStXgmWVE8FkMhmWLl2Kw4cPG3SxEydOQCaTIS4uDqdPn8batWshlUox\na9YsdOvWDVFRUTh69ChefvllxMTEYM+ePZBIJIiIiECvXr3A5/ONf6Um9uyEOQ6HsXBEhBDyYrQm\niDNnzuD8+fPIzc3F119//W8hHs+oJiYvLy91f0ZZWRl4PB6uXLmCrl27AgD69u2L06dPg8PhIDAw\nEHw+H3w+H56enrh16xYCAgIMvqa5qCbM5ZdUIitPjFau9pYOiRBCXgjDqqoFWvz2228YOXLkC1/s\n8ePHmD59OsrLy1FYWIiNGzfigw8+QEJCAgDg7Nmz2LNnD/r06YPU1FTMnTsXADBv3jyMHDkSPXv2\n1Pr8iYnnIJFUvnCcxvozSYxbj6R4LcAGL7URWCwOQggxRL9+/TQe16sPIiQkBKtXr0ZxcTGezier\nVq0yKIiffvoJvXv3xocffojHjx9j0qRJkEr/HRYqFovh4OAAe3t7iMXiaseFQqHO5/fx8Tconqel\npFyCv3+XFyrzqDwDtx7dQTnbBP7+z8dSG9cwRRmKi+Kqa2UoLtPHpQ+9EsSsWbMQHByM4OBgMIzx\nbesODg6wsrICADRp0gQymQz+/v44d+4cunXrhpMnT6J79+4ICAjA2rVrIZFIUFVVhfT0dPj6+hp9\nXXOhCXOEkIZErwQhk8lqZeb05MmTsXDhQkREREAqlWL27Nno1KkTFi9ejOjoaHh7e2Pw4MHgcrmI\njIxEREQEWJbF7NmzIRDU/SabZyfM2dtYWTokQggxml4JIigoCMeOHUPv3r1faCSRnZ1dtc5ulW3b\ntj13LCwsDGFhYUZfyxJUE+buZBbjblYxAnycLR0SIYQYTa8EcejQoec+xBmGwc2bN00SVH3m07IJ\n7mQWI+1RCSUIQki9pleCUI0yIrrRhDlCSEOhV4L49ttvNR6fMWNGrQbTENCEOUJIQ2HwhkFSqRTH\njh1Dfn6+KeKp92iHOUJIQ6FXDeLZmsL777+P//znPyYJqCHwaemA/JJKpGUV04xqQki9ZdSWo2Kx\nmPaD0IJ2mCOENAR61SBeffVV9QQ5lmVRUlKCd955x6SB1Wc0YY4Q0hDolSBiYmLU3zMMo14Og2hG\nE+YIIQ2BXgmiRYsW2LFjBxITEyGTydC9e3dMmDABHI5RLVQNHk2YI4Q0BHp9wn/xxRdISEjAiBEj\nEBoaisTERIMX6mtsaIc5Qkh9p1cN4vTp0/jtt9/UNYZXXnkFw4cPN2lg9R1NmCOE1Hd61SDkcjlk\nMlm1x6rtR4lmz06YI4SQ+kavGsTw4cMxceJEDB06FABw4MABDBs2zKSB1Xe0wxwhpL7TmSCKi4sR\nFhYGPz8/JCYm4ty5c5g4cWKt7DDX0NGEOUJIfaa1iSklJQVDhw7FjRs30K9fP8yfPx+9e/fGmjVr\ncOvWLXPFWG/RhDlCSH2mNUGsXr0aa9asQd++fdXH5syZg88++wyff/65yYOr72jCHCGkPtOaIEpK\nStCtW7fnjvfp0weFhYUmC6qheHbCHCGE1CdaE4RMJoNCoXjuuEKhgFRKH3i6qCbMATTclRBS/2hN\nECEhIRr3gvjuu+/QqVMnkwXVkNCEOUJIfaV1FNOcOXPw3//+F3/88Qc6d+4MlmWRkpICR0dHbNiw\nwVwx1mtPT5jrQCtuEELqEa0Jwt7eHrGxsUhMTMTNmzfB4XAwfvx4BAcHmyu+eq/ahLnONNSVEFJ/\n6JwHwTAMevTogR49epgjngbn6Qlz+aXP9+cQQkhdRcuxmoFPS2UzU1aBTMeZhBBSd1CCMANVM1NW\nodzCkRBCiP4oQZiBasLc40KqQRBC6g9KEGagmjBXUKagCXOEkHqDEoQZ8LgceD2ZMHc0KdPC0RBC\niH4oQZjJsF5tAAD7E+7hWnq+ZYMhhBA9UIIwk05eTujV3hosgM1/JENUVGHpkAghRCtKEGbU3VeA\nl3ycIK6UYf2+66iS0qgmQkjdRQnCjBiGwbvD/eHa1AYPc8oQ8/dtsCxtR0oIqZsoQZiZrbUVpo/q\nBD6Pg9PXs3HiSpalQyKEEI0oQViAp5sQk17vAACI/ScV6bQUOCGkDjJ7gvj+++8xduxYhIaGYvfu\n3Xjw4AHCw8MRERGBJUuWqPef2LVrF0JDQxEWFob4+Hhzh2lyPTo1x4AurSBXsPhu3w2UlFdZOiRC\nCKnGrAni3LlzuHz5Mnbs2IGYmBhkZ2dj1apVmDVrFrZv3w6WZXH06FGIRCLExMQgLi4OW7ZsQXR0\nNKqqGt4H6NgBbeHT0gGFpRJ8/3sy5Bo2ZyKEEEsxa4JISEiAr68v3n//fUybNg2vvPIKkpOT0bVr\nVwBA3759cebMGVy7dg2BgYHg8/kQCoXw9PTErVu3zBmqWfC4HEwf2RkOtla4+aAQe0/etXRIhBCi\nxrBmHEazaNEiZGVlYePGjcjMzMR7770HsViMhIQEAMDZs2exZ88e9OnTB6mpqZg7dy4AYN68eRg5\nciR69uyp9fkTE89BIqk0+euobRl5Muw6WwaWBd4MtoVvC76lQyKENCL9+vXTeFznfhC1qWnTpvD2\n9gafz4e3tzcEAgGys7PVPxeLxXBwcIC9vT3EYnG140KhUOfz+/j4Gx1bSsol+Pt3MWmZms73BwDr\nh9h5LA1/X5OgW2BnuDvZWTwuS5ehuBpGXMaUobhMH5c+zNrEFBQUhFOnToFlWeTk5KCiogI9evTA\nuXPnAAAnT55EcHAwAgICkJSUBIlEgtLSUqSnp8PX19ecoZrdoBAPBHdwRWWVHOv33UBlFa38Sgix\nLLPWIPr3748LFy5gzJgxYFkWUVFRaNWqFRYvXozo6Gh4e3tj8ODB4HK5iIyMREREBFiWxezZsyEQ\nCMwZqtkxDIO3h3TAI1EZsvLE2PrXLUwb0dHSYRFCGjGzJghA2Z/wrG3btj13LCwsDGFhYeYIqc6w\nEfAwI7QzPv35Ii7cyoVPCwe0om2sCSEWQhPl6hh3Jzu8M9QPALArPh0Z+dTURAixDEoQdVBQe1cM\n6eYJBcti37kynLyaRWs2EULMjhJEHRXazxshHVxRJQN+OngL0TuvIL+4/g3hJYTUX5Qg6iguh4Np\nIzpiaBdb2FnzkHy/EIu3nMPxK4+oNkEIMQtKEHUYwzDwa8XHine7I8jXBZVVcvxy6DbW7LyCPNpw\niBBiYpQg6oEmdnxMH9UJ00Z0hL2NFVLuF2Lxj+cRfykTCqpNEEJMhBJEPcEwDLr6uWHFlG4I7uAK\nSZUcMX+n4qsdl2n7UkKISVCCqGcc7PiYPrIT3hvZCUJbK9x6WISoLedxNIlqE4SQ2kUJop4K6eCK\nT6d0Q1c/V0ikcsT+k4ovt19GbmG5pUMjhDQQZp9JTWqPgy0f00Z0QkiHXMQcvo3bGUWI+vE8PJw4\nuJKVCpcmNnBuaq3+as2nXzchRH/0idEABLV3RXvPZtj+TyoSU3KQnq1Aenbmc+fZ21jBpakNXJpa\nw/mp5FFQKkd+cSWsrDiw4nJgxeOAy2HAMIwFXg0hpK6gBNFA2NtY4b9vdsTQnm1w/sp1WAvdkVdU\nCVFxBfKKKpFXXImyCinKKqS497jk+SeIP1PtIcMAfB4XVjxlwlAlDtU/B34lvHxksBHQW4iQhor+\nuhuYls52aN+CD3//1tWOK1gWxWVVyCuugKioolryyC0oAThWkMoUkMoVkEoVULAsJFI5JFJ5jdfK\n2HoB777pD58WTUz9sgghFkAJopHgMAyaCQVoJhSgXaum1X6mabMRuUIBqUyBKpkCMtm/30tlCogr\npdh26DpyiyqwKuYSRvRug6E92oDDoSYpQhoSShBEIy6HAy6fA+sadj8d30eImyIHHD6fgX2n7uHG\nvQK8O9wfzk1szBsoIcRkaJgrMQqPy2Dsq+3w4diX0cSejzuZxVjy4wUkpmTrLkwIqRcoQZAX0tHL\nEcv/0xWB7ZxRIZFh0/4UbP4jGRUS2seCkPqOEgR5YUJbPmaEdsbE19uDz+PgbHIOlvx4HmmZxZYO\njRDyAihBkFrBMAxeebkllrwdgtZuQuQVV+Lz2Ev4PeEe5AqFpcMjhBiBEgSpVe5OdvhkYhCGdPME\ny7L4PeEePo+9RAsKElIPUYIgtY7H5eCt/m3x0biX0UwoQPqjEiz58TxO3axAWmYxFApaVJCQ+oCG\nuRKT8WvjiGX/6YqfD91C0m0Rzt2R49ydJNjbWKGTtyMCvJ3QydsJ9jZWlg6VEKIBJQhiUvY2Vpg+\nshNuPSjE0XMpyCzkIreoAonJOUhMzgHDAD4tmiDAxwkBPk7wcLWnNaAIqSMoQRCTYxgGfm0cwZbb\nws8vEDmFFbiWloer6flIzShC2qNipD0qxt6Td9HUnv8kWTiDI6OmKEIsiRIEMSuGYdDc0RbNu3pi\nUFdPVEhkSLlfiOt383AtPR9FZVU4efUxTl59DACw+vs4rPlcCKy4sOZzYc3nQcB/8r3Vv49VxypL\npGjbTg6+FdfCr5SQ+o8SBLEoGwEPQe1dENTeBSzLIiO3DFfT83EtPQ93s0qUCwjKFCiFVO/n/Oty\nAjr7OCG4vQs6ezvRirOEGIn+ckidwTAMPN2E8HQTYnjPNkhOTkJb35dRWSWHpEqGyiq58nup/Mn3\nsic/+/dxcno2corluHgrFxdv5YLH5aCTlyOC2rvg5XbOsLOmDnFC9EUJgtRZDMNAYKVsXoJdDasG\nPiMlRQzXFn5IShUh6bYIaY+KcSUtD1fS8sDlMPBr3QxB7V0Q6OsCB1v9npOQxooSBGlwnJvaYHBX\nTwzu6onCUgkupYqQdDsXtzOKcONeAW7cK8Avh2/Dt1VTBLV3gSOPZnoTogklCNKgNRMKMCCoFQYE\ntUJpeRUu38lD0m0RUu4X4HZGEW5nFEFozaCJazFtfETIMyhBkEZDaMtH35daoO9LLVBeKcXVtHwc\nScrAvcel+HzbJYQPbIf+gS1pHgYhT9BSG6RRsrW2Qo9OzfHxhCB08eJDrmCx7e9U/PBnitZtVglp\nTChBkEaNx+Xg1c62+O+b/uBbKZcqX/nLReQUlFs6NEIsziIJIj8/H/369UN6ejoePHiA8PBwRERE\nYMmSJVA8WRp6165dCA0NRVhYGOLj4y0RJmlEuvs3x+KJwXBztEWmSIzlP1/A5VSRpcMixKLMniCk\nUimioqJgbW0NAFi1ahVmzZqF7du3g2VZHD16FCKRCDExMYiLi8OWLVsQHR2Nqqoqc4dKGpmWLvaI\nmhSMIF8XVEjkWLf3OnYfT6P9LEijZfYEsXr1aowbNw6urq4AgOTkZHTt2hUA0LdvX5w5cwbXrl1D\nYGAg+Hw+hEIhPD09cevWLXOHShohGwEP00d1Qlj/tuAwDA4mPkT0zqsoEdMNCml8GJZlzbYi2t69\ne5GdnY3p06cjMjISS5cuxaRJk5CQkAAAOHv2LPbs2YM+ffogNTUVc+fOBQDMmzcPI0eORM+ePbU+\nf2LiOUgklSZ/HaRxyMiT4Y8kMcolLOytGbwZbIcWjjTwjzQ8/fr103jcrO/2PXv2gGEYnD17Fjdv\n3sT8+fNRUFCg/rlYLIaDgwPs7e0hFourHRcKhTqf38fH3+jYUlIuwd+/i0nLmOMaFFftlfEH0DVQ\ngg2/30BaZjF2nhFj3IB2aG6dg44dgywWlyWvYa4yFJfp49KHWZuYYmNjsW3bNsTExMDPzw+rV69G\n3759ce7cOQDAyZMnERwcjICAACQlJUEikaC0tBTp6enw9fU1Z6iEAFBOtJsXHojXgj0gV7CI/ScV\nf10qR3mlzNKhEWJyFh/mOn/+fKxbtw5jx46FVCrF4MGD4eLigsjISERERGDSpEmYPXs2BAKBpUMl\njRSPy0H4wHaYNqIjBFZc3HwkxcJNZ3HyahYU5muhJcTsLNagGhMTo/5+27Ztz/08LCwMYWFh5gyJ\nEK26+rmhlYs9Nuy9iEcFUvx08BbiLz/C+IG+aNuKlukgDY/FaxCE1CctnO0wrpc9/vumP5oJBXiQ\nXYrPtiVh0x/JKCyVWDo8QmoVDckgxEAMw6C7f3MEtnXBgcQHOHTuIRKTc3A5NQ/DerbGoBAPWPFo\nRztS/1ENghAjCfhchPb1xsp3uyHI1wUSqRx7TtzFoh/O4XKqCGYcQU6ISVCCIOQFuTS1wfuhnfHR\nuJfR0tkOoqJKrNt7HdE7ryArT6z7CQipoyhBEFJL/Ns4Yul/QhAxsB1sBTwk3y9E1Jbz2H4kFeUS\nBdUoSL1DfRCE1CIuh4OBwR7o5u+Gfafu4cSVRzhyMRNHADB/x8Oaz4U1nweBFffJ908e87nPHSsr\nrgLfoRjOTa3RxI5P+1QQs6MEQYgJCG35mDi4PV55uQV2HktDakYh5AqgQiJHhUT//Sb+upQEAODz\nOHBqYg2XpjZwbmIN5yY2cGlqA5emyu9trelPmdQ+elcRYkKebkLMDQ9ESsol+LZ/GRKpHJUSOSql\nckiq5Kiskj35Wv1YhUSOB4+yIWGtkVdUAXGlDI/zy/E4X/M+FXbWPNjxWTheuVRjjUSg+v7JcQGf\nB1GxHJm5ZQa9piKxMkaBFZdqNQ0cJQhCzITH5YDH5cDO2kqv81NSStXr61RIZBAVVSCvuFL5tagS\nomLlY1UCEVcCuSVFhgd24rzhZY6ehBWPA3sbKwhtrSC05UNoYwX7p75XHXew41P/Sz1FCYKQesBG\nwIOnmxCebs8vWsmyLErKpUi6egXuLdqiUqqskahrJlUy5eNqx5XHysRiCKxt9A+EBUrE5aiUMpDK\nFCgsleg1QdCWzyDgbjI6tnFEJy9HNLGnpXPqA0oQhNRzDMOgiR0fzZvy4NfG0aCyL7LSqKRKjtLy\nKpRWSFFaLlV+Xy5FWcW/35dWVCGvuBLFZVVITM5BYnIOAKCViz06eTuio5cjfFs1oYmFdRQlCEKI\nUQR8LgR8Gzg31V4DYVkWCecvopLTHDfuFeD2w0JkisqQKSrDoXMPwedx4OvZFJ3aOKKjtxNaONma\n6RUQXShBEEJMimEYOAm58Pf3wGshHpDKFLiTWYTkewW4ca8AGblluHG3ADfuFgDH0tBMKICrUIGk\nzNuws+YqW2DCAAAgAElEQVTBVmAFW2sebAU85WNr5WM7ax6sBTxwqKPcZChBEELMyorHgX8bR/i3\nccRb/YHiMgmS7xcg+Z7yn7JfA7id9UjnczFQ9s/YWvPAKqpgc/Y8uBwGHA5T7aumYxwOA3FpOS5l\n3gafxwWPx4EVjwP+k69WXA6srDiw4nLVx7OLZGgproLQ1qpRJCZKEIQQi2piL0DPTu7o2ckdCpZF\nZm4Zzl9JRlOnliiXyFBeqfwnrpQqv5fIUF4phbhS2dFeLlEeAwCUGjZkFwDwUHcietq2kwngcRk0\nEwrgKLSGo4MAjg7WcBQK0OzJV0cHa9hZ8+r9MGBKEISQOoPDMPB0E6LMgw9/fw+d58sVClRI5BBX\nSnH7djLaeHWAgmUhl7OQK1goFCzk7JOvTx6rvpcrFHiYcR/OLq0glSsglSqUX2UKVMkUkMrkkMoU\n1f4VFJegvIoDcaUMoqJKiIoqa4yNb8WBo9AaVkwV3FJvKIf92jwZBmxr9WSI8L/f87h1b+UjShCE\nkHqLy+HA3kY5HyPfgatxGLA2TTmP9UpEKk+P4CoorURBqQQFJZUoLJEoH5dI1Mcqq+TILlBObMzI\nz9X53DYCHoS2VnCw5YPPlONe8X20cLZDCyc7uDS1AYdj/toIJQhCCDGQgM+Fu5Md3J3sajynvFKG\ngtJKXE9JhqNLm2eG/0pRVu17KSokMlRIZMgtrAAApGTeVT8Xj8uguaMt3J3s0MLZDu5OtmjhbAe3\nZraw4pmu5kEJghBCTMDWmgdba3uUuFjB399N67kKlkV5pQyl5VUoEVfhcvItsFbOeJwvxuN8MfJL\nJMgUiZEpqr58PIdh4NLUGi72cvi0lUPAr935JJQgCCHEwjgMA3sbZV+Eu5Md5GUC+Pu3U/+8skq5\nFldWnvipr2LkFlUgp7ACOYVAQWml1hqNMShBEEJIHWfN58HL3QFe7g7VjktlcuQUVCA9/WatJweA\nEgQhhNRbVjwuWrnaoyTPNEuV1L1xVYQQQuoEShCEEEI0ogRBCCFEI0oQhBBCNKIEQQghRCNKEIQQ\nQjSiBEEIIUQjhqXdxAkhhGhANQhCCCEaUYIghBCiESUIQgghGlGCIIQQohElCEIIIRpRgiCEEKIR\nJQhCCCEaUYIghBCiESUIA92/fx8nTpxAdnY2aI6hfoqKiiwdQq0oKChAVlaW+l9ty87Orvb47t27\nNZxZXXx8fLXHf/31V63FZA5VVVU1/tMlMTHRDBEa586dOzh48CBu3rxp6VCM1mhnUpeVlWHz5s3I\nzc1F//790b59e7Ru3VprmW3btuGff/5BcXExRo4ciYcPHyIqKkprGblcjr179yIrKwvdu3dHu3bt\n4OjoqLXMzZs3sXPnTkgkEvWxVatWaS3z22+/4fvvv0dVVRVYlgXDMDh69GiN51+6dAnLli1Dfn4+\nXF1dsWLFCvj7+2u9RkZGBr744gvcv38f7dq1w9y5c+Hu7l7j+efPn8fy5cshl8vx+uuvo0WLFnjr\nrbe0XuPBgwc4dOgQpFIpACA3NxfLly/XeG5kZCQYhtH4s19++eW5Yx9//HGN19X1/7t48WKcPXsW\nzs7O6v/fuLg4jed+++23NT7PjBkznjuWmpqKnJwcfPXVV5g7dy4A5fsmOjoav//+e43PFR8fj0uX\nLuHAgQMYNmyYutyxY8dw8ODBGss9G5+VlRWaN2+ON954A1ZWVhrLGPo+Pn36NLZu3VrtQ17T7wQA\nXn31VTAM89wNl673MACMHz8esbGxWs952vLly6v9zc6bNw9ffPGF1rhUeDweZDIZ+Hy+1v9fQPla\n//zzT7z00ku4fPkyhgwZgnfeeadWYnuRuAzVaLccXbhwIfr27YsLFy7A2dkZn3zyCbZt26a1zIED\nBxAbG4tJkyZh8uTJGD16tM7rREVFwdXVFWfOnEHnzp0xf/58bN68WWuZBQsWYMKECWjevLner2fz\n5s3YuHGj1g/sp61YsQJr1qxB27ZtkZqaiqioqBo/8FQWLlyIKVOmoEuXLrhw4QIWLlyIrVu31nj+\n119/jW3btmHmzJmYNm0awsPDdSaIDz/8EK+99houXboEV1dXlJeX13jusmXLAADr16/HgAEDEBQU\nhGvXrj13R63yxhtvAAB27NiBwMBAdOnSBdevX8f169e1xgQAt2/fxj///FNjQnqas7MzAODIkSNo\n1aqV+jqPHz/WeH5JSQn++usv5Ofn48CBAwCUH44RERFar9OhQwcUFRVBIBDAy8tLXU6VLLS9FoFA\ngODgYFy9ehWPHz+Gi4sLEhIS8OWXX2osY+j7eNWqVVi4cKFe7+Fjx47pPKcmDMPg/fffh5eXFzgc\nZYPInDlznjsvNjYWGzZsQFFREf7++28AAMuyaNu2bY3PfejQIbAsi2XLlmHcuHEICAhASkoKtm/f\nrjOuAwcOYPv27eDxeJBKpRg3blyNCcLQ2F4kLkM12gRRVFSEMWPGYP/+/ejSpQsUCoXOMqo7R9WH\nBJ/P11nm4cOHWLlyJZKSkvDqq69i06ZNOss4Ozvr/CB9loeHh84a0NOEQqH6Dejr6wtra2udZbhc\nLvr16wdAeRfz888/az2fYRg0bdoUDMNAIBDAzk73puq2traYOnUq7t+/j1WrVmn9kPT29gYA5OXl\nqT/8X3vtNcTExGg8v0+fPgCArVu34t133wUABAUF4e2339YZl6urK8RiMezt7XWeO27cOADA33//\njaVLlwIA3nzzzRqvExwcjODgYCQnJ6Njx44oKipCkyZNdCYjd3d3jBo1CiNGjFB/OALKWpc2JSUl\n6t/duHHj8J///AdffvklwsPDayxj6PvY3d0dPXv21HqOytixY2t8rbpuWvS5SQOUNY3x48dj48aN\nmDZtml5lVH/fGRkZCAgIAAD4+/vj3r17OsuyLAseT/nxamVlVWPNzJjYXiQuQzXaBAEA6enpAJRt\nv1yu7k2/hw0bhvHjxyMrKwvvvvsuBg4cqLOMXC5HQUEBAGWz1tN/yDVp2bIlNm3aBD8/P/UfTu/e\nvbWWsba2xpQpU6qV0XQnpeLk5IRPPvkE3bt3R3JyMhQKBXbu3AlA+Qf7tISEBACAjY0NNm/ejJCQ\nEFy7dk19p1yT1q1bY82aNSgsLMSmTZvQokUL7S8cyqQiEokgFotRXl6utQbxtN27dyMgIACXL1/W\n+scIAOXl5Th79iw6d+6My5cvV2vKe5bqwys/Px+DBg2Ch4eHOk5dH15FRUV4+PAhPD09cffuXZSW\nlmo9XywWY9iwYQY1yQHAunXrsGPHDkilUlRWVqJNmzbqmogmpaWlKCgogKOjIwoLC1FaWqouWxND\n38dOTk6IioqCv7+/+v347PtKJTo6WtdLrNHw4cOxb9++ak1f2owbNw5//vknZDIZWJZFbm4upk6d\nqrWMUCjE2rVr1e8vFxcXnXF16dIFH3zwAYKCgpCUlITAwECdZUaNGoW0tDRwuVxs3rwZEydORIcO\nHWo1LkM12j6I27dvIyoqCunp6fD29saSJUvQsWNHneXS09ORmpoKLy8vrb88lfPnz2Px4sUQiURw\nd3fHJ598ovPOSlNbua428n379j13bNSoUTWeb0g7ubFt91OnTkWXLl2QnZ0NHx8fhIWF6ax1Xbhw\nAXfu3IGbmxsWL16MESNGYP78+VrLiEQibNy4Effv30fbtm0xbdo0NGvWrMbz09PT8eWXX+LevXto\n164d5s+fr/7gf9ajR49qfJ6WLVtqjevixYvqfp7mzZtj6dKl6js+TcaPH4/169dj5syZ+OGHHxAe\nHo69e/dqvQYAjBgxArt378Znn32Gt99+G8uWLcOPP/5Y4/nx8fFYuXIl7O3tUV5ejkWLFuHWrVuw\ns7PD+PHjNZZ59n28cOFC9OrVq8ZraHp/aep/AZTJ/a233sKaNWueq0lou8kBgE8++UTd9DV16lTs\n2LFDa9PXhAkT4O3tjdTUVAgEAtjY2GDjxo1ar1FeXo64uDj1+2vcuHF6tR4cP34c6enp8PHxwSuv\nvKLz/AkTJmDGjBnYvn07Bg8ejLi4uBprwy8SlyEabQ2iffv26jtmfT1+/BjHjh2DRCJBeno6jhw5\nUuObXiUwMBCHDx9GQUEBmjVrhoyMDJ3XWbVqFVJTU5GWlgYvLy/4+fnpLDN8+HBcv3692p2RJtnZ\n2WjevDmGDh363M9U7dia4tFEV1PGvHnzsGfPHly6dAm2trbIyspCmzZttJYJCQmBn58fMjMz8c8/\n/2htlnq6Sj1hwgT190VFRRoThKrD1MPDA998843WOFRUSeDZJKnq2B0/fjyaNGmisWxwcDD++OMP\n9WNVx3tNjGmSAwAXFxfw+XyIxWK0bt1a53X69++Pfv36oaCgAE5OTmAYBn379tVapmvXrur3sbbO\naW3vr5qo+ilUTYYq+vT3qJq+Ll68qFfTF8uyWL58OT7++GOsXLlSaxPm9evX0blzZ1y6dAm+vr7w\n9fUFoEyWumr0oaGh6N27NwYNGoROnTrpfB2A8vWGhIRg48aNGDp0KHbt2qX1fIFAAKFQCCcnJ7Rv\n3x5lZWU6B8AYqtElCG2/WFVTSk3+97//oUePHnp3BAPKTtdvvvkGjo6OiIuLw9atW3H48GGtZWJi\nYvDnn38iICAAP/74o14jIGbMmAGpVIrc3FzI5XK4urpq7KzcunUrPv744+dGXzEMU+MoE5Wvv/7a\noKYMHx8fzJs3DwUFBVi5ciWGDRuGkJAQfPDBBzVWuQ8fPowNGzaom1kYhsH06dM1nqt6DQzDoLCw\nEBkZGWjVqhUcHR01vhbV86n6kgDoNeILACQSCTw8PNQdu9evX4ejoyPmz59f4x2o6vetSto8Hk/d\nCamJMU1ygPID9tdff4WNjQ3WrFmDkpISreefPn0aP/30U7WmNV2/+7i4uOdG1mkaTmvM+0vVN3T9\n+vXnRvGMHDlSa1yqpi+GYfRq+uJyuZBIJKioqADDMJDL5TWeq2qG1PQe15Ug4uLicPbsWfz6669Y\nsWIFAgICsHDhQq1lZDIZvvzySwQHByMxMVFnojdmAIzBWKK3yZMnG1xm+/bt7EcffcROnTqV/eij\nj9iioiKdZcLCwlipVMqyLMtWVVWxoaGhepVhWZZduHAhW1FRwY4bN87gWHV58803WYlEwi5ZsoS9\nf/8++/bbb2s9//jx4+z//vc/dtiwYezmzZvZvLw8Njs7mx0+fHiNZcaOHctKJBJ2woQJrEKhYEeN\nGqUzrgMHDrCDBg1i33vvPXbAgAHsvn37DH5tukyaNKnaY9Vrj4iIqLHMsGHD2JycHHbp0qVsYmIi\n+95772m9xn//+19248aN7NKlS9mYmBhWIpHoFZtcLmcfPXrElpaWsr/88gt7584drecPHTqUPX36\nNJuenq7+p8uQIUPYjIwMtqSkRP3PENpey7Zt29hevXqxHTt2ZHv16qX+N3HiRJ3Pe/78eXbQoEFs\nYGAg+8Ybb7CnT5/Wev6hQ4fYjRs3srt27WL79OnDzpo1y6DXwbIsm5OTo/OcoqIi9uDBg+yiRYvY\nUaNGsXPmzNFZ5t69e+y2bdtYiUTCHjhwgH348KHW8ydMmFDt69ixY/WI3jCNrgahcuXKFezdu7fa\nePstW7ZoLdOuXTscOHCgWkdwTc0yquaM0aNHqztFV65cqVdsrAEjIFRUo5AqKir0GpH07bffIjY2\ntlrnvK4alKFNGfv370d4eDi6detW7fjMmTNrLMPlcsHn89WjxWxsbHS+lp9//hl79+6FnZ0dysrK\nMGnSJK13nprmT+i6gy4rK1O3J6enp0MsFqOwsFBrJ7qrq6t69FO3bt209vsAxjXJAcq26JiYGKSn\np6NNmzYYPny41vMNGWGk0r59e7i7u+s1mAN4vvZkZWVVY81ZNYrn22+/xeDBg6t10upibW1drQn3\nwoULWs8fPHgwAGUz5JAhQ/QalWZozRkAevToAV9fX8yePRuffvqpzmsAyr40X19fXL16FS4uLsjO\nzq6xbwwwvPZkjEabIJYuXYopU6bg8OHD8PX11WvW5s2bN3H27FmdTRlA9eaMZ4/pas4ICgoyeATE\noEGDsH79enTo0AFjx47V+cEaHx+P+Ph4vZKJiqFNGWvWrNF4/LXXXquxTFBQED788EPk5OQgKioK\nnTt31hkXwzDq9np7e3sIBAKt56vmT7Asi+TkZL1mukZFRWHu3LnIzc2Fu7s7oqKi8Ndff2kdligU\nCnHkyBH1iCddM8qNaZIDlPNTgoOD8eabb+L8+fNYsGCB1o5XQ0YYqXTv3h0DBw6Eh4eHullOW1KN\njY1FTEwMNmzYgNdff13nkGhAOSs6JCQEsbGxGDx4MD777LMaO2kvXryItLQ0/PTTT+rhwwqFArGx\nsfjzzz9rvMaFCxewbNkyg0aKHTt2DCdPnqw2CECX48ePIyEhAfv378fPP/+Mjh074sMPP9RaZseO\nHQCU78u0tDS0bNkSISEhNZ4/a9YshIeHQyQSYezYsTqbsIzRaBNEs2bNMGzYMJw+fRozZ86s1slZ\nk/DwcHz99dfo2bMnUlNTERoaWuO5LzL5Z/78+Th+/Dju3r2L0aNHq+ceaNO8eXMkJCRAKpXC2tpa\n552ek5OTupair+XLlyM7Oxuvv/469u3b90LDE2sSERGBI0eOwNvbG3v37sW6det0lvHw8MDnn3+O\n4OBgXLx4EZ6enlrPf7oz1MfHB7/++qvOawQEBDw3okhX8lqxYgUyMjIwZ84cbN26FYsWLdJ6/okT\nJ7Bv3z6kp6djxIgRWLhwIWQyGd59913s37+/xnKFhYXqu20/Pz+dfVytWrUCoJw/oq+dO3di7dq1\nEAqFep1vaO0JUCb64OBgbNiwQWcnrYODA/Ly8lBVVQWRSKQur5qJXpO1a9caPHnT0JozoJzL5Onp\nifv37+PRo0daR8OpPP33VFVVhVmzZmk9X9+BAy+i0SYIDoeDO3fuoKKiAnfv3kVxcbHOMoY0Zaim\nzasmTT1N1/j5/Px8JCQk4N69exCJRHj55ZdrHCmj8sUXX2D58uU6z5szZw4YhkFeXh5GjRqFdu3a\nqe8ia7rjV8nKysLhw4dRUVEBADh48KDOUVyG+uijj9RD/ebMmYNVq1ZpHeoHKEdZ7dy5E2fOnIGP\nj4/OO7WnR6/l5ubqNdfi2eUN7O3ttS6DASjnjdy4cQNZWVno37+/zjH6xjTJAcoOdJFIBBcXF4hE\nIp2TPmfMmIHjx4/jzp078PLy0ms+j5ubGzp37qx3M4ahtSfAsE5a1aiit956C1ZWVsjIyEDr1q3R\ntGlTrdfgcDgGjxQztOYMAJ06dcKoUaMwaNAgzJgxQ68bnafJ5XKdIx71HTjwIhptgliwYAHu3LmD\nyMhIfPTRR3rNyDSkKUO1ls6zI1H0Gbo3a9YsvPHGGxgzZgySkpIwb948fP/991rLtGvX7rkPFk1U\nCevx48coKytTt/dGRkbqLPvhhx+iT58+OifIvQhDh/oByrVoahq/r4nqjhNQDhVcu3atzjKHDh0C\noKz+37hxQ/1YG0NHmRjTJAf829RgY2ODiooKnW3ea9aswYMHD9ClSxf89ttvSEpK0jnXpKqqCiNG\njND7hmLFihV4+PChuva0ePFirc8PKBP96dOn8dZbb+HIkSNYvXq1zjJHjx7Fzz//jLZt2yItLQ3T\np0/HiBEjajzf09MTa9asQVFRkd4jxaZPn47y8nJ07twZI0aMUDcFabJ79278+uuvsLa2RlpaGtLS\n0rB+/XpIpVKdNy5Pj4ySyWSYNGmS1vN/+eUXbNq0SedN4YtotAmiXbt2cHJyQmVlJdatW6fXB7ch\nTRkvv/wygJo7sXVRLXvQoUMHvT6MBgwYgLFjx1ZrPtE0f6Fr164Aqk/KmTNnDuLi4jB58mSt17C2\ntq71GsOzDB3qZ4xn76BVTS7aPD0BKSgoSK/mNWOWWTGGVCoFy7LPLQVTkwsXLqhrsZMmTUJYWJjO\na+iabfys6Oho9ZDVBQsWYN68eer3Xk3atGmj7pRXLZ2iy65du7B//34IBAJUVFRgwoQJWhPEkiVL\nsGfPHgQFBcHGxkavDuR58+ap/1bWrFmD6OjoGmu1I0aMQI8ePfD999+r+6c4HA6cnJx0XmfZsmXY\nu3evukZw6dIlrecbOnDAGI02QRiyOqeKIU0Z2mYx6+Lt7Y3ff/9dvQxG06ZN1ZPCako4MTExmDJl\nit5txIbcqauu7ezsjD/++AMdO3bUOYrLWMbcRRrq2TvoixcvYsGCBTrLqF5zbm6uXk0txiyzYoxv\nv/0Wu3fvhqOjI0QiEd5//32tv0+ZTAaFQgEOhwOFQqE1ocTHx6N///4a1/nR9IGvaeE5QNnXYwpO\nTk7qD0hra2udTUzTpk3TOstcE0P+Vvh8Plq1aqX3yKWnffHFF/j000/h4OCg1/mGDhwwRqNNEIas\nzqliaFOGse7evYt79+5hz5496mNRUVFa3wDOzs5633UBht2pPz15affu3di9ezcAZbODrqRqKGPu\nIg1lzB300zWzDh06qCd3aTN79mxERERAJBJh3LhxJhllAgB2dnbqTkoXFxedI9iGDh2K8PBwvPTS\nS7h27ZrW/2dV39yyZcuqTVisaf0qYxbFexEsy2LkyJEIDAxESkoKZDKZ+sZNUxOYg4MDjhw5Um31\nV103Oeao1QLKVg1dtaynGTpwwBiNNkG4uLjovTqnuT074kEoFOrsELW2tsY777xTbeiitnVsDLlT\nV1Wnd+zYgZ9++kn9B2LoKKi64uk7aPapWdXaDB8+HDt37kRaWhratGmjcygtoKx5cTgcyOVyiMVi\nLF68WOcQZ0OomrnkcjmmTp2qXu68pvV4nq4Fubm5IT4+Hn5+fupajiZSqVQ9bPrUqVMAlMNJn/4g\n1mTMmDFYuXKler2radOmmaSt/OkkpGv+B6AcAPLsTZauu25z1GoB/ZuJVQwdOGCMRrdYn2p1zry8\nPJSXlxu0Oqe5qOZkqDpEDx8+rPPu09DF+owxfPhwbNmyRT22/ZdffsH69etr9RrmsHnzZhw5ckR9\nB/3666/r7H9ZuHAhHBwcEBwcjPPnz6OoqKjGjWZUQkNDsW7dumqrbNbmYmqafucqmn73hp4PKN+L\nubm5GtvUtb2WyMhIDBkyBF26dEFSUhJOnjypc6CFMYqKipCQkKD36qx9+vRBfn6+eiVbPp8PFxcX\nLFmyROvig+YQGhr6XDOxtprqO++8g9zcXINGIhqqft4CvoDo6GiwLIvRo0ejV69e6NixI1555RWD\nJoyZmjEdorWdDDQxZmx7XXTw4EG0atUKQUFBGD16NNq3b6+zzIMHD9Q7lw0cOFDj8OVnNWvWTOeK\nry/C0N+5Me+RF2lTVy2Ep+9AC2PMmDHjudVZtQkJCVGXefjwIdavX4/p06dj7ty5Fk8QhjYTGzpw\nwBiNLkGo/mDPnTuH9PR0HD16FJ988gmcnJzqzN3w000BIpHIpFVIQxgztr0u2rt3L9LT03Hs2DFs\n3boVzs7OOpOdaoE3GxsbVFZWal3kTZXQq6qqDGr2a0i8vb2xf/9+dOvWTe+BFsZgDVidFVCuNqtq\nwvH09ERWVhZat25t0pFA+jK0mdjf3/+5bZNrW6NLECo3b97EmTNncO7cOQCmG2VhDGM6RM3h2bHt\numYG11Wq371qw/tnl5nWZOLEiep5AGlpaVonr6k+AGt7hFd9cvfuXdy9e1c9oAHQPdDCGIaszgoo\n+x6/+uorBAYG4vLly3B2dsbp06f1Wu/M1Pr372/Q+cZsm2yoRtcHoRIUFAQPDw/Mnj1br6UsSMNh\n7O++qKhIvQ6Xtg2JyPOkUqlJPoQPHz6M+/fvw9HREevWrUNQUBD+7//+r8bzJRIJdu7cifT0dPj6\n+mLMmDFISUmBh4eHSSeAmsLEiRPxyy+/qL9GRETU+r7UjbYGce7cOSQlJSEhIQE//vgjnJycTLK2\nEKl7jPndHz9+HDt27FAvMwLoHv3SmBmymuuLUK3OCkCv1VkFAsFzq8TqsxhmXWXotsmGarQJoqSk\nBDk5OcjKykJFRYXem7OQ+s+Y3/3XX3+Njz/+uN7dZVqKMau5GmP37t346aefqu2nXZtDieuyRYsW\nYeHChUhPT8cHH3yAJUuW1Po1Gm2CmDJlCgYOHIhp06bpXESNNCzG/O6bNGli0CSmxs5cI9527NiB\nTZs2VRtK3Fj4+vrihx9+wKNHj+Dh4aH3FrWGaLQJQp/N4EnDZMjvXrXyK5/Px+LFi6stM6JrD4XG\nzFwj3kw9lLguM2R7XmPVjfGThNRRIpEIIpEICQkJcHNzQ15eHkQiETIzMy0dWp02fvx4ZGZmYs6c\nOTh9+nStz9OJjo5GdHS0eiixahG9xtSPuHXrVuzatQtNmzbF9OnTceTIkVq/BiUIQrRwc3PDqVOn\n1EtNnDp1CidOnNC5PWtj9/nnn+PVV1+Fm5sb5s2bV+v9Al5eXvDy8kKfPn3Qt29feHt7Y9++fY1q\ndJkx2/MaqtE2MRGijxEjRqBnz57VFp/Td/nmxszKykq9HL6Hh0etT/ZU1UhGjx6N//u//4OnpyeC\ng4OxYMEC9RakDZ0x2/MaihIEIVrw+Xy0bNnSqKUmGrMWLVogOjoaL7/8Mq5duwZXV1eTXMfUiagu\nM2Z7XkM1nv9NQojZrFq1Co6Ojjhx4gQcHR21rkr6IlSJ6NixY1i7dq3JElFd9NFHH6Ft27a4ffu2\nenve2kYJghBS6wQCASZPnoxly5Zh4sSJtbqK7dPMlYjqItVGRiUlJRg6dKhJak/UxEQIqbdUiagx\nMsdGRo12LSZCCKnP7t+/X20jo86dO6v3t6ktlCAIIYRoRH0QhBBCNKIEQQghRCNKEIRocOjQIYSG\nhuLNN9/E8OHD8cMPP5jsWnv37sWCBQtM9vyEGItGMRHyjJycHKxevRp79+5Fs2bNIBaLERkZCS8v\nL/AaCpcAAANHSURBVAwYMMDS4RFiNpQgCHlGYWEhpFKpeo8BOzs7fP755xAIBDh48CC2bt2KyspK\nSCQSrFixAiEhIYiMjISfnx/Onj2LyspKLFq0CDExMUhLS8PkyZMxefJkrFu3Dvfv38fDhw9RVFSE\nsWPHYsqUKdWufe3aNaxatQqVlZVo1qwZli1bBg8PD2zduhX79u0Dh8NBQEAAli9fbon/GtLIUIIg\n5BkdOnTAgAEDMHDgQPj5+aFbt24YPnw4PDw8EBUVhY0bN8LR0RG//vortmzZgpCQEHXZP/74A99+\n+y1WrFiB/fv3o6CgACNHjlSP1U9NTUVcXBwUCgVCQ0PRo0cPddmqqiosWrQIGzduRIsWLXDq1Cks\nXrwYP/zwA77//nucOnUKXC4Xy5YtQ05ODtzc3Mz9X0MaGUoQhGiwbNkyTJ8+HQkJCUhISEBYWBi+\n+uorrF+/HseOHcO9e/dw/vz5arNX+/btC0C5/MNLL70EGxsbtGzZEiUlJepzhg0bpt7Y5dVXX0Vi\nYqJ6BdL79+8jIyMD7733nvr8srIy8Hg8BAYGYsyYMRgwYADGjx9PyYGYBSUIQp5x/PhxlJeX4403\n3sDo0aMxevRo7Nq1C7GxsVizZg1GjBiBkJAQtG/fHrGxsepyVlZW6u95PM1/Wk/vG6xQKJ573KpV\nK/z+++8AALlcjry8PADAd999hytXruDkyZOYMmUKvvrqK9rhjpgcjWIi5BnW1tZYs2aNelMglmWR\nlpYGPp8PDoeDadOmoXv37jh58iTkcrlBz33kyBFUVVWhuLgY8fHx6N27t/pn3t7eKC4uxsWLFwEA\ne/bswUcffYSCggIMGTIEvr6++N///odevXrh9u3btfeCCakB1SAIeUb37t0xY8YMTJs2Tb2+TZ8+\nfbB+/XosWLAAQ4YMgbW1NUJCQpCVlWXQcwsEAkRERKCsrAxTp05F27Ztce3aNQDKpcW//vprrFy5\nEhKJBPb29li9ejUcHR0xbtw4jBkzBjY2NnB3d6/1HdoI0YSW2iDETFTr9c+cOdPCkRCiH2piIoQQ\nohHVIAghhGhENQhCCCEaUYIghBCiESUIQgghGlGCIIQQohElCEIIIRpRgiCEEKLR/wOXLnEGXey2\nZwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Import datavis libraries\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Figures inline and set visualization style\n", "%matplotlib inline\n", "sns.set()\n", "\n", "# Create freq dist and plot\n", "freqdist1 = nltk.FreqDist(words_ns)\n", "freqdist1.plot(25)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Recap:** \n", "\n", "* you have scraped the web to get _Moby Dick_ from Project Gutenberg;\n", "* you have parsed the html and extracted the text of the novel;\n", "* you have used tokenization and regular expressions to extract the list of words in _Moby Dick_.\n", "* you have removed common words such as 'a' and 'the' from the list of words.\n", "* you have plotted the word frequency distribution of words in _Moby Dick_.\n", "\n", "**Up next:** adding more stopwords." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add more stop words" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEpCAYAAACJA7VtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYk+f6B/DvmwlCkO1GBUGk1YriqgW1Wm3rog4UlNrh\nqbs/Rx1VwXH0eGwPHFtatbUe2yKKWqltj62eqrQIggMHCiqKgqCyd4CQ8f7+wERGJhJCzf25rlyQ\n5Hnz3iEhd57NsCzLghBCCGmEY+oACCGEtE2UIAghhKhFCYIQQohalCAIIYSoRQmCEEKIWpQgCCGE\nqMUzdQAtqaCgotnHZmSkwc3Ny6jHtMY5KC6Kq63F1ZxjKC7jx1Wfk5NI7e1Ug3hCIqkx+jGtcY7m\nHENxUVxt7RiKy/hx6YMSBCGEELUoQRBCCFGLEgQhhBC1KEEQQghRixIEIYQQtShBEEIIUYsSBICs\n3AqUVMpNHQYhhLQpz9VEueaQyhTYGpkMawtg+GBTR0MIIW2H2dcguBwGCgWLUrECUpnC1OEQQkib\nYfYJgsNh0N5aAAAoq5SYOBpCCGk7zD5BAICdSAgAKK6gBEEIIUqUIPA0QZRSDYIQQlQoQQCws35S\ngyinBEEIIUqUIADY2VANghBCGjNqgrh27RqCg4MBADdv3kRQUBCCg4Px/vvvo7CwEABw+PBhTJky\nBQEBAYiNjQUA1NTUYMmSJQgKCsLf/vY3FBcXGzPMpzUI6oMghBAVoyWIPXv2YP369ZBI6j50t27d\nipCQEERGRuK1117Dnj17UFBQgMjISERHR2Pv3r0IDw9HbW0tDh48CA8PDxw4cAD+/v7YuXOnscIE\nUK8PghIEIYSoGC1BuLi4ICIiQnU9PDwcffr0AQDI5XIIhUKkpKTA29sbAoEAIpEILi4uuHXrFpKT\nk+Hr6wsA8PPzQ2JiorHCBPA0QZRQgiCEEBWGZVnWWA+ek5OD5cuX4/Dhw6rbLl++jHXr1iEqKgpn\nz55Feno6Vq5cCQBYtWoV/P398fXXXyMkJARubm5QKBQYOXIk4uLidJ4vKel8s3ZWkspZfHa8DBwG\nWDahPRiGMfgxCCHkr2rEiBFqb2/VpTZ+/fVX7Nq1C19//TXs7e1hbW0NsVisul8sFkMkEjW4XSwW\nw8bGRq/Hf5Y9WS1/j0V1LYuuPfqivZVAr2PS0i7Dy2uA3ucwtHxrHUNxUVxt7RiKy/hx6aPVRjH9\n9NNP2L9/PyIjI9GtWzcAQL9+/ZCcnAyJRIKKigpkZGTAw8MDAwYMwJ9//gkAiIuLw8CBA40en7VF\nXa2hpMI4e7sSQshfTavUIORyObZu3YpOnTphyZIlAIBBgwbhww8/RHBwMIKCgsCyLJYtWwahUIjA\nwECsXr0agYGB4PP5CAsLM3qM1hYcFJQrUFIhQY+ORj8dIYS0eUZNEF27dlX1P1y4cEFtmYCAAAQE\nBDS4zdLSEp9//rkxQ2tCZFlXmaKOakIIqUMT5Z6wtqAEQQgh9VGCeEKk6oOgBEEIIQAlCBVramIi\nhJAGKEE8oWxiovWYCCGkDiWIJ5RNTLQeEyGE1KEE8YSQz0DA50BSK0e1RGbqcAghxOQoQTzBMAyt\n6koIIfVQgqiHVnUlhJCnKEHU83RvalpugxBCKEHUYyeyAEA1CEIIAShBNED7QhBCyFOUIOqxtaYE\nQQghSpQg6rG3eZIgaLIcIYRQgqiPahCEEPIUJYh62lsJwGEYVFRJIZUpTB0OIYSYFCWIejgcBu2t\n67YbpTWZCCHmjhJEI/Y0kokQQgBQgmjClhIEIYQAoATRBM2FIISQOpQgGqEEQQghdShBNKJc0ZXm\nQhBCzB0liEZoRVdCCKlDCaKRp01MtKIrIcS8UYJoRFWDqKyFgmVNHA0hhJgOJYhG+DwurC35kCtY\nVIhrTR0OIYSYDCUINVTNTNRRTQgxY5Qg1FAliHJKEIQQ80UJQg2qQRBCCCUItexo2W9CCKEEoQ6t\nx0QIIZQg1KIVXQkhxMgJ4tq1awgODgYAZGVlITAwEEFBQdiwYQMUiroNeQ4fPowpU6YgICAAsbGx\nAICamhosWbIEQUFB+Nvf/obi4mJjhtkE1SAIIcSICWLPnj1Yv349JJK6D9lt27Zh6dKlOHDgAFiW\nxenTp1FQUIDIyEhER0dj7969CA8PR21tLQ4ePAgPDw8cOHAA/v7+2Llzp7HCVKt+DYKlyXKEEDNl\ntATh4uKCiIgI1fXU1FQMHjwYAODn54dz584hJSUF3t7eEAgEEIlEcHFxwa1bt5CcnAxfX19V2cTE\nRGOFqZalkAcBnwOJVI5qibxVz00IIW0Fz1gPPG7cOOTk5KiusywLhmEAAFZWVqioqEBlZSVEIpGq\njJWVFSorKxvcriyrj4yMNEgkzV9DKS3t8tNYBECtFLh07QocRVy9jjH0HG3pGIqL4mprx1Bcxo9L\nacSIEWpvN1qCaIzDeVpZEYvFsLGxgbW1NcRicYPbRSJRg9uVZfXh5ubV7PjS0i7Dy2uA6nqHq5dR\nIi6FvbMrvHo66HWMoedoK8dQXBRXWzuG4jJ+XPpotVFMXl5eOH/+PAAgLi4OPj4+6NevH5KTkyGR\nSFBRUYGMjAx4eHhgwIAB+PPPP1VlBw4c2FphqtiJLABQRzUhxHy1Wg1i9erVCAkJQXh4OFxdXTFu\n3DhwuVwEBwcjKCgILMti2bJlEAqFCAwMxOrVqxEYGAg+n4+wsLDWClOFdpYjhJg7oyaIrl274vDh\nwwCAnj17Yv/+/U3KBAQEICAgoMFtlpaW+Pzzz40Zmk60cRAhxNzRRDkNqAZBCDF3lCA0oARBCDF3\nlCA0oBVdCSHmjhKEBjbtBOAwDCqqpJDKFKYOhxBCWh0lCA04HAa2IgEAoJRqEYQQM0QJQgvaF4IQ\nYs4oQWhBHdWEEHNGCUILWvabEGLOKEFoQTUIQog5owShBQ11JYSYM0oQWjztpG7+EuKEEPJXRQlC\nCzubuhVdaT0mQog5ogShhZ21ch5ELRS09SghxMxQgtCCz+PC2pIPuYJFhbjW1OEQQkirogShg7Kj\nupiamQghZoYShA60LwQhxFxRgtCBahCEEHNFCUIH5VBXWrCPEGJuKEHoQLOpCSHmihKEDpQgCCHm\nihKEDpQgCCHmihKEDvUTBEuT5QghZoQShA6WQh6EfC4kUjmqJXJTh0MIIa2GEoQODMPU2xeCFu0j\nhJgPShB6UK7JRMt+E0LMCSUIPdiJ6lZ1LSmnBEEIMR+UIPRAGwcRQswRJQg90HpMhBBzRAlCD7Qe\nEyHEHFGC0APVIAgh5kjvBJGfnw8AuHTpEqKiolBVVWW0oNoaqkEQQsyRXgliw4YN2LVrF+7evYsV\nK1YgNTUVq1evNnZsbYZNOwG4HAaV1VJIZTRZjhBiHnj6FLp+/TqOHj2KL774AtOmTcOSJUswdepU\ng08mlUqxZs0aPHz4EBwOB3//+9/B4/GwZs0aMAwDd3d3bNiwARwOB4cPH0Z0dDR4PB4WLFiAUaNG\nGXy+lsLhMGhvLUBxuQQllbVwtrU0WSyEENJa9EoQcrkcCoUCp0+fxqZNm1BdXY3q6mqDT/bnn39C\nJpMhOjoaCQkJ2LFjB6RSKZYuXYohQ4YgNDQUp0+fRv/+/REZGYmjR49CIpEgKCgIw4cPh0AgMPic\nLcXOWojicglKKySUIAghZkGvJiZ/f3+88sor6NKlC1566SVMmTIFM2bMMPhkPXv2VCWbyspK8Hg8\npKamYvDgwQAAPz8/nDt3DikpKfD29oZAIIBIJIKLiwtu3bpl8Pla0tN+CFpugxBiHhhWjyVK79y5\nA1dXV3C5XABAcXExHjx4gP79+xt0ssePH2PhwoWoqqpCSUkJdu/ejQ8//BDx8fEAgMTERBw9ehS+\nvr5IT0/HypUrAQCrVq2Cv78/Xn75Za2Pn5R0HhKJcT7Az9yowuV7tRjhZYFBvSyMcg5CCDGFESNG\nqL1daxNTcnIyFAoF1q9fj61bt6qWu5bJZNi4cSNOnjxpUBDffvstXnnlFaxYsQKPHz/GnDlzIJVK\nVfeLxWLY2NjA2toaYrG4we0ikUjn47u5eRkUT31paZfh5TVA4/0PKh7g8r27ELRzgpeXu17HGHoO\nUx1DcVFcbe0Yisv4celDa4I4d+4cLly4gPz8fHz22WdPD+LxmtXEZGNjAz6fDwBo3749ZDIZvLy8\ncP78eQwZMgRxcXEYOnQo+vXrhx07dkAikaC2thYZGRnw8PAw+HwtyVb0ZME+amIihJgJrQliyZIl\nAIBjx47B39//mU/2zjvvYO3atQgKCoJUKsWyZcvw4osvIiQkBOHh4XB1dcW4cePA5XIRHByMoKAg\nsCyLZcuWQSgUPvP5n4W9csE+Wo+JEGIm9BrFNGjQIGzfvh1lZWUNdlXbtm2bQSezsrJqUBNR2r9/\nf5PbAgICEBAQYNDjG5MtbT1KCDEzeiWIpUuXwsfHBz4+PmAYxtgxtUnKPSHKKmuhULDgcMzz70AI\nMR96JQiZTGZWM6fV4fO4sLbko7JaivKqWtham7bJixBCjE2veRADBw7EmTNnUFtba+x42jQ7amYi\nhJgRvWoQJ06caNJPwDAMbt68aZSg2io7kRDZ+ZUoqZCgZydTR0MIIcalV4JQTmQzd1SDIISYE70S\nxBdffKH29sWLF7doMG2dal8IGupKCDEDBm8YJJVKcebMGRQVFRkjnjbN7knHdHE5JQhCyPNPrxpE\n45rCokWL8N577xkloLbMzoZqEIQQ89GsLUfFYjEePXrU0rG0eaoaBPVBEELMgF41iFdffVU1QY5l\nWZSXl+P99983amBtkd2T5TZKKyTQYxFcQgj5S9MrQURGRqp+ZxhGteKqubEUciHkcyGRylEtkZk6\nHEIIMSq9EkTnzp1x8OBBJCUlQSaTYejQoZg9ezY4nGa1UP1lMQwDW5EQecVVNNSVEPLc0ytBfPLJ\nJ8jKysLUqVPBsixiYmKQnZ2NdevWGTu+Nse+XoIwr/RICDE3eiWIhIQEHDt2TFVjGDlyJCZOnGjU\nwNoq5RpMJRUSOPBNHAwhhBiRXl+C5XI5ZDJZg+vK7UfNjf2Toa60LwQh5HmnVw1i4sSJePvttzF+\n/HgAwPHjxzFhwgSjBtZW1a9BwM7EwRBCiBHpTBBlZWUICAhAnz59kJSUhPPnz+Ptt99ukR3m/ors\naT0mQoiZ0NrElJaWhvHjx+PGjRsYMWIEVq9ejVdeeQVhYWG4detWa8XYptDOcoQQc6E1QWzfvh1h\nYWHw8/NT3bZ8+XL84x//wD//+U+jB9cWUQ2CEGIutCaI8vJyDBkypMntvr6+KCkpMVpQbZnISgAu\nh0FltRQyOc2mJoQ8v7QmCJlMBoVC0eR2hUIBqVRqtKDaMg7DoP2T/akra5r+bQgh5HmhNUEMGjRI\n7V4QO3fuxIsvvmi0oNo65b4QFTVUgyCEPL+0jmJavnw5PvjgA/zyyy/o27cvWJZFWloa7O3tsWvX\nrtaKsc1RrupaWU01CELI80trgrC2tkZUVBSSkpJw8+ZNcDgczJo1Cz4+Pq0VX5ukXNWVmpgIIc8z\nnfMgGIbBsGHDMGzYsNaI5y9BtTe1mBIEIeT5RevNNUNvF1sAQFpOLe0uRwh5blGCaIaenWzg7e4I\nmRz4JSHT1OEQQohRUIJopqkj3MAAiLv2CHklVaYOhxBCWhwliGbq7GiFF1wEkCtY/Bh3z9ThEEJI\ni6ME8Qxe7m0BHpeDCzfzkZlbbupwCCGkRVGCeAY2lhyMGdgVAHD0jwwTR0MIIS2r1RPEV199hRkz\nZmDKlCk4cuQIsrKyEBgYiKCgIGzYsEG1tMfhw4cxZcoUBAQEIDY2trXD1Nubw7rDUshDamYJ0jKL\nTR0OIYS0mFZNEOfPn8eVK1dw8OBBREZGIjc3F9u2bcPSpUtx4MABsCyL06dPo6CgAJGRkYiOjsbe\nvXsRHh6O2tra1gxVb9aWfLw51AUA8MMfGWBZWn6DEPJ8aNUEER8fDw8PDyxatAjz58/HyJEjkZqa\nisGDBwMA/Pz8cO7cOaSkpMDb2xsCgQAikQguLi5tev+JMT7d0N5agMzcCly6XWDqcAghpEUwbCt+\n5V2/fj0ePXqE3bt3IycnBwsWLIBYLEZ8fDwAIDExEUePHoWvry/S09OxcuVKAMCqVavg7++Pl19+\nWevjJyWdh0RSY/Tnoc7VTAlOpVTDzoqDd0aJwOUwJomDEEIMNWLECLW367UndUuxtbWFq6srBAIB\nXF1dIRQKkZubq7pfLBbDxsYG1tbWEIvFDW4XiUQ6H9/NzavZsaWlXYaX14BmH+PRW4Hr2eeRV1KN\nImlHjPTu0uLnMNYxFBfF1daOobiMH5c+WrWJaeDAgTh79ixYlkVeXh6qq6sxbNgwnD9/HgAQFxcH\nHx8f9OvXD8nJyZBIJKioqEBGRgY8PDxaM1SD8bgcvOXnCgD4KeE+JFK5iSMihJBn06o1iFGjRuHi\nxYuYNm0aWJZFaGgounbtipCQEISHh8PV1RXjxo0Dl8tFcHAwgoKCwLIsli1bBqFQ2JqhNouPpzO6\nn3+ArNwKnLqUjfHDepg6JEIIabZWTRBAXX9CY/v3729yW0BAAAICAlojpBbDYRhMG+mGsOir+DXp\nAUb07wJrS76pwyKEkGahiXIt7IUe9vDqYYdqiQy/JmaZOhxCCGk2ShBGMG2kGwDgVHIOistNM6qK\nEEKeFSUII+jR0QaDPJ0hkytwLP6+qcMhhJBmoQRhJFP8XMHlMEi4/hgPC8W6DyCEkDaGEoSRdLBv\nB9+XOoNlgZg/aSE/QshfDyUII5o0vAcEfA6u3CnE3Ydlpg6HEEIMQgnCiGythXjNpxsAWsiPEPLX\nQwnCyN4Y0h1WFjykZ5fifr7M1OEQQojeKEEYWTsLnmpGdVxaNW5mlaCgtBoyucK0gRFCiA6tPpPa\nHI0e2AWnkrNRWC7BpwevAAAYBrATCeFoYwGH9pZwbG+huji0t4C9Td12poQQYiqUIFoBn8fFgskv\n4sfYFMjQDoXlNSgpl6D4yQU5TTuwGQC2IiH4HBlEyZfA53LA53HB53HqLlzO09/rXRcKuLBiqXZC\nCHl2lCBaiVuX9nhzgJVqSV6ZXIHiCgmKSqtRWFajuhSVVdclkAoJSiokAID8snKDziXkAXLhYwx7\noSMYhvalIIQ0DyUIE+FxOXC2tYSzraXa+5UJ5EbadXRz8YBUpnh6kSvUXpfJFMjOr0BqZgm++e9N\nXE4vxNuv94ZNO0ErPztCyPOAEkQbpUwgHW15cO9qq/dxLMvi8Mkk/JlWi8vpBbiTU4o5r3tigIeT\nEaMlhDyPqBf0OcMwDPq6CLH5/cHwdLFFRZUUX8Rcx97/pqGqhobZEkL0RwniOeXY3hIfBXojcLQ7\n+DwOEm7kIvQ/55GWWWzq0AghfxGUIJ5jHIbBa4O6YeO7g9CzkwjF5RL8K/oqon5Ppy1RCSE6UYIw\nA50crLA2eCD8fXuCy2FwOjkHG/ddRMYjWh+KEKIZJQgzweVwMGl4T6x7eyA6O1ohr7gK/4hMRkxc\nBuQKWiOKENIUJQgz06OjDTa844Nxg7sBLPDfc1mI/LMCJy88wMNCMS0oSAhRoWGuZojP42LGq+7o\n38sRe4/fRGFZDQ6duYtDZ+7CTiREX1d7vNjTAV497NDOgm/qcAkhJkIJwoz1drHD398fgl/+uIgS\niQ1S7xehpEKCuGuPEXftMTgMA7cuNnixpz1edHVA944icGhmNiFmgxKEmRMKuPDqKoCXlxcULIvs\nvEpcv1eEG/eLcTenDHeeXH48ex/Wlny86GqPF3vaQyaWo7i8BkIBF0I+lxYWJOQ5RAmCqHAYBt07\nitC9owgTXu6BqhoZbmaV4Mb9Ity4V4SicgmSUvOQlJpXd0DsOdWxPC4DIZ8LCwEXQgHv6e9PfloI\neegqksHLRM+NEGI4ShBEo3YWPAzs7YSBvZ3Asixyi6tw/V4xbtwvwqP8UrAMHzW1ckhq5ZDJWcjk\nMohrZAAkah9PZMlguI8cQgG3dZ8IIaRZKEEQvTAMg04OVujkYIWxg7ohLe2yamValmUhkytUyUIi\nlaNG+uT32rrff0t6gJyCSvyUcB8Bo3qZ+NkQQvRBCYI8M4ZhnuxVwYWonfoyHezaYcv3l/C/C9l4\n+YWO6Ops3bpBEkIMRj2LpFW4drZB/x4CKFgW35+8DQXNtyCkzaMEQVqNbx9LtLcS4O7DMsSnPDZ1\nOIQQHShBkFYj5DOYOdodAHAk9i7Kq2pNHBEhRBtKEKRVDe7jjBd62EFcI8ORM3dNHQ4hRAtKEKRV\nMQyD2WN7g8et26PiVlaJqUMihGhgkgRRVFSEESNGICMjA1lZWQgMDERQUBA2bNgAhUIBADh8+DCm\nTJmCgIAAxMbGmiJMYiQd7NthwrDuAIDI/92GTK4wcUSEEHVaPUFIpVKEhobCwsICALBt2zYsXboU\nBw4cAMuyOH36NAoKChAZGYno6Gjs3bsX4eHhqK2l9urnyRtDu6ODfTs8LqrCifMPTB0OIUSNVk8Q\n27dvx8yZM+Hs7AwASE1NxeDBgwEAfn5+OHfuHFJSUuDt7Q2BQACRSAQXFxfcunWrtUMlRsTncRA8\n1gMA8Mu5TOSXVps4IkJIYwzbihsAxMTEIDc3FwsXLkRwcDA2btyIOXPmID4+HgCQmJiIo0ePwtfX\nF+np6Vi5ciUAYNWqVfD398fLL7+s9fGTks5DIqkx+vMgLed4shg3H0rRw5mHqUOswNBqsYS0uhEj\nRqi9vVVnUh89ehQMwyAxMRE3b97E6tWrUVxcrLpfLBbDxsYG1tbWEIvFDW4XiUQ6H9/NrflLwdVf\nOsJYx7TGOf5qcXXpXou1XychM1+Gam43+Hg6t4m4TH2O5ymu5hxDcRk/Ln20ahNTVFQU9u/fj8jI\nSPTp0wfbt2+Hn58fzp8/DwCIi4uDj48P+vXrh+TkZEgkElRUVCAjIwMeHh6tGSppJe2tBJg20g0A\ncOBUOqolMhNHRAhRMvkw19WrVyMiIgIzZsyAVCrFuHHj4OTkhODgYAQFBWHOnDlYtmwZhEKhqUMl\nRjKif2e4dbZBaWUtfjx7z9ThEEKeMNlifZGRkarf9+/f3+T+gIAABAQEtGZIxEQ4DIPgcb2x+dtL\nOJ2cg+EvdkL3jrqbFAkhxmXyGgQhAODSQYQxPl3BssB3J25BoaDF/AgxNUoQpM2Y/EpP2ImEyMyt\nQOyVh6YOhxCzRwmCtBmWQh6CxtQNRoiJy0BlDc2wJsSUKEGQNmWAhyNecnNAtUSOP1Jp8hwhpkQ7\nypE2hWEYzHrNAzezzuPWQylW7TqHLo5W6OJk/eSnFTo5tAOfR/taE2JslCBIm+Noa4nZY3vj+xM3\nUVhWg8KyGlzLKFLdzzB1W5h2cbJCF0crdHWyRhcnKzjbWZowakKeP5QgSJv0Sr9OaM95BIeOnnhU\nKEZOQSUeForxsECMvJIq5BbXXZJvF6iO4XEZWAsZiJIuQCjgwoLPbfDz6e88WAi4EPA5sODzkJMn\nhUxYpCWahrLzpbC0K4e1JR/WlnxYCLi0RAh5LlGCIG0Wl8Ogs6MVOjtaNViCQyqT43FRlSphPHyS\nPArLalBaxaK0qtLwk52/ZlDxo0mXVL/zuMyTZCGAqF1d0rBux4fI8unv4hIZPFkWHEok5C+EEgT5\ny+HzuHDpIIJLh4aT6aolMly+dgXdunuiplYOiVQOSa1c9XtNrezJz7rblb+XV5TB2tpG7/NXlJcD\nXEtUVteiolqKWqkCpZW1KK3UviT9r1fPYaCHE3w8ndGrS3twOJQsSNtGCYI8NyyFPNhZc5skDl3q\nFjrrb2D5pwujSaRyiKulqKiSorJaiorqWlSqfpeiskqKW5kFKKmQ4FRyDk4l56C9lQADPJzg09sJ\nHi624HJoQCFpeyhBEPKMhHwuhHwu7G0sNJZJTU2GhV0vJN8uwKVb+Sgsq0HslYeIvfIQ1pZ8DPBw\nhE9vZ3h2twOPS8mCtA2UIAhpBQzDwK1ze7h1bo/pI93wIK8Sl27n49KtfOSVVCPu2mPEXXsMKwse\n+vdyxEBPZ4gr5SgsrQaHw4DLYdT+5DAMdZATo6EEQUgrYxgG3TuK0L2jCFP8XPGwQIxLt/ORfLsA\nDwvFSLiRi4QbuXWFzyTqfDwOU5csGCgg/P0seFwGfB4HfB4XfC7nye9PLk+u855cl1XXwLlzNRxt\naYgwaYoSBCEmxDAMujpbo6uzNfx9XfG4SIxLtwtw9U4hSsoqweUJoGBZyBUsFIqmPxXsk4u8bnFD\nabXU4BjO3kyEp4sthvfthIG9nWAhoI8FUofeCYS0IZ0crDDxZStMfLmHXruEscoEoWCRmnYVbr36\nQipTQCpX1P1UXp5cl9W7XiuV48rNTNzNk+PWg1LcelCK/f9Lh09vJ7zctxN6u9jSsFwzRwmCkL8w\nhmHAZRhwOYCAx0DUTmDQ8Z3bFaCHaz9cup2PhOuPcSenTNXE5WBjgeF9O+LlFzvC2a6dkZ4Bacso\nQRBi5tpZ8OD3Umf4vdQZecVVSLiRi8Qbj1FUXoOfEzLxc0ImPLq2x/C+nRpMWCTPP0oQhBCVDvbt\nMMXPFf6+PXE7qwQJN3Jx6XY+0nPKkJ5Thqjf09GhPQcu99Pg2N4Sju0t4NjeAg7tLWAnEtJ8jucM\nJQhCSBMchkGfHvbo08Mes17zeNIElYv07FJkFymQXZSr9hh7GyEcbJ4mDcf2lrC3EeJhsQwWj8qf\nDs+tP2SXYcDl1ruNYSCVs5DJFaqhvMQ0KEEQQrSyFPLg268zfPt1RnF5DZIuX0M7264oerLSbt3P\napRW1qpW372dreaB4i+puVGL438AABhA/RyQegmFy2HAY2rhlnUTHe3rloTv5NAOju0taUmTZ0AJ\nghCiN3sbC/Rw5sPLq0uT+6QyOYrLJU+SRHVd8iivQXG5BBWVFRAK29UN0WXVD9lV/WRZyGRyAAzk\nChYsAPmT+3V5WPy4wXUel0EH+3boZN8OHR3aoZO9FTo6tENH+3awFNLHny70FyKEtAg+j4sO9u3Q\nwb7piCcBos8/AAAgAElEQVR9huyqK8+yLFgWDZNIvXkhyoQilytw9cYNCKy74HGRGI+L6paDL6mQ\nPFnxV9zkHLbWAlgJ5HDJSIVDvf4Ux/YWsLexoCVPQAmCENKGMQwDhoFezUQlTnx4eXVtcFu1RIa8\nkio8Lqq75BaJn+wlUtckVgrgYXFe0/MCsBUJn/SjKC+WqCiRQmhbhnZCHtpZ8NFOyAOf9/wmEkoQ\nhJDnlqWQhx4dbdCjY8Pl3BUKFkXlNUhOSYGVbTdVf0pdn0o1iiskKHlyuZtT1vBBk5IbXOXzOE8S\nBg/thDxYPvmpTCDlpTV4UPFA7ZIn9S887tP7qiQK1NTKwOdxTDoyjBIEIcTscDgMnGwt4eLIh5dX\n5yb3y+QKlFZIVEmjsKwaRWU1yMktBIdviaoaGaokMlTVyCCVKVAmq0WZWMt+ILfuGh7kybi6WBlG\n63pafC4HPLYKvdzlEPBbdq92ShCEENIIj8uBo61lk0UMG/elsCyLWplClTCqa2SokkgbJJCHjx/C\n1s65ybInmpZBqZXJIamVQsFyUCuTQ8GydZtfSeVaYy4sq0FnR6uW/Tu06KMRQogZYRhGtR+InUio\ntkxaWjG8vNwNetz6iUiuUJ9Q6l8veJzR4skBoARBCCFtGpfDAVfAgYWWZbbSqjKNcu7nt/udEELI\nM6EEQQghRC1KEIQQQtRq1T4IqVSKtWvX4uHDh6itrcWCBQvQq1cvrFmzBgzDwN3dHRs2bACHw8Hh\nw4cRHR0NHo+HBQsWYNSoUa0ZKiGEmL1WTRA///wzbG1t8emnn6K0tBT+/v7w9PTE0qVLMWTIEISG\nhuL06dPo378/IiMjcfToUUgkEgQFBWH48OEQCAzbDIUQQkjztWqCeP311zFu3DgAdeOHuVwuUlNT\nMXjwYACAn58fEhISwOFw4O3tDYFAAIFAABcXF9y6dQv9+vVrzXAJIcSsMSzL6l4isYVVVlZiwYIF\nCAgIwPbt2xEfHw8ASExMxNGjR+Hr64v09HSsXLkSALBq1Sr4+/vj5Zdf1vq4SUnnIZHUGD1+Qgh5\nnowYMULt7a0+D+Lx48dYtGgRgoKCMHHiRHz66aeq+8RiMWxsbGBtbQ2xWNzgdpFIpPOxhw4dYpSY\nCSHEHLXqKKbCwkK89957WLlyJaZNmwYA8PLywvnz5wEAcXFx8PHxQb9+/ZCcnAyJRIKKigpkZGTA\nw8OjNUMlhBCz16pNTFu2bMFvv/0GV1dX1W3r1q3Dli1bIJVK4erqii1btoDL5eLw4cM4dOgQWJbF\nvHnzVH0XhBBCWodJ+iAIIYS0fTRRjhBCiFqUIAghhKhFCYIQQohalCAIIYSoRQmCEEKIWpQgzFxp\naampQ3hmsbGxDa7/+uuvJork2SUlJZk6hOdeSUkJbty4gfLyclOH0uaZ7Y5ylZWV2LNnD/Lz8zFq\n1Cj07t0b3bt313mcXC5HTEwMHj16hKFDh8Ld3R329vYayx87dgxfffUVamtrwbIsGIbB6dOntZ7j\n8uXL2LRpE4qKiuDs7IwtW7bAy8tL6zHZ2dn45JNPkJmZCXd3d6xcuRKdOnXSWP7ChQvYvHkz5HI5\nXn/9dXTu3BnTp0/Xeo6srCycOHECUqkUAJCfn4/NmzerLRscHAyGYdTe9/333ze57YsvvtB43sWL\nF6u9PTY2FpcvX8bx48dx5coVAHWvz5kzZ/Dmm29qfS6Nz8fn89GxY0e8+eab4PP5Tcob+roDQEJC\nAvbt24fa2qeb2at77vVFRERg6NChWsvUt3nzZoSGhqqur1q1Cp988onasq+++mqD14TH40Emk0Eg\nEOC3337TeI709HRs3LgR5eXlmDRpEtzd3XWurrx582ZMnz4dffr00fu53Lp1C9XV1eBwOAgPD8f8\n+fMxbNgwrcc0fk7W1tb46aefNJb/4YcfsGfPHvTq1Qv37t3DkiVLdL5XfH19UVxcDDs7O5SWlkIg\nEMDR0REbNmzA8OHD1R5jyPvl0aNHGs/duXNnjffJ5XLcuXOnwfurpderM9sEsXbtWvj5+eHixYtw\ndHTEunXrsH//fp3HhYaGwtnZGefOnUPfvn2xevVq7NmzR2P5PXv2YPfu3Vo/rBvbsmULwsLC0KtX\nL6SnpyM0NBTR0dE6n8/cuXMxYMAAXLx4EWvXrsW+ffs0lv/ss8+wf/9+LFmyBPPnz0dgYKDOBLFi\nxQq89tpruHz5MpydnVFVVaWx7KZNmwAAX375JUaPHo2BAwciJSWlybd9JUdHRwDAqVOn0LVrVwwY\nMADXr1/H48ePNZ7D09MTpaWlEAqF6NmzJ4C6PYInTJig9XkAwO3btyEUCuHj44Nr167h8ePHcHJy\nQnx8fIPlX5QMfd0BYNu2bVi7di06duyoMx4lhmGwaNEi9OzZExxOXQV/+fLlTcpFRUVh165dKC0t\nxf/+9z8AdQtg9urVS+NjnzhxAizLYtOmTZg5cyb69euHtLQ0HDhwQGtMW7duxbZt27B+/XpMmzYN\nc+fO1ZkgRo4cid27dyMvLw+TJk3CpEmTYG1trfWYjRs3IiQkBBEREVi2bBk+/fRTnQnixIkTAOqe\n+40bN3Dy5Emt5aOjo/Hzzz9DKBSiqqoKc+bM0ZkgBg0ahMWLF8PV1RUPHjzAF198gUWLFmHlypUa\nE4Qh75dly5YBqKvNi8ViuLu74+7du3B0dMSPP/6oMa4PPvgAtbW1sLGxAVD33tH2RatZWDMVHBzc\n4GdgYKBex82ePbvBcTNmzNBaft68eQbH9vbbbze4PmfOHJ3HNC7T+DEamzVrFsuyT5+H8nlpoyy7\nZs0almX1+5s1jkP5GJq8++67Da6/8847Os8hl8sbXM/LyzM4LuV5Z86cqba8oa87y7Ls3LlzdZZp\nLCYmpslFm127dhl8jsavdVBQkNbyyr+VIe8VpaKiInb58uVs//792dWrV7NZWVkaywYHB7MSiYR9\n7733DD6Pkq7n8v7777MymYxl2br3jfJc2jR+nyvj0vReqV/GkPfLwoUL2YqKCpZlWVYsFuv87FD+\nDxuT2dYgACAjIwMAkJubCy6Xq9cxcrkcxcXFAOqaqZTf8jSxsLDA3Llz0adPH1VVWN03wvocHByw\nbt06DB06FKmpqVAoFDh06BAAYMaMGQ3KKlfCtbS0xJ49ezBo0CCkpKSovpFr0r17d4SFhaGkpARf\nf/211qqsEsMwKCgogFgsRlVVldYaRH1HjhxBv379cOXKFbXNN/WVlpbiwYMHcHFxwb1791BRUaHz\n8SMiInDw4EFIpVLU1NSgR48eOH78uNZjKioqUFxcDHt7e5SUlKCiokJ1vDqGvu5A3esYGhoKLy8v\n1Wvf+PVrbOLEifjxxx8bNE1oM3PmTPz3v/+FTCYDy7LIz8/HvHnztB4jEomwY8cO1Wvi5OSktXz7\n9u0RHR2N6upqHD9+XPWNVZuMjAzExMQgNjYWgwcPRlRUFGQyGZYuXYqYmBi1xzAMg1WrVsHPzw+/\n/vqrzvcKAISFhan+tvn5+Rpfl+XLl4NhGBQXF2PKlCl46aWXkJaWBgsLC53ncHJywr/+9S94e3vj\nypUrcHR0REJCgtb4mvN+yc3NVdWy2rVrh4KCAq3lfXx8cPbsWbi5ualu0+f/2BBmu9TG7du3ERoa\nioyMDLi6umLDhg144YUXdB534cIFhISEoKCgAJ06dcK6deu0LkOuror41ltvaT2HIe3xH3/8scay\n27Zt03jfvHnzMGDAAOTm5sLNzQ0BAQE6N2S6ePEi7ty5gw4dOiAkJASTJ0/G6tWrtR5TUFCA3bt3\nIzMzE7169cL8+fNhZ2ensfylS5dU/S8dO3bExo0bdbarTp48GUeOHME//vEPvPvuu9i0aRP+85//\naD0mNjYWW7duhbW1NaqqqrB+/XrcunULVlZWmDVrVpPyjV/3tWvXamxeUFL3OmrqT1Fat26dqmli\n3rx5OHjwoNamrNmzZ8PV1RXp6ekQCoWwtLTE7t27tZ6jqqoK0dHRqtdk5syZWl/7yspK7N69G+np\n6XBzc8P8+fPRvn17recIDAxEQEAAXn/9dVhaWqpuj4qKUvv3BYDi4mJcv34dI0aMQFJSEjw9PWFr\na6v1PPX/v4RCIXx9fdWu/HzhwoUG1xmGgfKjT7kfjSYSiQSHDh3CvXv34O7ujmnTpiEtLQ3dunXT\n+EWsOe+Xf//730hOTsaLL76IlJQU+Pr6YsGCBRrLh4SE4NKlSw2amHQ1RRvKbBNEc0mlUvD5fFWn\nVXZ2NlxcXDSWl8lkuH79eoNveJrayHNzc9GxY0fcv3+/yX3KNnZ95efnw9nZWeP9GRkZOHr0KBIS\nEvDKK69g+vTp6NGjh87HraysRE5ODrp16wYrKyuN5dQ9ByVDnovy763N3Llz8c0332DlypX49NNP\nERwcjMjISJ2PrVAoUFxcDAcHB40d6o0pax3aPMvrqIxd+XPmzJla/+lnzZqFqKgofPzxx9i6dSuC\ngoI0lr9+/Tr69u2rqnXW98orr2g8x86dO7Fw4ULV9bCwMKxYsULr8wDq3oP13/fe3t5ayzdn4IhM\nJsOhQ4dw9+5d9OjRA4GBgVqTXUlJCb766ivVYI4PPvhA51YCzRmgoKT8nND3/XXjxg1V4vb09NRa\nVvnaG5PZNTFp+0dQ94/T2IoVK/D555/D3t4e0dHR2Ldvn9aOscWLF0MqlSI/Px9yuRzOzs4aE8S+\nffvw8ccfNxiVAtR9M9A1+uWzzz4zqJnFzc0Nq1atQnFxMbZu3YoJEyZg0KBB+PDDDzX+I588eRK7\ndu1SjXxiGKbBB0d9yufAMAxKSkqQnZ2Nrl27wt7eXutzUf5NlR8sPB5P1QmrSceOHfHDDz/A0tIS\nYWFheg1fTEhIwLfffguJRKK6TVdchw4dalBe03DaZ3kdlU0TDMPo1TTB5XIhkUhQXV0NhmEgl8s1\nlk1MTETfvn3Vvi/U/V8cOXIEP/zwAzIyMhAXFwegLqlKpVKdCWLt2rW4evUqqqurUV1dDRcXFxw+\nfFjnMYYOHAkNDYWNjQ2GDx+OCxcuYP369RpHcQHA6tWrMXLkSPj7++PSpUtYvXo1du7cqfMc+nY4\nz5gxQ2My0PXt/vHjx0hMTIREIkFmZiZOnTqltcbZu3dvXL16tcEIxxbfltnovRzPmQMHDrAfffQR\nO2/ePPajjz5iS0tLtZYPCAhgWZZl165dy1ZXV2vt2HoWkyZNYiUSCbthwwY2MzOzSWdvY3/88Qf7\nf//3f+yECRPYPXv2sIWFhWxubi47ceJEjcfMmDGDlUgk7OzZs1mFQsG+9dZbOuM6fvw4O3bsWHbB\nggXs6NGj2R9//FFr+QkTJrB5eXnsxo0b2aSkJHbBggU6zyGXy9mHDx+yFRUV7Pfff8/euXNH5zHj\nx49nExIS2IyMDNVFmzfeeIPNzs5my8vLVRdDSSQSnWUuXLjAjh07lvX29mbffPNNNiEhQWv5EydO\nsLt372YPHz7M+vr6skuXLjU4Lk2d+hKJhM3OzmbXr1/P5uTksDk5OeyjR4/0eh5vvfUWq1Ao2PXr\n17NFRUUGDYIwZOBI405pXZ3BjQcn6BOXsozyp7ZzKP9O9+/fV/2ek5PDpqam6jzP9OnT2fDwcPbg\nwYOqizYTJkxgR40axb766quqny3N7GoQSlevXkVMTEyDMf179+7VWF451njq1KmoqqpCYmIitm7d\nqvM8yk6w6upqvTrEgLq266ioqAYd57pqN05OThAIBBCLxejevbvqeWny888/IzAwEEOGNNyFb8mS\nJRqP4XK5EAgEYBgGDMM0aFvW5LvvvkNMTAysrKxQWVmJOXPmwN/fX2N5Z2dnODs7QywWY8iQIXoN\n26uqqkJkZCQyMjLQo0cPTJw4UecxnTp10rmFbX29e/dGp06d9B7MADStDfH5fJ3DMC0sLHDy5ElV\n08TFixe1llfuk1JaWoo33nhD51BSQP/a5u3bt9G3b1+MHTu2QXNZRkaG1po4ANja2oJhGFRVVend\nHKN8bED/gSPK2pOlpSVqamo01qCU8dvZ2eG3336Dj48PUlJS0LVrV53nMKRWJxAIUFlZidWrV+OT\nTz4By7JQKBQIDQ3FDz/8oPU8VlZWqiGv+pg7dy4mT56sd/nmMNsEsXHjRsydOxcnT56Eh4dHg8km\n6iibVNh6XTbK27RNfBs7diy+/PJLeHp6YsaMGXp9qMbGxiI2NlbvhAIY3swSFham9vbXXntN4zED\nBw7EihUrkJeXh9DQUPTt21dnXAzDqPoqrK2tIRQKtZYXiUQ4deqUqsNNn5nea9euhY+PDyZNmoQL\nFy5gzZo1OjtqDR1hNHToUIwZMwbdunVTTXjU1VwUFRWFyMhI7Nq1C6+//jq+++47jWUvXbqEu3fv\n4ttvv8W7774LoK45JyoqCv/97381Hnfx4kVs2rTJoAmPZ86cQVxcXINOfXWUTVLqmtJ0JYgXX3wR\ne/fuhbOzM5YtW4bq6mqt5YG6Dvq1a9ciIyMDH374ITZs2KDzmLfffhuTJ09WzR3Q9AWnfnPfgQMH\nVHM/9OkbWLp0KQIDA1FQUIAZM2Zg7dq1Gsteu3YN3333He7fv4/Q0FCwLAsOh6Pz7wUA7u7uOH78\neIMRj9r6rI4cOUIJwljs7OwwYcIEJCQkYMmSJZg9e7bW8mfOnGnWeTp27Ij4+HhIpVJYWFjo9a3I\nwcEBPJ5hL83mzZuRm5uL119/HT/++CPCw8ObFa82QUFBOHXqFFxdXRETE4OIiAidx3Tr1g3//Oc/\n4ePjg0uXLmnt0AfqJglmZ2dj+fLl2LdvH9avX6/zHCUlJXj77bcBAH369NH5LR2A6ptjYWGhzrIA\ncOjQIezYsUOvvdGVDKkN2djYoLCwELW1tarhjQzDYOXKlVrPsWPHDoMnPOpb2/zggw8A1I2GKy4u\n1jgEWJ34+Hh07doV48ePB5/Px0svvaTzmN69e6uGc+tr0qRJ8PPzU/VxaRohp8+gBU0GDx7coFan\nLamMGTMGY8aMwbFjxxrUlO/du6fzPDdv3sTNmzdV13V9CamtrYW/v3+DSZWavvg1l9kmCA6Hgzt3\n7qC6uhr37t1DWVmZ1vLKJQ1mzpzZ5D5tnU+ffPIJNm/erHNYIPB0rHZhYSHeeustuLu7q96Mul74\nR48e4eTJk6pvar/99pvOIZWG+uijj7B48WIcOHAAy5cvx7Zt23T+423btg2HDh3CuXPn4ObmprNz\n09LSEjdu3MCjR48watQonfMAgLpmhoKCAjg5OaGgoAAKhULnMYsXL8Yff/yBO3fuoGfPnhgzZozW\n8h06dEDfvn31Gs+uZEhtyMPDAx4eHpg+fTr4fD6ys7PRvXt3ncM8ORyOqjlHKBRqHVmmZGhtMzQ0\nFImJiXBwcFDVnnR1uMbExCAjIwOnT5/GmTNn4OjoqDFBPsvAkT/++AMHDx5sUEPR9qHaeGkOkUiE\nY8eOaT2HumVjNJ0jPT0d+fn52Ldvn2oIrEKhQFhYmNYlQADDk9hHH31kUPnmMNsEsWbNGty5cwfB\nwcH46KOPMHXqVK3l5XI5wsPDm0xE0VVFdXd3b9LOr4ky+Tx+/BiVlZXgcrnYs2cPgoODdR67YsUK\n+Pr66pwg9ywYhsGgQYOwe/dujB8/XueoFKBuvR9N497Vac6SFsomAEtLS1RXV+Pvf/+7zvOEhYUh\nKysLAwYMwLFjx5CcnKx1Tkdtba2qKUPfpL1lyxY8ePBAVRsKCQnRGdfp06fx3XffoVevXrh79y4W\nLlyotRnBxcUFYWFhKC0t1XvC48KFC1FVVYW+ffti8uTJOHjwoNbyt27dwv/+9z+9h2oCdd+Gz507\nh/PnzwNAg33oG9Nn9KAmn332GT7++GO93/eNl+ZQXtdG2QTHsixSU1MbfMtvrLy8HMePH0dRUZGq\nX4dhGAQFBek8j6HJy8vLq8mw4JZmtgnC3d0dDg4OqKmpQUREhM43f//+/QEYPh9h9OjRmDFjRoN/\nEE0T2JQTdmbPnt3gm3p0dDTeeecdreexsLBo8RpDYzKZDJ9++il8fHyQlJSksyO8OR48eICtW7ci\nOTkZr776Kr7++mudx0ilUrAsq/p2q88H2cWLF1XfgufMmYOAgACt5XXNTlYnPDxc1fa9Zs0arFq1\nSuekrMOHD6vWCqqursbs2bO1JogNGzbg6NGjGDhwICwtLfVKjqtWrVK9v8LCwhAeHq7126uTkxPE\nYrFeHeBKs2fPRrdu3bBs2TKMGDFCr2MMHTgC1M3y1vU3ra/+MNCBAwfq1RRb/3/Xzc1Na2ezj48P\nfHx8kJqaqtfE2/oMTV7NXU/OEGabIEJCQpCYmAhHR0e9qs26Zj9rEhkZiblz5xrUdm3IN3Xl6AxH\nR0f88ssveOGFF/Tq4GqObdu2ISEhAdOnT8epU6ewffv2Fn18oHlLFHzxxRc4cuQI7O3tUVBQgEWL\nFums3chkMigUCnA4HCgUCo1JJTY2FqNGjVI76U3TB5O6hfQANFgSQRMHBwdVP5WFhYXOJqb58+fr\nnDXemL7vL+WY/sLCQowdOxbdunVTHa+rien8+fNITk5GfHw8/vOf/8DBwUHnh7EhA0eUfRUCgQAh\nISEN3vfaBhvUX5qjoKBAr/dX/X6RgoICrUvMKJuiN2/e3OQ9petvZmjyKi0txbRp0/Dzzz9jwIAB\nejWtGspsE8Tt27fx+++/G1Rtbg5HR0edq0U2Zsg39fqjM44cOYIjR44AqGsSaelp9z169FDNtjb0\nOelr2bJlCAoKQkFBAWbOnKl1xIiSlZWVaiilk5OTXiPFxo8fj8DAQLz00ktISUnR+HyUfVObNm1q\nMCmw/oS5xmbNmoVZs2Zh9+7dmD9/vs5Y6mNZFv7+/vD29kZaWhpkMpmq30Zdk5aNjQ1OnTrVoKNS\n1xcDfd9f4eHhYFkWU6dOxfDhw/HCCy9g5MiReo2uKy8vR15eHh49eoTq6mq9mr4MGTii7MiPj4/H\nwoULVYMNtL0uQMPagKenJ/z8/HTGVX9NJIFAgB07dmgsq2yK7tKlS4Pb9fmc0Xddqfqas56cIcw2\nQTSn2twcFhYWeP/99xsMp9S1WJ8h39SVTQMHDx7Et99+q/pnN3QUVFtx//59cDgcyOVyiMVihISE\naBxGrPyGJZfLMW/ePNWS4tpmk9b/J+zQoQNiY2PRp08fVa2lMalUqhqefPbsWQB1nY71P7g1mTZt\nGrZu3Yr79+/D3d1drzWM6icUfeZzFBUVNekw1TX8Vt/3l/JD7vz586oO53Xr1sHBwQFffvml1nPM\nnTsXY8aMwfz58/UaaAAYNnCkQ4cOqo52Q16X69ev671/htKUKVOa3Kbcw6Fx4mtuUzTQNHn5+vpq\nLb9+/XqDhwUbyuzWYqpfba6qqjKo2twczVmsrzkmTpyIvXv3qsbcf//99zr/iduiKVOmICIiosEK\no5o+8LWtla/pb2zoMbW1tcjPz8dXX32l+vDmcDhwcHDQuaxBcHAw3njjDQwYMADJycmIi4vDV199\npfWY0tJSxMfH6706q6+vL4qKilSr0goEAjg5OWndzMZQyg7nc+fOQSwWY/DgwTq/5DTHnTt3VItB\nbt26FZMmTdLY96YcDly/lqbtdanf7Fe/2c7NzU3r/BSgbvBITk4OPD09cffuXfD5fNjb27f4Z4ah\n60oBdWs9PXjwAD169NDZHNksLT43u43Lyclhs7Oz2cGDB7PLli1jv/nmG/bu3btsTk6OqUN7Jsp1\n7VeuXMmybPPW0m8L9Fmf/6+i8Wugz2sya9YsNiQkhJ0xYwb79ttv69wTYNmyZaplQrKysthVq1ax\nmZmZ7PTp05sfeCMDBgxgJ0+ezP7xxx8t9piaFBUVsQ8fPmRzcnLYhw8ftvjjR0REsOnp6WxGRga7\nZs0aNi0tTecxCxYsUC2tUlVV1aw9XvTx8ccfs9u2bWN///13duvWrar/ZU3279/Pjh07ll24cCE7\nduxY9tixYy0e01+zHeIZPEu1uS1rzgzktkTZXFRbW2twk1xb5erqip9//hlDhgxBamoqbG1tVZ3d\nmpogWJbF5s2bG6zOqk1ubq6qacLFxQWPHj1C9+7dW7Q9ujkdzs1h6MCR5khKSsKgQYMQFRWFcePG\n4R//+IfO+Qd5eXmqQSYWFhYoKipq0ZiUsrKyVKuzjhkzRu2cq/qOHDli0Ii35jC7BKHUeJy2PiNM\n2rLGY+71mYHclig/MFt65JUp3bt3D/fu3VMNHADqBhVomyFryOqsQPM2szFUczqcm6M1Bo4wDAMf\nHx/s2rVL77k8w4cPx+zZs1X7NIwfP94osem7rpSSoSPemsPs+iCUBg4caPA4bUKehT57W5w8eRKZ\nmZmwt7dHREQEBg4ciH//+98ayys3s8nIyICHh4dem9kYasqUKRgzZgxee+01vTucm2PRokXYvn27\nUQeOKEeuWVtbw8fHB59//rnOPbkBICUlBQ8fPoSHh4fRvkz+8ssviIiIaLCulLb91d977z3VPhs3\nb96EVCpV7UneUktumG2CkMlkqmpzSkqK0arNxHw1ZzXX+iorK40+yq4taM2BI5mZmQ1GcPXt21d1\nPk3y8vLw6aefori4GK+//jp69+6t19pShpo1axZ27tyJBw8eaF1XSumnn35qsuKCcm8IQyYPamO2\nTUytVW0m5suQ1VyVjhw5gm+//bbBwnjaVgt+HjzLfAtDNWcuT0hICN59913s3LkTPj4+WLNmjV5N\nU4ZiGAZr165tMKdFW//bkSNHDF5xwVBmmyCaM06bEEM0Z2+LgwcP4uuvv24wzPd519YHjtTU1GDY\nsGHYtWsXXF1ddS5Z31y61oNrrDlroxnKbBNETEyMqUMgz7nmjCyzs7NrMgvXXLTVgSNCoRBnz56F\nQqHA1atXW35bzycMnR/VGmujmW0fBCHGdvHiRaSmpuKNN97Ali1b4O3tjffee09tWWX/15UrVyAQ\nCDrjSgIAAAXwSURBVJ6LYb6GaqsDR3Jzc7F9+3akp6fDzc0NK1eu1Nlv0Rqa059iKEoQhBjJ1KlT\n8e9//xsuLi7Izs7GmjVrVOPcG1PO8C4oKIBQKISNjQ3Cw8Px3nvvqXaYe9615YEj9+/fR1ZWFjw9\nPdGhQwejr+HWVphtExMhxsbn81U76HXr1k3r4mvK5oX6SUXZIWouCaKtDhzZv38/fv/9d5SVleGt\nt95CVlZWg/WcnmeUIAgxks6dOyM8PBz9+/dHSkoKnJ2ddR5jSFJ53rTVgSPHjx9HVFQU5syZgzlz\n5hjcmfxXRgmCECPZtm0bDh48iD///BNubm4NlgvXpDlJ5XnRVgeOsI02ojJWJ3VbRH0QhLQhEokE\nBw8exP379+Hm5oaZM2ea1QdSW7R//378+uuvePToEdzd3TF06FC8//77pg6rVVCCIIQQHTIyMpCe\nno6ePXvC09PT1OG0GkoQhBCihboJjsbe/72toD4IQgjRQrnoIcuySEtLM8rez20VJQhCCNGi8b4M\nc+fONVEkrY8SBCGEaKHc5AkA8vPzVftRmwNKEIQQooVykyegbl2mNWvWmDii1kOd1IQQosWkSZNQ\nWVkJoVAIiUQChmFUcyOe96XYqQZBCCFaeHt7w9/fH97e3rh9+zb27t2LLVu2mDqsVkEJghBCtMjI\nyIC3tzcAoHfv3nj8+LHZTF6kBEEIIVqIRCLs2LED/fr1w6VLl9rMIoKtgfogCCFEi6qqKhw4cAA5\nOTno3bs3pk+fDh7PPL5bU4IghBCilvmsJUwIIcQglCAIIYSoRQmCEDVOnDiBKVOmYNKkSZg4cSK+\n+eYbo50rJibGrCZfkb8O8+hpIcQAeXl52L59O2JiYmBnZwexWIzg4GD07NkTo0ePNnV4hLQaShCE\nNFJSUgKpVIqamhoAgJWVFf75z39CKBTit99+w759+1BTUwOJRIItW7Zg0KBBCA4ORp8+fZCYmIia\nmhqsX78ekZGRuHv3Lt555x288847iIiIQGZmJh48eIDS0lLMmDGjycJvKSkp2LZtG2pqamBnZ4dN\nmzahW7du2LdvH3788UdwOBz069cPmzdvNsWfhpgZShCENOLp6YnRo0djzJgx6NOnD4YMGYKJEyei\nW7duCA0Nxe7du2Fvb48ffvgBe/fuxaBBg1TH/vLLL/jiiy+wZcsW/PzzzyguLoa/vz/eeecdAEB6\nejqio6OhUCgwZcoUDBs2THVsbW0t1q9fj927d6Nz5844e/YsQkJC8M033+Crr77C2bNnweVysWnT\nJuTl5aFDhw6t/achZoYSBCFqbNq0CQsXLkR8fDzi4+MREBCAf/3rX/jyyy9x5swZ3L9/HxcuXACH\n87Qbz8/PD0DdvtIvvfQSLC0t0aVLF5SXl6vKTJgwAVZWVgCAV199FUlJSbCzswMAZGZmIjs7GwsW\nLFCVr6ysBI/Hg7e3N6ZNm4bRo0dj1qxZlBxIq6AEQUgjf/zxB6qqqvDmm29i6tSpmDp1Kg4fPoyo\nqCiEhYVh8uTJGDRoEHr37o2oqCjVcXw+X/W7polUXC5X9btCoWhyvWvXrvjpp58AAHK5HIWFhQCA\nnTt34urVq4iLi8PcuXPxr3/9C4MHD27R501IYzSKiZBGLCwsEBYWhpycHAB1O4ndvXsXAoEAHA4H\n8+fPx9ChQxEXFwe5XG7QY586dQq1tbUoKytDbGwsXnnlFdV9rq6uKCsrw6VLlwAAR48exUcffYTi\n4mK88cYb8PDwwP/93/9h+PDhuH37dss9YUI0oBoEIY0MHToUixcvxvz58yGVSgEAvr6++PLLL7Fm\nzRq88cYbsLCwwKBBgwzePEYoFCIoKAiVlZWYN28eevXqhZSUFACAQCDAZ599hq1bt0IikcDa2hrb\nt2+Hvb09Zs6ciWnTpsHS0hKdOnXCW2+91eLPm5DGaKkNQlpJREQEAGDJkiUmjoQQ/VATEyGEELWo\nBkEIIUQtqkEQQghRixIEIYQQtShBEEIIUYsSBCGEELUoQRBCCFGLEgQhhBC1/h9nPcKSgYjhswAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Import stopwords from sklearn\n", "from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS\n", "\n", "# Add sklearn stopwords to words_sw\n", "sw = set(sw + list(ENGLISH_STOP_WORDS))\n", "\n", "# Initialize new list\n", "words_ns = []\n", "\n", "\n", "# Add to words_ns all words that are in words but not in sw\n", "for word in words:\n", " if word not in sw:\n", " words_ns.append(word)\n", "\n", "\n", "# Create freq dist and plot\n", "freqdist2 = nltk.FreqDist(words_ns)\n", "freqdist2.plot(25)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Present your solution so that others can understand it.\n", "\n", "The cool thing is that, in using `nltk` to answer our question, we actually already presented our solution in a manner that can be communicated to other: a frequency distribution plot! You can read off the most common words, along with their frequency. For example, 'whale' is the most common word in the novel (go figure), excepting stopwords, and it occurs a whopping >1200 times! " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "## BONUS MATERIAL" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you have seen that there are lots of novels on Project Gutenberg we can make these word frequency distributions of, it makes sense to write your own function that does all of this:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_word_freq(url):\n", " \"\"\"Takes a url (from Project Gutenberg) and plots a word frequency\n", " distribution\"\"\"\n", " # Make the request and check object type\n", " r = requests.get(url)\n", " # Extract HTML from Response object and print\n", " html = r.text\n", " # Create a BeautifulSoup object from the HTML\n", " soup = BeautifulSoup(html, \"html5lib\")\n", " # Get the text out of the soup and print it\n", " text = soup.get_text()\n", " # Create tokenizer\n", " tokenizer = RegexpTokenizer('\\w+')\n", " # Create tokens\n", " tokens = tokenizer.tokenize(text)\n", " # Initialize new list\n", " words = []\n", " # Loop through list tokens and make lower case\n", " for word in tokens:\n", " words.append(word.lower())\n", " # Get English stopwords and print some of them\n", " sw = nltk.corpus.stopwords.words('english')\n", " # Initialize new list\n", " words_ns = []\n", " # Add to words_ns all words that are in words but not in sw\n", " for word in words:\n", " if word not in sw:\n", " words_ns.append(word)\n", " # Create freq dist and plot\n", " freqdist1 = nltk.FreqDist(words_ns)\n", " freqdist1.plot(25)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now use the function to plot word frequency distributions from other texts on Project Gutenberg:\n", "\n", "* Pride and Prejudice" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEkCAYAAADNfV1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX6wPHPGYYBZBEVcAVFBBWVXHDfrqXZ75ZpLqiY\n2tW6udVVy327dW+aefXabbO6beKClma3bFMrDRdyKxVcCcUVkH0dZmB+fxATKLORI8I879fLl3Dm\nfM95ZoDznO96FIPBYEAIIYRDU1V3AEIIIaqfJAMhhBCSDIQQQkgyEEIIgSQDIYQQgLq6A6iK1NSc\nKpdNSIgnKCj0nisjcUlc91oZiat2xFWer6+nydfslgx0Oh3z58/n6tWrqFQq/vGPf6BWq5k/fz6K\nohAcHMyyZctQqVRs3bqV6Oho1Go1U6dOZcCAAfYKC6228J4sI3FJXPdaGYmrdsRlLbslg71796LX\n64mOjmb//v2sXbsWnU7HzJkz6d69O0uXLmXPnj107NiRqKgotm3bhlarJTIykt69e6PRaOwVmhBC\niFvYrc8gMDCQ4uJiSkpKyM3NRa1WExcXR7du3QDo168fBw4c4MSJE3Tq1AmNRoOnpycBAQGcOXPG\nXmEJIYSohGKvGcjXr19n2rRp5Ofnk5GRwbp163j22WeJiYkB4ODBg2zbto2+ffty7tw55syZA8Dc\nuXMZNmwYvXr1MnnsQ4di7VZVEkKI2qp///4mX7NbM9GHH35Inz59eO6557h+/ToTJ05Ep9MZX8/L\ny8PLywsPDw/y8vIqbPf0NN3JAVS58wQgPv4YoaGd77kyEpfEda+VkbhqR1zWslszkZeXl/GiXrdu\nXfR6PaGhocTGxgKwb98+wsPDCQsL4+jRo2i1WnJyckhISCAkJMReYQkhhKiE3WoGTzzxBAsXLiQy\nMhKdTsesWbNo3749S5YsYc2aNbRs2ZLBgwfj5OTE+PHjiYyMxGAwMGvWLFxcXOwVlhBCiErYLRm4\nu7vz6quv3rZ9w4YNt22LiIggIiLCXqEIIYSwwKFmIJ/8NY0vj+VRWKSv7lCEEOKe4lDJIDY+mfgr\nOn46nVLdoQghxD3FoZJBi0alHdpnkzKqORIhhLi3OFQyaNO8HgBnkjKRB7wJIcTvHCoZNPFxx02j\nkJGjJSWzoLrDEUKIe4ZDJQOVotCsQekAqrNJmdUcjRBC3DscKhkA+PuUJoMz0m8ghBBGDpcMAsrV\nDKTfQAghSjlcMmjgqcLDzbm03yBD+g2EEAIcMBkoikKbAG9AmoqEEKKMwyUDgNYBpUNMpRNZCCFK\nOWQy+H2+QYb0GwghBA6aDJo0qINnHWcyc4tIln4DIYRwzGSgKIqxqUj6DYQQwkGTAWDsRJZ+AyGE\ncOhkIP0GQghRxmGTQeMGdfCq40xWbhE30vOrOxwhhKhWDpsMyvcbSFOREMLROWwyAGTymRBC/Max\nk0Hz32sG0m8ghHBkDp0MGtWvg5e7hqw86TcQQjg2h04GFdcpkn4DIYTjcuhkAOXXKZJ+AyGE43L4\nZFC+ZiD9BkIIR+XwyaBR/TrUddeQnVfE9TTpNxBCOCaHTwal8w3KlqaQpiIhhGNy+GQA5ZemkE5k\nIYRjUtvrwNu3b+fTTz8FQKvVcvr0aTZt2sTy5ctRFIXg4GCWLVuGSqVi69atREdHo1armTp1KgMG\nDLBXWJX6fb5B6TpFiqLc1fMLIUR1s1vNYPjw4URFRREVFUW7du1YvHgxb7zxBjNnzmTTpk0YDAb2\n7NlDamoqUVFRREdH895777FmzRqKiorsFValGtZzo66Hhux8Hdek30AI4YAUg52H0Jw8eZJXXnmF\nqKgo+vbty759+1AUhd27d7N//3769OnD3r17efHFFwGYPn06Tz/9NGFhYSaPeehQLFpt4R2N84uj\neZy5quOBDm50CnS5o8cWQoh7Qf/+/U2+ZrdmojJvv/0206dPB6jQBOPu7k5OTg65ubl4enoa93d3\ndyc3N9fsMYOCQqscT3z8MUJDO9+2PaXoKmeuniVL50loaHurylTlPHdqf4lL4nLU9yJx2V7GGnbt\nQM7OziYxMZEePXqUnkz1++ny8vLw8vLCw8ODvLy8CtvLJ4e7pW1AxX4DIYRwJHZNBocPH6Znz57G\n70NDQ4mNjQVg3759hIeHExYWxtGjR9FqteTk5JCQkEBISIg9w6qUXz03vD005OTruHYzz3IBIYSo\nReyaDBITE2nWrJnx+3nz5vHaa68xevRodDodgwcPxtfXl/HjxxMZGcnEiROZNWsWLi53v82+dJ0i\nGWIqhHBMdu0zePLJJyt8HxgYyIYNG27bLyIigoiICHuGYpXWAd4cik/mbFIGD3RpZrmAEELUEjLp\nrJyy+QayTpEQwtFIMijHz9uNep4u5BbouCr9BkIIByLJoJyK6xRJv4EQwnFIMrjF753IsmidEMJx\nSDK4RZtyNYMS6TcQQjgISQa38C3Xb3AtVfoNhBCOQZLBLSo+F1maioQQjkGSQSV+fy6ydCILIRyD\nJINKGJ9vcFn6DYQQjkGSQSV867pS3+u3+QbSbyCEcACSDCqhKAqt/WWIqRDCcUgyMKGNTD4TQjgQ\nSQYm3PpcZCGEqM0kGZjgU9eVBl4u5BXqSc0uqe5whBDCriQZmFC6TlFp7eBymr6aoxFCCPuSZGBG\n2aJ1l29KMhBC1G6SDMxoW65moC+WpiIhRO0lycAMH283Gjeog1ZnkCGmQohaTZKBBV3b+AHw0+mU\nao5ECCHsR5KBBV3bNgTg+LlUaSoSQtRakgwsaOrjjo+nirxCPfEX06s7HCGEsAtJBlZo3VQDwGFp\nKhJC1FKSDKzQuokzAMfO30Snl6YiIUTtI8nACvU9nAjw86BAqycuUZqKhBC1jyQDK3VtWzqq6PCZ\n5GqORAgh7jxJBlYqG2J6/PxNdPriao5GCCHuLLU9D/7222/z3XffodPpGDt2LN26dWP+/PkoikJw\ncDDLli1DpVKxdetWoqOjUavVTJ06lQEDBtgzrCrxq1eH5o08uXQjh5O/ptM5xLe6QxJCiDvGbjWD\n2NhYjh8/zubNm4mKiuLGjRusWLGCmTNnsmnTJgwGA3v27CE1NZWoqCiio6N57733WLNmDUVFRfYK\n6w/pZpyAJk1FQojaRTHYabH+1atXoygK58+fJzc3l7lz5zJt2jT27duHoijs3r2b/fv306dPH/bu\n3cuLL74IwPTp03n66acJCwszeexDh2LRagvtEbZZWfnFvLs7B2cnmDa4Ls5q5a7HIIQQVdW/f3+T\nr9mtmSgjI4Nr166xbt06rly5wtSpUzEYDChK6QXU3d2dnJwccnNz8fT0NJZzd3cnNzfX7LGDgkKr\nHFd8/DFCQztXuczuuCMkXs9Gp/Hnvt9qCnfiPH80LnuVkbhqR1xVKSNx1Y64rGW3ZiJvb2/69OmD\nRqOhZcuWuLi4kJOTY3w9Ly8PLy8vPDw8yMvLq7C9fHK413T7bVTRT2dkApoQovawWzLo0qULP/74\nIwaDgeTkZAoKCujZsyexsbEA7Nu3j/DwcMLCwjh69CharZacnBwSEhIICQmxV1h/WNmoohMXbqIt\nklFFQojawW7NRAMGDODw4cOMHDkSg8HA0qVLadasGUuWLGHNmjW0bNmSwYMH4+TkxPjx44mMjMRg\nMDBr1ixcXFzsFdYfVt/LlVZN63Lhaha/JNyk228L2QkhRE1m16Glc+fOvW3bhg0bbtsWERFBRESE\nPUO5o7q28ePC1SwOn06RZCCEqBVk0lkVhLfxQwFO/JpGgVYeiSmEqPkkGVRBPU8XgpvVRacv4ZcL\nN6s7HCGE+MMkGVRR2UNv5AloQojaQJJBFYW39kUBTiWmkV8oTUVCiJpNkkEV1fVwoXWAN/piA8fP\np1Z3OEII8YdIMvgDypqKDssENCFEDSfJ4A/oEuKLokBcYjp5hbrqDkcIIapMksEf4OWuoW3zehSX\nGDh2TpqKhBA1lySDP6hseQppKhJC1GSSDP6gLq39UCkKpy9mkFsgTUVCiJpJksEf5OHmTGgLaSoS\nQtRskgzugK5t5QloQoiaTZLBHdA5xBcnlcLpSxlk59+bj+wUQghzJBncAe6uzrQLrI/BAEfPSlOR\nEKLmkWRwhxhHFUlTkRCiBpJkcId0CvZF7aRw9nImWbna6g5HCCFsYnUySEkpHUd/5MgRNm7cSH5+\nvt2CqonquKppH9gAgwGOSFOREKKGsSoZLFu2jLfeeosLFy7w3HPPERcXx7x58+wdW41TNqpIJqAJ\nIWoaq5LByZMnWbp0KV999RUjR45k+fLlXLt2zd6x1TgdW/mgdlJx/nImuYUl1R2OEEJYzapkUFxc\nTElJCXv27KFfv34UFBRQUFBg79hqHDcXNWFBDTAAZ6/KEFMhRM1hVTIYNmwYffr0oWnTptx3330M\nHz6c0aNH2zu2GqlHaOmy1rHntTLnQAhRY1iVDPr06UNMTAxvvPEGABs3buS+++6za2A1VefWvrQJ\n8Ca/yMD6r89iMBiqOyQhhLDIbDI4evQohw8fZsaMGRw/fpzDhw9z+PBhzp49Kx3IJqgUhUkPt0Wj\nhmPnUjkYd6O6QxJCCIvU5l48cOAAP/30EykpKbz66qu/F1KrpZnIDJ+6btzf3o2vfy5g465ztAmo\nR30v1+oOSwghTDKbDJ555hkAduzYwbBhw+5KQLVFO38NyXnuHD9/k/d2nua5MR1RKUp1hyWEEJUy\nmwzKdO3alZUrV5KVlVWhDXzFihV2C6ymUxSFiQ+14cLVWE5fyuC7o1cYGO5f3WEJIUSlrEoGM2fO\nJDw8nPDwcBQb7m4fe+wxPDw8AGjWrBlTpkxh/vz5KIpCcHAwy5YtQ6VSsXXrVqKjo1Gr1UydOpUB\nAwZU7d3cY7zcNUwY3IY3Pj3Jxz8k0C6wPo0buFd3WEIIcRurkoFer7e5w1ir1WIwGIiKijJumzJl\nCjNnzqR79+4sXbqUPXv20LFjR6Kioti2bRtarZbIyEh69+6NRqOx7Z3co7q09qV3+0bsP3WD/34R\nz8LxXXBSyZJQQoh7i1VXpS5duvDdd99RVGT9uPkzZ85QUFDApEmTmDBhAj///DNxcXF069YNgH79\n+nHgwAFOnDhBp06d0Gg0eHp6EhAQwJkzZ6r2bu5RYweGUN/LhcTrOew8eKm6wxFCiNsoBisGwvfp\n04ebN29WLKgonD592mSZs2fP8ssvvzBq1CguXrzIU089RWFhITExMQAcPHiQbdu20bdvX86dO8ec\nOXMAmDt3LsOGDaNXr14mj33oUCxabaFVb/BekZSqY+vBPFQKRPb1oJG3VZUyIYS4Y/r372/yNauu\nSGUXcFsEBgbSvHlzFEUhMDAQb29v4uLijK/n5eXh5eWFh4cHeXl5FbZ7enqaPXZQUKjN8ZSJjz9G\naGjnu14mFMjQnWfXkcvsiSth2RP3oXF2qva47oVzSFz3ZhmJq3bEZS2rksHrr79e6fYZM2aYLPPJ\nJ59w7tw5/v73v5OcnExubi69e/cmNjaW7t27s2/fPnr06EFYWBhr165Fq9VSVFREQkICISEhVXs3\n97gR/VtyKjGN62n5bN/3K2MeCK7ukIQQArAyGZSn0+n48ccfLS5HMXLkSBYsWMDYsWNRFIXly5dT\nr149lixZwpo1a2jZsiWDBw/GycmJ8ePHExkZicFgYNasWbi4uFT5Dd3LNM5OPPlIKC+tP8q3hy9z\nXysf2javV91hCSGEdcng1hrA9OnTmTRpktkyGo2G1atX37Z9w4YNt22LiIggIiLCmlBqvMDGXgzp\n3YLPYhJ5f2c8L07ujpuL9B8IIapXlcY45uXlyfMM/oCHezanRSNP0rK1bN59vrrDEUII62oG999/\nv3GymcFgIDs7m8mTJ9s1sNpM7aTiyUdCeeHDw8ScvE6nYB9qZ8OYEKKmsCoZlJ84piiKcRSQqLom\nPu6M7B/E5j3n+fDrMzze1626QxJCODCrkkGTJk3YvHkzhw4dQq/X06NHDx5//HFUMpP2D3kgvBnH\nz6dyJimT3b9AeEeDTct9CCHEnWLV1fyVV14hJiaGoUOHMnz4cA4dOiSL1N0BKkVh8sOhuLk4cf6G\njpiT16s7JCGEg7KqZrB//3527NhhrAn86U9/YsiQIXYNzFE0qOvKuEEh/PeL02zadZ6QZt40rF+n\nusMSQjgYq2oGxcXF6PX6Ct87OTmZKSFs0bNdI9o0dUarK+adz+PQF5dUd0hCCAdjVc1gyJAhTJgw\ngYcffhiAnTt38sgjj9g1MEeiKAoDw9xIzXEi8XoOn8UkMqJ/UHWHJYRwIBZrBllZWURERDB16lSu\nXbvGp59+ypgxY5gyZcrdiM9huDqreGpIKIoCXx68xJlLGdUdkhDCgZhNBvHx8Tz88MOcOnWK/v37\nM2/ePPr06cPq1atr3TLT94IQf28e6dkCA/DuF/HkFeqqOyQhhIMwmwxWrlzJ6tWr6devn3Hb7Nmz\nWb58OS+//LLdg3NEQ3q3oGUTLzJytHz09VmsWGFcCCH+MLPJIDs7m+7du9+2vW/fvmRkSDOGPaid\nVPx1SCguGieOnEmR4aZCiLvCbDLQ6/WUlNw+sqWkpASdTpow7MWvXh0eH1S6jPemXedJTs+v5oiE\nELWd2WTQtWvXSp9l8Oabb9K+fXu7BSWgV/tGdGvrJ8NNhRB3hdmhpbNnz+avf/0rn3/+OR06dMBg\nMBAfH0/9+vV566237laMDklRFCYMbk3C1WwZbiqEsDuzycDDw4ONGzdy6NAhTp8+jUqlYty4cYSH\nh9+t+BxaHVdnnhoSyspNx/jy4CXatahPG3kYjhDCDixOOlMUhZ49e9KzZ8+7EY+4Rdlw088PXOTd\nL+J5YVI3PNycqzssIUQtI8uO1gDlh5uu//qMDDcVQtxxkgxqgArDTc+mynBTIcQdJ8mghpDhpkII\ne5JkUIPcOty0uESai4QQd4YkgxqkbLhpAy9XEq/nsDeuAJ1e5h8IIf44SQY1TNlwU0WBY4lFzHlz\nP5/u+5WMHG11hyaEqMEkGdRAIf7ezHisA75eKrLzdXx+4CJz3zrAO/+LI+FaVnWHJ4Sogax6uI24\n93QK8UWj80Tt2ZLdR69w7Fwqh+KTORSfTGBjLwaFNyO8jR9qJ8n3QgjLJBnUYIqi0DqgHq0D6nEz\nq4Dvj11l3y/XSLyezTufx7PluwsM6NSU/p2aUtddU93hCiHuYXZNBmlpaQwfPpz3338ftVrN/Pnz\nURSF4OBgli1bhkqlYuvWrURHR6NWq5k6dSoDBgywZ0i1lk9dN0YNaMWjfQI5FHeD3UevcDU1jx0x\niXxx8CLd2jZkYHiz6g5TCHGPslsy0Ol0LF26FFdXVwBWrFjBzJkz6d69O0uXLmXPnj107NiRqKgo\ntm3bhlarJTIykt69e6PRyF1sVbk4O9G/Y1P63deEM5cy2H30Cj+fv8mBUzc4cOoG3Vq5EBpa3VEK\nIe41dmtQXrlyJWPGjMHPzw+AuLg4unXrBkC/fv04cOAAJ06coFOnTmg0Gjw9PQkICJDHad4hiqLQ\ntkV9nhkRxoopPRnczR8nlcJPF7RcuCqdzEKIihSDHRa62b59Ozdu3GDatGmMHz+ev//970ycOJGY\nmBgADh48yLZt2+jbty/nzp1jzpw5AMydO5dhw4bRq1cvs8c/dCgWrbbwTodd6+2LL+CnC1p8PFWM\n7++Jk0qp7pCEEHdR//79Tb5ml2aibdu2oSgKBw8e5PTp08ybN4/09HTj63l5eXh5eeHh4UFeXl6F\n7Z6enhaPHxRU9XaO+PhjhIZ2vufK3I1ztAou5uxbP3Izp4SknAY83LPFPRFXVcpIXI77XiQu28tY\nwy7NRBs3bmTDhg1ERUXRtm1bVq5cSb9+/YiNjQVg3759hIeHExYWxtGjR9FqteTk5JCQkEBISIg9\nQhKAxtmJQWFuAPxv/0VSMmR9IyFEqbs2CH3evHm89tprjB49Gp1Ox+DBg/H19WX8+PFERkYyceJE\nZs2ahYuLy90KySG18HOmZ7uG6PQlrP/mrCyHLYQA7sI8g6ioKOPXGzZsuO31iIgIIiIi7B2GKGf0\nA8GcSEgj/mIGh+KS6dm+UXWHJISoZjI91QF51dEQcX8rADbvOU9uga6aIxJCVDdJBg6qT4fGtAnw\nJrdAx9bvLlR3OEKIaibJwEEpisKEh9qgdlIRc/I6py9lVHdIQohqJMnAgTWqX4dHejUHYP3XZ9Dp\ni6s5IiFEdZFk4OD+3KM5jRvUITmjgC8OXKrucIQQ1USSgYNTO6mY+FAbAL48dImrN/MslBBC1EaS\nDAQh/t7079iE4hIDH319hhKZeyCEw5FkIAAY+acgvNw1XLiSxb5frlV3OEKIu0ySgQDA3dWZyIHB\nAHz8fQJZufJMZSEciSQDYdS1jR8dWjagQKtn857z1R2OEOIukmQgjBRFYfyDIWicVfx0OoUTCTer\nOyQhxF0iyUBU4OPtxrA+LQGI+uYcRXrpTBbCEUgyELcZ1LUZAQ09SMsu5MBZeYiQEI5AkoG4jZOq\ndO6BosDRBC0ff3+B62ky/0CI2szuS1iLmimwsRd/7tGcnQcv8VVsEl/FJhHUxIveHRrTra0fdVyd\nqztEIcQdJMlAmDS8X0u8VGlcyfHkpzMpJFzLJuFaNpv3nKdziC99OjSmbfN6qORZykLUeJIMhEmK\notC0gZpBfdsSOTCEo+dS2H/yBqcvZRAbn0xsfDL1PF3o3aERvds3pmH9OtUdshCiiiQZCKu4aJzo\n1b4xvdo35mZmAQdO3SDm5HVuZhXyxYFLfHHgEsHN6tK7Q2M8DCXVHa4QwkaSDITNfLzdeLRPII/0\nbsH5y5nEnLjO4bMpnL+SxfkrWQB47P0RX283fL1d8avnhm9dt9L/vd3w9nRBpUjTkhD3EkkGospU\nikLrgHq0DqhH5KAQjpxN4cDJGyRczSS3QEdugY7E69m3lVM7KfiUJYe6bvjWc6MoV4dfkwLq13WV\nRCFENZBkIO4INxc1fcOa0DesCXFxR2kS0J7UzALjv5SyrzMKyM7XcSM9nxvp+RWOsT32IBpnFY3q\n16GJjzuNG7jTpEHp177ebqidZCS0EPYiyUDccYqiUM/ThXqeLoT4e9/2emGRntTMwtIkkVGaJC5c\nTia7QEVWXhFJybkkJedWKOOkUvCr52ZMEmiLaNa8CC93zd16W0LUapIMxF3nqlHj7+eBv5+HcVt8\nfB6hoZ3JK9Rx/WY+19LyuHYzj+tp+VxPy+NmVuFvX+cDqQDsPBpDyyZehLXy4b6gBvj7eaBIE5MQ\nVSLJQNxT3F2dadWsLq2a1a2wXVtUzI3035NE3IWrXEkvNs59+HTfr9TzdOG+oAaEtfKhbfN6uDg7\nVdO7EKLmkWQgagQXjRPNG3nSvJEnAG19s2jZKoz4ixmcSLjJLxfSyMjR8sPP1/jh52s4q1W0bV6v\nNDkE+dCgrms1vwMh7m2SDESN5apR0znEl84hvpQYDCQl5/DLhTR+uXCTizdyOJGQxomENOAczXw9\n8PUoIiEjEc86GjzcnPGs41z6dR1nPFydZSa1cGh2SwbFxcUsXryYxMREFEXhhRdewMXFhfnz56Mo\nCsHBwSxbtgyVSsXWrVuJjo5GrVYzdepUBgwYYK+wRC2lUhRaNPKiRSMvhvYJJDNXy8mENH5JSCMu\nMZ0rqblcSYXjiYmVlleU0iYqzzrOeLr9niSc9Fo8GuTQzM9DhryKWs1uyeD7778HIDo6mtjYWP79\n739jMBiYOXMm3bt3Z+nSpezZs4eOHTsSFRXFtm3b0Gq1REZG0rt3bzQaGSUiqs7bw4W+9zWh731N\n0OlLOHs5g2OnzuLu1ZCc/CJy8nXkFOjIydeRm19EXqHeODfi+i3H+u7UYeq4qAluVpeQAG9C/L1p\n3tBThrqKWsVuyWDgwIH86U9/AuDatWt4eXlx4MABunXrBkC/fv3Yv38/KpWKTp06odFo0Gg0BAQE\ncObMGcLCwuwVmnAwzmoV7QMboCpwJTQ0qNJ99MUl5BXqjYkit0BHVq6Wn89cJDlbRVq2ll9+q2kA\naJxVtGpalxB/b1r7e9OyiRfOaumwFjWXYjAY7Pooq3nz5rFr1y7+85//MH/+fGJiYgA4ePAg27Zt\no2/fvpw7d445c+YAMHfuXIYNG0avXr1MHvPQoVi0Wnnoirh7svJLuJKmN/7LyKu4/pKTChp7O9Gs\ngZoAXzVN6qlRO0mzkri39O/f3+Rrdu9AXrlyJc8//zwRERFotVrj9ry8PLy8vPDw8CAvL6/Cdk9P\nT7PHDAoKrXI88fHHCA3tfM+VkbhqVlxZuVrOXcniXFImZy9ncjU1lyvpxVxJL+bQeS0aZxUh/t6E\nNq9Pu8D6NPN1NzkHorrfS3WeQ+K6O2WsYbdksGPHDpKTk3n66adxc3NDURTat29PbGws3bt3Z9++\nffTo0YOwsDDWrl2LVqulqKiIhIQEQkJC7BWWEHdEXQ8Xurbxo2sbPwDyCnWcv5LF/mNnSc5RcyU1\nj1O/pnPq13T4HrzcNYS2qEe7FvUJbVGfep4u1fwOhKjIbsngwQcfZMGCBYwbNw69Xs/ChQsJCgpi\nyZIlrFmzhpYtWzJ48GCcnJwYP348kZGRGAwGZs2ahYuL/KGImsXd1ZmOrXzQFCURGtqZrFwt8Rcz\niL+YTtzFdDJzizgUl8yhuGQAmvi4G5ODvqiEkhKDDG0V1cpuyaBOnTq8+uqrt23fsGHDbdsiIiKI\niIiwVyhC3HV1PVzo2b4RPds3wmAwcC0tn/jE0sRwNimTazdLZ1LvPnKltMDX36NxVuGmUePqosZN\n44Srxgk3FzWuGjVuLk4V/neXZ0aIO0wmnQlhZ4qi0NTHnaY+7gzq6o++uISEq1nE/VZzuJKSjU4P\nRboSinRFZOUVWTymm0YhqFUBvt5ud+EdCEcgyUCIu0ztpDI+B2J4v5bExx+jbdtOaHXFFGiLKSzS\nU1hUTIFWf/v3RXrOJWWScC2b/2w7wcLHu+DmIn/G4o+T3yIh7gGKouCqKW0SAvN9ZvmFepb+N4ar\nqXm8+3lqvP4OAAAgAElEQVQ8M0Z0kNnR4g+TKZRC1DB1XNU81s0dd1c1P1+4yaf7fq3ukEQtIMlA\niBqonocTU4e1R6Uo7Dx4iUNxN6o7JFHDSTIQooYKbVGfsQODAXj/yzP8eu32500LYS1JBkLUYPd3\nbsqfOjZBX1zCa9tPkJGjtVxIiEpIMhCiBlMUhchBIbT29yYrt4jXtp2gSFdc3WGJGkiSgRA1nNpJ\nxbTH2uNT15WLN3J4/8vT2Hn9SVELSTIQohbwrKPhbyPDcNE48dPpFHYevFTdIYkaRpKBELVEU18P\nnh7SDgXYvu9Xjp1Lre6QRA0iyUCIWqRjsA/D+7cE4N3P47mcklvNEYmaQpKBELXMn3s0p0e7hmh1\nxfznkxNk51te60gISQZC1DKKovCX/2tDYGMv0rILeXP7SfTFssqpME+SgRC1kLPaiWdGdMDbQ8O5\nK1ls+PasjDASZkkyEKKW8vZw4ZkRYTirVez75TqbY3L5OjaJm5kF1R2auAfJqqVC1GKBjb146pFQ\n/rsznmsZxWz9/gJbv79A84aedGntS5fWvjRu4F7dYYp7gCQDIWq58DZ+tG9Zn6/2HSE5z4NfEtK4\nlJzDpeQctu/7lSY+7nQJKU0M/n4eKLIctkOSZCCEA3DVqGndRMNjoe3R6YuJS8zg6NkUfr5w0/gI\nzs8PXMTX25Uurf3oEuIrfQwORpKBEA7GWe1Ex2AfOgb7oC8u4UxSBsfOpnLsXCqpmYV8HZvE17FJ\nqJ3A+dt9Nh1b41RC0xPH8fN2w7fcP796bvJEtnuc/HSEcGBqJxXtAxvQPrABjz/YmvNXMjl6NpWj\n51LJyNGiL9bbdLwCIOtiBvFk3Paah5vzb8nBtTRBeLvh4+1GWk4xOflFuLs5yxPbqpEkAyEEACqV\nYnw289iBwRw/cZQ2re+zurwBOH7iZ7waBJKaWUhKRgGpmb//yy3QkVugI/F6Jc9d+D4GRQF3V2c8\n6zjjWUeDp1vp1x7lvvaso+FGhh63yo5hRnZ+CQaDQfpDzJBkIIS4jaIouDqrqOPqbFO5+h5OhAb5\n3LbdYDCQlVdEamZBxSSRVUhaRg5FxSryCvXGhHE9Ld/8iX48YlNcABtjfiSgoSf+fh4ENPQgwM+T\nRg3qoHaSEfYgyUAIcRcoioK3hwveHi4EN/Ou8Fp8/DFCQzujLy4hr0BHToGOnHwdOflF5Jb7Oie/\nNFGkZ2bj6lbH+pMbICUjl7xCPacvZXD60u9NWGonFU193Qnw8zAmCn8/D4fs33C8dyyEuCepnVTU\n9XChroeL2f3Kkoct4uKO0ti/HUkpuVxOziEpOZeklBxSMwu5dCOHSzdygOvG/X29XVEZdHgePYra\nSUGtVuHspEL92z9ntWL8uvSfQnZmITrNTRr7uONT17XG9X9IMhBC1HqKolDfy5X6Xq50bPV7M1Z+\noZ4rqbkklUsQV1PzSM0sBCA5K8um8/wQdwIAZ7WKxvXr0NjHncYN6tCkgTuNfdxpWM/tnm2Wsksy\n0Ol0LFy4kKtXr1JUVMTUqVNp1aoV8+fPR1EUgoODWbZsGSqViq1btxIdHY1arWbq1KkMGDDAHiEJ\nIcRt6riqCfH3JsT/96YrfXEJKRkFnD4bh39ACPriEvTFJej0ht+/Li6huNiATl9i3JZ09RpagzvX\n0/LIzC0iKSWXpFuWEHdSKfjVc6NxA3ea+NShIEfLTd210lqHurSG4eykwsnpt5rIbzWQslqJi8bJ\nbp+FXZLB//73P7y9vVm1ahWZmZkMGzaMNm3aMHPmTLp3787SpUvZs2cPHTt2JCoqim3btqHVaomM\njKR3795oNBp7hCWEEBapnVQ08XEnM0VdIUlYEh+fSWhoJ6C0xnE9LY9raXlcv5lf+n9aHjczC7me\nls/1tHyOnfut4MkzNsX3p3auhIbaVMQqdkkGDz30EIMHDwZKRxE4OTkRFxdHt27dAOjXrx/79+9H\npVLRqVMnNBoNGo2GgIAAzpw5Q1hYmD3CEkKIu6KOq5qgpnUJalq3wnatrpjk9NLkcO1mPpevXsPT\nqwH6khL0+hL0xQZ0xWVfl6uB/Fb7APBwtU8zk2Kw45zz3Nxcpk6dSkREBCtXriQmJgaAgwcPsm3b\nNvr27cu5c+eYM2cOAHPnzmXYsGH06tXL7HEPHYpFqy20V9hCCFEr9e/f3+RrdutAvn79OtOnTycy\nMpIhQ4awatUq42t5eXl4eXnh4eFBXl5ehe2enp4Wjx0UVPU6UlVGItyNMhKXxHWvlZG4akdc1rJL\nfePmzZtMmjSJOXPmMHLkSABCQ0OJjY0FYN++fYSHhxMWFsbRo0fRarXk5OSQkJBASEiIPUISQghh\nhl1qBuvWrSM7O5s333yTN998E4BFixbxz3/+kzVr1tCyZUsGDx6Mk5MT48ePJzIyEoPBwKxZs3Bx\nMT/GWAghxJ1nl2SwePFiFi9efNv2DRs23LYtIiKCiIgIe4QhhBDCSvfm7AchhBB3lSQDIYQQkgyE\nEEJIMhBCCIGdJ50JIYSoGaRmIIQQQpKBEEIISQZCCCGQZCCEEAJJBkIIIZBkIIQQAkkGQgghkGQg\nhBACB0kGL7/8cnWHcMd8/fXX6PX66g7jjvj+++8rfP/ll1/e8XO89957pKen21zu4sWL7N27lxs3\nbmBuXmZxcTEff/wxr776KrGxsVafKzU11eaYquLnn3++K+dJT0/n2rVrxn+W3I25rr/++usfKq/T\n6e5QJDWD3Z50di+5cOEC2dnZeHl5WV0mJyeH/fv3U1j4++M1hw0bVum+O3bsMHmcysosWLDA5P4r\nVqwwG9epU6d488036d27NyNHjiQoKMjkvvfffz+Kohi/V6vV6PV6NBoNX331ldnzQOljSxVFYdeu\nXQwYMIC6deua3Hfr1q189NFHFBYWYjAYUBSFPXv2VLrv999/z7Fjx9i5cyfHjx8HSi+q3333HX/+\n85/NxvTiiy+ydOlS4/dz587llVdeMbl/nTp1mD59Or6+vowYMYJ+/fpV+Ewqs2HDBnbt2kVWVhbD\nhg0jKSmpwjnLW7p0KX5+fhw4cIAOHTowb9483n33XbPHB3j22WepX78+I0eOpH///qhU1t2X2fIz\nAdi2bRsvvvginTp1YtCgQXTr1q3Sc61evdrk5zJ79myz51iyZAkHDx7Ex8fH+LOPjo42W2by5Mm8\n//77Zvcpz2AwcPLkSbRarXFb165dzZZZtGgRmzdvtvoc7777Lk899RQAZ8+eZf78+Xz66admyzz9\n9NOMGjWKAQMG4OTkZNV5iouL2b59O9euXaNHjx4EBwdTv379SvcdP368yZ/L+vXrrTqftRwiGfz6\n66/06NGDevXqoSgKiqLw448/mi0zffp0mjZtio+PD4DZC0hCQgJQehfm5uZGp06dOHnyJHq9vtJk\nUHbB27x5M506daJz586cPHmSkydPWnwvzz//PLNnz2bfvn2sXbuW1NRUIiIiGDJkCM7OzhX2/frr\nrzEYDLzwwguMGTOGsLAw4uPj2bRpk8XzzJo1iz/96U8cP36ckpISdu3axRtvvGFy/+joaN555x18\nfX0tHrtNmzZkZmbi4uJCYGAgUPr5PvLIIybLbNy4kbfeeovMzEy+/fZboPQC0apVK7PnGjt2LGPH\njuX8+fOsW7eOZcuWMWLECCZMmGDyQrpz5042btzIxIkTeeKJJxgxYoTJ4yclJfHSSy9x9OhR7r//\nft555x1Lbx8o/dlfuHCBbdu28dZbb9GzZ09GjhyJv7+/yTK2/kwA/vGPfwBw5MgRVq1aRVJSEgcP\nHrxtv5YtW1oVd2XOnj3Lrl27LCbZ8ry8vNi9ezeBgYHG5FT2u1CZZ555hrS0NBo3bgyU/r5YSgZ1\n6tRh+fLlFc4xevRok/ufP3+ezZs3k5+fz44dO/j73/9u8X3MnTuXbdu28dprr9GnTx9GjRpFixYt\nzJax5QbihRdeAOCNN97ggQceoEuXLpw4ceK2WvWd4BDJYNGiRWzfvr3CXYUlBoPB4l16meeeew4o\nvdspfzGYNGlSpfv37dsXgA8++MB4J9KlSxf+8pe/WBVXTEwMO3bs4OrVqzz66KNkZGQwZcoU3nvv\nvQr7ajQaAC5fvkxYWBhQ+vjRxMREi+dJSUlh6NChfPLJJ0RFRfHEE0+Y3b9evXo0bdrU4nEBGjdu\nzGOPPcbQoUNJSkri0qVLtG7dmoYNG5osM27cOMaNG8e6deuYMmWKVecByM7OZufOnXz22Wd4enqy\naNEiiouLefrpp03evZbd3ZZd3Mo+x8oUFxcbm4Zyc3OtvsMHaNiwIf7+/sTFxXHu3DleeuklWrVq\nxfPPP1/p/rb+TAA+/PBDDh06RHp6Op07d+aZZ56pdD9rkrgpfn5+5OXl4eHhYXWZtLQ0PvroI+P3\niqKYvdO9efOmxdrGrTp16mQ8lzVefvllnn/+edLT09m2bZvZn3uZoKAg5s6dS3p6Oi+99BKPPPII\nXbt25dlnnzWe/1a23ECUJembN28abyIHDRpEVFSUVe/JFg6RDF555RX+8Y9/WNVMVFRUBIC/vz/H\njx+nXbt2xtcs/XKkp6cbm6MyMjLIzMw0u39+fj4HDx6kQ4cOHD9+3Kpk9eCDDxIeHs748ePp0qWL\ncfuFCxdMlvH09GTt2rWEhYVx/Phxq/7wdTod3377La1atSI9PZ28vLxK91uzZg1Q+rlNnjyZ0NBQ\n40XUUvPCpk2bjM0xjz32GJcuXTLZHFPmscce48KFCzg5OfHuu+8yYcIE2rRpY3L/kSNH8uijj7Jm\nzRqaNGli3H769GmTZR555BHGjRvHtWvXeOqppxg4cKDJfWfOnMnYsWNJTU1l9OjRLFy40Gz8Zf72\nt79x/vx5Hn30UVatWmVMhMOHDzdZxtqfSXkxMTFkZ2fz4IMP0qdPH5Of1c6dO00eo0+fPpVuHz16\nNIqikJaWxoMPPmis1VjTTBQVFUVOTg5Xr17F398fd3d3s/sHBgaSnJxs9obhVjNmzODAgQNcvnyZ\n++67z2TNo+x9QOlnfPbsWSZMmABg8X3s3buXTz/9lISEBIYOHcrChQvR6/U89dRT/O9//6u0TFVv\nID7++GPj3/CtrQB3gkOsWjpjxgxef/11q/Yta2e/9WMx1wZe5ptvvmHlypXUrVuXnJwclixZQv/+\n/U3un5CQwKpVq0hMTCQ4OJh58+aZbSaA0l+epKQkQkND2b17N/3797f4i5Gfn090dDQXL16kVatW\njBkzxmJi27VrF1988QULFixgy5YthIWFMWDAgNv2M9em+thjj5k9x9ixY43NMVFRUYwYMYJt27aZ\nLfP4448zY8YMNm3axODBg4mOjjZ7l2QwGLh06VKF2oc1zRkJCQmcO3eOwMBAs8mmTHp6urEZ0hox\nMTGVXmS1Wq3J54B/++237Ny50+LPpLJjHjp0iP/+978kJiYSExNjdv/ExESSkpJo3bo1fn5+Ji9W\nV69eNXkMS7XEb775hrfeeovi4mIeeughFEVh2rRpJvcfPHgwly9frvAZW3ofa9as4caNGyQkJPD4\n44/z448/Gm9e7tT7eO655xg9ejTdunWrsH3Xrl0MGjSo0jI//fQTS5YsITU1lcaNG7Nw4UJ69+5t\n9jypqamsW7fO+Dc8ZcoU6tWrZ7aMrRwiGXz66adER0dXaBe11AR04sQJY9MKQGxsLN27d7d4Lr1e\nT3p6Og0aNDDZoVRW+6iMpYv0s88+S//+/RkxYgTvvvsuZ86cYfXq1ZXue/LkSTp06FDpH42pu70y\nL7/8MvPnzze7T3k///wzJ06cYMKECTz33HNMmjSpQq2qMmPGjGHz5s1MnDiR9evXM3bsWIsdfuPH\nj+fDDz9k8uTJfPjhh0ycOLFCc8OtbOkMLnP9+nW++OKLCjW1GTNmVLrv/v37+fDDDyvsa03H3rhx\n49i4caPF/W5VXFwMwPHjxwkLC7P4+/Ltt9+yd+9e4uPjad++PYMGDaJfv34m9y//eVlbW7t1QISz\nszONGjVi3LhxJvtlxowZw/r165k8eTLr169nxIgRbN++3ex5bFX2GY8fP56oqCgiIiLYunWryf1t\n+bmX0el0nDp1Cr1ej8FgICUlxWzfV3np6ekmO44r88MPP3D+/HkCAwPN1laryiGaiaKionjyySfx\n9PS0uO+RI0dISEjggw8+MLbhl5SUsHHjRr744otKy5SvZt6qsmpm2Z1QWds0YHEETpnk5GRjh+ZT\nTz3F+PHjTe5b1gRVWROApWRg6wisf/zjH/z73/8GSptO5s+fb/FiZ0tzTBm9Xs+qVasIDw/n0KFD\nFof/2dIZXOZvf/sbPXv2NHZWmrNixQoWLlxIo0aNLO5bnqIoTJ8+vULnpqVmtZdeeomgoCCuXbtG\nXFwcPj4+rFy50myZo0eP8thjj/HSSy9ZFVf5z2vixIlWfV5arRZ/f3/Cw8P55ZdfOHnyJPXr12fe\nvHmsW7eu0jJOTk5oNBpj34ybm5vZc5w9e5aFCxeSnJyMj48Py5cvJzQ01GyZ4uJitFotiqJQXFxs\nsTnGlp97mWeeeQadTkdKSgrFxcX4+flZTAbR0dFs2bKlQtKxNKx69erVXLp0ic6dO7Njxw6OHDli\n082aNRwiGfj4+FgcsljGy8uL1NRUioqKjGPBFUVhzpw5JstUVvU057vvvrNp//IURSExMZHAwECS\nkpIoKSkxue9f//pX4PZaUEpKisXz2DoCy9nZmYCAAKC0v8WadtDHH3+cnj172tQcs2LFCvbv38+o\nUaPYvXu3xYuhLZ3BZdzd3Zk1a5bF/aC0M7xXr15W7VueNRfZW508eZJFixYZ73QnTpxoscwTTzzB\nihUrWLZsGS1atGDBggU0a9bM5P5V+bzS09ONfwN9+/Zl0qRJzJw5k3Hjxpks06VLF2bPnk1ycjJL\nly6lQ4cOZs/xz3/+k5deeok2bdpw+vRpXnjhBYvt+RMnTmT48OGkp6czatQoiwM0bPm5l8nIyGDL\nli0sWrSIJUuWWDUIZP369bzzzjsWhwWXd/jwYeP7nThxIhERETbFaQ2HSAaurq5Wd26GhIQQEhLC\nqFGjcHd358qVKwQEBFCnTh2Txy9rV6ysX8JcNbOyMcSWmhgWLlzIrFmzuHnzJn5+frz44otm9wd4\n9dVX2bx5MzqdjsLCQlq0aGG2wxBsH4HVpEkT1qxZQ8eOHTlx4gR+fn4Wy1y/fp3vvvsOrVZLQkIC\nu3fvtlgtT01NJSQkhF9++QVfX19u3Lhhtp+lKrWP4OBgdu7cSdu2bY0/H1Odjw0aNGDp0qUVfrfM\nDV8sM2TIED799NMKY80tKSkp4dSpUzRr1oyioiKrOpCXLFnC2LFj6dq1Kz/99BOLFi0y26z25z//\nmccff5yrV69a/Xnl5uaSkJBAUFAQCQkJ5OXlkZGRQX5+vskyZcOjQ0NDadmyJffff7/F85TdLLRt\n2xa12vKlq1OnTmzatIlLly7RrFkziwM6bPm5l3F1dQWgoKDA+LUlrVu3pnHjxlbPS4DSGnFJSQkq\nlapCi8Kd5BDJwJpOtlv9/PPPNnVwAcY5CQaDgfj4eLN37fD7GGKDwUBcXJzZES5lDh8+bHaSW2W+\n++479u3bx/Lly/nLX/5iPK85tozAgtI79s2bN7N3715atWpl8bOCqlXLy/oUDAYDFy5coGnTpmbH\nm1el9nH69GkOHjzI5cuXadasGfXr1zeZpMvusm/evGn1ewBYtmyZzZPVhg4dygsvvMDy5ctZtWqV\nVUlHq9XywAMPADBw4EA+/PBDs/vv2LGDgIAAxo0bR1BQEK1bt7Z4jqVLlzJnzhxSUlJo3LgxS5cu\n5csvvzQ7BHj48OGMGDGCMWPGWDUkVaVS8f333xMeHs7hw4fN1ljOnTtHcnIy//rXv4w1+lOnTrF6\n9Wo+++wzk+VOnz5d4W/Q0nBXKB3d98Ybb9CmTRtGjx5tsbkLoEePHgwcOBB/f3/jhd3Sef785z8z\nduxY7rvvPk6cOGF1S4ctHCIZWBrVUpkPPviArVu3MnnyZKZNm8aIESMsXuDGjBlT4fsnn3zS7P7l\nO7SDgoL45JNPLMa1d+9ennjiCZvuKnx9fdFoNOTl5dG8eXOrptkHBwffNkLCnBMnTtCuXTtjp/Ev\nv/xicVJQVarl5ZvkioqKmDlzZqX7VTaj9vTp03z55ZcW2+bHjh3Lq6++Sq9evTh37pzZ4Z4zZswg\nJSWlQgeiNcrGmh85csTqyWplcy2gtOZmjeLiYs6ePUvr1q05e/asxf23b99OQkIC3333HevXr8fH\nx8fiSLywsLDbOn8tNfu88847fPbZZ0ycOJHg4GBGjRpVYaj0rZYvX87KlStZs2YNLVu2NE6mq0x2\ndjZffvklaWlpxhqwoihERkaajakqY/cbNWpETEwMOp0OV1dXq/4ut2zZwtq1a63qwywzadIk+vTp\nQ2JiIqNGjbKqJmkrh0gGVWFrBxdQYTJXamqqxTVatmzZYvw6JSXFbLW6TEZGBn379qVZs2bG2Cy1\nnTZq1IhPPvkENzc3Vq9eTXZ2tsXzPPDAA4wePdrqEVibN29GURRKSkqsumOHqlXLyysuLuby5cuV\nvvZHZtR+9NFHbN++HXd3d3Jzc5k4caLJpUgWLlzIzz//TEFBAYWFhfj7+5sdsVI+9vT0dBRFsTjW\n/Nlnn+U///nPbZ3+1sykX7x4MQsXLiQlJYWGDRuavYhCacI8cOAAhw4dAqz7HG9d9sTDw8PsHTiU\n1qInT57M//3f/7Fq1SqmTp3KTz/9ZHL/pk2bMmPGDC5cuEBgYKDZIZ/h4eGEh4cTFxdnvDkpa2Kp\njKnPFywPX33llVd48cUXbWr/b9iwIR06dLBpguKNGzd4/fXXje/fUt9PVUgyMMHWDi6gwhA8FxcX\n5s2bZ3b/8ouVubi4sHbtWovnMDU6w5xp06aRn59Phw4dGDp0qFXrtdgyAgusv2MvryrV8vJ/sHq9\n3mQnallt8NYmNbVazZEjRwgPDzd5DkVRjJOgPDw8TI77Bzhz5gw7d+5k6dKlzJo1i7/97W9m4y8z\na9asCpPVzN3p/+c//wFKmxVtnUkfGhpqce5GeY8//jj+/v7MmjXL7ByZ8r7++mugtOnu1KlTxu/N\n2bFjB59++iklJSWMGDHC4lDv9evXs3PnTsLCwnj//ff5v//7PyZPnmy2TEJCAhcvXqSoqIhVq1Yx\nefLkSsuUfb6WLvyVCQ4OtmrIeXlFRUUMHTqU4OBgYxI1NTy8zOLFi23q+6kKSQYmlO/gCgoKsqrf\nISoqioyMjAptzebMmDGjwthhazK9Xq/n66+/Njb1pKSkWOxEnjt3rnGi1urVq1mzZo3FKrEtI7Bu\nZe6OvbyqVMtvvSAeO3bM7P47d+6ksLDQ2LGt1WpxcnKiXbt2JmcL+/v78/LLLxMeHs6RI0eMo6Qq\n4+3tjaIo5Ofn2zRm3NPTk2+++camyWq29uNA6UX3nXfeqZBAzA1fjo2N5ejRo8TExPD+++/ToEED\ni6Plyrffd+nSxarRdWfOnGHp0qVmF1osr2zIq1qtRqfTMWbMGIvJYP369bz77rvMnj2bH374gUmT\nJpkt88MPP7B582YKCgoqHMMcW2vQULq4na1s7fupCkkGJmRkZHDgwAESExPJysoiPDzc4l3yV199\nxdq1awkKCuL8+fPMmDGDoUOHmty/KmOHn3vuOQYNGsSxY8fw8/OzqmmpbFGvdevW8fDDD1vVjGHL\nCCyw/o69PFsvVGD7BVGv1/PRRx+hUqkoKSnhqaee4r333rutf6e8FStWsGXLFg4cOEBQUJBx7anK\ntG/fnvfeew8/Pz9mz55dYZVbc9auXUtmZibDhw/nkUceMTtarYyt/ThQuhLnW2+9ZXUnfXZ2NsnJ\nyVy7do2CgoIKS3iYUr5/JiUlxarmjxkzZvDuu++SkpLCgAEDaN26Nc2bNze5v8FgMI4gcnZ2tmo5\nhrIanbu7OxqNxuLS76+++ioLFiwwDgSxhi016O+//54BAwZUujaYpZ+rrX0/VSHJwIR58+YxYMAA\nhg0bxpEjR5g3bx5vvvmm2TIffvjhbW3N5pJBVcYO16lTh6effpqLFy+yYsUKi51iYPtELbB9BJat\nd+xg+4UKbL8gZmZmGpft1uv1ZGVlAeZngavVarNj5KF0nZhRo0ZhMBiMI4kuXrxIhw4deO211+jd\nuzedO3c2WX7dunWkpqby2WefMWnSJIKCgixODKvKXai/v7/Zi+ytnnzySQYOHMiUKVOs7qQsH0+b\nNm2MCzGas3DhQvr168fhw4fx8fFh0aJFbNiwweT+Xbp04dlnn6VLly4cPXrU7GdbJiAggNGjR7Ng\nwQJef/11iyOj6tata3OytaUGXfa798ILL1QYjGJNs9+SJUtYtGiR1X0/VSHJwAStVsvYsWOB0l/w\nb775xmIZW9qaoWpjhxVFITU1lby8PPLz862qGdg6UQtsH4FVlSYMWy9UYPsFMTIykiFDhhAcHMyv\nv/7Kk08+ybp166y6YJlTNuO4fBwhISFA6c912bJlfP7552aPodfrKSoqoqSkxKpRKLb240BpDe/J\nJ5+s0ElvroZXlSUhhgwZwpYtW7hw4QItWrSw+HsPpUl65MiR/O9//6Nz584Wh2FPnDiRPXv2kJWV\nRVxcHFOnTrV4jhUrVpCXl4e7uzvt27c3uUBj2UAOjUbDkiVLaNeundVzRmypQet0OuPw07KO/5KS\nEvR6vdnaJ5ROIE1LS6N+/frEx8cTGRmJj48Py5Yts7iukbUkGdyirApXr149vvrqK8LDwzlx4oRV\n7fnl25qPHj1qtq0ZShffsnXs8IwZM9i9ezdDhw5l0KBBPProoxbLtGjRwrjGuj3GJ0PVmjBsvVCB\n7RfEUaNGMXDgQJKSkggICKBevXoUFxfbNDS3MmXJxFTStDTpbsKECRQVFTF48GA++OADi6t2QtX6\ncctWS3QAAAo5SURBVPr06WN8r/n5+bz88ssWP2NbLV26FC8vL3r37s1PP/3E4sWLzT5wqEzZc0Bu\n3Lhh8efx/PPPG/u9Zs+ezfLly032Ob355ptMmzaN2bNn33aDVVlHbdlAjpiYGKZNm2as6Vlzx25L\nDXro0KH07NmTt99+2zgHQ6VS0aBBA4tlu3btyowZM2jZsiVJSUm8/vrrTJ8+nTlz5kgysJfyI4I2\nbdpkfBCMNXfto0eP5vDhwxw4cICdO3fy3//+1+z+X331Fc2aNaNLly6MGDHCbDW2/PA9g8GAs7Mz\nLi4u/PDDDxZHLd0NVWnCsHa0Snm2XhBPnz592zow1j6n4o+w9N4GDRrEli1b2Lp1K9nZ2TRp0oRR\no0aZLWNrPw6UPulswYIFlJSUsHjxYpPPM/gjLl26ZFyHauDAgWb7Y8osXryYRYsWkZCQwN/+9jeW\nLVtmdv+yfq+3337bYr9X2Wzm/v37k5uba1zu3NQ6Xg0bNjQOvbb1jt2WGrRGo6FZs2ZVauK5ceOG\n8W8rICCA69ev07x58z98U1OeJINbmLrbsKadfcWKFfz73/8mICCAv/zlLxYXays/weeDDz4wO8HH\n1FPLbHmsnz1VpQmjKksy2HpBnD9/Po8//rjNC8nZ29dff82GDRt45plnmDJlCmPHjrWYDKoyk/6N\nN95g2rRpFBUV8eqrr1o9escWWq2WgoIC3NzcKCwsNK6sak58fDxZWVl4enqSmprKM888Y3bwQFm/\nV5cuXSz2e5XNMv/4448r1Caio6MrfSDQ0KFD6dWrV4UHJ1l7x363+Pr68q9//YtOnTpx/PhxfHx8\n2L9//x19roEkAxOio6P54IMPjDNLnZ2dLfYb2LpYmy0TfEw9teyPPvT7TqlKE0ZVlmSw9YLo4+Nj\n8SJbHVQqlXFYqouLi1XNRLbchZYf4RMYGMiPP/5onAh2p5uJJkyYYBw3f+HCBatqH++++y7r1q2z\nevBAVfq9rB1Fp9FoaNq0qV06Ze+UV155hS1btrBv3z5CQkJ45plniI+Pt3mRTHMkGZiwceNGoqKi\neOutt3jooYesmuBh62JtVZngU5Wnlt0NVWnCqMqSDLZ2bDdt2pR33nmnQr+EpeW774aAgABWr15N\nZmYm77zzjlVDOG1R/sYiMDDQ5v4cWzz66KP069fPOL/Gmoeu2Dp4oCr9XlUZRXevcnFxMT59rYyp\nx2pWlSQDE/z8/IzPdu3evbtVT0orv1hbUFCQxbWMqjLB51//+hfR0dH88MMPBAUF2aUNuCqq0oRh\ny5IMVaXT6UhMTKwwtvteSAYvvPACH3/8MV26dMHNze2O35VWZT2uqqrKZK2qDB6wVVVqE47MIZ50\nVhUzZ87kkUceYdeuXXTq1ImNGzdaHCpoq/T0dGJiYti7dy+XL1+mW7duJh+GXhsdPnyYJUuWcOPG\nDZo1a8bChQur9GyAyuj1etRqdaXzCaxZo19Y77HHHrttspalNY0qe1zq3Uxg4nZSMzDhn//8J0lJ\nScyePZsPPviAJUuW3PFzVGWCT22Sn5+PTqejadOmFBYW3tGawbx581i9ejUPPfQQUDqjvGzZB0uz\nnIVtqjJZSy789x6pGZiwcOFCFixYYBwdM3/+fF5++eVqjqp2GTVqFG+//Tb169cnNTWV6dOnW7VU\nhi327t3Liy++iKenJ/n5+bz44ov06NHjjp7DUZVN1tqzZw8NGza0abKWuPfc+UbaWmL//v389a9/\nNU5IuXr1ajVHVPu4u7sbF3fz9fW1aplwW73++ut8/PHH7Nixg40bN97R0ReOLjU1ldTUVGJiYmjY\nsCE3b94kNTWVK1euVHdoogqkmciEgIAA5s2bx5QpU1i1atUdndzh6MouyMXFxTz99NN06dKFEyf+\nv727CYmqDcM4/me0VGozLpQ0F0mkgiYuRkfEFtkiJStUMgxhFoKjGG5auBiFEcUMXYgZCoqLGIo+\nFG1hi7BQwZAWMa0UQfELBPELk1FLW4jzmmmvkaPmXL/VDJxz5pwDw8V5zvPct9MjY/mHETje6m8W\na8nxozD4jejoaB49evRH1Sjl/201sNneyGarPO9BOczA8Vb/wmIt2T+9M9jDs2fP3IXqJicnKS8v\np6mp6YjPSvZrt9kqW/TyUuRXCoMdvnz5QkxMzK5dj47D/HQREU/QMNEO/f39xMTEuBtpb6cwEJGT\nSk8GO/yu6YnGm0XkpFIY7LC9VDRsLlbaKiimxUoiclJpmGiH7u5uAAYGBrDb7QQFBXH9+nVCQ0OP\n+MxERDxHi872UFdXh8PhICgoiIKCgmPTN0BExBMUBnvYqjcP7LvevIjIv0phsAdP15sXETlO9AJ5\nD9++fePly5cMDQ0RHh5Odna2ZhOJyImlMBAREQ0TiYiIwkBERFAYiJd7+/YtGRkZ3Lx5k/T0dJqb\nmz32W21tbZSUlHjs+CJ/Q4vOxGtNT09TXV1NW1sbRqORr1+/kpuby4ULFw68pLbIcacwEK81NzfH\n2tqau1fFmTNnePjwIX5+fnR1ddHa2orL5WJlZYWKigpMJhO5ublERUXR39+Py+XCZrPx9OlThoeH\nsVgsWCwW6uvrGR0dZWxsjPn5ebKzs8nLy/vpt51OJ1VVVbhcLoxGI3a7nbCwMFpbW2lvb8dgMHD5\n8mXKy8uP4taIF1IYiNeKjIwkJSWFa9euERUVRUJCAunp6YSFhVFWVkZjYyOBgYG8evWKlpYWTCaT\ne983b97w+PFjKioq6OzsZHZ2ltu3b2OxWAAYGhri+fPnrK+vk5GRQWJionvf1dVVbDYbjY2NhISE\n0NvbS2lpKc3NzTQ1NdHb24uPjw92u53p6WmCg4MP+9aIF1IYiFez2+0UFhbS19dHX18fd+7coaam\nhoaGBrq7uxkZGWFgYACD4b/Xa1euXAEgJCSE2NhYAgICCA0NZXFx0b3NjRs33KvWr169ysePHzEa\njQCMjo4yPj5OQUGBe/ulpSV8fX2Ji4sjKyuLlJQU7t27pyCQQ6MwEK/14cMHlpeXSUtLIzMzk8zM\nTF68eIHD4aC2tpZbt25hMpmIiIjA4XC49zt16pT7s6/v7n+h7T2z19fXf/l+/vx5Ojo6gM3WnDMz\nMwA8efKEz58/09PTQ15eHjU1NcTHxx/odYvsRrOJxGv5+/tTW1vLxMQEABsbGwwPD3P69GkMBgNW\nqxWz2UxPTw/fv3//o2O/e/eO1dVVFhYWeP/+/U+NkcLDw1lYWODTp08AvH79mgcPHjA7O0tqaiqX\nLl2iuLiYpKQkBgcHD+6CRX5DTwbitcxmM0VFRVitVtbW1gBITk6moaGBkpISUlNT8ff3x2QyMTU1\n9UfH9vPzIycnh6WlJfLz87l48SJOpxPYbJJUV1dHZWUlKysrnD17lurqagIDA7l79y5ZWVkEBARw\n7tw59WuWQ6NyFCIHrL6+HoD79+8f8ZmI7J+GiURERE8GIiKiJwMREUFhICIiKAxERASFgYiIoDAQ\nERHgB1+Riq551Zd0AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_word_freq('https://www.gutenberg.org/files/42671/42671-h/42671-h.htm')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Robinson Crusoe" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEXCAYAAABPkyhHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX6wPHPDDCALG6IIooCiopIoqgp4lKW3lb0FipK\npa2m3ave3BMzKrOutmc/u61okqXXW5ptLikKqLggIKK4yyouLOIMDOf3BzFpysyAjIPwvF8vXsqZ\n8z3nmRlmnvNdj0pRFAUhhBCNmtraAQghhLA+SQZCCCEkGQghhJBkIIQQAkkGQgghkGQghBACsLV2\nALWRn19U67KZmWn4+vrXuzISl8RV38pIXA0jrqu1auVS7WONrmag1V6pl2UkLomrvpWRuBpGXOZq\ndMlACCHE9SQZCCGEkGQghBBCkoEQQggkGQghhECSgRBCCBpZMlAUBV25rNgthBB/1aiSwdptx/jw\np0vsTMm2dihCCFGvNKpk0KqZI/oK+HT9IbYnZ1k7HCGEqDcaVTIYdEdbQrs5oACf/5jO1v1nrR2S\nEELUC40qGQD06+xA+NBOAHz102E2JZ2xckRCCGF9jS4ZAIzo58XYuzsDsPLXDH7dfdrKEQkhhHU1\nymQAcE+f9oy/1w+AVZuO8FPiKStHJIQQ1tNokwHAXb3a8diILgCs3nKU9TtPWDcgIYSwEovez2Dk\nyJE4OzsD0K5dOyIjI3n22Wfp2LEjAGPHjuW+++5j9erVxMbGYmtry6RJkxg6dKglw7rGkJ6e2KhV\nfPFjOmu3HaOiQuGhgd637PxCCFEfWCwZaLVaFEUhJibGsO3bb79lwoQJTJw40bAtPz+fmJgY1qxZ\ng1arJSIigpCQEDQajaVCu05oYFts1Wr+syGNdXHHKa9QGBnqjUqlumUxCCGENVksGaSnp1NaWsrE\niRMpLy9n+vTppKSkcPz4cTZt2kSHDh2YO3cuycnJBAUFodFo0Gg0eHl5kZ6eTmBgoKVCu6H+AW1Q\nq1V88kMa63eeQF9RwSODfSUhCCEaBZWiKBZZn+Hw4cMcOHCARx99lBMnTvD000/zzDPP4O/vT0BA\nAMuWLaOwsJCuXbuSkZHBjBkzAJg5cyZhYWEMGDCg2mMnJCRa7G4/h7N0bEi6TIUCvX3sGdLdQRKC\nEKJBGDx4cLWPWaxm4O3tTYcOHVCpVHh7e9OsWTNCQ0Px8PAA4J577iE6Oprg4GBKSkoM5UpKSnBx\nqf4+nUCt7/8JkJa2F3//XtU+7u8PHbzyWbYuhaRjWpo1b0XPtkV07967Ts9zs/vfqjISV8OIqzZl\nJK6GEZe5LDaa6LvvvuONN94AIDc3l+LiYiZPnkxycjIA8fHxdO/encDAQJKSktBqtRQVFZGZmYmf\nn5+lwjJLL79WTB7VA1sbFZuSzrAltdSq8QghhKVZrGbwyCOPMGfOHMaOHYtKpeL111/H3t6e6Oho\n7OzscHNzIzo6GmdnZyIjI4mIiEBRFKZNm4a9vb2lwjJbz05u/OPvgby3Jpm9x3TkXSzFvZmjtcMS\nQgiLsFgy0Gg0LFmy5LrtsbGx120LDw8nPDzcUqHUWoBPS4K7upOQmsvOg9mEhfpYOyQhhLCIRj3p\nzBwDe1T2cew4mEOFZfrahRDC6iQZmNC1Q3NcHVUUFF7h8MkL1g5HCCEsQpKBCWqViu7tKyfAxR2U\nm+IIIRomSQZmqEoGSYfzuXyl3MrRCCFE3ZNkYIZmTjZ09WqGrryC3em51g5HCCHqnCQDM4X80ZEs\nTUVCiIZIkoGZgru446CxIfNsIdkFJaYLCCHEbUSSgZnsNTb06eoOSO1ACNHwSDKogYGBlU1FO1Ny\n0FdUWDkaIYSoO5IMaqCTZ1Nat2jCpWIdqcfPWzscIYSoM5IMakClUjGwRxsA4pKlqUgI0XBIMqih\nAQEeqFSw/+g5ikvLrB2OEELUCUkGNdTcxZ7u3i0o1yskpOZYOxwhhKgTkgxqYaDMORBCNDCSDGoh\nqLMbTextOZVbzKncImuHI4QQN02SQS3Y2drQr3trQGoHQoiGQZJBLVU1FSWk5lKulzkHQojbmySD\nWurYxgXPVk4Ul5Zx4Og5a4cjhBA3RZJBLVXOOfijI1nmHAghbnMWuwcywMiRI3F2dgagXbt2PPfc\nc8yePRuVSkXnzp1ZsGABarWa1atXExsbi62tLZMmTWLo0KGWDKvO9O/ehu+2ZnLw2HkuFWtp6mxv\n7ZCEEKJWLJYMtFotiqIQExNj2Pbcc88xdepU+vXrR1RUFJs2baJnz57ExMSwZs0atFotERERhISE\noNFoLBVanXF10hDo25J9R86xMzWHv/XrYO2QhBCiVizWTJSenk5paSkTJ07kscceY//+/aSmptK3\nb18ABg0axM6dO0lOTiYoKAiNRoOLiwteXl6kp6dbKqw6d3VTkaIoVo5GCCFqR6VY6Bvs8OHDHDhw\ngEcffZQTJ07w9NNPc+XKFeLi4gCIj49nzZo1hIaGkpGRwYwZMwCYOXMmYWFhDBgwoNpjJyQkotVe\nsUTYNaavUPi/Xwq5rFMYF+qMR3OLtrwJIUStDR48uNrHLPbN5e3tTYcOHVCpVHh7e9OsWTNSU1MN\nj5eUlODq6oqzszMlJSXXbHdxcTF6bF9f/1rHlZa2F3//XnVaZmDuEX7ZfZqzxU25O6RLrc5jibjq\noozE1TDiqk0ZiathxGUuizUTfffdd7zxxhsA5ObmUlxcTEhICImJiQBs27aN4OBgAgMDSUpKQqvV\nUlRURGZmJn5+fpYKyyKq7nOQmJaLrkxv5WiEEKLmLFYzeOSRR5gzZw5jx45FpVLx+uuv07x5c+bP\nn8/SpUvx8fFh+PDh2NjYEBkZSUREBIqiMG3aNOztb69ROe1aOdOxjQsncorYeySfO/3bWDskIYSo\nEYslA41Gw5IlS67bvmLFiuu2hYeHEx4ebqlQbomBgR6cyCliR3K2JAMhxG1HJp3VkX7+rbG1UZN2\n4gIFl+pH57YQQphLkkEdcXKwo5efGwqwM0VmJAshbi+SDOpQ1ZyDHQdzZM6BEOK2IsmgDvl3bEFz\nF3vyLpZy5ryMKhJC3D4kGdQhtVrFgIDKzuPkE1orRyOEEOaTZFDHBvdsi41aRfrZMnLOX7Z2OEII\nYRZJBnXMrakjIT08UIAfdpywdjhCCGEWSQYW8ED/DqhVkJCWI7UDIcRtQZKBBbg1cyTAS4OiSO1A\nCHF7kGRgIf0622OjVkntQAhxW5BkYCFNm9gQ0qON1A6EELcFSQYWdH//jlI7EELcFiQZWFCrZo5S\nOxBC3BYkGViY1A6EELcDSQYWJrUDIcTtQJLBLXB17SBXagdCiHpIksEtcE3tYOcJa4cjhBDXkWRw\ni1TVDuJTpXYghKh/JBncIlI7EELUZxZNBgUFBQwePJjMzEzS0tIIDQ0lMjKSyMhIfvzxRwBWr17N\nqFGjCA8PZ8uWLZYMx+qkdiCEqK9sLXXgsrIyoqKicHBwACA1NZUJEyYwceJEwz75+fnExMSwZs0a\ntFotERERhISEoNFoLBWWVbVq5siAgDZsT87mh50neOoBf2uHJIQQgAVrBosXL2bMmDG4u7sDkJKS\nwtatWxk3bhxz586luLiY5ORkgoKC0Gg0uLi44OXlRXp6uqVCqhfuHyC1AyFE/aNSLHCz3rVr15KT\nk8Pzzz9PZGQkL7/8Mvv376dLly4EBASwbNkyCgsL6dq1KxkZGcyYMQOAmTNnEhYWxoABA4wePyEh\nEa32Sl2Hfcv8vP8yB0/p8G9nx329nKwdjhCikRg8eHC1j1mkmWjNmjWoVCri4+M5dOgQs2bNYtmy\nZbRq1QqAe+65h+joaIKDgykpKTGUKykpwcXFxeTxfX1r37ySlrYXf/9eVi3j1raUecsTOHS2jMj7\nutK6RZN6EZe1ziFx1c8yElfDiMtcFmkmWrlyJStWrCAmJoZu3bqxePFinn/+eZKTkwGIj4+ne/fu\nBAYGkpSUhFarpaioiMzMTPz8/CwRUr3i/kffgYwsEkLUFxbrQP6rl19+mejoaOzs7HBzcyM6Ohpn\nZ2ciIyOJiIhAURSmTZuGvb39rQrJqu4f0JGdKTkkpObyYEhHa4cjhGjkLJ4MYmJiDP+PjY297vHw\n8HDCw8MtHUa9437VyKL1O07Q38faEQkhGjOZdGZFf44syuVCsd7a4QghGjFJBlZUVTuoUBQSjty+\no6OEELc/SQZWVlU7SDtdRu4FmXcghLAOSQZW5t7MkTv9W6MA2/ZnWTscIUQjJcmgHhjc0xOAnSk5\n6CsqrByNEKIxkmRQD/h6utLCWc2lEh0px85bOxwhRCMkyaAeUKlUdG9fuThf3MFsK0cjhGiMJBnU\nE93ba1CpYP+RcxRd1lk7HCFEIyPJoJ5wdlAT4N0SfYVCQlqutcMRQjQykgzqkYGBHgDsSJamIiHE\nrSXJoB7p2ckNJwdbTuUVcyq3yNrhCCEaEUkG9YidrZo7/dsAECe1AyHELSTJoJ6paipKSMulXC9z\nDoQQt4Ykg3rGq7Uz7Vo5U1xaxv4j56wdjhCikZBkUM+oVCoG9vijqUjmHAghbhGzk0FeXh4Ae/bs\nYeXKlVy+LIuqWcqdAW2wUas4eKyAi8Vaa4cjhGgEzEoGCxYsYNmyZRw9epR//etfpKamMmvWLEvH\n1mi5NtEQ6NsSRYH4lBxrhyOEaATMSgYHDx4kKiqKjRs38sgjj/D666+TlSUrbFpSVUdy3MFsFEWx\ncjRCiIbOrGSg1+upqKhg06ZNDBo0iNLSUkpLSy0dW6PWw6clrk3syC64zLGsQmuHI4Ro4MxKBmFh\nYQwcOBBPT0/uuOMORo0axejRo02WKygoYPDgwWRmZnLy5EnGjh1LREQECxYsoOKPpZpXr17NqFGj\nCA8PZ8uWLTf3bBoQWxs1/QOkI1kIcWuYlQwGDhxIXFwcH374IQArV67kjjvuMFqmrKyMqKgoHBwc\nAFi0aBFTp07l66+/RlEUNm3aRH5+PjExMcTGxvLpp5+ydOlSdDpZpK3KwB6VTUW7DuWiLZN7JAsh\nLMdoMkhKSmL37t1MmTKFffv2sXv3bnbv3s3hw4dNdiAvXryYMWPG4O7uDkBqaip9+/YFYNCgQezc\nuZPk5GSCgoLQaDS4uLjg5eVFenp6HT21259nK2e8PVwo1erZm5Fv7XCEEA2YSjHSO/n++++za9cu\nUlJSCAgIMGy3tbUlNDSUiRMn3rDc2rVrycnJ4fnnnycyMpKXX36Zxx9/nLi4OADi4+NZs2YNoaGh\nZGRkMGPGDABmzpxJWFgYAwYMMBp0QkIiWm3juIH8/uNafjtYipebLeEDnK0djhDiNjZ48OBqH7M1\nVvCFF14AYN26dYSFhZl9wjVr1qBSqYiPj+fQoUPMmjWL8+f/vINXSUkJrq6uODs7U1JScs12FxcX\nk8f39fU3O5a/Skvbi79/r3pXprr9O/iUsTVtB6fPlePu2Q23po71Ii5rl5G4Gu9zkbhqXsYcRpNB\nlT59+rB48WIuXbp0zTDHRYsW3XD/lStXGv5fVTN46623SExMpF+/fmzbto0777yTwMBA3nnnHbRa\nLTqdjszMTPz8/G7yKTUsTg529PJzY9ehPHYezOGhgd7WDkkI0QCZlQymTp1KcHAwwcHBqFSqWp1o\n1qxZzJ8/n6VLl+Lj48Pw4cOxsbEhMjKSiIgIFEVh2rRp2Nvb1+r4DdnAQA92Hcoj7mA2D4R0RF3L\n90AIIapjVjIoLy+v9YzjmJgYw/9XrFhx3ePh4eGEh4fX6tiNhX+HFjR3sefcpStknLpI1w7NrR2S\nEKKBMWtoae/evdm8ebMM+7QStVpFiCxeJ4SwILNqBj/99NN1V/UqlYpDhw5ZJChxvZAeHqzfeZI9\nh/MYd48fjvZmvXVCCGEWs75RqoaECutp3bwJfu2aknHmErvT8xh0R1trhySEaEDMSgYffPDBDbdP\nmTKlToMRxoUEepBx5hI7DmZLMhBC1Kka39ymrKyMzZs3U1BQYIl4hBF9urpjb2fDkTOXyD0v95MQ\nQtQds2oGf60BTJ48udrZx8JyHDS2BHdtxY6DOcQdzKZbK2tHJIRoKGp128uSkhK5n4GVVC1etzMl\nhwq5z4EQoo6YVTO46667DJPNFEWhsLCQJ5980qKBiRvza98M92aO5F0s5WS+LQGmiwghhElmJYOr\nJ46pVCrDukLi1lOpKucc/Hf7cVJO6bjf2gEJIRoEs5qJ2rZty++//87ixYt59dVXWbt2reHmNOLW\nC+nhgQrIyC4jIU3ukSyEuHlmJYM333yTuLg4Hn74YUaNGkVCQkK1i9QJy2vh6sCDIR1RFPjk+zS2\n7Dtr7ZCEELc5s5qJduzYwbp161CrK3PHkCFDePDBBy0amDAuLNSHC+dz2H7oCjE/H+bylTLu79/R\n2mEJIW5TZtUM9Ho95eXl1/xuY2NjsaCEefp1diByeBdUwJrfj/Ht1qMYuVeREEJUy6yawYMPPshj\njz3G/fdXdldu2LCBBx54wKKBCfMMDfLEUWPDf9YfYmPCKUq1esbf6yfLXAshasRkMrh06RLh4eF0\n69aNhIQEEhMTeeyxx2p05zNhWXd2b4ODxpaP1qWwdd9ZrmjLmXh/N2xtajWNRAjRCBn9tkhLS+P+\n++8nJSWFwYMHM2vWLAYOHMiSJUvkxvX1TM/ObkwPvwN7jQ0Jabl8uPYgujK9tcMSQtwmjCaDxYsX\ns2TJEgYNGmTYNn36dF5//XXeeOMNiwcnaqZrh+bMHBuEk4MtBzILeHv1AUq15aYLCiEaPaPJoLCw\nkH79+l23PTQ0lAsXLlgsKFF73h6uzB7Xi6bOGg6fvshbq/ZRdFluSiSEMM5oMigvL7/h5LKKigrK\nysosFpS4OZ6tnJkzvjetmjlwIqeIxV/v40KR1tphCSHqMaPJoE+fPje8l8FHH31EQIDxVXH0ej1z\n5sxhzJgxjB07loyMDNLS0ggNDSUyMpLIyEh+/PFHAFavXs2oUaMIDw9ny5YtN/F0RBX3Zo7MHtcb\nTzcnss6VsGhFEnkXS60dlhCinjI6mmj69Ok888wz/PDDD/To0QNFUUhLS6NFixYsW7bM6IGrvtRj\nY2NJTEzk7bff5q677mLChAnXLH+dn59PTEwMa9asQavVEhERQUhICBqNpg6eXuPW3MWeWeN68fbq\nAxzPLmTRiiTuCbCja1cFtVqGngoh/mQ0GTg7O7Ny5UoSEhI4dOgQarWacePGERwcbPLAw4YNY8iQ\nIQBkZWXh6upKSkoKx48fZ9OmTXTo0IG5c+eSnJxMUFAQGo0GjUaDl5cX6enpBAYG1skTbOycHe14\ncUxP3l+TTPqpi3yXoOOXgzsI7tKKvt1a06ldU5mTIIRApVh4yuqsWbP49ddfee+998jNzaVLly4E\nBASwbNkyCgsL6dq1KxkZGcyYMQOAmTNnEhYWxoABA6o9ZkJCIlrtFUuG3eCU6xV2HdWSdkbHxZI/\n+4GcHVR0aauhq6cdbZrZGJYqF0I0PIMHD672MbNmIN+MxYsX8+KLLxIeHk5sbCytW7cG4J577iE6\nOprg4GBKSkoM+5eUlODi4mL0mL6+/rWOJy1tL/7+vepdmVtxjsAekJqahHNLP3YdymXXoTwKCq+Q\ndExL0jEtbk0d6NPVnb7dWuPV2hmVStWoX6+GFFdtykhcDSMuc1ksGaxbt47c3FyeffZZHB0dUalU\nTJkyhfnz5xMYGEh8fDzdu3cnMDCQd955B61Wi06nIzMzEz8/P0uF1eipVCo6tHGhQxsXHhniy7Gs\nQnYdymN3ei7nLl1hY+IpNiaeonVzR/p0a42bvUxcE6IxsFgyuPfee5kzZw7jxo2jvLycuXPn4uHh\nQXR0NHZ2dri5uREdHY2zszORkZFERESgKArTpk3D3t7eUmGJq6hUKnw9m+Lr2ZTRd3fiyOmL7ErP\nIyk9j9wLpazfeQIV4NI8nyA/ueGyEA2ZxZJBkyZNePfdd6/bHhsbe9228PBwwsPDLRWKMINapaKL\nV3O6eDUnYlhnDp+6yO/7s9idnseqTUcI8GmJna2sdSREQyWfbnEdG7Ua/44teOYhf1q6qDl36Qqb\nks5YOywhhAVJMhDVslGrGdLdEYAfdp6QZS2EaMAkGQijvN3t6O7dglJtOd/HnbB2OEIIC5FkIEwa\nPbQTKhVs3X+W7IIS0wWEELcdSQbCpHbuzoQGeqCvUPh2S6a1wxFCWIAkA2GWkaE+2NvZsP/oOdJP\nyvLlQjQ0kgyEWZo62/O3O70A+GbzUSosu4qJEOIWk2QgzDa8rxfNXew5mVtEfEqOtcMRQtQhSQbC\nbPZ2Nowa5APA2m3H0Mo9loVoMCQZiBrpH9AGr9bOXCjS8suuU9YORwhRRyQZiBpRq1SMvqszAD8m\nnOJSsdxOU4iGQJKBqLFuHZrTs5Mb2jI9/91+zNrhCCHqgCQDUSuPDvXFRq1ie3I2Z/KKrR2OEOIm\nSTIQteLR0okhPT1RFPhmy1FrhyOEuEmSDEStPTSwI472tqQeP8/BYwXWDkcIcRMkGYhac2mi4YEB\nHQBYvfko+ooKEyWEEPWVJANxU4b1bodbUwfOnithe3K2tcMRQtSSJANxU+xsbXhkiC8A67Ydo1Rb\nbuWIhBC1IclA3LQ+Xd3xbetK4eUyNiaetHY4QohasFgy0Ov1zJkzhzFjxjB27FgyMjI4efIkY8eO\nJSIiggULFlDxRxvz6tWrGTVqFOHh4WzZssVSIQkLUalUjL67ciLaz7tOU1gqfQdC3G5sLXXgqi/1\n2NhYEhMTefvtt1EUhalTp9KvXz+ioqLYtGkTPXv2JCYmhjVr1qDVaomIiCAkJASNRmOp0IQFdPJs\nSp+u7uxOz2NLSik9e5TjoLHYn5cQoo5Z7NM6bNgwhgwZAkBWVhaurq7s3LmTvn37AjBo0CB27NiB\nWq0mKCgIjUaDRqPBy8uL9PR0AgMDLRWasJBHhviy70g+R7LLmPbBDvp2dSc0sC2+nq6oVCprhyeE\nMEKlKJZdmH7WrFn8+uuvvPfee8yePZu4uDgA4uPjWbNmDaGhoWRkZDBjxgwAZs6cSVhYGAMGDKj2\nmAkJiWi1VywZtqil43llxB++QtaFP1c0beGsJsBLQ/d2GpwcpJtKCGsZPHhwtY9ZvB6/ePFiXnzx\nRcLDw9Fq/1zUrKSkBFdXV5ydnSkpKblmu4uLi9Fj+vr61zqetLS9+Pv3qndlGkpc/v7g7b6X5q27\nEJeczY6UHM4X69iWdoW4Q1oCfVsSGuhBD9+W2Nr8mRga6+tVn8tIXA0jLnNZLBmsW7eO3Nxcnn32\nWRwdHVGpVAQEBJCYmEi/fv3Ytm0bd955J4GBgbzzzjtotVp0Oh2ZmZn4+flZKixxi3i0dOLRoZ0Y\nOciHlGPn2Z6cRXJmAfuPnmP/0XO4NrFjQIAHAwM9aOvmZO1whWj0LJYM7r33XubMmcO4ceMoLy9n\n7ty5+Pr6Mn/+fJYuXYqPjw/Dhw/HxsaGyMhIIiIiUBSFadOmYW9vb6mwxC1ma6OmZ2c3enZ241KJ\njviUHLYnZ5FdcJmfdp3ip12n8PV0xbtFGe066HB1koEDQliDxZJBkyZNePfdd6/bvmLFiuu2hYeH\nEx4ebqlQRD3R1EnDiH5eDO/bnmNZhWxPzmbXoVwyzxaSeRY2p+ygW4dm9OnWml5+rXB2tLN2yEI0\nGjL2T9xyKpUKX8+m+Ho2ZezdnUnKyGPz7iOczNeTeuICqScuEPPzYbp7t6BPV3eCOreiiYP8qQph\nSfIJE1Zlr7FhQIAHzdTZeHn3YG9GPrsP5ZJ28gLJmQUkZxZga3OYHj4t6NutNT07uWGvsbF22EI0\nOJIMRL3h7GjHoDvaMuiOthSW6Eg6nMeuQ3lknL7IviPn2HfkHBpbNXd0cqONsw53z1JaujrIHAYh\n6oAkA1EvuTppGNqrHUN7teNCkZY9h/MM/Qu70/MA+GFPPA4aG9q6OeHp5oRnK+c//nWiqZNGkoQQ\nNSDJQNR7zV3suSe4PfcEt6fg0hV2p+eRcPAEFy+rKLxcxrGsQo5lFV5TxsnBFk83J9pWJQg3J66U\nyZpJQlRHkoG4rbRs6sCIfl54uZzD378XhZd1ZOWXcPbcHz/5xZzNL6HkSjkZZy6RceaSoayNGoKO\npxAa6EH3ji1Qq6XmIEQVSQbitubaRINrBw1dOzQ3bFMUhYvFOs6eKyYrv4QzfySJE9lF7EnPY096\nHs1d7Anp0YaBPTxwb97Eis9AiPpBkoFocFQqFc1d7GnuYk+Ad0vD9sSkPeRr3YhLzibvYinrd55k\n/c6TdGnfjIGBHgR3cZeRSqLRkmQgGg0XRzX9enfk/v4dyDh9kbjkbHYfzuPw6YscPn2Rlb9m0Ldb\na0IDPfBpKyutisZFkoFodFQqFV28mtPFqzkR9/ix61AuccnZZGYVsu1AFtsOZOHRsgmhgW1R68pp\nklOIvZ0N9nY2aP7419ZGJclCNCiSDESj5mhvy+Cengzu6cnZcyXsSM5mZ0o22QWXWb3laOVOO/Zc\nV06tUmGvURuSQ9VPma6EFoeSsdf8kTxsbbDXqK9JJH/+VJYvkjvDiXpAkoEQf/B0cyL8rk6MGuzD\nwcwCEtJyycorwMbWEW2Z/o+fCnRlevQVCqVaPaVa/XXHOZl/rsbn/v3wXkID29KrSyvs7aTfQtx6\nkgyE+AtbGzVBfq0I8mtV7drx5frKpKAtq6hMErrKZHEk8zBtPLyvSRxViUSnq7gqqegNj53OKyL9\n1EXST13E8Vcb+nVrTegdbenYxkWaosQtI8lAiFqwtVFja6OmicO128uL7PDv4l6jY+07kMSlijZs\nT87meHYhW/dnsXV/Fp6tnAjt4cGdAW1wbSJLewvLkmQghJXZ26kY4u/JkCBPzuQXE5ecTXxqDmfz\nS4jdfJRvt2bSs5MbAwM9CPBpgY1abh0q6p4kAyHqkXatnBlzd2ceGeLLgaMFxCVnkXysgKSMfJIy\n8mnqrCEkwANPZ+l0FnVLkoEQ9ZCtjZreXVrRu0srLhRp2ZmSTVxyNrkXSvkx4SS2NnBJf4p7+rST\nmoKoE5IG8f27AAAgAElEQVQMhKjnmrvYc3//jtx3ZweOnLnEb3tOs+dwPqu3HCUxLZcn/taVDm1c\nrB2muM3JJYUQtwmVSoVf+2Y8P7IHo/o50dLVnpO5RUR/uYdvtxxFW3b9MFchzGWRmkFZWRlz587l\n7Nmz6HQ6Jk2ahIeHB88++ywdO3YEYOzYsdx3332sXr2a2NhYbG1tmTRpEkOHDrVESEI0KD6t7RgW\n0pu1246xac8ZNiaeYs/hPB4f0RX/ji2sHZ64DVkkGXz//fc0a9aMt956i4sXLxIWFsbkyZOZMGEC\nEydONOyXn59PTEwMa9asQavVEhERQUhICBqNDKMTwhQHjS0Rw/zo59+aLzamcza/hH/H7iekRxtG\n39UZZ0c7a4cobiMWaSYaMWIE//znP4HK5YRtbGxISUlh69atjBs3jrlz51JcXExycjJBQUFoNBpc\nXFzw8vIiPT3dEiEJ0WD5tm3Kgif6MHKQD7Y2anYczOGlTxJITMtFURRrhyduEyrFgn8txcXFTJo0\nifDwcHQ6HV26dCEgIIBly5ZRWFhI165dycjIYMaMGQDMnDmTsLAwBgwYYPS4CQmJaLVXLBW2ELet\n88V6fjlwmTMFlf0HPq1tGdajCa5NpHtQwODBg6t9zGKjibKzs5k8eTIRERE8+OCDFBYW4urqCsA9\n99xDdHQ0wcHBlJSUGMqUlJTg4mJ6VISvr3+t46pueQFrl5G4JK66KjOgj8K2A1l8uyWTY7nlfHmh\nhFGhPjRRcggK7Imjva1Zy1zUh+cicdVNGXNYJBmcO3eOiRMnEhUVRf/+/QF48sknmT9/PoGBgcTH\nx9O9e3cCAwN555130Gq16HQ6MjMz8fPzs0RIQjQaapWKIT09ucPXja9/zSApI59Vm45UPrh5OzZq\nFa5OGlya2OHSRINr1b/XbNNwWSsT2xoTiySDjz/+mMLCQj766CM++ugjAGbPns3rr7+OnZ0dbm5u\nREdH4+zsTGRkJBERESiKwrRp07C3t7dESEI0Os1d7Jk8qgdJh/P5dfcpcs8XcaVchVan50KRlgtF\nWqPl1SoYfvEoD4Z0xEEjU5IaOou8wy+99BIvvfTSddtjY2Ov2xYeHk54eLglwhBCgGEmc1Xzgq5M\nT9HlMgov6yi6rKOwpKzy38s6w/bCYh2n8orZmHiKhLRcRt/ViT5d3WUV1QZM0r0QjYzGzoaWTW1o\n2dTB6H6bduxixxEVJ3KK+Ph/qWzdd5Zx9/jh2cr5FkUqbiUZYiCEuCGP5ra89Fgwj4/ogrOjHemn\nLrLgs93EbjpCqbbc2uGJOibJQAhRLbVaxeCenrz+zJ0MDfJEURR+2X2aucsTiE/JkXkMDYgkAyGE\nSc6OdkQO70LUE33wbevKpRIdn6xP442VezmVW2Tt8EQdkGQghDBbhzYuzInszcT7uuHSxI4jZy6x\n8IvdrPwlg8tXyqwdnrgJ0oEshKgRtUrFwEAPevm5sW77cTbtPcOmvWfYlZ5LFw81p4pO4epkh2sT\nDS5N/py7YGcr1571mSQDIUStNHGwI+IeP0LvaMvKXw6TceYSezJhT+bRG+7vaG9bOcHNSYOLox2u\nThqaOdvj7iCT2+oDSQZCiJvS3t2ZWeN6cSCzgH2pGTg4taKoag5D1XyGkjJKteWUasvJvVB6TXl7\nW7BxyqVvt9ZWegYCJBkIIeqASqWiZyc3NLpT+Pt3vu7xCkXh8pXyPya5VU5uK7qs40BmAcmZBXz8\nv1RSjp9n3DA/7DU2VngGQpKBEMLi1CoVzo52ODva4dHSybB9SJAnX/+YwLZDWuKSszly5hLPPdRd\nbuNpBdKjI4SwGpVKRZC3PfMfD8bTzYnc85d59as9/LLrFBUyh+GWkmQghLC6dq2cmf94MEODPNFX\nKMRuPso73x7gUonO2qE1GpIMhBD1gsbOhsjhXZgyqgdODrakHDvPgs92kXK8wNqhNQqSDIQQ9Uov\nv1YsnNiXLu2bUViiY+k3B/hm8xHK9TIE1ZIkGQgh6p0Wrg7MGBvEyEE+qFUqft51mte+SiLn/GVr\nh9ZgyWgiIUS9pFareHBAR7p1aM7y71M5mVvEws93E9JVg33TS7g4Vd6lzd7ORu6zUAckGQgh6rVO\nnk15eUJfvvo5nV2H8th8sJTNB5MMj9vZqq+7defVS2G4OmnILijH9vTFGp03+0I5Tc+VYG+nxt7O\nBns7G+xs1Q028UgyEELUe00cbHn2oe7c0cmNTbsyUNSOhju06corKCjUUlBo/Dae7Nhb8xNvT7zm\nV5WqsqPb3s4Gja0ae42NIVHorhSz7UiK4Xd7jY1h36qE8ufvNmjs1JTq6k8/iCQDIcRtQaVS0b97\nG5qqsvD372XYrtXpK2/V+ceyF1W38zTcwrNEx6XCQpo0Mf8ObQpQVFSMysYebZkeXZkebVkF5foK\ntDo9Wp3+huUyc/Nq/LzcE+LxaeuKt4crPm1d8WrtjJ3trZ+FbZFkUFZWxty5czl79iw6nY5JkybR\nqVMnZs+ejUqlonPnzixYsAC1Ws3q1auJjY3F1taWSZMmMXToUEuEJIRooOw1NrTSONKqmWO1+1Td\n/7kmblRGX1GBrqwCbZm+8kenN/x+9FgG7m06GhKHIYno9Ib9dVdtv1KmJ/d8CXkXS8m7WEpCWi4A\nNmoV7d2d8W7ris8fCaJ1iyaoLdw8ZZFk8P3339OsWTPeeustLl68SFhYGF27dmXq1Kn069ePqKgo\nNm3aRM+ePYmJiWHNmjVotVoiIiIICQlBo9FYIiwhhLgpNmo1jvZqHO2v/+pUlWrw929To+OlpCTh\n2sqPY9mFHMsq5Hh2IVn5JZzIKeJEThFbOAtUrvjq7eGCT1tX2jtbpmnJIslgxIgRDB8+HABFUbCx\nsSE1NZW+ffsCMGjQIHbs2IFarSYoKAiNRoNGo8HLy4v09HQCAwMtEZYQQtQrarUKr9YueLV2YUhP\nTwBKteWcyCni+FUJ4kKRlrQTF0g7cYFePhr61KySYxaVYsGbmBYXFzNp0iTCw8NZvHgxcXFxAMTH\nx7NmzRpCQ0PJyMhgxowZAMycOZOwsDAGDBhg9LgJCYlotVcsFbYQQtQrRaUV5Fws53xxBV3a2tHM\nqXZ9CoMHD672MYt1IGdnZzN58mQiIiJ48MEHeeuttwyPlZSU4OrqirOzMyUlJddsd3ExvVqhr69/\nreOqq7bDui4jcUlc9a2MxNUw4jKXRWYgnzt3jokTJzJjxgweeeQRAPz9/UlMrBymtW3bNoKDgwkM\nDCQpKQmtVktRURGZmZn4+flZIiQhhBBGWKRm8PHHH1NYWMhHH33ERx99BMC8efN49dVXWbp0KT4+\nPgwfPhwbGxsiIyOJiIhAURSmTZuGvb29JUISQghhhEWSwUsvvcRLL7103fYVK1Zcty08PJzw8HBL\nhCGEEMJMslCdEEIISQZCCCEkGQghhECSgRBCCCw86UwIIcTtQWoGQgghJBkIIYSQZCCEEAJJBkII\nIZBkIIQQAkkGQgghkGQghBACSQZCCCGQZGB1J06c4PfffycnJwdz5/8dOXKEjRs3cujQIQtHZ74t\nW7Zc8/uPP/5osXNdvHjRYseurw4ePHjN77t27TKr3K18X2rD3PeyvLz8mt8LCwvNKldRUYFer2fP\nnj3odLoax2cptfncW5rF7nRWH6xbt67ax8LCwoyWPXToEN988w1ardawbdGiRdftN2fOnGqPcaP9\nr7ZixQp+/fVXLl26RFhYGKdOnSIqKspoma+++or169dzxx138Omnn/K3v/2NJ5980miZ4uJiPvnk\nE/Ly8hg6dChdunShQ4cO1e7/yiuvXBPHzJkzefPNN2+475YtW9i7dy8bNmxg3759AOj1ejZv3sx9\n99133f4383rt2rWLV155Bb1ez4gRI2jbti2PPvqo0TJ6vZ61a9eSlZXFnXfeSefOnWnRokWdl1m9\nejVffvklV65cQVEUVCoVmzZtqnZ/c9+TPXv2cPToUb744gsmTJhgiO/rr79m/fr11R6/pu9Llb17\n97Jw4UIKCgpwd3fn1Vdfxd/f+J0Fc3JyeP3118nMzKRjx47MmTOHdu3aGS1j7nuZn59PcXExs2bN\n4s0330RRFCoqKpg1axbfffed0XO89tpr+Pr6kpWVRWpqKm5ubixevPi6/ZYsWYJKpbrhMaZPn270\nHK+88gqPPvoo3bp1M7rf1WrzuYfK2wWfOnWKO+64A29v7zq/90uDTgaZmZkA7N+/H0dHR4KCgjh4\n8CDl5eUmk8Hs2bMZP348bdq0Mbpf1Qdr1apVBAUF0atXLw4ePHjdldyNbNiwgZUrV/L444/zxBNP\n8Pe//92sMl9//TW2traUlZUxZswYk8lg7ty5DBo0iN27d+Pm5sa8efNueG+JlStXsmzZMi5evMgv\nv/wCgKIodOrUqdpjd+3alYsXL2Jvb4+3tzcAKpWKBx544Ib738zr9e6777JixQpeeOEFnnvuOcaO\nHWsyGURFReHu7s7OnTvp0aMHs2bN4pNPPqnzMrGxsSxfvpxWrVqZfB5g/nvi6urKuXPn0Ol05Ofn\nA5Wvb9V9w6tT0/elyquvvsqSJUvo1KkTGRkZREVFERsba7TMSy+9xNixY+nTpw+7du1i3rx5fPnl\nl0bLmPteHjhwgC+//JLjx48zf/58ANRqNQMHDjR6fKisTc2bN4/IyEhiYmJ4/PHHb7ifj4+PyWNV\nZ8iQIXz88cfk5uby0EMP8dBDD+Hs7Gy0TG0+90uXLiUnJ4fMzEw0Gg3Lly9n6dKltY77Rhp0MvjX\nv/4FwJNPPsny5csN2ydOnGiyrJubm8kvGoDQ0FAAPv/8c55++mkAevfubbiKM6bqCrLqqkSj0ZhV\nxta28m2zs7PDzs7OZJmLFy/yyCOP8P3339OrVy8qKipuuN+4ceMYN24cH3/8Mc8995zJ4wJ4eHgw\ncuRIHn74YS5evMiVK1eM7n8zr5daraZZs2aoVCrs7e1xcnIyWebUqVO89tprJCUlcdddd13zd1CX\nZZo3b46np6fJ/aqY+574+fnh5+fHo48+SuvWrYHK+4t7eHgYPf7V74ta/WdrcF5entFyLi4uhuTv\n5+eHg4ODyeei1Wq5++67ARg2bBhffPGFyTLmvpfDhg1j2LBh/P7770Zv5n4jFRUVpKSk0K5dO3Q6\n3TX3W7+auQn8RgYNGsSgQYM4f/48r732Gm+99RbDhw/n+eefx8vL64ZlavO5T0pKYuXKlURGRjJy\n5EhWrVpV65ir06CTQZXz589TWFiIq6srFy5cMKud0tPTk+XLl9OtWzfDm2bsauTy5cvEx8fTo0cP\n9u3bd03zUnUeeOABxo0bR1ZWFk8//TTDhg0zWaZXr1784x//oHfv3iQlJREUFGSyDPxZS8rJycHG\nxsbovmPGjGH9+vWUl5ejKAp5eXk8++yzRsu8/PLL7Ny5Ezc3N8Mfu7Erytq8Xl5eXixZsoSLFy+y\nfPly2rZta7KMXq/n/PnzQGXTzNVfjHVRpurqTKfT8eSTT+Lv72/4ezHVxFCT9+SHH37A1dWVwsJC\n1q5dS2hoqNEmtyrvv/8+q1atoqysjCtXrtCxY0c2bNhQ7f4tW7Zk3rx53HnnnaSmplJRUcE333wD\nwOjRo29YRq/Xc/jwYbp06cLhw4dNxgQ1fy/d3d15+eWXTTbbXi0sLIyFCxeyaNEi/v3vfzNmzJgb\n7mfs9TBVA8nMzGTt2rVs2bKFvn37snLlSsrLy5k6dSpr1669YZnafO71ej1arRaVSoVerzfr77im\nGsWqpT///DOLFy+madOmFBUVMX/+fJNXGTf6oBn748vMzOStt97i+PHjdO7cmVmzZtG+fXuTsWVm\nZpKRkYG3tzddu3Y1/WSArVu3kpmZia+vL0OGDDG5/+HDh4mKiiIzMxMfHx8WLFhA9+7dq91//Pjx\n+Pj4kJGRgb29PY6Ojnz88cdGzxEeHs4333xTbdvrX9Xm9SovL+fbb78lIyMDX19fRo8ebbJmtGvX\nLubPn09+fj4eHh7MnTuXkJCQOivz3//+t9rjjBw5strHMjIymD9/vtnvSXh4OCtWrOCpp57iq6++\n4rHHHuOrr74y+jwAHn74Yb799ltef/11JkyYwMKFC/nss8+q3f+DDz6o9rEpU6bccPuhQ4eYP38+\neXl5tG7dmujoaJN/y1e/lz4+PowZM8boe/nwww9f12xbVcuszl133QVUNo8pioKLiwv/+9//jJY5\nfvw4p06dokuXLri7u5v80h07dizh4eGMGDECR0dHw/aVK1cybty4asvV9HO/ceNGPvjgA86fP4+H\nhwdPPPEEDz30kMlyNaI0EmVlZUpubq5SXl5udpnDhw8rGzZsUNLS0qrdR6vVVvtjSlZWlrJ8+XLl\n/fffN/yYMnLkSGXJkiXKwYMHzX4eNRUREaEoiqLMnj1b0ev1yujRo02WmTx5slJUVGSxmBRFUQoL\nC5XffvtN2bBhg+HHXAUFBTU+X0FBgVJRUWHWvvv27VO+/PJLRVEUZfr06UpKSorR/f/zn//UKJbR\no0crZ8+eVaZNm6YoiqI8+uijZpV78sknFUVRlBdffFFRFEUZP378DffLzs5WFEVRjh07dt2PKQMH\nDlS6deumhISEKP7+/kpQUJByzz33KHFxcdWWiY+PN/z/8uXLyvz5842eY+LEiSbj+Kuqz+GVK1eU\nPXv2KK+99prR/WNiYpTHHntMefjhh5UvvvhCWbhwoVnnyc3NVc6ePaucOXNG2bt3r8n9c3JylH/9\n61/KhAkTlG+++UbZv3+/WefJyspSDhw4oJw9e9as/WuqQTcTjR49utorVVOdYjExMaxfv57AwEA+\n++yzakftjBgxwnDlUXUuxYzRJAD//Oc/6d+/v8n237/GHR8fz3fffcerr75KYGAgc+fOveG+d911\n1zXP39bWlvLycjQaDRs3bqz2HDY2Nmi1WkpLSw3V0upUvcYFBQXce++9hqt7U81EH3/8Mf/5z3+u\naZOOi4urdn+o7Ovp1KkTLi4uhnMYGxkDla/XX0eFVTe88mb+XqKjo3n77bcBmDp1KrNnz2blypXV\n7v/777/zxBNPmGweqtKvXz8iIyN56623eP31181uP2/Tpg3fffcdjo6OLFmypNohmZ9//jlz5sy5\nblSLSqUyWQPp06cPU6ZMwcfHh1OnTvHBBx8wefJkZsyYUW2N6t1338XJyYmKigrmzZtn8iq3ps22\ncG1bfO/evU12uF7dsfv444+b1bE7d+5c9u/fT2lpKaWlpXh5ebF69WqjZebPn8+ECRP46KOPCA4O\nZvbs2SbLfPDBB+h0OqZPn84//vEPAgICeOaZZ0zGVxMNOhncTG/7+vXrWblypclRO5s3b671OZyc\nnJg2bVqNylT90en1enQ6HQUFBdXu+9NPP6EoCgsXLmTMmDEEBgaSlpbG119/bfQc48aN44svviAk\nJITBgwfTu3fvavet7Wv8448/sn379muq1qa4uLiYbCf+q6+++orly5fTtGlTk/tWPZeysrJrmiwu\nXbpksqydnZ2hw7B9+/YmmxcuXLhAaGgo7dq1M3QmGks4vr6+houLgIAAszodoXLoY05ODiNGjOC/\n//0vS5YsueF+Vc2iMTExZh33ajk5OYYROV5eXmRnZ9OhQwejie7DDz/k+eefR6fT8e677+Lr62v0\nHGVlZRw/fpzjx48btplKBlcPGc3Pzzf5nii16NhNT09nw4YNREVFMW3aNP75z3+aLHPlyhX69+/P\nsmXL8PHxMWuI6ObNmw19EO+99x5jxoyRZFATVaM7btQOWl37ZxWlhqN2IiMjr7uqNHVF1blzZzZs\n2HDN1U7VMMDq9O/fHz8/P6ZNm0Z0dLTRfav+mE+fPk1gYCAA/v7+13ygbmT48OFA5YiXv/3tb0aH\nylW9xn/tY7Gzs6NNmzaMGzfuhl/E7dq1M2ukytUGDhzIqlWrrhnq2qdPH6NlunTpgoeHh1lX4BqN\n5oZj2qOiokyOaW/bti1Lly6lZ8+eJCcn4+7ubnR/U30wf7V69WrD1bO5iQAqO+pjYmIMcwAefPBB\no/t/8MEHrFy58prXy1SNrVWrVvz73/8mKCiIffv24ebmxo4dO274mbn6C9rb25vt27cb2vGNdbgv\nWrTouvZ8U64eMtq1a1eTfQz33Xcf48eP5+zZs2Z37FaNiLp8+bLJuShV7O3t2b59OxUVFezfv9+s\n91OlUqHT6dBoNJSVlVlkolqDTgZV3NzcgMov+LS0tGqH8V2td+/eNRq1s3DhQsM5UlNTzZodfOjQ\nIeLj4zl9+jTt2rWjRYsWJhPI1q1biYuL4/vvv+fLL7+ke/fuhiG01XFxceGdd94hMDCQffv2mRxK\nt3v3bhYuXFijyV1arZb27dsTHBzMgQMHOHjwIC1atGDWrFk3/OIrKyvjwQcfxM/PD6j8Y6/uqrVK\n1SzS3bt3G8qYSgZ33nknw4YNo3379oYrv+pe46vHtEdFRaEoitlj2hctWsSqVav4/fff6dSpE88/\n/7zR/W1sbK6bqGWMTqcjLCwMb29vwxWuqdcLKpsxgoODeeihh9i1axezZ882moi2bNnCli1bapSo\n33zzTb755hu2bduGn58fL7zwAmlpaTesNV79Be3t7U3fvn3NOsfVE7VGjhzJyZMnTU7UMtaBfyPr\n1q3Dy8uLcePG4evrS5cuXUyWCQgI4NNPP8Xd3Z1p06ZRWlpqskx0dDSLFy/mwoULfPbZZ7z88ssm\ny4wZM8bweTl27BhPPfWUOU+pZizSE1HPVXWqmbJlyxbl008/VbZu3Vrjc0RGRprcZ8OGDcq9996r\nTJo0Sbn77ruV//73vybL6PV6Zffu3cqSJUuU0aNHGzoUjSkpKVE+/fRTZf78+cqXX35psnM7IiJC\nuXDhgjJ+/HjlypUrysiRI02e4/HHH7/m9wkTJhiOdSOJiYnX/dT0HOYYOXKksn//fiUzM9PwY8pf\n3wdzyuzateu6H2OefPJJ5bffflMuXbqk/Prrr8pjjz1mdP/avF6Kcn2H8dixY43u//TTTytlZWVm\nHftmlJWVKXv37lV27dqlJCYmKj/88IPR/ceMGaPo9XrD8xk1apRF4jp69KiyfPlyZfTo0crkyZNN\n7j9y5EjlhRdeUH766Sdl06ZNyrlz50yWWbRoUa1iKygoUPbv31+rwRDmaBQ1g6ubRfLz88nKyjJZ\npqCggLi4OI4fP05+fj49e/Y02u5cNRYbKif2XL582eQ5vvzyS9auXYuTkxPFxcU8/vjjJmdGBwQE\nMHLkSO69916mTJnC+++/b/I8Go2GoKAgevTogaIo/PLLL0ZnotZmcldxcbFhuGtmZiYlJSVcuHCh\n2tfBnPfgr2rTrNa6dWt69Ohh1rjsjIwM8vLy+Pzzzw21yYqKCpYsWWJySOKqVatQqVRUVFRw9OhR\nPD09jdZa/jpR6/PPP7/hfuvWrSMsLIxjx45d1wxpzlW1VqslPz+fVq1akZ+fX22tePr06ahUKs6d\nO8fIkSPp3Lmz4Xzm1EBqasqUKZSVlZGXl4der8fd3d3o36RSi/b8mjp06BA7d+4kISEBMG9m8tq1\na8nMzGTTpk1s3rwZNzc3o8NzAY4ePWqY92Su/fv3s3btWsrKyoDK75hPP/3U7PLmaBTJ4OrqpL29\nPbNmzTJZZurUqdx333088sgjJCUlMXPmTP7v//6v2v2rlgqoOsc777xj8hwqlcrwRevs7Gy0I+nb\nb7/lu+++w8HBgaNHj3L06FE+/PBDysrKTDYT1fSDV5vJXVFRUcyYMYO8vDw8PDyIiorixx9/rHYm\nc9WEK0VROHToEM2aNTOZCNPT00lPTzf8bs5IF51Ox8MPP2zWl1thYSEbNmygoKDAMBFJpVIRERFh\n9BxwbUe6Tqdj6tSpRvf/60St6kYxLV26lLCwMNLS0sxqJ/+rqVOnMnbsWBwdHSktLa22n6lqQlZ2\ndjbFxcXY2NjwySefEBkZWeNzmuPChQt88803zJs3zzC6xpjatOfX1Pjx42nfvj3Tpk0ze7RWVQJJ\nTEwEzEsgmZmZ9OvXjxYtWhjed1P9Mi+//DJPPfUUP//8M35+fhZZdK9RJIOYmBguXLhwTdu8OcaO\nHQtUdj799NNPRvedMmUKW7du5ciRI3h7e5tcqAsqR5288cYbBAcHs2fPnmqnr0PlpJv+/fvzf//3\nf4YvWLVaTcuWLU2ep6YfvAULFrBmzRp69+6No6OjyY5qgMDAwOtmXPbo0aPa/a9OYIqimJzhDNeP\ndDHnA2HOcasEBwcTHBxMamqq0Qlgpuj1ek6fPm10n5deeom5c+deM1HrRjp06MDf//53Tp48ec2I\nG5VKZXIQBGDobPzrlfVfVdUyxo8fz5QpU/j666+ZPn06sbGxPPHEEybPU1NVfRKlpaVm9U/Upj2/\nphITE0lKSiIuLo7PPvuMli1bmhwtV5sE8teVZM3RvHlzHnjgAXbs2MELL7zA+PHja3wMUxpFMti4\ncSPvvPMOvr6+HDlyhClTpvDwww8bLePj48P//vc/w7T8Zs2aGZqbbtQ0sWTJEk6ePEmvXr1Yt24d\ne/bsYfbs2UbPsWjRIr755ht27tyJr6+v0St8jUZDu3btzPpi/quafvCee+45o7NUr/aPf/yD9957\n77pOVpVKxfbt26std/UXeX5+PmfOnDF5rtjYWD7//HPDMhl2dnb8/PPPN9x3y5YtDB069IYjp6pr\nXqlarfWVV1657kvT1DyDq59/eXl5tYuiVfH392fNmjVG9wH44osvyM3N5eWXX2bBggUm9/+rDz74\ngG+//ZYWLVqQn5/P5MmTjY5pr+qU//jjj7n//vtNjn+vrXvvvZcPP/yQrl27Mnr0aJNDjKuaYzZv\n3sxXX31lVnNMTRUWFpKbm0tWVhalpaVm1Yhrk0C2bt3KqlWrrulsNlXDVavVHDlyhNLSUo4dO2bW\ncGi5wrMAAAkISURBVOeaahTJ4Isvvriubd5UMjh27BjHjx+/5gMbFRVVbdPE7t27DV8Yjz/+OOHh\n4SbjsrW1NTplva7U9IPn6urKb7/9ds3Ilera5t977z2gcjTV2rVrzVpjCCon61VxcHAwufIqVE7x\nj4mJYdmyZYwYMcLoyphVH5aFCxdeM7LHWHx6vZ6lS5det+CcOUts/PX579271+j+5g7htLGxoW3b\ntmYtlncjTk5Ohppwq1atTL735eXlvPXWWwQHB5OQkGBoo65rbdq0IS4ujrKyMhwcHEwO/a1Ne35N\nPfXUUwwbNoznnnuOzp07m1WmNgnk3XffZc6cOYZ+KXPMnj2bI0eOEBkZyYsvvmjWhLiaahTJoCZt\n81XOnj17ze+m1jUpLy+noqICtVp9zWzk+qCmH7yCgoLrEp6pK5c333yT6OhoszvFqibrFRQU0Lx5\nc7M6eN3d3XF3d6ekpIR+/foZvTIsKyszJL6qGkpFRQXl5eXV1sB69uwJmO6UvpGaPv/aDOGsiaqr\nU71ez7PPPkvv3r1JTk422fG6aNEiduzYwaOPPspvv/12w/X/68Kbb77JK6+8YtZkQKhdc0xNVbew\nnDG1SSBNmzY1e0htVQ26Q4cOhvtdmKql1lajSAZXt80nJSUZbZuvUtVHoCgKKSkp1TZHVBk+fDhj\nx47ljjvuIDk52eQyCbdSTT94J06coKCggBYtWnDhwgU0Gg333nsvCxYsqHZ5gc6dO5v9Bw6V1et5\n8+bh7OxMYWEh0dHRJheQc3Fx4bfffjPM1jW2+mxt+lhqOi79ajV9/i1btjRMarSEqoR2dWKrGr1k\nTMeOHenYsSOARf+GO3fuTL9+/czevzbNMbdCTRJI1YhDjUbD/Pnz6d69u+GisboVYauWu4E/V9Nt\n2bIlarXa5HI3NdUoksHo0aPZvXs3O3fuZMOGDfznP/8xWaam65ps3LiRdu3a0bt3b/7+979bpIOr\ntmr6wfvrWjNVSwcYW2vm7rvvZvTo0ddU340tHfHOO++wcuVKWrduTW5uLlOmTDGZDMaNG0dqairT\np0/n1VdfNfrlfTN9LLVh7vO/VUM4byax3Qo1/XupTXNMfVM14jAuLo7nn3+ec+fOAcabLqtq0L/8\n8gtvvPEGPj4+FBcXmzVRraYaRTJYtGgRb7/9Nl5eXkyYMMHkImJQ83VNru7gqhqnXtcdXLVV0w/e\nX9eaycrKMrnWTExMDE899ZRhETlTbGxsDDdrad26tVlNd2+88QZvv/02rVu3ZubMmcyePdusGxXd\nCuY+/1s9hLO+qunfS22aY+qb1q1bGxYNNLfpsspHH33Et99+S8uWLTl37hzPPfecWTPja6JRJIOa\nLiIGNV/X5FZ0cNVWTT94NVlrpoqbm5tZzQpFRUW4uLjg7OxMTEwMffr0Yffu3WY1YdXmfbxVzH3+\nt3oIZ31l7utVpTbt+fXNww8/zIABA665k6C5w8ObNWtm2M/Nzc3krTVro1Ekg5ouIgY1r2bfig6u\n2qrpB68ma81UqRoRZOpOX8888wyrVq3i/9u7m5Ao/jiO429UfCAv60HIh0MamgcNofUBqUPqwciU\nVVSMBcEghcSLBw8WKEYKCuUTCoWHkCLUQA91iDRdKKJDLHgwBEUh8bKlqMxaq/+DuCTZ310xNefz\nui3MDjO/YfgyM7/f5xsZGcni4iIPHz4kLi7OpzTSg1zHo+Lr+e84qimcJ5W/43UaBAcHEx0dfaBX\nl2fOnKGyshKr1crU1BSGYXjvx8MaN1N0OnO73Tx79ozZ2Vni4+MpKys79OXsP3/+9H7gcjqdJ+YD\nF2yvBVhbW/urN95eHb/2Kqh2u5319fU9F1HtN0viKK7jQfl6/jt2JhuEh4dz6dIlOjo69o0WP038\nHS+zO2hHPX+YohgcBZfLhcPh4N27dywsLJCWlkZdXd1xHxZwsm48j8fzx0VU/jSU/9fNzc3tmsKZ\nnJzsU5tUkb9FxeCQ2Gw2cnJyyM3N/Wc/cImIeakYiIgIJ2c6hoiIHBsVAxERUTEQc3v9+jU2m40b\nN26Qn5/v0+r0gxoeHt43yVbkuJhinYHIXpaWlmhtbWV4eBiLxcLa2hp2u51z5875lOMjcpqoGIhp\nffv2jR8/fmAYBrC9sKelpYWQkBBevXpFf38/hmHgdrtpbm7GarVit9tJSkri/fv3GIZBQ0MDT58+\nZWZmhoqKCioqKujs7GRubo75+Xm+f/9OaWnpbw3MnU4nDx48wDAMLBYLjY2NxMbG0t/fz8uXLwkI\nCCAlJYWmpqbjGBoxIRUDMa0LFy6QnZ1NTk4OSUlJpKenk5+fT2xsLPfu3aO3t5eIiAgGBwd58uTJ\nrp7Go6OjdHV10dzczMjICC6Xi8LCQm+kxJcvX3j+/Dmbm5vYbDYyMzO9/93Y2KChoYHe3l6ioqKY\nnJzk7t27PH78mL6+PiYnJwkMDKSxsZGlpSVvhpPI36RiIKa20/zG4XDgcDgoKSmhra2N7u5u3r59\ny+zsLB8/ftyVg3TlyhVgOx7j4sWLhIWFER0dzcrKineb69eve3toXL16lQ8fPmCxWIDtBWcLCwtU\nV1d7t19dXSUoKIjU1FSKi4vJzs7m5s2bKgRyZFQMxLTGx8dZX1/n2rVrFBUVUVRUxIsXLxgYGKC9\nvZ2CggKsViuJiYm7Um5/Dez7U0+CXxNeNzc3f/sdExPjbZbk8Xi8ccY9PT18/vyZiYkJbt26RVtb\nm199EkQOSrOJxLRCQ0Npb2/39l/e2tpiZmaG4OBgAgICqKqqIiMjg4mJCTwej1/7fvPmDRsbGywv\nLzM2NrYrbjguLo7l5WU+ffoEwNDQEHV1dbhcLvLy8khISKC2tpasrCymp6cP74RF/oeeDMS0MjIy\nuHPnDlVVVd5ev5cvX6a7u5v6+nry8vIIDQ3FarXy9etXv/YdEhJCeXk5q6ur3L59m/Pnz+N0OoHt\n9MpHjx5x//593G434eHhtLa2EhERQVlZGcXFxYSFhXH27FmFt8mRURyFyCHr7OwEoKam5piPRMR3\nek0kIiJ6MhARET0ZiIgIKgYiIoKKgYiIoGIgIiKoGIiICCoGIiIC/AeK6lj66DdVAgAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_word_freq('https://www.gutenberg.org/files/521/521-h/521-h.htm')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* The King James Bible" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEaCAYAAAAG87ApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVHX++PHXmYHhMgwq3q8IBBkaKngt8dLW6nYlUxQK\nu9m2lpZmipZo5ZZZX6jc1oy+/r61GJBl27a51W6mkopkeE00FBWvKKByGWAGZs7vD2RWVG7KzIC+\nn48HD2Y+8/nMeZ8R530+53M+n6OoqqoihBBCNJLG2QEIIYRoXSRxCCGEaBJJHEIIIZpEEocQQogm\nkcQhhBCiSVycHYC95eeXXFP7nJwsAgKC7VbfUW0kLolL4mrdbRwVV42OHQ11viY9jgaYTBV2re+o\nNhKXxGXPNhLX9bMvjSGJQwghRJPYNXHs2rWLmJgYAHJzc4mKiiI6OppFixZhtVoBWL16NePHjycy\nMpL169cDUFFRwYwZM4iOjuapp57i7NmzAOzcuZOJEycyefJk3n//fXuGLoQQog52SxwfffQRCxYs\nwGQyAbBkyRJmzpxJcnIyqqqybt068vPzSUpKIjU1lZUrV5KQkIDZbCYlJYWgoCCSk5OJiIhg+fLl\nACxatIj4+HhSUlLYtWsXWVlZ9gpfCCFEHeyWOHr16sVf/vIX2/O9e/cyZMgQAEaOHMmWLVvYvXs3\nAwcORKfTYTAY6NWrF/v37yczM5Pw8HBb3fT0dEpLSzGbzfTq1QtFURgxYgRbtmyxV/hCCCHqYLer\nqsaOHcvx48dtz1VVRVEUAPR6PSUlJZSWlmIw/HfkXq/XU1paWqv84rpeXl616h47dqzBOHJysq55\ngCgra7td6zuqjcQlcdmzjcR1/ewLwKhRo+p8zWGX42o0/+3cGI1GvL298fLywmg01io3GAy1yuur\n6+3t3eB2r/ZStBpZWdsJDg61W31HtZG4JC6Jq3W3cVRcjeGwq6qCg4PJyMgAIC0tjUGDBhESEkJm\nZiYmk4mSkhJycnIICgoiNDSUjRs32uqGhYXh5eWFq6srR48eRVVVNm3axKBBgxwVvhBCiAsc1uOI\njY0lLi6OhIQE/P39GTt2LFqtlpiYGKKjo1FVlVmzZuHm5kZUVBSxsbFERUXh6upKfHw8AK+++iov\nvvgiFouFESNG0L9/f7vFW1Jm5tuMo/Q0WOy2DSGEaI3smjh69OjB6tWrAfDz82PVqlWX1YmMjCQy\nMrJWmYeHB8uWLbus7oABA2zvZ297DhXyXcZRurXTMjRMRXNhfEYIIW50MgGwDgMDO+Kt13HynIWt\ne/OcHY4QQrQYkjjq4OHmwsTRAQB8vj6HclOVkyMSQoiWQRJHPYb360LXdlqKjGa+2XLE2eEIIUSL\nIImjHhpF4Y5+HgD8e9sx8s6WOTkiIYRwPkkcDejazoURIV2xWFVS1x1wdjhCCOF0kjga4aFRAXi4\nadmdU8iugwXODkcIIZxKEkcjtNHreOB2PwBS1x2gssrq5IiEEMJ5JHE00h1hPeja3pPT58r54ZeG\n18gSQojrlSSORnLRaoi6MxCAr7cc4VyJyckRCSGEc0jiaIJ+fu0ZGNgBk9nCFxtynB2OEEI4hSSO\nJpr0u0BctBrS9+Zx8HiRs8MRQgiHk8TRRJ3aejBuaE8APv0hG6tVdXJEQgjhWJI4rsI9w3rTzuBG\nbl4Jm/accnY4QgjhUJI4roKbTkvkmJsA+GJDDmUVlU6OSAghHEcSx1Uacksngnq0obS8kn9sOuLs\ncIQQwmEkcVwlRVGIvisIRYF1mcc5UWBsuJEQQlwHJHFcg16dDYwe0B2rqpL8n2xUVQbKhRDXP0kc\n1+jBkf7o3V3Yl3uO7dmyjpUQ4vrn0MRhNpuZPXs2kZGRPPHEExw5coTc3FyioqKIjo5m0aJFWK3V\n60CtXr2a8ePHExkZyfr16wGoqKhgxowZREdH89RTT3H27FlHhn9FXh6uRIT7A/DZjweotEivQwhx\nfXNo4li9ejWenp6sXr2aBQsWsHjxYpYsWcLMmTNJTk5GVVXWrVtHfn4+SUlJpKamsnLlShISEjCb\nzaSkpBAUFERycjIREREsX77ckeHXafTAbvToqKegqIJfDspSJEKI65tDE8fBgwcZOXIkAP7+/uTk\n5LB3716GDBkCwMiRI9myZQu7d+9m4MCB6HQ6DAYDvXr1Yv/+/WRmZhIeHm6rm56e7sjw66TVaIi+\nMwiAjIMVso6VEOK6pqgOHNH97LPP2LVrF6+//jq7du0iKiqK9u3bs2nTJgDS09NZs2YN4eHhZGdn\nM2fOHADmzp1LREQEiYmJxMXFERAQgNVqZfTo0aSlpdW7za1bMzCZKuy+bwD/2GbkwKlKwvzdGHPh\nzoFCCNEajRo1qs7XXBwYBw899BA5OTlER0cTGhpK3759OXPmjO11o9GIt7c3Xl5eGI3GWuUGg6FW\neU3dhgQEBF9TzFlZ2wkODm1UXa/2Jbzyf9vYc6ySmHsH4+2pa/ZtXG0bR2xD4pK4JC77tXFUXI3h\n0FNVe/bsYfjw4aSkpDBu3Dh69uxJcHAwGRkZAKSlpTFo0CBCQkLIzMzEZDJRUlJCTk4OQUFBhIaG\nsnHjRlvdsLAwR4bfoF6dDfh1csFcaeWHX447OxwhhLALh/Y4fH19ee+991ixYgUGg4HXX3+dsrIy\n4uLiSEhIwN/fn7Fjx6LVaomJiSE6OhpVVZk1axZubm5ERUURGxtLVFQUrq6uxMfHOzL8RhkW5M7h\nM6WsyzzOuCG98HR36EcshBB259BvNR8fHz7++OPLyletWnVZWWRkJJGRkbXKPDw8WLZsmb3Caxbd\nfVy4uWdbfjt2nvU7jnPP8N7ODkkIIZqVTAC0g3tu8wXg39uOYaq0ODkaIYRoXpI47KBvbx96dzFQ\nUlbJT7tOOjscIYRoVpI47EBRFNspqu9+PkqVxercgIQQohlJ4rCTgUEd6NZBz9liE+l785wdjhBC\nNBtJHHaiURTuGVY91vGv9Fy5xawQ4rohicOOhgR3okMbd06fK+eX38403EAIIVoBSRx2pNVo+MOF\nXsfa9Fy5X4cQ4rogicPORtzahTZeOo6dKWV3TqGzwxFCiGsmicPOXF20jB3cC4Bv0o9Ir0MI0epJ\n4nCA0QO7oXd3IedEMdnHzjs7HCGEuCaSOBzAXefCXYN6AvDNliPODUYIIa6RJA4HuSOsB246LXuP\nnOPwqWJnhyOEEFdNEoeDeHm4MmZgd6D6CishhGitJHE40NjBPXHRatienc+J/FJnhyOEEFdFEocD\ntfFyI7x/VwD+tVV6HUKI1kkSh4P9YUgvNIpCRtYZzpwvd3Y4QgjRZJI4HKxDWw+G9+2MVVX5Tnod\nQohWSBKHE/xhmC8KsGnPKc6VmJwdjhBCNIlDbx1bWVnJvHnzOHHiBBqNhsWLF+Pi4sK8efNQFIXA\nwEAWLVqERqNh9erVpKam4uLiwrRp0xgzZgwVFRXMmTOHwsJC9Ho9S5cuxcfHx5G70Cy6ddATenNH\nMn/L59/bjnJrF2dHJIQQjefQHsfGjRupqqoiNTWVZ599lnfffZclS5Ywc+ZMkpOTUVWVdevWkZ+f\nT1JSEqmpqaxcuZKEhATMZjMpKSkEBQWRnJxMREQEy5cvd2T4zereCzd62rDjJOVmudGTEKL1cGji\n8PPzw2KxYLVaKS0txcXFhb179zJkyBAARo4cyZYtW9i9ezcDBw5Ep9NhMBjo1asX+/fvJzMzk/Dw\ncFvd9PR0R4bfrHy7GOjn74Op0sL2Q3K6SgjReiiqA1fdO3XqFM888wxlZWWcO3eOFStW8Nxzz7Fp\n0yYA0tPTWbNmDeHh4WRnZzNnzhwA5s6dS0REBImJicTFxREQEIDVamX06NGkpaXVu82tWzMwmSrs\nvm9X43hhFambS9G7Kfzp994oiuLskIQQAoBRo0bV+ZpDxzg+/vhjRowYwezZszl16hSPPvoolZWV\ntteNRiPe3t54eXlhNBprlRsMhlrlNXUbEhAQfE0xZ2VtJzg41C71b1FV/pn5E8aKKrr27IuPt3uL\niMuRbSQuietGjOtq2jgqrsZw6Kkqb29vDAYDAG3atKGqqorg4GAyMjIASEtLY9CgQYSEhJCZmYnJ\nZKKkpIScnByCgoIIDQ1l48aNtrphYWGODL/ZKYpCr87Vn0duXomToxFCiMZxaI/jscce46WXXiI6\nOprKykpmzZpFv379iIuLIyEhAX9/f8aOHYtWqyUmJobo6GhUVWXWrFm4ubkRFRVFbGwsUVFRuLq6\nEh8f78jw7aJ3FwP7cs9xJK+EgUEdnR2OEEI0yKGJQ6/X8957711WvmrVqsvKIiMjiYyMrFXm4eHB\nsmXL7BafM/h2udDjOC09DiFE6yATAJ3MljjkVJUQopWQxOFkndp64OYCRUazzCIXQrQKkjicTFEU\nOrWtPmMovQ4hRGsgiaMF6NxGC8g4hxCidZDE0QJ0aXshcUiPQwjRCkjiaAE6XehxHMmTe5ELIVo+\nSRwtQDu9BnedlvOlZopKZYBcCNGySeJoARRFwbezzOcQQrQOkjhaiJr5HEdknEMI0cJJ4mghZCKg\nEKK1kMTRQvSWHocQopWQxNFCdPbxxE2n5VyJiWKj2dnhCCFEnSRxtBAaRcG3kxcgA+RCiJZNEkcL\n0ktOVwkhWgFJHC1IbxkgF0K0ApI4WhDfLtW3ws2VGeRCiBZMEkcL0tXHE52rhsJiEyVlMkAuhGiZ\nJHG0IBqNQq9OMoNcCNGyOfTWsV9++SV///vfATCZTOzbt4/k5GTeeOMNFEUhMDCQRYsWodFoWL16\nNampqbi4uDBt2jTGjBlDRUUFc+bMobCwEL1ez9KlS/Hx8XHkLtidbxcDB08UkZtXQj+/9s4ORwgh\nLuPQHsf48eNJSkoiKSmJvn37smDBAv76178yc+ZMkpOTUVWVdevWkZ+fT1JSEqmpqaxcuZKEhATM\nZjMpKSkEBQWRnJxMREQEy5cvd2T4DiETAYUQLZ2iqqrq6I3u2bOHt956i6SkJMLDw0lLS0NRFH74\n4Qc2b97MiBEj2LhxI6+99hoAzz77LE8//TSJiYlMnTqVAQMGUFJSwuTJk1m7dm2929q6NQOTqcIR\nu9Us8ostfLKhhDaeGp6609vZ4QghblCjRo2q8zWHnqqq8eGHH/Lss88CoKoqiqIAoNfrKSkpobS0\nFIPBYKuv1+spLS2tVV5TtyEBAcHXFGtW1naCg0PtVv/SNharlZRNaRSVWenldyteHq4tIi57tZG4\nJK4bMa6raeOouBrD4YPjxcXFHD58mGHDhlUHoPlvCEajEW9vb7y8vDAajbXKDQZDrfKautcbrUZD\nT5lBLoRowRyeOLZt28bw4cNtz4ODg8nIyAAgLS2NQYMGERISQmZmJiaTiZKSEnJycggKCiI0NJSN\nGzfa6oaFhTk6fIeQlXKFEC2Zw09VHT58mB49etiex8bGEhcXR0JCAv7+/owdOxatVktMTAzR0dGo\nqsqsWbNwc3MjKiqK2NhYoqKicHV1JT4+3tHhO4QkDiFES+bwxDF16tRaz/38/Fi1atVl9SIjI4mM\njKxV5uHhwbJly+waX0tguxugJA4hRAskEwBboG4d9LhoNZw5X05ZRaWzwxFCiFokcbRALtqLBsil\n1yGEaGEkcbRQtpVyT5c6ORIhhKhNEkcL5WubQS4r5QohWhZJHC2UDJALIVqqRieOM2fOAPDLL7/w\n6aefUlZWZregBHTvqMdFq3D6XDllFVXODkcIIWwalTgWLVrEBx98wMGDB5k9ezZ79+4lNjbW3rHd\n0Fy0Gnp0rB4gP3ZGeh1CiJajUYljz549LFy4kG+//ZYJEybwxhtvcPLkSXvHdsOTlXKFEC1RoxKH\nxWLBarWybt06Ro4cSXl5OeXl5faO7YbXS2aQCyFaoEYljoiICEaMGEH37t3p378/48ePZ9KkSfaO\n7YYnPQ4hREvUqCVHRowYwZQpU9BqtQB8+umnHD161K6BCejewQutRuH02TLKTVV4uDllFXwhhKil\n3h5HZmYm27ZtY/r06ezYsYNt27axbds2fvvtNxkcdwBXl+oBchU4dkYmAgohWoZ6D2G3bNnCzz//\nzJkzZ3jvvff+28jFRU5VOYhvFy9yT5dwJK+EoJ5tnR2OEELUnzhmzJgBwFdffUVERIRDAhK1+Xbx\nhl2nyJUZ5EKIFqJRJ80HDx7M0qVLKSoq4uJblC9ZssRugYlqsmaVEKKlaVTimDlzJoMGDWLQoEG2\n+4MLx+jRUY9Wo3Cq0IjJbMFNp3V2SEKIG1yjEkdVVZUMhjuJq4uWbh30HDtTytEzJQT2kHEOIYRz\nNWoeR1hYGD/++CNms/maN/jhhx8yadIkxo8fz+eff05ubi5RUVFER0ezaNEirFYrAKtXr2b8+PFE\nRkayfv16ACoqKpgxYwbR0dE89dRTnD179prjaQ18ZT6HEKIFaVTi+O6773jmmWcICQmhT58+9OnT\nh1tuuaXJG8vIyGDHjh2kpKSQlJREXl4eS5YsYebMmSQnJ6OqKuvWrSM/P5+kpCRSU1NZuXIlCQkJ\nmM1mUlJSCAoKIjk5mYiICJYvX97kGFqjmnGOo5I4hBAtQKNOVW3atKlZNrZp0yaCgoJ49tlnKS0t\nZe7cuaxevZohQ4YAMHLkSDZv3oxGo2HgwIHodDp0Oh29evVi//79ZGZm2u5ZPnLkyBsmcdh6HKcl\ncQghnE9RL75Mqg7vv//+FcunT5/epI0tWLCAkydPsmLFCo4fP860adMwGo22xJSens6aNWsIDw8n\nOzubOXPmADB37lwiIiJITEwkLi6OgIAArFYro0ePJi0trd5tbt2agclU0aQ4W5pKi8qyfxWBCs/d\n3QZXF7lAQQhhX6NGjarztSavYVFZWclPP/1E//79mxxI27Zt8ff3R6fT4e/vj5ubG3l5ebbXjUYj\n3t7eeHl5YTQaa5UbDIZa5TV1GxIQENzkOC+WlbWd4OBQu9VvbJvuP2dwPN+Ivv1N3NS9TYuJ61rb\nSFwS140Y19W0cVRcjdGoMY7p06fbfmbNmkVqaioHDhxo8sbCwsL46aefUFWV06dPU15ezvDhw8nI\nyAAgLS2NQYMGERISQmZmJiaTiZKSEnJycggKCiI0NJSNGzfa6oaFhTU5htbKV1bKFUK0EFe1ap7R\naLyq+3GMGTOGbdu2MWHCBFRVZeHChfTo0YO4uDgSEhLw9/dn7NixaLVaYmJiiI6ORlVVZs2ahZub\nG1FRUcTGxhIVFYWrqyvx8fFXE36r1LuLN5v35EniEEI4XaMSxx133GGb+KeqKsXFxTz55JNXtcG5\nc+deVrZq1arLyiIjI4mMjKxV5uHhwbJly65qu61dzT3I5ZJcIYSzNSpxJCUl2R4rimIbhxCO07Oz\nF4oCJwuMmCstzg5HCHEDa1Ti6NatGykpKWzdupWqqiqGDRvGI488gkbTqCES0QzcXLV0a6/nRIGR\n4/nGhhsIIYSdNCpxvPXWW+Tm5vLQQw+hqipffvklx44d4+WXX7Z3fOIivl0MnCgwkptXTGd3Z0cj\nhLhRNSpxbN68ma+++srWwxg9ejT33XefXQMTl/PtbGDLr3kcySuhc29nRyOEuFE16lyTxWKhqqqq\n1vOa28gKx5FLcoUQLUGjehz33XcfU6ZM4Z577gFg7dq13HvvvXYNTFyuV2cvFOBEgZEqS8OTH4UQ\nwh4aTBxFRUVERkZyyy23sHXrVjIyMpgyZYrcEdAJ3HUudGnvyanCMgpK5MoqIYRz1HuqKisri3vu\nuYdff/2VUaNGERsby4gRI4iPj2f//v2OilFcpOZ01enzkjiEEM5Rb+JYunQp8fHxjBw50lb2wgsv\n8MYbb/Dmm2/aPThxOb8u1aeoDpyqdHIkQogbVb2Jo7i4mKFDh15WHh4ezrlz5+wWlKjb0L6d8XBz\n4Uh+FXsOFTo7HCHEDajexFFVVWW7I9/FrFYrlZVyxOsM3p467rutNwCf/XgQyxX+fYQQwp7qTRyD\nBw++4r04li9fTr9+/ewWlKjf78J60MZTw8kCI2k7m77YpBBCXIt6r6p64YUX+OMf/8g///lPbr31\nVlRVJSsrCx8fHz744ANHxSgu4eqiYVSwO1//UsbffzrM0OAueLpf1ULHQgjRZPV+23h5efHpp5+y\ndetW9u3bh0aj4eGHH2bQoEGOik/UIbCrK0E92pB9vIhv0o8QOeYmZ4ckhLhBNHiYqigKw4cPZ/jw\n4Y6IRzSSoihM+t1NLP7kF3745RijB3anU1sPZ4clhLgByPK2rZhfV2+G9+1ClUXli/UHnR2OEOIG\nIYmjlXtolD86Fw2//JZP9rHzzg5HCHEDkMTRyvl4uzNuaC8AUtcdwKqqTo5ICHG9c/ilOA8++KDt\n7oE9evTgT3/6E/PmzUNRFAIDA1m0aBEajYbVq1eTmpqKi4sL06ZNY8yYMVRUVDBnzhwKCwvR6/Us\nXboUHx8fR+9Ci/OHob6k7TrJkbwStu7N47Z+XZ0dkhDiOubQHofJZEJVVZKSkkhKSmLJkiUsWbKE\nmTNnkpycjKqqrFu3jvz8fJKSkkhNTWXlypUkJCRgNptJSUkhKCiI5ORkIiIiWL58uSPDb7HcdFoe\nGhUAwJqNhzDJrWWFEHbk0MSxf/9+ysvLeeKJJ5gyZQo7d+5k7969DBkyBICRI0eyZcsWdu/ezcCB\nA9HpdBgMBnr16sX+/fvJzMwkPDzcVjc9Pd2R4bdow/t1wbezgXMlJr7POOrscIQQ1zFFVR13Uvy3\n335j165dTJw4kSNHjvDUU09RUVHBpk2bAEhPT2fNmjWEh4eTnZ3NnDlzAJg7dy4REREkJiYSFxdH\nQEAAVquV0aNHk5aWVu82t27NwGSqsPu+tQTHCqr4bEspLlp48g5vDB4yhCWEuDqjRo2q8zWHjnH4\n+fnh6+uLoij4+fnRtm1b9u7da3vdaDTi7e2Nl5cXRqOxVrnBYKhVXlO3IQEBwdcUc1bWdoKDQ+1W\nvznbBAMHCvawPTufX/M8efKe4HrrOyouZ29D4pK4WlpcV9PGUXE1hkMPSb/44gvbcuynT5+mtLSU\n22+/nYyMDADS0tIYNGgQISEhZGZmYjKZKCkpIScnh6CgIEJDQ9m4caOtblhYmCPDbxUmjglAq1HY\nsidPbjErhLALh/Y4JkyYwPz584mKikJRFN544w3atWtHXFwcCQkJ+Pv7M3bsWLRaLTExMURHR6Oq\nKrNmzcLNzY2oqChiY2OJiorC1dWV+Ph4R4bfKnRu58mdg3rw/c/HSF13gLnRA1EUxdlhCSGuIw5N\nHDqd7opf9qtWrbqsLDIyksjIyFplHh4eLFu2zG7xXS/uu603m/fk8dux82zPLiDs5o7ODkkIcR2R\n0dPrkKe7Kw+M8APg8/UHqaySe3YIIZqPJI7r1KgB3eja3pMz58v5cftxZ4cjhLiOSOK4TrloNUy6\no3qp9a83H6HMJL0OIUTzkMRxHbvVvz19e7ej3FRFevaNMZdFCGF/kjiuY4qiMOmOQBQFdh42E//Z\nTv61NZfDp4qxWmUxRCHE1ZH7jV7nenTy4r7bevP15iPsPXyWvYfPAuDh5kKfXm25xbcdt/i2o1sH\nvVy2K4RoFEkcN4CIcH+6689ide/Jvtyz7Ms9R/75CnYcKGDHgQIAvPU6WxLp49tO7iYohKiTJI4b\nhN5dQ3BwZ4YGdwag4Hw5+3LPse/oOfblnqOo1ExG1mkysk4D0KGNO0FdoM8tKhrpiQghLiKJ4wbV\noa0H4W09CO/fDVVVOVVYxr7cc+zPPcf+o+coKKqgoAg0/9rPY3/og0YjyUMIUU0Sh0BRFLp10NOt\ng57fhfXAalXZlVPAB1/tYdOeU5irLEy9NxgXrVxLIYSQq6rEFWg0CgMDOzJhmBfuOi0/7zvDB1/9\nKjPQhRCAJA5Rjx7tXZgTNRC9uws7DhSwbM1uubugEEISh6ifX1dv5kaHYvB0Ze/hs7yzehflpipn\nhyWEcCJJHKJBPTt5Me/hUNp66cg+dp74z3ZirKh0dlhCCCeRxCEapWt7PfMeDqW9tzuHThbzdvIO\nisvMzg5LCOEEkjhEo3Vq58n8R0Lp3M6Do2dKeSt5B+dLTc4OSwjhYJI4RJP4eLsz7+FQunfQc7LA\nyJufbqewSBZQFOJGIolDNFkbLzfmRg/Et7OBM+fKefPTTE6fK3N2WEIIB3FK4igsLGTUqFHk5OSQ\nm5tLVFQU0dHRLFq0CKu1eq7A6tWrGT9+PJGRkaxfvx6AiooKZsyYQXR0NE899RRnz551RvgCMHjq\nmBM1gIDu3hQWm3jz0+2cKDA6OywhhAM4fOZ4ZWUlCxcuxN3dHYAlS5Ywc+ZMhg4dysKFC1m3bh0D\nBgwgKSmJNWvWYDKZiI6O5vbbbyclJYWgoCBmzJjB2rVrWb58OQsWLHD0LogLPN1dmT1pAMu+2M3+\no+dZ+ul2+nTT8FvBIXSuGly1GlxdNLi6aC/8rv7RuWhwcal+vaRcJhUK0dooqqo69MYMf/7znxk1\nahSJiYm88sorPPbYY6SlpaEoCj/88AObN29mxIgRbNy4kddeew2AZ599lqeffprExESmTp3KgAED\nKCkpYfLkyaxdu7be7W3dmoHJJOfg7anSovL1NiOHz1zd/I72Bg2BXVy5qasrndtoZXl3IVqAUaNG\n1fmaQ3scX375JT4+PoSHh5OYmAiAqqq2Lwq9Xk9JSQmlpaUYDAZbO71eT2lpaa3ymroNCQgIvqaY\ns7K2Exwcarf6jmpj7230Dbby877TZOccxqd9V8xVViqrrFRarFRWWqp/XyizvVZlJf9cKYUlVgpL\nTGw9YMLH242BgR0JDepIUM82aDWXn029Hj4vievGjutq2jgqrsZwaOJYs2YNiqKQnp7Ovn37iI2N\nrTVOYTQa8fb2xsvLC6PRWKvcYDDUKq+pK1oGF62G2/p1pa3mFMHBfo1ut+fXTDR6P7Zn57P9QD5n\ni02syzzOuszjeHm40v+m9oQGdaRvbx90rlo77oEQorEcmjg+/fRT2+OYmBheeeUV3n77bTIyMhg6\ndChpaWnoHmOFAAAgAElEQVQMGzaMkJAQ3n33XUwmE2azmZycHIKCgggNDWXjxo2EhISQlpZGWFiY\nI8MXdqDVKAT7+dDXz4eHfx/E4ZPFbD+Qz/bsAk6fLWPznjw278lD56rhVr/qJOJukdveCuFMTl9W\nPTY2lri4OBISEvD392fs2LFotVpiYmKIjo5GVVVmzZqFm5sbUVFRxMbGEhUVhaurK/Hx8c4OXzQj\njaIQ0L0NAd3bMGFUACcLy6p7Itn55OaVkJmdT2Z2Pu30GvoGW6QHIoSTOC1xJCUl2R6vWrXqstcj\nIyOJjIysVebh4cGyZcvsHptwPkVR6N5BT/cOeu67rTeFRRVsP5DPf7Ydo6Cogo07T3LX4J7ODlOI\nG5JMABStQvs27tw1qCdRvwsE4F8ZuVRWyRLvQjiDJA7RqgwI7EAnby1FpWY27jzp7HCEuCFJ4hCt\niqIoDL/ZDYB/bZVehxDOIIlDtDo3dXGlR0cvzpeaSdt1ytnhCHHDkcQhWh1FUbj/9t5ATa9Dli0R\nwpEkcYhWKfTmjnTvqOdciYlNe6TXIYQjSeIQrZJGUbj/9uoZ6v9KP0KVRXodQjiKJA7RaoXd3JFu\nHfQUFkuvQwhHksQhWi2NonDfbb0BWLslV3odQjiIJA7Rqg3u04mu7T0pLK5gy695zg5HiBuCJA7R\nqmk0/+11fLNFxjqEcARJHKLVG3JLZ7r4eFJQVEG69DqEsDtJHKLVq9XrSD+CxSq9DiHsSRKHuC4M\nCe5E53Ye5J+vYOve084OR4jrmiQOcV3QajTce6HX8c8t0usQwp4kcYjrxrC+nenUzoMz58rJyJJe\nhxD2IolDXDe0Gg33Du8NwD+35GK1yi1mhbAHh94B0GKxsGDBAg4fPoyiKLz66qu4ubkxb948FEUh\nMDCQRYsWodFoWL16Nampqbi4uDBt2jTGjBlDRUUFc+bMobCwEL1ez9KlS/Hx8XHkLogWbni/zvxz\ny2FOny0jY99phvft4uyQhLjuOLTHsX79egBSU1OZOXMm77zzDkuWLGHmzJkkJyejqirr1q0jPz+f\npKQkUlNTWblyJQkJCZjNZlJSUggKCiI5OZmIiAiWL1/uyPBFK1Cr17H5iPQ6hLADhyaOO++8k8WL\nFwNw8uRJvL292bt3L0OGDAFg5MiRbNmyhd27dzNw4EB0Oh0Gg4FevXqxf/9+MjMzCQ8Pt9VNT093\nZPiilRjerwsd2riTd7aMn/fLWIcQzU1RVdXhh2SxsbH85z//YdmyZcybN49NmzYBkJ6ezpo1awgP\nDyc7O5s5c+YAMHfuXCIiIkhMTCQuLo6AgACsViujR48mLS2t3m1t3ZqByVRh930SLcvuXBP/3lWO\nj5eGx8cYUBTF2SEJ0aqMGjWqztccOsZRY+nSpbz44otERkZiMpls5UajEW9vb7y8vDAajbXKDQZD\nrfKaug0JCAi+plizsrYTHBxqt/qOanOjxRV0s5XMw+kUFpswanrgpZ5oEXFdaxuJ6/qI62raOCqu\nxnDoqaqvvvqKDz/8EAAPDw8URaFfv35kZGQAkJaWxqBBgwgJCSEzMxOTyURJSQk5OTkEBQURGhrK\nxo0bbXXDwsIcGb5oRVy0Gu65aKzDCR1rIa5bDu1x/P73v2f+/Pk8/PDDVFVV8dJLLxEQEEBcXBwJ\nCQn4+/szduxYtFotMTExREdHo6oqs2bNws3NjaioKGJjY4mKisLV1ZX4+HhHhi9amREhXfkm/Qgn\nCoxszHJD9SykW3s97QxucupKiGvg0MTh6enJe++9d1n5qlWrLiuLjIwkMjKyVpmHhwfLli2zW3zi\n+uKirb7C6m/f/8YvOSZ+ydkFgLtOS7cOerq111f/7uBJt/Z6fNq4o5GEIkSDnDLGIYSjjBrQDXed\nlozdBym3enKywEhpeSWHThZz6GRxrbo6Vw1d21cnFE1VBcdKj+LqosFVq6n+7aLB5aLHtZ5rNRhN\nVkrLK9EoClqNgkZTvQCjRlGkhyOuK5I4xHVNURSG9e2Ct3LSNkhYXGbmVIGRkwVGThaUcbKw+nGR\n0UxuXgm5eSXVjX872PQNfv9THXFwIZkotsSi1Sj46FXCK44zILAj7QxuV7ubQjiUJA5xw/H21OHd\nS8fNvdrVKi8tr+TUhSSyP+cI3m06UWmxUlVlpdJipbKq5sdClUWtfmypfl5ZZcVkrkSj0WKxqlhV\nFatVxWoFq6qiqlBlUcFSe5C+uAyO/DubpH9n07uLgYFBHRkY2IHuHfTSSxEtliQOIS7w8nAlsEdb\nAnu0paPuNMHBgU1qX9elj6pak0ioTiaqisWqYq608MOWHZw26tl7+CxH8ko4klfC39MO0bGtOwMD\nq5NIYI+2aDSSRETLIYlDCDtTFAWtoqC99OJ3D1f69XIjMjgEU6WFrCNn2ZFdwM6DBeSfr+Df247x\n723H8PJwpf9N7RkY2BFtlVxWLJxPEocQLYCbq/ZCD6MjVqvKwRNF7DiQz47sAs6cL2fznjw276m+\nLa72u/UoSvXgu6IoaBRQUFCUi54r/31utVTitSUDnasGnYsWnasWnYum+rmr9kJZ9WM3l+rfJecr\nad+1jA5t3NFqZBFtUZskDiFaGI1GIahnW4J6tiVyzE2cLDCy40ABOw4UcPhUMRarCqhgafx7FpUZ\nG650ib9nbMVFq9CpnSddfTzp0t6TLhd+d/XxxNPdtcnvKa4PkjiEaMEURaF7Ry+6d/Ti3tt68+uv\nmdzcZyDqhQH3moF3lUueX/R73/49+Pa+BVOVBXNl9WC+udKKqdKCucqKudJS/VNVXWYyW8g9mU+J\nScu5EtOFq88uTzzeel11IvHxRFNVgdW9kO4dvWjrpZOB/eucJA4hWhGNRsHVpWmnjtp5aenRyatJ\nbbKyygkODqXcVMXpc2XkFZaRd7aMUxd+550to9hopthoJvvYeQA27K2eYOnh5kL3jnq6d7jop6MX\n3npdk2IQLZckDiFEnTzcXOjdxZveXWovKGpVVc4WV9iSSdbBXMotnpzIL8VYUcXB40UcPF5Uq43B\n0/VCIvGiW0c9puJKvPNLMXjq8PJwkbGUVkQShxCiyTSKQoc2HnRo40E/v/Z098wnODgUVVUpMpo5\nUWDkRL6RkwWlnMg3cqLASElZJfuPnmf/0fO291md/jMACuDp7oK3XofBwxWDpw6D7XH1c29PV/KL\nLRQZzZJonEwShxCi2SiKQlsvN9p6udG3939v66yqKmeLTZwoKLUllaMn87EobpSUVWIsr8RYUYWx\noopTDWzjkw2bUAC9hyve+uqE4nUhsXhfSDjeF5JNYYmFgvPluFxYHkarUXDRanDRyjIw10IShxDC\n7hRFoX0bd9q3cSckoANQe8KkxWrFWF5FSZmZ4rJKSsrMlFzhd8H5YkxVWozllZRe+DnZ0MbXX/lO\noRcnEa1Wg+uF39YqEz47tqN3d8HT3QW9u+slv13wdHet9ftGc+PtsRCixdFqNNW9B72O7vXUq0k2\nFquV0vIqSoxmW7IpLrvw2PjfRFN4vgSNVkeVtXrpmCqrisVipcpSPXvfYrVgqrx8OwUl5y8vrIe7\nq0KH9AzaGdxpZ3DDx+BGO4Mb7bzdaGdwx8fghofb9fN1e/3siRDihqHVaGij19GmgSu16lsGxmJV\nqapJIhd+V1ms7PvtV7p0C8RYUX36rKyiCmNFpe13dVnt1yoqVY7nGzmeX/d8GXed1pZU2hrcKCst\n49fTB9HZVlvW2h7rXLW2FZh1LtUTN8+VWig3VeGu0zr9NJskDiHEDUdRFFy01aeqLlXYxoU+vu2u\n0OrKrKpK5s5MOnW9mbMlFZwrMXGuxMTZYhPnLnpeYbZwqrD6KjSbw0ebFPfKH9PQuWpoq3fD26s6\ncdY8bqvX0cZLRxu9G228dBg87TdBUxKHEEJcA42ioHfT4NvFgG8XwxXrqKpKmamKc8UmzpaYOF9q\n4uixXHw6dMNcaaleZbnSivnC6svmqv+uxmyuslBZaaWotIxyM5grrZw5X86Z8+X1xqUA/XvrCA5u\n/n2WxCGEEHamKAp6d1f07q62yZhZrnkEB/s2+j2ysrZzyy0DqTBXX5JcVGq68Ntc+/mFxyVllZSb\n7bMopkMTR2VlJS+99BInTpzAbDYzbdo0brrpJubNm4eiKAQGBrJo0SI0Gg2rV68mNTUVFxcXpk2b\nxpgxY6ioqGDOnDkUFhai1+tZunQpPj4+DW9YCCGuA4qi4OHmgoebC118POuta7Wq7N+/wy5xOHQG\nzddff03btm1JTk7mf//3f1m8eDFLlixh5syZJCcno6oq69atIz8/n6SkJFJTU1m5ciUJCQmYzWZS\nUlIICgoiOTmZiIgIli9f7sjwhRCi1bDnPVwc2uMYN24cY8eOBarP+Wm1Wvbu3cuQIUMAGDlyJJs3\nb0aj0TBw4EB0Oh06nY5evXqxf/9+MjMzmTp1qq2uJA4hhHA8RVVVh98ZprS0lGnTphEZGcnSpUvZ\ntGkTAOnp6axZs4bw8HCys7OZM2cOAHPnziUiIoLExETi4uIICAjAarUyevRo0tLS6t3W1q0ZmEwV\ndt8nIYS4nowaNarO1xw+OH7q1CmeffZZoqOjue+++3j77bdtrxmNRry9vfHy8sJoNNYqNxgMtcpr\n6jYkIODaLimo6zrw5qrvqDYSl8QlcbXuNo6KqzEcOsZRUFDAE088wZw5c5gwYQIAwcHBZGRkAJCW\nlsagQYMICQkhMzMTk8lESUkJOTk5BAUFERoaysaNG211w8LCHBm+EEIIHNzjWLFiBcXFxSxfvtw2\nPvHyyy/z5z//mYSEBPz9/Rk7dixarZaYmBiio6NRVZVZs2bh5uZGVFQUsbGxREVF4erqSnx8vCPD\nF0IIgYMTx4IFC1iwYMFl5atWrbqsLDIyksjIyFplHh4eLFu2zG7xCSGEaJgsaC+EEKJJnHJVlRBC\niNZLehxCCCGaRBKHEEKIJpHEIYQQokkkcQghhGgSSRxCCCGaRBKHEEKIJpHEIYQQokkkcQjhZGaz\n2W7vXVFRYdf3BygsLLTL+5aWll51W6vVyunTp7FarU1qd/bsWew5te1q39tsNlNR0XJW+ZbEcYHZ\nbK7zpzEOHDjAt99+y759++wcaePl5+c7O4R6nT9/3tkhONSPP/7ImDFjuOuuu/jXv/5lK6+5x0xz\nOHjwIM888wzz589ny5Yt3H333dx9992sX7++2bZx+PDhWj/Tpk2zPW5Ot99+O59//nmj67/00ksA\n7Nq1i7FjxzJ9+nTuvfdedu7cWWebNWvW8P7777N3717GjRvH448/zrhx49iyZcs1x1/j6NGjPPnk\nk4wZM4Z+/foRGRnJ7Nmz6/3/efjwYZ577jlmz57Nzp07ue+++7jnnntq/d04k9xz/IJx48ahKMpl\nRwSKorBu3bp62/7tb3/jm2++oX///qxcuZI//OEPPPnkk1ese/LkyTrfp1u3bnW+dscdd6Ao/72j\nl5eXF//4xz/qjeu5557Dx8eHCRMmMGrUKDSauo8TmhrXpfG4uLhQVVWFTqfj22+/rTeun3/+mdde\new2LxcK4cePo1q0bEydOrLdNdnY2r7zyCsXFxdx///0EBgYyZsyYets01b59+/jss88wmUy2siVL\nltTb5quvvuLDDz/EbDajqmq9fy8rVqzgq6++wmq18vzzz2MymXjwwQfrPQr97LPP6nxt0qRJl5Ut\nWrSI559/nhMnTvDcc8/x/fff4+bmxtSpUxv8vH7/+99jsVhsz11cXOjatStz5syhb9++tvLHH38c\nd3d3OnXqhKqqHD58mIULF6IoCn/729/q3UZTPuM+ffqwb98+pkyZwvTp0203fKvL8ePHAXjnnXf4\n6KOP6N27N6dPn2b27NlXXA8PIDk5maSkJKZNm8YHH3yAn58fp0+f5plnnuG2226rd3urV6/mk08+\noaKiot5/+1dffZUFCxbg5+fHzp07WbduHWPHjuXll18mMTHxiu8dFxfHM888Q0lJCU8//TRff/01\nBoOBxx9/nLvvvrveuKD63kZHjx6lf//++Pn54ebm1mCbppDEccGPP/541W3Xrl1LcnIyLi4uVFZW\nMnny5DoTx6xZs4Dqo22j0UhgYCAHDx6kQ4cO/P3vf69zG9999x1Q3dX99ddf+f777xuMKyUlhYMH\nD7JmzRo++OADhg8fzoQJE+jZs+c1x/Xdd9+hqiqvvvoqkydPJiQkhKysLJKTkxuM67333mPVqlXM\nmDGDP/3pT0RFRTWYOF5//XWWLFnCggULmDBhQr1fhDExMVRWVtYqq/mPnZqaWuc25s2bxyOPPEKX\nLl0a3IcaH330EStWrKBr164N1nV1daVNmzYALF++nEcffZSuXbvWSsCXamqv0Wq12r5gMzIyaN++\nPVCdBBoybNgwxo0bx6BBg9ixYweff/45Dz30EH/+859JSUmx1VuzZg2LFi0iKiqK22+/nZiYGJKS\nkhoVX1M+Yzc3NxYuXMiePXtITExk8eLFDBs2jJ49ezJlypQ622m1Wnr37g1A586d6z1d5erqiqen\nJ3q93vb/onPnzvX+m9RITU0lMTGRjh071luvtLQUPz8/AAYMGMDbb7/N7NmzKS4urrNNVVUVt912\nG6qqkpCQQOfOnYHG/TsmJCSQl5dHTk4OOp2OxMREEhISGmzXFJI4Lpg0aVKdfyz1fdlA9ZdSzT+o\nq6srrq6uddatOYJ89tlnWbp0KV5eXpSVlfHCCy/Uuw2dTmd7HBYW1ug/hM6dO9OzZ0/27t1LdnY2\nr7/+OjfddBMvvvjiNcVVE8+xY8cICQkBqu+t0pjTFYqi0LZtWxRFwc3NDb1e36h98fX1RVEUfHx8\n6m3z4osvsmDBAv7617+i1Wob9d4AHTp0aDCBXapnz574+vo2qm737t1ZsmQJzz//PF5eXrz//vs8\n+eST9X6BTJ8+3fZ4y5YtHDt2zHYUeSV+fn68/PLLLF68mDfffBOAxMREOnTo0GB8hw8fth1lDx06\nlOXLlzN8+HDef//9WvXat2/Pu+++y9KlS9mzZ0+D73uxpnzGNT2xW2+9lb/85S+UlJSwbdu2Ov/G\nSktLGT9+PGVlZXz++efcf//9vPnmmw325KdNm0ZQUBBPP/004eHh/PTTTwwbNqzB+Nq1a0f37t0b\nrNejRw8WLlzIyJEj2bBhA/369WPDhg14eHjU2aZ79+7MmjULi8WCXq/nnXfewcvLq8EkBZCZmcmn\nn35KTEwMDz74YK2k31wkcVxwLRk5NDSU5557jrCwMDIzMxk4cGCDbfLy8vDy8gLA09OzwSPL+Ph4\nW2I7c+ZMvaedajz//PMcOHCA+++/n7ffftt21DJ+/Phmi8tgMPDuu+8SEhLCjh07GvWH7evrS3x8\nPOfOnSMxMbHe/9g12rRpQ2pqKuXl5axdu7beuz/279+fBx54gN9++4277rqrwfeu0b17dxITE7nl\nlltsn/WIESPqbePu7s7UqVNrtakr2b7xxht8/fXXtnpdu3blb3/7Gx9++GGDsTX2KPLPf/4zP/74\nY62/j86dOxMTE9PgNnQ6HSkpKQwcOJAdO3ag0+n49ddfa52+quHi4sLLL7/Ml19+2aQB36Z8xpf+\nnRoMBu6444463/vLL7/EbDazf/9+3N3dURSFoKAg203jruSPf/wjP//8M5s2baJbt24UFhYSExPD\n6NGj62xT87mbzWaefPJJgoOD6/23X7JkCZ9//jmbN28mJCSEhx56iD179tT7nbN06VI2btxI7969\n0ev1fPzxx7i7u/PGG2/U2aaGxWLBZDKhKAoWi6VR3xVNJavjXiI3N5fvvvvOdqrjzJkzvPbaaw22\n27BhAzk5OQQEBNT7R1fjnXfeITMzk379+rF7927Cw8OZNm1anfUvPl3k5uZGeHg4BoOh3m1s3ryZ\n22+//bJyk8lU5znPi+PatWsXI0eOrDeusrIyUlNTOXLkCDfddBOTJ0+u1Tu6kqeffprQ0FDy8vII\nCAggMjKywTalpaWsWLGC7OxsAgICePrpp2nbtm29bZpq/vz5l5U1NMZxpdN4Dz74YLPFVOPhhx+2\nHUUmJSURGRnJ6tWrm3Ub586dY8WKFbY7bj711FPs3r2bHj16EBAQ0CzbuJrPuKWp65SyoihEREQ4\nOJrLffvtt7z//vucPXuWrl278thjj3H//fc36zYkcVxiwoQJ3HXXXWRkZNCpUyfKysrqvHmUxWLB\nYrHwwgsv8M4776CqKlarlT/+8Y8NDhIeOnSIsrIy2xdunz596q1fVVXFZ599xsGDB+nduzdRUVEN\nftmuX7/edpReo6G4AH799Vdyc3MJCAioM649e/Zw6623smnTpstea+goPScnhzVr1rB582ZGjBjB\nxIkTbeek63PpqZrmHvCD6kH4gwcP4ufnxy233NJg/aqqKvbs2UNVVRWqqnLmzBnuvffeZo9r8uTJ\nfPLJJzz11FP83//9Hw8//HCDp1CvRmFhYa2B68b0BpuqqZ9xS/Xaa6+xcOFC2/O5c+fy1ltvOTGi\n/yoqKiI3N5cePXrg4+PT7O8vp6ou4enpydNPP82RI0dYsmQJ0dHRddZds2YNK1asoKCggHHjxqGq\nKlqttlH3Qn/55ZdJSUmhX79+jYpr4cKFeHt7c/vtt/Pzzz+zYMGCBv9Ily1bxvz58xt1frtGXl4e\niYmJtv/Y8+fPp0ePHpfVS09P59Zbb2Xt2rWXvdZQ4ggICGDu3LmcPXuW119/nXvvvZfBgwfz3HPP\n1XmazxEDfklJSXzzzTeEhITw//7f/6v36rga06dPp7KykjNnzmCxWOjUqZNdEsejjz7K+PHjOXv2\nLBMnTuSxxx5r9m288sorpKWl2a6WauhigqtxNZ9xS/Ppp5/ywQcfUFRUxL///W9beXP1yq7WCy+8\nUOc4bbPfZlsVtUyZMkU9c+aMOmPGDNVoNKoPPPBAg20+//zzJm/niSeeUF9//XU1OTlZTU1NVVNT\nU+utHx0dXev5pEmTGtzGo48+2uS4nnzySfWHH35Qi4qK1P/85z/qlClTmtT+9OnTDdbZsGGD+vzz\nz6v33nuv+tFHH6kFBQVqXl6eet9999XZpmb/H3nkEVVVVXXixIlNiqsxIiMj1crKSlVVVdVsNqvj\nx49vVBtVVdWXXnpJLS8vVydPntzscdU4f/68umvXLrWwsNAu7//ggw+qFovFLu9d42o+45bqgw8+\ncHYItWRkZNT6+fnnn22Pm5v0OC4xffp0/vOf//DAAw9w55138sADDzTY5vbbb+ejjz6q1cW/+GqY\nK6k5sm7srFuTyUR5eTkeHh5UVFRcccCyRs0VUjqdjri4OPr27Ws7ErnStf+Xbud3v/sdAHfeeScf\nf/xxvfXfe+89UlJSqKyspKKigt69e1+xF3Kxr7/+mqioKIYOHVqrfMaMGXW2ccSAn9qEq+NquLu7\nA1BeXm57bA87d+7kyy+/rDX2tnLlymbdhq+vLyaTqd6rfa7V1XzGLdXkyZP55ptvap2mfPrpp50W\nT81l2IWFhXzwwQccOXKEwMBA/vSnPzX7tiRxXGLw4MEMHjwYwPYF2pDnn3+e4cOHN+pa/hrTp09n\nw4YNHDhwAD8/P+68885660+ZMoUHHnjANr+ivi/ZmiuhNm3axDPPPENBQQFArcRWF4vFwm+//cbN\nN9/Mb7/91mD9H3/8kbS0NN544w0ef/xxXn311Qbb1NVtru8KKEecqgkLC2vy1XG///3v+etf/0qf\nPn2YNGmS3b50X3nlFaZOncr3339PUFCQXZYROXXqFGPGjLFdXmyPU1WXfsahoaHN+v6ONH36dPz9\n/cnOzsbNzc2uCbcpZs6cyd13382ECRPIzMxk7ty5jbpyrykkcVzi/fffZ9WqVbUm2lxpAPhier3e\nNoGuseLj48nNzSU0NJSvvvqKzMxMYmNj66x///33M3LkSI4dO0aPHj1o165dnXU7d+7MF198gYeH\nBz/99BNQPTGsqqqK2bNn1xtXXFwcL7/8MmfOnKFz584sXry43vodO3ZEp9NhNBrx9fW9bOJdc/nD\nH/7AbbfdRm5uLj179qx3/69WbGwsGzZs4NChQzz00EOMGjWqwTZdunRh06ZNVFZW4u7u3qR5I03R\nrl077r33XjZv3syMGTN45JFHmn0bzX4e/AoeffRR1q1bR1FREXv37q33ir2WTlVVXnvtNebPn8/r\nr79e73ioo0VFRQHVs+9rJg83J0kcl1i/fj0bNmxo0mmHwMBA1q5dW+va9LomaNXYtm2b7Wju0Ucf\nJTIyst76GzZsICUlpVFXSD3wwAPcdtttrFixwtZN1Wg0tlnE9fnjH/9IYWEhPj4+ZGVlER0dTYcO\nHVi0aNEVL+3t0qWLLUnFx8fXO5ntWjRl/69WYWEhmzZt4vDhw+Tn5zNgwADbTO+6vPXWW7z22msN\n1rtWGo2GAwcOUF5ezqFDhygqKmq29/7888+ZOHEiqamptQZXFUVp8gFRQ1588UWmT59OcnIyL7zw\nAm+88UajZ523NFqtFpPJRFlZme0Uakvg7+/P119/zdChQ9m7dy9t27a1TZps6HupsSRxXKJ9+/aN\nmtZ/sX379rF///5aZQ19qVVVVWG1WtFoNFit1gaXOHjvvfcafYWUTqeje/fuDfYWrmTw4MG2LvjR\no0d5//33efbZZ5kzZ84VE8czzzxDWVkZt956Kw888IBdZqlC0/b/al1NFz8wMPCysRp7mDdvHgcO\nHCAmJoYXX3yRhx56qNneu2b5D19fX1uPqaysjDfffLPZE4eiKAwePJgPP/yQe+65p9nnojjSww8/\nzCeffMKIESMYPXp0izntdujQIQ4dOsQXX3xhm5zZ2LXEGksSxwU1l7IVFBTw4IMPEhgYaPsyb6gL\nf+LEiVrPG5qYB3DPPfcQFRVF//792b17d4MLl7Vp06bBRd6aQ15eHv7+/gD06tWLU6dO1fpCudTc\nuYms+dMAAAfhSURBVHNtR5Dx8fEkJCTY5QjSUfvf1C7+7373OyZNmmT7zMA+E9rWrFnDvHnzgOoZ\n0s0pPDzcto358+djtVpZsGBBveNoV6uqqoq3336bsLAwtm7dardTm45QVFTEP/7xD8rLyykvL2fX\nrl3ODgmovuT53LlzttPaMo/DjiZPngxUDxCWlpai1Wr56KOPGrVUQ1MWILx46ZDOnTuzfv16brnl\nFs6ePXvF+tdyhdTV6NixI//zP/9jW3aiQ4cObN68uc6rX2qOIFesWGGXI0hH7r+/vz//+Mc/GDZs\nWKO7+ElJSUydOrVRBwvX4uDBgxQXF9e71Mq1+utf/8ozzzyD2Wzmvffes8u8hCVLlrB582YmTpzI\nDz/8wNKlS5t9G47S2EUOHe3bb7/l3XffJSAggAMHDjB9+vRGXR3aFJI4Lqg5mn3kkUdqnYNNTU1t\n8AqepixAePGRqZ+fX4NLXV/LFVJX46233uKzzz4jLS2NoKAgZsyYQVZWVp37VHMEOWjQILscQTpy\n/w8dOsThw4dZs2aNrayhLn6HDh0atcz1tcrJyWHYsGG0a9fOljgbumijsS4+mPHz8+Onn36yLdnf\n0OKbTdW7d2/bKgGO+NzsqbGLHDraxx9/zJdffoler6e0tJRHH31UEoe9Xc0R9MX/8fLz8+udY9DU\ndYyu5Qqpq+Hm5nbZktX1XZZq7yNIR+7/lU45NnTPE3d390YtdHetmvNGTJe69GDGEacEW7OmLnLo\naIqi2FaP9vLyssvSPJI4LnE1R9AX/8fr06eP7Zxxc7iWK6Qcwd5HkI7c/6u550lz30yqLlu2bLFN\nNFu8eDHPP/889913X7O8tz0WZbye1Zy2bK4rlJpbz549efPNNxk0aBC//PILvXr1avZtyCKHlzhy\n5EitI+hbb731ijc+Ete/mhVpW4KJEycSHx/Pq6++yptvvsnMmTNbTGyiZalZEPXQoUP4///27iYk\nqj2M4/jXF8aRhmisiCypGYbKTdHikBW2cNpMZIWKRSG4GGh6o02LEBMmlBJ0EaZYGC5CiF6MalGL\nqFCpKBchuCikZApDkjFrjKMy0110G/K+dOdcxhym32c1A+ec/38GDg//t+dxu6msrEz6CX2NOP4i\nneZgxRorU46/mt1uj28VX7p0aUIV6uT3lJGRgc1mY+HChXg8Hj5//pz0nVWp82aIzDO3243L5cLl\nclFcXExbW9t8dynO4XDg9/vx+Xx0dXWlzFSlpJ66ujpGRkZ4/Pgxk5OTP81I8X9pxCHyp1Sc6/9+\nqtvj8RAKhXj9+jXDw8MJ1S+R31MoFKKhoYH+/n5KSkq4ePFi0ttQ4BBJYd9Pdbvd7vgmjFRdlJXU\nEI1GCYfDZGRkEIlEVDpWRER+7vnz59TU1PD+/XtWr15NTU0NW7ZsSWobWuMQEUkj4+PjRKNRVq1a\nhWmaxGKxpLehqSoRkTTS1tbGtWvXWLx4MWNjYwQCgf8s52yVRhwiImlk0aJF8V13S5YsweFwJL0N\nrXGIiKSRI0eOYJomhmEwODjIhw8f4mlkkpUSRVNVIiJp5Mcy1MuWLZuTNjTiEBERS7TGISIilihw\niIiIJQocIhbcu3ePsrIydu3aRWlpKR0dHXPWVnd3d7xcrEgq0eK4SIJGR0dpbGyku7sbp9PJ5OQk\nVVVVuFwuvF7vfHdP5JdR4BBJ0Pj4ODMzM5imCcCCBQs4e/YsOTk53L17l87OTkzTZGpqivr6egzD\noKqqisLCQp48eYJpmtTW1nL58mWGhoaorq6murqalpYWhoeHCYVCfPz4kb179+L3+2e1PTAwwJkz\nZzBNE6fTSTAYpKCggM7OTm7evElmZibr16/n9OnT8/HXyG9GgUMkQevWrcPr9bJ9+3YKCwvZtGkT\npaWlFBQUUFdXR3t7O3l5eVy/fp1Lly5hGEb83jt37nD+/Hnq6+u5ffs24XCYPXv2xOvZv3r1iitX\nrhCLxSgrK2Pz5s3xe6enp6mtraW9vZ38/Hx6e3s5deoUHR0dXLhwgd7eXrKysggGg4yOjs7ZFkyR\n7xQ4RCwIBoMcPnyYvr4++vr6qKyspKmpidbWVh48eMCbN2949uzZrIyk27ZtAyA/P58NGzaQm5vL\nihUr+PTpU/yanTt3xutEl5SU8PTpU5xOJ/CtKuXbt285dOhQ/PpIJEJ2djYbN26koqICr9fLgQMH\nFDTkl1DgEEnQo0eP+PLlCzt27KC8vJzy8nKuXr1KV1cXzc3N7N69G8MwWLt27ayyrj+W7czO/udX\nLisrK/45Fov97fvKlSu5desW8C1t9tjYGPAtL9GLFy/o6enB7/fT1NQUPyUsMle0q0okQXa7nebm\nZt69ewfA169fGRoawmazkZmZSSAQoKioiJ6eHqLRqKVn379/n+npaSYmJnj48OGspHRut5uJiQn6\n+/sBuHHjBidOnCAcDuPz+VizZg3Hjx9n69atvHz5Mnk/WORfaMQhkqCioiKOHj1KIBBgZmYGgOLi\nYlpbWzl58iQ+nw+73Y5hGIyMjFh6dk5ODvv37ycSiXDw4EE8Hg8DAwMA2Gw2zp07R0NDA1NTUzgc\nDhobG8nLy2Pfvn1UVFSQm5vL8uXLU7KKoaQfpRwRmWctLS0AHDt2bJ57IpIYTVWJiIglGnGIiIgl\nGnGIiIglChwiImKJAoeIiFiiwCEiIpYocIiIiCV/AEmGK6gboGBcAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_word_freq('https://www.gutenberg.org/files/10/10-h/10-h.htm')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }