
Speedup Graph Processing by Graph Ordering

Hao Wei, Jeffrey Xu Yu, Can Lu
Chinese University of Hong Kong

Hong Kong, China

{hwei,yu,lucan}@se.cuhk.edu.hk

Xuemin Lin
The University of New South Wales

Sydney, Australia
lxue@cse.unsw.edu.au

ABSTRACT

The CPU cache performance is one of the key issues to efficiency in
database systems. It is reported that cache miss latency takes a half
of the execution time in database systems. To improve the CPU
cache performance, there are studies to support searching includ-
ing cache-oblivious, and cache-conscious trees. In this paper, we
focus on CPU speedup for graph computing in general by reducing
the CPU cache miss ratio for different graph algorithms. The ap-
proaches dealing with trees are not applicable to graphs which are
complex in nature. In this paper, we explore a general approach to
speed up CPU computing, in order to further enhance the efficiency
of the graph algorithms without changing the graph algorithms (im-
plementations) and the data structures used. That is, we aim at de-
signing a general solution that is not for a specific graph algorithm,
neither for a specific data structure. The approach studied in this
work is graph ordering, which is to find the optimal permutation
among all nodes in a given graph by keeping nodes that will be fre-
quently accessed together locally, to minimize the CPU cache miss
ratio. We prove the graph ordering problem is NP-hard, and give
a basic algorithm with a bounded approximation. To improve the
time complexity of the basic algorithm, we further propose a new
algorithm to reduce the time complexity and improve the efficiency
with new optimization techniques based on a new data structure.
We conducted extensive experiments to evaluate our approach in
comparison with other 9 possible graph orderings (such as the one
obtained by METIS) using 8 large real graphs and 9 representative
graph algorithms. We confirm that our approach can achieve high
performance by reducing the CPU cache miss ratios.

1. INTRODUCTION
Graph processing has been extensively studied in the recent years

given a large number of real applications developed over online so-
cial networks, location-based social networks, semantic web, bi-
ological networks, and road networks. In the literature, the re-
ported studies have focused on new graph algorithms to process
large graphs and has shown that they can achieve high efficiency.
We list the graph algorithms that we investigate in this paper includ-
ing Breadth-First Search (BFS) [19], Depth-First Search (DFS) [19],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

CPU executes Cache Stall

 0

 0.2

 0.4

 0.6

 0.8

 1

NQ BFS DFS SCC SP PR DS Kcore Diam

T
im

e
 C

o
n
s
u
m

p
ti
o
n
 R

a
ti
o

(a) The original order

 0

 0.2

 0.4

 0.6

 0.8

 1

NQ BFS DFS SCC SP PR DS Kcore Diam

T
im

e
 C

o
n
s
u
m

p
ti
o
n
 R

a
ti
o

(b) Gorder

Figure 1: CPU execution and CPU Cache Stall over sd1-arc

Strongly Connected Component (SCC) detection [47], Shortest Path
(SP) by Bellman-Ford algorithm [19], PageRank (PR) [38], Dom-
inating Set (DS) [18], graph decomposition (Kcore) [5] and graph
diameter (Diam). Here, BFS, DFS, SCC and SP are primitive graph
algorithms. On top of them, many graph algorithms are designed.
PR is widely used in many applications. DS is a representative
of the set cover problem in graph which is NP-hard, and there are
greedy algorithms to solve it [16]. Kcore is a graph decomposition
algorithm, which is to find every subgraph H of a graph G such
that the degree of nodes in H is ≥ k. Diam is one of the most im-
portant pieces of information about the graph structure. The graph
algorithms listed have been extensively studied, and are efficient to
process large graphs.

In this paper, we focus on the following questions. Given the effi-
ciency of the algorithms developed, can we make graph processing
even faster? In addition, is there any general approach to enhance
graph processing for all graph algorithms, rather than for some spe-
cific graph processing tasks only? To address these questions, we
first show the potential to improve the efficiency significantly.

As observed in [2], a lot of time is wasted on CPU cache latency
in database query processing. We also observe that graph algo-
rithms waste a lot of time on CPU cache latency, and such time
wasting cannot be handled by graph algorithms themselves. We
show our finding in Fig. 1(a) by testing NQ (a primitive operation
to access the neighbors of a node in a graph) as well as BFS, DFS,
SCC, SP, PR, DS, Kcore and Diam using a hyperlink graph dataset
sd1-arc with 94.94 millions of nodes and 1.9 billions of edges. The
graph processing for the 9 tasks are different. To show the percent-
ages of CPU cache stall (the CPU time waiting for the requested
data due to the cache miss) and the CPU execution time while the
CPU keeps computing, we normalize the entire graph processing
time of each task to be 1. As shown in Fig. 1(a), CPU only works
in the range of 10% and 45% (on average 30%) of the overall pro-
cessing time, and wastes time in the range of 90% and 55% (on
average 70% time) waiting for the desired data to be accessed in
CPU cache in all algorithms tested.

The percentage of wasting CPU time is much higher than ex-

pected, which motivates us to study how to speedup CPU process-
ing for graph computing. In this work, we explore how to reduce
the time consumption on CPU cache stall by improving the CPU
cache hit rate in graph computing, without changing the graph al-
gorithms (implementations) and the data structures used. In other
words, we do not aim at designing something that is for a specific
graph algorithm, or for a specific data structure, or for a specific
CPU cache mechanism. We seek a general solution for different
graph algorithms. The main idea of our approach is to arrange
nodes in graph in an order that nodes to be accessed is very likely to
be in the CPU cache which is of considerably small size in compar-
ison with the large graph size. We call our graph ordering Gorder.
Fig. 1(b) shows the testing results by Gorder which rearranges all
nodes in sd1-arc. Here, for comparison, the entire processing time
by Gorder is normalized according to the entire processing time by
the original order used. Take NQ as an example, The total process-
ing time for NQ by Gorder is about 60% of the entire processing
time in Fig. 1(a). The saving is the reduction of CPU cache stall,
where the CPU execution time is almost the same, because it is
done for the same algorithm over the same dataset. As can be seen
in Fig. 1(b), the efficiency can be enhanced by Gorder, which sig-
nificantly reduces the CPU cache stalls. More details about CPU
cache are discussed in the appendix.

Related Works: The CPU cache performance has been studied
in database systems. Ailamaki et al. show that cache miss la-
tency takes half of the execution time in database systems [2], and
Cieslewicz and Ross survey the CPU cache performance in [17].
There are many reported studies in literature that deal with trees
[12, 14, 23, 34, 41, 42]. Rao et al. design cache sensitive search
trees for searching in [41], and they also study cache sensitive B+-
trees for index structure in [42]. The cache performance is im-
proved by fitting tree nodes into cache lines and removing most
child pointers of tree nodes to reduce space. Lindstrom et al. gen-
erate cache-oblivious layout for binary search tree by optimizing a
measure function with a locality measure to mimic the cache miss
probability [34]. Ghoting et al. propose cache-conscious prefix tree
to allocate the prefix tree in the memory [23]. Chen et al. propose
Prefetching B+-tree which uses the cache prefetch when loading
the nodes of the B+-tree, to reduce latency time [12], which can
also be used to improve the hash join [11]. However, these works
are designed to support searching for data that is with a total order,
and they cannot be effectively used to support all different graph
algorithms over complex graphs.

To deal with graphs, there are works on specific graph algorithms
to improve CPU cache performance. Park et al. propose several
strategies to optimize the cache performance of Floyd-Warshall,
Bellman-Ford, Prim, and Bipartite matching algorithms in [39].
Then et al. optimize the multi-source breadth-first search (BFS)
algorithm by sharing the common computation across concurrent
BFSs to improve the cache hit rate [49]. However, these approaches
are designed for some specific graph algorithms, and can not be
used to support any graph algorithms in general. Some existing
works improve the graph computing by graph ordering and node
clustering. Banerjee et al. propose a node ordering scheme by the
children-depth-first traversal method to improve the efficiency of
the DAG traversal [4]. Auroux et al. propose to reorder the node set
by BFS [3]. Mendelzon et al. propose a heuristic method for clus-
tering nodes in the local area in the same disk page to minimize the
number of I/Os needed to access the graph [37]. In addition, graph
compression has been studied to reduce the number of bits per edge
by placing nodes in a specific way. Kang et al. takes a graph de-
composition approach to remove the hub nodes iteratively from the
graph [28]. Boldi et al. study several ordering strategies for graph

compression in [7], and use label propagation techniques to com-
pute the clusters of the graph [6], where every node is assigned to
the cluster having most neighbor nodes with it. Chierichetti et al.
in [13] formulate graph compression as the variation of the graph
bandwidth problem [15, 22], which finds the optimal permutation π
of the node set minimizing max{|π(u)−π(v)| : (u, v) ∈ E(G)}.
The graph compression problem is closely related to the Minimum
Linear Arrangement problem and its variants [27], which is NP-
hard. Many heuristics have been proposed in literature [10, 31, 40,
43] but most existing approaches cannot process large graph suc-
cessfully. The ideas presented here share the similarity with graph
partitioning to minimize the number of edge-cuts, [29, 48, 50, 51,
52], which we discuss in detail later.

Major contribution: First, we explore a general approach to re-
duce the CPU cache miss ratio for graph algorithms with their im-
plementation and data structures unchanged. This problem is chal-
lenging, because graphs are rather complex where there is no to-
tal order among data to follow and the graph algorithms designed
are based on different techniques. It is worth noting that our gen-
eral approach can be used together with other specialized optimiza-
tions for the specific algorithms. Second, we propose a solution by
graph ordering, which is to find the optimal permutation φ among
all nodes in a given graph G by keeping nodes that will be fre-
quently accessed together in a window of size w, in order to min-
imize the CPU cache miss ratio. We use the ordering to renum-
ber the node IDs as well as sort the nodes inside every adjacent
lists. We will discuss in details that the same cannot be achieved by
graph partitioning. Third, we prove the graph ordering problem to
be studied is NP-hard, and give a basic algorithm with a bounded
1
2w

-approximation in time complexity of O(w · dmax · n2), where
dmax is the maximum in-degree and n is the number of nodes
in graph G. To further improve the performance, we propose a
new priority queue (PQ) based algorithm, which is with the same
1
2w

-approximation but with O(
∑

u∈V
(dO(u))

2) time complexity,
where dO(u) is the out-degree of node u in G. We propose sev-
eral optimization techniques including lazy-update to significantly
reduce the cost of maintaining the priority queue. Fourth, we con-
ducted extensive experimental studies to evaluate our approach in
comparison with other 9 possible graph orderings (such as the one
obtained by METIS) using 8 large real graphs and 9 representa-
tive graph algorithms. We confirm that our approach can achieve
high performance by reducing the CPU cache miss ratio. In nearly
all testings, our graph ordering outperforms other graph orderings
for different graph algorithms over different datasets. The best
speedup is > 2 comparing our graph ordering over others when
testing graph algorithms over large real graphs.

The paper organization: The remainder of the paper is organized
as follows. We discuss graph ordering in Section 2 in which we
discuss the issues related to graph partitioning and graph ordering,
give problem statement on graph ordering, and show the hardness
of the problem. We give our algorithms in Section 3 in which we
first give the approximation of our algorithm, and show we can
significantly reduce the computational cost. We have conducted
extensive testings, and report the experimental studies in Section 4.
The paper is concluded in Section 5.

2. GRAPH ORDERING
In this paper, we model a graph as a directed graph G = (V,E),

where V (G) represents the set of nodes and E(G) represents the
set of edges. The number of nodes and edges are denoted as n =
|V (G)| and m = |E(G)|, respectively. In addition, we use NO(u)
and NI(u) to denote the out-neighbor set and in-neighbor set of u,

such as NO(u) = {v | (u, v) ∈ E(G)} and NI(u) = {v | (v, u) ∈
E(G)}, respectively. The in-degree, out-degree, and the degree of
a node u is denoted as, dI(u) = |NI(u)|, dO(u) = |NO(u)|, and
d(u) = dI(u) + dO(u). Two nodes, u and v, are sibling nodes if
they share a common in-neighbor. It is worth mentioning that our
approach to be discussed can deal with undirected graphs, since an
undirected graph can be represented by a directed graph.

Our key idea for CPU speedup for graph computing is to find a
way to represent a graph that can reduce the CPU cache miss ratio
and is independent of any graph algorithms and the data structure
they use. Here, reducing the CPU cache miss ratio is to reduce the
number of times of copying data from main memory to cache, or
from slower cache to faster cache. To achieve this goal is to keep
nodes frequently accessed together stored closely in main memory
so that they are more likely to be loaded into cache together by one
single cache line transfer. A possible solution is to group nodes of
the graph into blocks using graph partition algorithm which divides
graph into partitions to minimize edge-cut which is the number of
edges that cross different partitions. METIS [29] is a widely-used
graph partition algorithm and is used to place nodes in blocks in the
existing works [50, 51]. However, such graph partition algorithms
can not serve the purpose of reducing CPU cache miss ratio effec-
tively for the following reasons. First, a recent study [33] shows
the real graphs do not have good edge-cut due to the power-law de-
gree distribution and the existence of nodes with high degree. The
neighbors of a node with high degree must be dispersed in different
partitions because one single partition is not enough to accommo-
date all neighbors of such high degree nodes. Second, in dealing
with large graphs in distributed or I/O contexts where graph parti-
tioning works well [50, 51], the size of a partition is rather large,
e.g., 64 kilobytes (64KB). In such cases, the algorithms can be
designed to deal with the nodes/edges in a partition in a way to
achieve efficiency. However, for CPU cache, a cache line is fixed
to be 64 bytes (64B), which is very small, and it is very difficult for
user programs to control the CPU cache. Third, there is an issue of
deciding the number of partitions or the number of nodes to be kept
in one graph partition, given the small CPU cache line of 64B. A
simple way is to keep 16 nodes in one partition, assuming a node is
represented by an integer of 4 bytes. However, it does not work for
all graph algorithms. Consider PR, a node needs to be associated
with its degree and a PageRank value, which may end up additional
4+8 bytes. In other words, a partition can only keep 5 nodes in a
partition to feed the 64B size CPU cache line. Fourth, assuming we
can keep all nodes in all 64B partitions one followed by another,
it does not necessarily mean it can reduce the CPU cache miss ra-
tio much, since CPU has its own mechanism to align the data into
the 64B CPU cache lines in main memory, which may be different
from the way of the partitions allocated. In other words, a partition
may be allocated into more than one CPU cache line, though the
partition size is equal to cache line size. Note that CPU alignment
is difficult to be controlled by user programs.

In this work, we propose graph ordering to arrange all nodes in
an order, aiming at reducing CPU cache miss ratio, for any graph
algorithms with any data structure they use in general. The main
idea behind graph ordering is to reflect the CPU access of graph in a
sequential manner, since CPU accesses data in sequence no matter
how complex the graph is, and at the same time to maintain locality
of nodes that will be frequently accessed together closely in graph
ordering, which is the focus of this work we will discuss in detail.
It is important to note that the graph ordering only affects the way
of arranging nodes in main memory, and is independent from graph
algorithm, algorithm implementation, and the data structure used.

Example 2.1: A graph G = (V,E) is shown in Fig. 2 as a running

2
3

1

6

7 8

12

9

5

11

10

4

Figure 2: An Example

example. There are 12 nodes numbered from 1 to 12, which is con-
sidered as one possible graph ordering. Given such numbering, the
graph can be represented by either adjacency-matrix or adjacency-
list in Fig. 10, where n = 12 and the node numbered i will be
placed at the i-th position in the corresponding array. ✷

As illustrated in the example, in graph computing, a node will
be assigned with an ID. Two vertices will be stored closely if they
have similar IDs in main memory. In the following, the node vi is
assumed to have an ID i, for simplicity.

Next, we discuss locality of a graph that needs to be maintained
in graph ordering. To capture the locality, we look at the common
statement that is used in graph algorithms below.

1: for each node v ∈ NO(u) do

2: the program segment to compute/access v

This pattern appears in BFS, DFS, PR, and SP, to name a few, when
it needs to access nodes v in an out-neighbor set NO(u), and in-
dicates that these nodes are the nodes that need to be maintained
locally to reduce the CPU cache miss ratio. When looking at the
statement carefully, there are two relationships, namely, neighbor
relationship and sibling relationship. Supposed v1, · · · , vdO(u) are
in the out-neighbor set of u, u and vi are in neighbor relationship
for 1 ≤ i ≤ dO(u), and any two vi and vj in NO(u) are in sib-
ling relationship. Both neighbor relationship and sibling relation-
ship play an important role in locality, since they will be accessed
together. One fact is that the sibling relationship is a dominating
factor since there are dO(u) neighbor relationships and

(

dO(u)
2

)

combinations of sibling relationships, and
(

dO(u)
2

)

≫ dO(u) in
general. In order to measure the closeness of two nodes, u and v,
in terms of locality, we define a score function.

S(u, v) = Ss(u, v) + Sn(u, v) (1)

Here, Ss(u, v) is the number of the times that u and v co-exist
in sibling relationships, which is the number of their common in-
neighbors, |NI(u)∩NI(v)|. And Sn(u, v) is the number of times
that u and v in the neighbor relationship, which is either 0, 1, or 2,
since both edge (u, v) and (v, u) may co-exist in a directed graph.
One thing about the score function is that two nodes should be con-
sidered to be placed together, if they are in many sibling relation-
ship, even though there is no edge between them.

Based on the score function, our problem is to maximize the
locality of two nodes to be placed closely. And this is to find a
permutation function φ(·), to maximize the sum of the score, S(·),
for close node pairs in G, where φ(u) assigns every node u with an
unique number in [1, n], assume there are n nodes in G.

Problem Statement: Find the optimal graph ordering (permuta-
tion), φ(·), that maximizes Gscore (the sum of locality score), F (·),

2
5

1

4

6 8

12

9

3

11

10

7

(a) Minimize Edge-Cuts

4 5 61 2 3

3

6

7 8 9 10 11 12

(b) Graph Partition

Figure 3: By Graph Partitioning

2
10

3

8

9 11

12

7

1

6

5

4

(a) Maximize F (φ)

4 5 61 2 3

1

9

10 11 127 8 9

(b) Partition Representation

Figure 4: By Graph Ordering

based on a sliding window model with a window size w.

F (φ) =
∑

0<φ(v)−φ(u)≤w

S(u, v) (2)

=
n
∑

i=1

i−1
∑

j=max{1,i−w}

S(vi, vj) (3)

We discuss more on the problem formulation. We adopt a sliding
window model with a window size w (w > 0). Assume two nodes,
u and v, are assigned with IDs in the graph ordering, denoted as
φ(u) and φ(v), and u appears before v (φ(v) > φ(u)). With the
sliding window, for any node v in G, as a pivot, we maximize the
score function S(u, v) for the pair of node v and any other node u
in G that appears before v in the sliding window of size w (Eq.(2)).
In fact, implicitly by the sliding window, at the same time, we also
maximize S(u, v) for the pair of node v and any other node u in G
that appears after v, where the role of u and v are reversed when u
becomes a pivot. Suppose φ(vi) = i. Eq. (2) can be rewritten as
Eq. (3). Let φw denotes a permutation φ maximizing F (φ) with a
window size w. It is worth noting that F (φw) will be different for
a different window size w and F (φw) > F (φw′) if w > w′. As
confirmed in our testings, we use w = 5, which ensures high re-
duction of CPU cache miss ratio because two nodes within distance
5 is likely to be located in the same cache line.

The window used in graph ordering is different from the parti-
tion used in graph partitioning. The window we use is based on a
sliding window, whereas the partition is a non-overlapping window.
Consider graph partitioning. With the non-overlapping partitions,
nodes within a partition can be placed randomly since they are con-
sidered locally and there is no difference where they are placed in
the same partition. Furthermore, the last node in a partition can
possibly be far away from the first node in its next partition, in
terms of distance in graph. On the other hand, consider graph or-
dering, with the sliding window, the locality is considered for any
node in a window before and after its appearance in a continuous
way. Such continuity can significantly reduce the CPU catch miss
ratio. Consider any two vi and vj , for 0 < j − i ≤ 2w, where
φ(vi) = i and φ(vj) = j. The overlap range of windows between
them is 2w + 1 − (j − i). Such high overlapping increases the
chances to reduce the CPU cache miss ratio.

Below, we show the difference between graph partitioning and
graph ordering using the graph G in Fig. 2. As shown in Fig. 2,
there are 12 nodes and 14 edges in G, and G is a power-law graph,
which has two nodes, v5 and v7, with high out-degree, 7 and 5,
respectively. Note that there is no edge between v6 and v9. But v6
and v9 are siblings and share two in-neighbors, v5 and v7. Here,
every node vi in G is with an ID of i, which is a graph permutation
number. However, such a permutation given in Fig. 2 does not
preserve much locality. For example, v2 is placed before v3, which
is supposed to be accessed/computed together, but v2 is far away
from v3 in graph. Assumed one CPU cache line holds 3 nodes. Let
partition size and window size be 3.

Consider graph partitioning. We need to partition the graph G in
Fig. 2 into 4 partitions by minimizing the number of edges across
partitions. Based on the graph partitioning, we can obtain a graph
permutation by assigning two nodes in the same partition with close
permutation numbers. The optimal graph partitioning for G in
Fig. 2 is illustrated in Fig. 3(a), where the two graphs in Fig. 2 and
Fig. 3(a) have the identical topological structure but are with differ-
ent permutations. As shown in Fig. 3(a), the edges shown as dash-
lines are the edges that cross two partitions to be cut. There are 4
partitions, {v1, v2, v3}, {v4, v5, v6}, {v7, v8, v9}, {v10, v11, v12}
in Fig. 3(a). Fig. 3(b) shows the 4 partitions of Fig. 3(a). From
Fig. 3(b), we can see that if a graph algorithm accesses the out-
neighbors of node v3, NO(v3) = {v1, v2, v4, v7, v9, v10, v11}, it
needs to access all the 4 partitions in 4 CPU cache lines. If it needs
to access the out-neighbors of node v6, NO(v6) = {v4, v5, v8, v9,
v12}, it needs to access 3 partitions in 3 CPU cache lines.

Consider graph ordering. Fig. 4(a) shows the optimal permu-
tation by graph ordering that maximizes F (φ), with the window
size w = 3, for G shown in Fig. 2, where the two graphs in
Fig. 2 and Fig. 4(a) have the identical topological structure but
are with different permutations. Fig. 4(b) shows the 4 partitions
of Fig. 4(a), as the result of graph ordering. From Fig. 4(b), we
can see that if the graph algorithm accesses the out-neighbors of
node v1, NO(v1) = {v2, v3, v4, v5, v6, v7, v8}, it needs to access
3 CPU cache lines. If the graph algorithm needs to access the out-
neighbors of node v9, NO(v9) = {v7, v8, v10, v11, v12}, it needs
to access 2 CPU cache lines. The graph ordering outperforms graph
partitioning as shown in this example.

An acute reader may find that the graph ordering problem we
study in this work can be solved by graph partitioning. First, we
show that it is possible provided the partition size is given. In graph
ordering, the score function S(·) (Eq. (1)) takes both neighbor re-
lations and sibling relations, whereas graph partitioning is to min-
imize the edge cut, which implies that the neighbor relationship,
Sn(u, v), is the only concern. For graph partitioning to deal with
the sibling relationships, Ss(u, v), it can convert G into a graph
G′ by adding all edges between every pair of vi and vj if they are
siblings. In this way, graph partitioning by minimizing the num-
ber of edges across different partitions in G′ can be considered as
a way to determine a graph permutation. Second, we show that it
is infeasible in practice, since the number of edges in G′ can be
huge. Supposed a node u has 100,000 out-neighbors in a graph.
The number of additional edges in G′ to represent the sibling re-
lationships of u will be up to 10 billion, which is unacceptable for
both the computation cost and the space cost.

The graph ordering problem of maximizing F (φ) is NP-hard.

Theorem 2.1: Maximizing F (φ) to obtain an optimal permutation

φ(·) for a directed graph G is NP-hard.

The proof sketch is given in Appendix.

3. THE ALGORITHMS
In this section, we focus on efficient algorithms and data struc-

tures for solving the graph ordering problem for large graphs with
millions/billions of nodes and edges. We give approximate algo-
rithms due to the NP-hard time complexity of the problem.

The optimal graph ordering, for the window size w = 1, by
maximizing F (φ) is equivalent to the maximum traveling sales-
man problem, denoted as maxTSP for short. Serdyukov proposes
a 3

4
-approximation algorithm for maxTSP in [45]. It needs O(n3)

time complexity to compute the maximum cycle cover and maxi-
mum matching which is too costly for large graphs. Alternatively,
Fisher et al. propose the best-neighbor heuristic, to achieve 1

2
-

approximation for the maxTSP in [20]. It starts with a randomly
chosen node, and inserts it into a queue. Then, it greedily selects a
node that has the maximum edge weight with the node just inserted
into the queue repeatedly.

In general, the problem of finding the optimal graph ordering
by maximizing F (φ) is the problem of solving maxTSP-w with a
window size w as a variant of the maxTSP problem. To solve the
graph ordering problem as maxTSP-w, we can construct an edge-
weighted complete undirected graph Gw from G. Here, V (Gw) =
V (G), and there is an edge (vi, vj) ∈ E(Gw) for any pair of nodes
in V (Gw). The edge-weight for an edge (vi, vj) in Gw, denoted as
sij , is S(vi, vj) computed for the two nodes in the original graph
G. Then the optimal maxTSP-w over G is the solution of maxTSP
over G. Note that maxTSP only cares the weight between two ad-
jacent nodes, whereas maxTSP-w cares the sum of weights within
a window of size w.

In this work, instead of constructing the large complete graph
Gw, we adapt the main idea of the best-neighbor heuristic that
used to solve maxTSP to deal with graph ordering as maxTSP-w
for a window size w > 1. We adapt the best-neighbor heuris-
tic, because it can be used to deal with large graphs with mil-
lions/billions of nodes and edges, even though the best-neighbor
heuristic is 1

2
-approximation, which is worse than 3

4
-approximation

by Serdyukov’s algorithm [45]. In fact, it is difficult to extend the
Serdyukov’s algorithm to deal with the case that w > 1 in general.

3.1 The GO Algorithm
We give an approximate algorithm to compute a graph ordering

φ by maximizing F (φ). Maximizing F (φ) is done by greedily
inserting the node v that has the largest score

∑

S(u, v) with nodes
u that have recently inserted in the window with size w repeatedly,
based on the idea of the best-neighbor heuristic. The algorithm
is called GO (Graph Ordering) and is given in Algorithm 1. The
algorithm takes three inputs, the graph G, the window size w, and
the score function S(·, ·) (Eq.(1)). Given an array P of size n, the
node v placed at P [i] is assigned to a permutation number i. The
algorithm first randomly selects a node v, and inserts it into P [1]
as the first node in the permutation (line 1). Let VR represents the
set of nodes for the remaining nodes that have not yet been inserted
into the array of P . In the while statement line 3-10 when finding
the node vi that should be placed at P [i], it computes the sum of
score kv for every v ∈ VR

kv =

i−1
∑

j=max{1,i−w}

S(vj , v) (4)

where vj is a node in the window of size w that has been inserted
before vi, represented as P [j] in the GO algorithm. The node vmax

is the node with the largest kv selected from VR. The algorithm
inserts the node vmax into P [i] repeatedly, and terminates until all

Algorithm 1 GO (G, w, S(·, ·))
1: select a node v as the start node, P [1]← v;
2: VR ← V (G) \ {v}, i← 2;
3: while i ≤ n do

4: vmax ← ∅, kmax ← −∞;
5: for each node v ∈ VR do

6: kv ←
i−1∑

j=max{1,i−w}

S(P [j], v);

7: if kv > kmax then

8: vmax ← v, kmax ← kv ;
9: P [i]← vmax , i← i+ 1;

10: VR ← VR \ {vmax};

nodes in G are placed in P . The permutation φ is obtained such
that φ(v) = i, if v is placed at P [i].

We discuss the approximation of the algorithm GO, and give the
approximation of GO in Theorem 3.1.

Theorem 3.1: The algorithm GO gives 1
2w

-approximation for max-

imizing F (φ) to determine the optimal graph ordering.

Proof Sketch: The optimal graph ordering with a window size w
is the same with the optimal maxTSP-w problem, except that the
former takes the permutation and the latter tries to find a circuit. Let
Fw denotes the score of the optimal solution on G for maxTSP-
w problem. And let Fgo denotes the Gscore F (·) of the graph
ordering by the GO algorithm. We give an upper bound Fw of Fw

by formulating the below optimization problem.

Fw = maximize

n−1
∑

i=1

∑

j>i

sijxij

subject to
∑

j>i

xij +
∑

j<i

xji = 2w, i ∈ [1, n]

0 ≤ xij ≤ 1, i, j ∈ [1, n]

(5)

Here, sij represents S(vi, vj) between nodes vi and vj in G. On
one hand, the optimal solution of maxTSP-w is a feasible solution
of Eq. (5), which satisfies the two constraints by setting xij = 1
if vi and vj are located within the window of size w, and xij =
0 otherwise. On the other hand, Eq. (5) is a generalized form of
maxTSP-w problem. This is because it only requires

∑

j>i
xij +

∑

j<i
xji = 2w, for any i ∈ [1, n]. In other words, consider vi

and let Wi denotes the set of w nodes before vi, plus the set of w
nodes after vi, and plus vi itself, such that |Wi| = 2w + 1. Eq. (5)
finds the max Fw where it is possible that Wi ∩ Wi+1 = ∅ for
two adjacent nodes vi and vi+1. However, the maxTSP-w problem
requires that |Wi∩Wi+1| = |Wi|−1. Besides, xij is not required
to be either 0 or 1. Hence, we have Fw ≤ Fw. We further give an
upper bound of Fw by the Lagrangian duality.

Fw ≤ max
0≤xij≤1

n−1
∑

i=1

∑

j>i

sijxij +
n
∑

i=1

αi(2w −
∑

j>i

xij −
∑

j<i

xji)

= max
0≤xij≤1

n−1
∑

i=1

∑

j>i

(sij − αi − αj)xij + 2w
n
∑

i=1

αi (6)

Here, αi is the Lagrange multiplier and Eq. (6) is true for all αi ∈
R. Assume the graph ordering by GO is v1, v2, · · · , vn, where
φ(vi) = i. In Eq. (6), αi is given as the sum of the weights between
vi+1 and the last up to w just before vi+1 by GO algorithm, such

that αi =
i
∑

j=max{1,i−w+1}

sj,i+1 for i ∈ [1, n − 1] and αn = 0.

We have αi ≥ 0 and
n
∑

i=1

αi = Fgo. Since vi is placed before vj

in the graph ordering by the algorithm GO for 1 ≤ i < j ≤ n,
we have sij − αi ≤ 0 according to the best-neighbor heuristic,
and hence sij − αi − αj ≤ 0. Therefore, we have Fw ≤ Fw ≤
2w

n
∑

i=1

αi = 2w · Fgo, which leads to the 1
2w

-approximation. ✷

In practice, we find that the lower bound of the approximation
ratio of GO does not reflect the real performance of GO, and the
Gscore Fgo of the graph ordering by GO is very close to the opti-
mal result. For the graph in Fig. 2, Fgo, the optimal score Fw, and
the upper bound of the optimal score Fw by Eq. (5) are 27, 32, and
35, respectively, with w = 3. We also compare Fgo with the upper
bound of the optimal score Fw using real datasets, since the op-
timal score Fw cannot be computed due to the NP-hard complex-
ity. We analyze two small datasets: Facebook with 4,039 nodes
and 88,234 edges from SNAP1 and AirTrafficControl with 1,226
nodes and 2,615 edges from KONECT2, given Eq. (5) needs O(n2)
variables and O(n) constraints. Table 1 shows Fgo and Fw with
different w. We can see that Fgo/Fw is larger than 0.6, which in-
dicates that the real performance of Fgo is very close to the optimal
score Fw in large graphs, given Fgo ≤ Fw ≤ Fw.

w = 3 w = 5 w = 7
Fgo Fw Fgo Fw Fgo Fw

Facebook 149,073 172,526 231,710 275,974 308,091 373,685

AirTraffic 2,420 3,468 2,993 4,697 3,465 5,545

Table 1: Fgo and Fw

Theorem 3.2: The GO Algorithm 1 is in O(w · dmax · n2), where

dmax denotes the maximum in-degree of the graph G.

The proof sketch is given in Appendix.

3.2 The Priority Queue based Algorithm
The computational cost of the GO algorithm is high as given in

Theorem 3.2 in O(w · dmax · n2) where dmax is the maximum
in-degree of G. The GO algorithm is impractical to be used to
compute graph ordering for large graphs. The high computational
cost is contributed by line 5-6 in Algorithm 1. We discuss it from
two aspects. First, it repeatedly computes Eq. (4) w times for the
same pair (vj , v) while vj is in the window of size w. Second,
it scans every node v in the set of remaining nodes VR in every
iteration when computing Eq. (4). In other words, it scans every
node v ∈ VR that has neighbor/sibling relationship with the nodes
vj in the window of size w, as well as the nodes v that has no
neighbor/sibling relationship with the nodes vj in the window of
size w. Obviously, the latter is unnecessary. We give Example-A
in the Appendix to discuss the two drawbacks in details.

Based on the observations, we propose a priority queue (PQ)
based algorithm called GO-PQ (Algorithm 2). Like GO, we use
an array of P to keep the graph ordering (permutation). The per-
mutation φ is obtained such that φ(v) = i, if v is placed at P [i].
Unlike GO, we efficiently compute line 5-6 in Algorithm 1, using
a priority queue denoted as Q. In the priority queue, Q[v] keeps
a key which is kv (Eq.(4)) for node v during computing, and the
node vmax with the largest kmax will be popped up first fromQ to
be appended at the end of P . Consider two nodes, u and v inQ, u
will appear before v (or in other words pop before v), if ku > kv
regarding the current window of size w. We denote the key of v by
key(v). In computing the graph ordering, to address the two draw-

1
snap.stanford.edu/

2
konect.uni-koblenz.de/networks/

backs of GO, we incrementally update key(v) regarding the sliding
windows shown below.

While the window is sliding, suppose vb is the node to leave the
window, and ve is the node to join the window. We incrementally
update key(v) for v in three ways.

Increase key: When ve is newly placed in the permutation P , v
in Q will increase its key value by 1 if v and ve are considered
local, based on the neighbor/sibling relationship. For the neighbor
relationship, it means either there is an edge from v to ve or there is
an edge from ve to v. For the sibling relationships, it means v and
ve share a common in-neighbor node. We denote the key increment
by 1 for v inQ as Q.incKey(v).
Decrease key: When vb is about to leave the window while the
window is sliding to the next position, v in Q will decrease its key
value by 1 if v and vb are considered local, based on the neigh-
bor/sibling relationship as discussed in the case for increasing key.
We denote the key decrement by 1 for v inQ as Q.decKey(v).
The updating ensures that the node to be selected next from Q is
the one vmax with the largest kmax among the nodes that have not
been selected.

Find the max key: Finding the node vmax with largest kv (Eq. (4))
from the set of remaining nodes is to pop up the top node from Q.
We denote it byQ.pop().

The GO-PQ algorithm is given in Algorithm 2, which uses these
three operations as shown in line 6-20 to replace line 5-6 of Algo-
rithm 1 by GO. The GO-PQ algorithm gives the same result of GO
with the same 1

2w
-approximation for a window of size w.

The GO-PQ algorithm takes the same three inputs, the graph G,
the window size w, and the score function S(·, ·) (Eq.(1)). Given
an array P of size n, the node v placed at P [i] is assigned to a
permutation number i. In GO-PQ, initially, it inserts all nodes of G
into the priority queue Q where the key of each node is initialized
to be zero. Then, it randomly selects a node v, and inserts it into
P [1] as the first node in the permutation before deleting the node v
from Q (line 3). In the while loop (line 5-22), it updates the keys
of the nodes only if they are related to two nodes, vb and ve, where
vb is the node to leave the sliding window, and ve is the node to
join the sliding window. In brief, first, in line 7-12, regarding ve,
if a node u is a neighbor of ve, it increases its key by incKey(u);
and if a node v is a sibling of ve, it increases its key by incKey(v).
Second, in line 13-20, regarding vb, if a node u is a neighbor of
vb, it decreases its key by decKey(u); and if a node v is a sibling
of vb, it decreases its key by decKey(v). Finally, following the
updates, in the while loop, it places the node vmax into the array P
where vmax is selected by popping the top node fromQ line 21. A
example is given in Example-B in the Appendix.

Compared with GO, GO-PQ significantly reduces the computa-
tional cost. We give the time complexity of GO-PQ algorithm in
Theorem 3.3.

Theorem 3.3: The time complexity of the GO-PQ algorithm is

O(µ ·∑
u∈V

(dO(u))
2 + n · ̺), where µ denotes the time com-

plexity for the updates (incKey(·) and decKey(·)) and ̺ denotes

the time complexity for finding the max node (pop()).

The proof sketch is given in Appendix.
We will discuss the priority queue Q itself and its operations in

Section 3.3. Below, we discuss the effectiveness of the window
size w, selecting the first node, reducing the computational cost for
updates, and dealing with huge nodes that have large outdegree.

Algorithm 2 GO-PQ (G, w, S(·, ·))
1: for each node v ∈ V (G) do

2: insert v into Q such that key(v)← 0;
3: select a node v as the start node, P [1]← v, delete v fromQ;
4: i← 2;
5: while i ≤ n do

6: ve ← P [i− 1];
7: for each node u ∈ NO(ve) do

8: if u ∈ Q thenQ.incKey(u);
9: for each node u ∈ NI(ve) do

10: if u ∈ Q thenQ.incKey(u);
11: for each node v ∈ NO(u) do
12: if v ∈ Q thenQ.incKey(v);
13: if i > w + 1 then

14: vb ← P [i−w − 1];
15: for each node u ∈ NO(vb) do
16: if u ∈ Q thenQ.decKey(u);
17: for each node u ∈ NI (vb) do

18: if u ∈ Q thenQ.decKey(u);
19: for each node v ∈ NO(u) do

20: if v ∈ Q thenQ.decKey(v);
21: vmax ← Q.pop();
22: P [i]← vmax , i← i+ 1;

< 1

10

100

1000

4000

av
er

ag
e

k
v

Gorder

(a) S() by GO-PQ

1

10

100

1000

3000

in
d

eg
re

e

Gorder

(b) dI(u) Distri.

< 1

10

100

1000

4000

av
er

ag
e

k
v

DegSort Order

(c) S() by degsort

Figure 5: The Permutation and its In-degree Distri. on Flickr

Effectiveness of the window size w: It is important to note that the
approximation of GO and GO-PQ is the same 1

2w
-approximation as

proved. In GO-PQ, the window size w determines how the node vb
is defined which is related to kv (Eq. (4)). However, in GO-PQ, the
time complexity is not related to w. In other words, the window
size w has no impacts on the time complexity.

Selecting the first node: The selection of the first node has im-
pacts on the overall graph ordering. We select the node v1 with
the largest in-degree as the first node to start the ordering for the
following two reasons. First, the node v1 with the largest in-degree
dI(v1) (or largest NI(v1)) indicates that v1 is highly likely to be
a sibling node of another node vi that shares common in-neighbor
nodes in NI(v1). Second, because NI(v1) is large, v1 will be fre-
quently accessed together with its sibling nodes in the graph com-
puting because there are a large number of in-coming edges point-
ing to v1. The first node selected will lead the nodes selected in
the following, and the nodes selected in the following iterations are
more likely to be large in-degree nodes. Given the Flickr dataset
with over 2.3M nodes, we compute the permutation by GO-PQ,
denoted as Gorder, and show the in-degree distribution and the av-
erage scores of nodes comparing with the average scores of nodes
by sorting nodes with decreasing in-degree in Fig. 5. In Fig. 5, a
value in x-axis represents 1,000 nodes, and a value in y-axis rep-
resents the average kv for the 1,000 nodes. Fig. 5(a) and Fig. 5(b)
show the average score (Eq. (4)) and the average in-degree (dI) of
every 1,000 nodes. The nodes appear on the top of the permutation
are with high score and high in-degree, and they are supposed to
be locally stored in main memory following the permutation. Such
high F (·) by summing all the score (Eq. (4)) cannot be achieved by
simply sorting all nodes by in-degree, as shown in Fig. 5(c).

Reducing the computational cost: In GO-PQ, we have shown the
main idea of the PQ-based algorithm. We can further reduce com-

1e+7

2e+7

3e+7

4e+7

5e+7

0.25√n 0.5√n √n 2√n 4√n n

G
sc

or
e

Huge Node Size

(a) Gscore

0

50

100

150

200

250

0.25√n 0.5√n √n 2√n 3√n n

O
rd

er
 T

im
e

(i
n

se
co

nd
)

Huge Node Size

(b) Graph Ordering Time

Figure 6: Huge Nodes on Flickr

putational cost to make it efficient. Consider a node u that is a com-
mon in-neighbors of the two nodes, ve and vb, in the window before
vb leaves. In Algorithm 2, it first does incKey(v) w.r.t ve followed
by decKey(v) w.r.t vb for every node in NO(u). Obviously, such
pair of incKey(v) and decKey(v), will not change the key of such
node v in NI(u), and such computing is unnecessary. To avoid
such unnecessary computing, we can simply add the condition of
“if vb 6∈ NO(u) then” for line 11-12 to ensure that line 11-12
will only be executed when the condition is true. In a similar way,
we add the condition of “if ve 6∈ NO(u) then” for line 19-20 to
ensure that line 19-20 will only be executed when the condition is
true. In practice, since the window size w is rather small and ve
and vb share many in-neighbors due to their close positions in the
permutation, this can reduce cost significantly.

Dealing with huge nodes: Real large graphs follow power-law
degree distribution, with a small number of nodes having a large
out-degree and a large number of nodes having a small out-degree.
Supposed a node u has a large set of out-neighbors, NO(u). When
one of its out-neighbors, v ∈ NO(u), is to join in/leave from the
window, the key of every out-neighbor in NO(u) needs to update
(line 11-12 and line 19-20 in Algorithm 2). This incurs high over-
head for nodes that are with high out-degree dO(u), which is also
indicated by the time complexity O(

∑

u
(dO(u))

2). In this work,
we take a high out-degree node as a huge node if its out-degree is
greater than

√
n. For a large graph with millions of nodes,

√
n

is at least 1,000. To save such high computational cost, we do
not compute the huge nodes when updating the key for the out-
neighbors of these huge nodes. This is to add the condition of
“if dO(u) ≤

√
n then” after line 9 and line 17 to ensure that

line 10-12 and line 18-20 will only be executed when the condition
is true. Such reduction of computing does not affect the quality of
the chosen vmax to be placed into the array of P next, because
the candidate nodes to be selected as vmax are likely to be the
out-neighbors of huge nodes. Such reduction of computing those
out-neighbors of huge nodes will reduce the similar amount of up-
dates to all candidates that can possibly be the next vmax. Given
two graph orderings, one is φ1 by GO-PQ without special consid-
eration to huge nodes, and the other is φ2 by GO-PQ with spe-
cial consideration to huge nodes discussed above. We measure the
difference between the two using the Kendall tau coefficient [30].
Consider the two orderings φ1 and φ2, (vi, vj) is called the concor-
dant pair if it is true that φ1(vi) > φ1(vj) and φ2(vi) > φ2(vj),
or φ1(vi) < φ1(vj) and φ2(vi) < φ2(vj). Otherwise, (vi, vj)
is called the discordant pair. Let C denotes the set of concordant
pairs and D denotes the set of discordant pairs. The Kendall tau
coefficient is

τ (φ1, φ2) =
2(|C| − |D|)
n(n− 1)

(7)

where n is the size of permutation. The Kendall tau coefficient be-
tween φ1 and φ2 over Flickr is 0.7. This suggests that reduction
of computing large out-degree nodes does not affect the quality of
graph ordering obtained. In addition, on Flickr, we show the total
score F (·) and the time to compute such F (·) for different huge

Figure 7: The Priority Queue: Q, Qh, and top

node sizes in Fig. 6, where a huge node v is a node such that dO(v)
is greater than either 1

4

√
n, 1

2

√
n,
√
n, 2
√
n, 4
√
n, or n. Note

that the last one, dO(v) > n, means not to reduce computing cost
for huge nodes, since no nodes can be pruned. In Fig. 6, the x-
axis is 1

4

√
n, 1

2

√
n,
√
n, 2
√
n, 4
√
n, and n. We take F (·) and

the computing time regarding the one without pruning as the basis.
Fig. 6(a) shows that F (·) computed for different huge node sizes
change marginally. However, Fig. 6(b) shows that the reduction
of computing time is significant. One question is whether dealing
with huge nodes affects the approximation ratio given in Theorem
3.1. On one hand, Fig. 6(a) shows that dealing with the huge nodes
has little influence to the quality of the output graph ordering in
practice, even though Algorithm 2 with the special consideration
of huge nodes may possibly fail to choose the real vmax during the
iterations. On the other hand, the theoretical guarantee by Theo-
rem 3.1 is just a lower bound. As shown in datasets Facebook and
AirTrafficControl in Section 3.1, F (·) of the output graph order-
ing is much better than the given theoretical guarantee in practice.
Given the limit influence of huge nodes, the graph ordering gener-
ated by pruning the huge nodes can still be better than the bound
given by Theorem 3.1.

3.3 The Priority Queue and its Operations
We discuss the priority queue Q and its operations. There are

three operations, namely, incKey(v), decKey(v), and pop(). Be-
hind the operations, there is an implicit operation that is to access
the key of a node requested irrespective of its position in Q. One
way to design Q is to adapt the same data structure used in [9] as
follows. First, to ensure accessing the key of a node v in constant
time, the priority queue Q is designed as an array of the size n.
Given a node vi in the graph G, the key value is stored in Q[vi].
Second, in order to maintain the max value at the top, every node vi
may be re-positioned. To do so, Q is designed as a double-linked
data structure. That is, inQ[vi], where vi is the original node ID, it
has two pointers, namely, prev(vi) and next(vi), in addition to the
key value of key(vi). Third, to access nodes by a specific key value,
on top of Q, there is a head table, denoted as Qh, where Qh[x]
points to the first node inQ whose key is x. This data structure can
be used to support incKey(), decKey(), and pop() in O(1), O(1),
and O(n), respectively. However, we observe that the number of
pop() is much smaller than the number of incKey() and decKey().
Take the data structure used in [9] as an example. Although it can
achieve O(1) for updates by incKey() and decKey(), it needs to
adjust the linked list for every incKey() and every decKey(), and
the number of possible updates is O(

∑

u
(dO(u))

2), which is very
high.

The issue is whether we can reduce the number of times of ad-
justing the linked list while keeping the time complexity for all
the three operations the same. In this paper, we propose a lazy-
updating strategy by which we reduce the number of adjusting linked
list significantly.

Fig. 7 shows the Q data structure we use in this work. First,
in every Q[vi], in addition to the two components, prev(vi) and
next(vi), we use key(vi) and update(vi) together instead of main-
taining key(vi), such that key(vi) = key(vi) + update(vi). The

priority queue Q is represented as a doubly linked list by prev(·)
and next(·) with decreasing key(·) values. The main idea here
is that when we update key values, we keep the difference in the
update where possible. By this, we only adjust the doubly linked
list when key(vi) has to be changed, and do not adjust the dou-
bly linked list for every updates. Second, in the head table Qh,
we maintain two pointers in Qh[x], namely, head(x) and end(x).
Here, head(x) and end(x) point to the first and the last element in
Q such that every node v that has the same key value (key(v) = x)
is positioned between head(x) and end(x) in the doubly linked
list. Note that the length of Qh can be as large as the maximum
key value, which is far smaller than n in practice. Third, we add
a new pointer top that always points to the node having the largest
key(·).

With the above data structure, when popping vmax, we maintain
the true key(vi) for a node vi by key(vi) + update(vi) such that
(a) for the top node, key(top) = key(top), and (b) for any other
node vi, key(vi) ≤ key(vi). Following the conditions below,

update(top) = 0

update(vi) ≤ 0 for vi 6= top

key(top) ≥ key(vi)

key(top) + update(top) ≥ key(vi) + update(vi)

(8)

for any vi 6= top in Q, we guarantee that the top in Q is the one
having the largest true key value key(·). We do not need to adjust
the doubly linked list when updating every time. There are only
two cases we need to adjust the doubly linked list. First, when
update(vi) > 0 after updating vi, we have to make update(vi) ≤
0. In this process, we do key(vi) ← key(vi) + update(vi) and
update(vi) ← 0. Since key(vi) is changed, we need to adjust
the doubly linked list. Second, when selecting vmax to be popped,
we make update(top) = 0 as given in Eq. (8), and therefore the
adjustment of doubly linked list is needed.

Note that we increase the computational cost for pop marginally
within the same time complexity of O(n), and at the same time
we significantly reduce the number of adjusting doubly linked list,
since the number of updates is huge. We discuss the priority queue
operations below.

First, for decKey(vi), we only reduce the value in update(vi)
by 1 to maintain key(vi) = key(vi) + update(vi). Here, since
update(vi) ≤ 0, there is no need to update key(vi).

Algorithm 3 decKey (vi)

1: update(vi)← update(vi)− 1;

Second, for incKey(vi), we show it in Algorithm 4. We in-
crease the update value by 1. We only adjust doubly linked list
when update(vi) > 0. Since at this point update(vi) = 1, we
increase key(vi) by 1 and make update(vi) = 0. This ensures
key(vi) = key(vi) + update(vi) and update(vi) ≤ 0. Also, since
key(vi) is changed, its position in H needs to be adjusted. We ad-
just the position by deleting/inserting it from/into Q. Accordingly,
we adjust the head table Qh and adjust top if the new key(vi) is
greater than key(top), if needed.

Third, for pop() (Algorithm 5), recall that the true key(top) is
key(top) if update(top) = 0, because key(top) = key(top) +
update(top). When popping the node with the max true key value,
we simply return the node pointed by top if update(top) = 0.
However, when update(top) < 0, we need to check whether the
node pointed by top is the node with the max true key value. (i)
we make key(vi) as the true key value by key(vi) ← key(vi) +

Algorithm 4 incKey (vi)

1: update(vi)← update(vi) + 1;
2: if update(vi) > 0 then

3: update(vi)← 0, x← key(vi), key(vi)← key(vi) + 1;
4: delete vi from Q;
5: insert vi into Q in the position just before head[x];
6: update the head Qh array accordingly;

7: if key(vi) > key(top) then

8: top← vi;

Algorithm 5 pop ()

1: while update(top) < 0 do

2: vt ← top;
3: key(vt)← key(vt) + update(vt);
4: update(vt)← 0;

5: if key(top) ≤ key(next(top)) then

6: adjust the position of vt and insert vt just after u in Q, such that

key(u) ≥ key(top) and key(next(u)) < key(top);
7: top← next(top);
8: update the head array;
9: vt ← top;

10: remove the node pointed by top fromQ and update top← next(top);
11: return vt;

update(vi) followed by changing update(vi) to be zero (line 3-4).
(ii) we reposition the node vt pointed by the current top to a new
position in Q following the sorting order of the key values, and
update top pointer to point to the node having the largest key value
currently. We repeat it until update(top) = 0. The node returned
by pop() is the node with the max true key value.

An example is given in Example-C in the Appendix.
Given the specific priority queue operations, we show the time

complexity of GO-PQ below.

Theorem 3.4: The time complexity of GO-PQ isO(
∑

u∈V (dO(u))
2).

The proof sketch is given in Appendix.

The Constant factor: Comparing the data structure used in [9],
the key difference is we shift the cost from updates (incKey and
decKey) to pop while keeping all the operations in the same time
complexity. The reason is that the number of updates (decKey(vi)
and incKey(vi)) is much larger than the number of pop(). The for-
mer is O(

∑

u∈V
(dO(u))

2) whereas the latter is O(n). Note that
pop() (Algorithm 5) only takes a few iterations for the while loop
to stop in practice, because the linked list is sorted in the decreas-
ing order of key, even though it is O(n). We discuss how much
we can save in updates. Since decKey(vi) only needs to update
update(vi) in constant time O(1), we focus on Algorithm 4 for
incKey(vi). There is a condition of update > 0 in line 2. The
adjustment of doubly linked list is done only when the condition
is true. The question is how much we can save by this condi-
tion. To analyze the saving, we consider a key update sequence
by incKey(vi) and decKey(vi) for a given vi before vi is adjusted
by pop. During the period in Q, the number of incKey(vi) de-
pends on the insertion of node ve into the window, and the num-
ber of decKey(vi) depends on the deletion of node vb from the
window, and ve will become vb after w iterations. Therefore, in
the sequence, the number of incKey(vi) is similar to the number
of decKey(vi). Based on this observation, we assume that the
key updates on a given vi has 0.5 probability to be incKey and
0.5 probability to be decKey. Suppose the total number of up-
dates for a given node vi is L, and the total number of updates
that need to adjust the doubly linked list following the condition of
update(vi) > 0 is λL

vi
. There are two extreme cases of the key

Dataset |V (G)| |E(G)| davg

Pokec 1.63M 30.62M 18.8

Flickr 2.30M 33.14M 14.4

LiveJournal 4.84M 68.47M 14.1

wikilink 11.19M 340.24M 30.4

Google+ 28.94M 462.99M 16.0

pld-arc 42.88M 623.05M 14.5

twitter 61.57M 1,468.00M 23.8

sd1-arc 94.94M 1,937.00M 20.4

Table 2: Real Graphs

9.2

9.3

9.4

9.5

1 2 3 4 5 6 7 8

R
un

 T
im

e
(in

 s
ec

on
d)

w

Figure 8: Window Size w

update sequence with the equal numbers of incKey and decKey

w.r.t. a node vi. Let +1 and -1 represent incKey and decKey. The
best case: incKey and decKey occur one by one alternatively in the
sequence, (+1, -1, +1, -1, ...). Here, the first incKey triggers the
adjustment of doubly linked list and sets update(vi) to be 0. In the
following sequence, for any update, update(vi) ≤ 0 because the
sum of its previous operations is ≤ 0, and therefore no adjustment
is needed. The total number of doubly linked list needed is 1 not
matter how large L is. The worst case: all incKey followed by all
decKey. Here, we need to adjust the doubly linked list for every
incKey in total of L

2
times. We can save a half of link adjustments

in the worst case. Below we show the worst case hardly occurs, and
give the expected number of adjustments λL

vi
in Theorem 3.5.

Theorem 3.5: For a given node vi over the random key update

sequence of length L on vi, and a sufficiently large L, the expected

number of adjusting doubly linked list is as follows.

E(λL
vi
) ∼

√

2L

π
(9)

The proof sketch is given in Appendix.
We tested the performance of lazy-update strategy in Flickr. There

are over 8 billion key update operations in total. By our lazy-update
strategy, only 0.66 billion key updates really trigger the adjustments
of doubly linked list, and about 40% computing time is saved as
shown in Section 4. This indicates that the constant factor of key
update operations by GO-PQ is very small, which allows us to han-
dle large graphs with billions of nodes and edges.

Finally, the space complexity of GO-PQ is O(n), because the
size of the priority queue is linear with the number of nodes, and
array P keeping the output permutation result is at most as large as
the node set.

4. EVALUATION
We evaluate our Gorder by the GO-PQ algorithm, in compar-

ison with other 9 ordering approaches, using 8 real large graphs
and 9 graph algorithms. The graph data is stored in compressed

sparse row (CSR) format [1], which is equivalent to adjacency list.
All implementations for graph algorithms and graph orderings are
done using C++ and compiled by G++ 4.9.2. The extensive exper-
iments have been conducted on two machines, (a) a Linux server
with Intel Core i7-4770@3.40GHz CPU and 32 GB memory, (b)
a Linux server with Intel Xeon X5550@2.67GHz CPU and 24 GB
memory. We report our findings on the configuration of (a), since
all the results obtained in these two machines are similar. The L1,
L2, L3 cache size of the machine (a) is 64KB, 256KB, 8MB, re-

1e+10

Gorder
Original

MINLA
MLOGA

RCM
DegSort

CHDFS
SlashBurn

LDG
METIS

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

Gs
co

re

(a) F (·) by Different Orderings

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(b) NQ

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(c) BFS

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(d) DFS

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(e) SCC

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1
sp

ee
du

p o
f G

or
de

r

(f) SP

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(g) PR

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(h) DS

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(i) Kcore

0.95

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki Google+ pld twitter sd1

sp
ee

du
p o

f G
or

de
r

(j) Diam
Figure 9: The Speedup of Gorder

Order L1-ref L1-mr L3-ref L3-r Cache-mr

Original 11,109M 52.1% 2,195M 19.7% 5.1%

MINLA 11,110M 58.1% 2,121M 19.0% 4.5%

MLOGA 11,119M 53.1% 1,685M 15.1% 4.1%

RCM 11,102M 49.8% 1,834M 16.5% 4.1%

DegSort 11,121M 58.3% 2,597M 23.3% 5.3%

CHDFS 11,107M 49.9% 1,850M 16.7% 4.4%

SlashBurn 11,096M 55.0% 2,466M 22.2% 4.3%

LDG 11,112M 52.9% 2,256M 20.3% 5.4%

METIS 11,105M 50.3% 2,235M 20.1% 5.2%

Gorder 11,101M 37.9% 1,280M 11.5% 3.4%

Table 3: Cache Statistics by PR over Flickr (M = Millions)

spectively. The efficiency is measured by the CPU time and the
CPU cache miss ratio.

The eight real datasets we tested are with at least 1 million nodes
and 30 million edges as shown in Table 2. They are mainly from
SNAP (Pokec, LiveJournal) and KONECT (Flickr, wikilink). Here,

Order L1-ref L1-mr L3-ref L3-r Cache-mr

Original 623.9B 58.4% 180.0B 28.8% 18.6%

MINLA 628.8B 62.5% 196.6B 31.2% 14.8%

MLOGA 620.0B 62.1% 189.6B 30.5% 14.3%

RCM 628.9B 44.9% 103.8B 16.5% 10.2%

DegSort 632.2B 55.1% 149.5B 23.6% 15.9%

CHDFS 630.3B 38.0% 101.2B 16.1% 10.9%

SlashBurn 628.8B 44.5% 121.0B 19.3% 13.7%

LDG 637.9B 58.4% 186.2B 29.2% 18.6%

Gorder 620.3B 31.5% 79.5B 12.8% 8.2%

Table 4: Cache Statistics by PR over sd1-arc (B = Billions)

Pokec, Flickr, LiveJournal, Google+3[24] and twitter4 are online
social networks. wikilink is the hyperlink graph inside the English
Wikipedia, and pld-arc and sd1-arc are two large hypelink graphs
crawled in 20125. The average degree is in the range from 14 to 30.
twitter and sd1-arc are two billion-edge graphs.

3
www.cs.berkeley.edu/~stevgong/dataset.html

4
an.kaist.ac.kr/traces/WWW2010.html

5
webdatacommons.org/hyperlinkgraph/

Order NQ BFS DFS SCC SP PR DS Kcore Diam

Pokec 8.7 2.0 2.5 5.2 1.3 12.3 10.4 6.6 1,003

Flickr 5.1 1.5 1.8 3.7 1.0 9.1 8.6 5.3 620

LiveJ 19.4 4.9 5.9 12.1 4.6 26.4 24.0 16.8 2,556

wikilink 56.1 10.0 14.3 28.5 35.3 81.9 85.7 50.0 5,932

Google+ 134 35.0 43.3 87.6 28.6 210 183 131 17,936

pld-arc 199 45.2 55.7 115 40.4 305 251 177 14,389

twitter 467 79.2 80.9 158 74.4 819 535 378 32,808

sd1-arc 492 83.7 104 218 120 665 587 430 30,202

Table 5: Running time by Gorder (in second)

The night graph algorithms: The graph algorithms being tested
are Neighbors Query (NQ), Breadth-First Search (BFS) [19], Depth-
First Search (DFS) [19], Strongly Connected Component (SCC)
detection [47], Shortest Paths (SP) by the Bellman-Ford algorithm
[19], PageRank (PR) [38], Dominating Set (DS) [18], graph de-
composition (Kcore) [5] and graph diameter (Diam). All of them
are fundamental for graph computing and provide the basis for the
design of other advanced graph algorithms. For the accuracy of
the collected information, except NQ, PageRank and Diam, we re-
peat these algorithms 10 times when running the experiments and
report the total running time and the cache statistics. NQ ran-
domly chooses 10n nodes for each dataset and accesses their out-
neighbors. PageRank algorithm is stopped after 100 iterations in
every dataset. The approximate graph diameter is obtained by find-
ing the longest shortest distance of 5,000 randomly chosen nodes.

The night orderings: We compare our Gorder with the following
9 graph orderings: Original, MINLA, MLOGA, RCM, DegSort,
CHDFS, SlashBurn, LDG, and METIS. Original uses the node
IDs that come with the real graphs. MINLA is the node order-
ing π for the Minimum Linear Arrangement problem, which is to
minimize

∑

(u,v)∈E(G) ‖π(u) − π(v)‖. We have tried several ex-
isting solutions for this problem [40, 43], but none of them can
be scalable to deal with large graphs effectively. Instead, we use
simulated annealing technique to compute the result, which has
good scalability and shows comparable performance with the state-
of-the-art solutions. MLOGA is the node ordering for the Mini-
mum Logarithmic Arrangement problem [44], that is to minimize
∑

(u,v)∈E(G) log2(‖π(u) − π(v)‖). Similarly, we use simulated

annealing to generate the node ordering. RCM is ordered by the
reverse Cuthill-McKee algorithm [22], which is the well known so-
lution for reducing graph bandwidth. DegSort is the node orders
by sorting nodes in descending order of in-degree. CHDFS is ob-
tained by children-depth-first traversal which is proposed in [4].
SlashBurn is the graph ordering used in graph compression algo-
rithm [28]. LDG is the state-of-the-art streaming graph partitioner
[48]. METIS is the de-facto standard offline graph partitioner [29]
which is widely used in many applications. We set the partition
size to be 64 for the two graph partitioners LDG and METIS to fit
the size of cache line. Our Gorder is computed by GO-PQ with
the window size w = 5. To determine the window size, we show
the performance by different window sizes when testing PR in 100
iterations over Flickr in Fig. 8. The performance of PR improves
when the window size becomes larger. But when w > 5, the im-
provement of running time is marginal. It is similar when we test
other algorithms over different datasets. These orderings are used
to renumber the node IDs in the datasets.

Exp-1 The Gscore and the CPU Cache Miss Ratio: We show
the Gscore (Eq. (3)) by different orderings in Fig. 9(a), where the
y-axis is in logarithmic. The Gscore of Gorder by GO-PQ is the
highest in all the 8 real datasets, and it can achieve one order of
magnitude higher than the Original ordering. RCM and CHDFS

are second to Gorder but their Gscore are only a half of the Gscore
by Gorder in most datasets. The higher Gscore means the better

Order NQ BFS DFS SCC SP PR DS Kcore Diam

Original 50.8 15.3 5.4 7.8 21.5 52.1 21.9 20.8 14.9

MINLA 51.8 18.0 5.5 8.1 24.6 58.1 22.1 21.5 17.9

MLOGA 41.7 16.3 5.1 7.2 21.9 53.1 21.1 20.6 16.4

RCM 49.1 12.1 4.6 6.6 15.9 49.7 20.3 20.2 12.4

DegSort 45.7 16.7 4.8 7.0 24.9 58.3 21.4 18.6 17.0

CHDFS 42.1 12.3 4.1 5.8 18.5 49.9 21.1 20.6 12.9

SlashBurn 46.2 16.0 4.5 6.2 22.1 55.0 20.7 21.3 15.8

LDG 50.7 15.9 5.8 8.2 21.8 52.9 22.4 21.2 14.9

METIS 63.0 18.2 7.7 10.1 20.8 50.3 23.0 21.7 16.7

Gorder 35.4 11.1 3.6 5.2 12.8 37.9 18.7 18.1 10.9

Table 6: L1 Cache Miss Ratio on Flickr (in percentage %)

Order NQ BFS DFS SCC SP PR DS Kcore Diam

Original 76.5 20.0 9.4 13.0 17.5 58.4 21.7 20.0 17.5

MINLA 76.0 22.7 10.2 12.8 20.7 62.5 21.8 20.5 18.3

MLOGA 76.0 21.7 9.4 12.3 19.8 62.1 21.8 20.6 18.5

RCM 61.6 14.4 7.5 8.7 8.9 44.9 18.2 17.5 11.7

DegSort 59.3 18.7 8.0 12.1 16.6 55.1 21.9 16.9 15.5

CHDFS 50.0 14.2 5.1 8.3 13.2 38.0 18.4 16.1 10.4

SlashBurn 56.6 16.8 6.7 9.3 10.2 44.5 18.9 16.8 13.5

LDG 74.7 22.7 10.0 13.6 18.7 58.4 22.0 20.3 17.9

Gorder 40.0 12.1 4.6 7.2 10.8 31.5 16.9 14.5 9.5

Table 7: L1 Cache Miss Ratio on sd1-arc (in percentage %)

graph locality which makes the graph accesses are more likely to
be hit by the fast L1, L2 cache. Table 3 and Table 4 show the CPU
cache statistics of running PR on two datasets, Flickr and sd1-arc,
respectively, where M and B denote million and billion. Note that
we do not show METIS in Table 4, because METIS fails to com-
pute the graph partitions for the other 5 larger graph except Pokec,
Flickr and LiveJournal, due to its excessive memory consumption.
The cache statistics are collected by the perf tool.6 Here, L1-ref de-
notes the number of L1 cache references, which is the total cache
access number, because all cache accesses must be checked by the
L1 cache firstly. L1-mr denotes the L1 cache miss ratio (the % of
L1 cache miss numbers over L1-ref). L3-ref is the number of L3
cache reference. L3-r is the ratio of the cache reference checked
in L3 cache, such that L3-r = L3-ref/L1-ref. A small L3-r means
that most cache references are hit by the first two level fast cache,
and can be effectively used to measure the performance of the first
2 level fast cache. Cache-mr denotes the percentage of cache refer-
ences missed in all level of cache over the L1-ref.

In Table 3 and Table 4, L1-refs are similar by different orderings.
This is because cache access numbers for the same algorithm to be
tested are similar. The best results for the other measures are high-
lighted in bold. Gorder achieves the smallest cache miss numbers
in all levels of cache, and reduces the cache miss ratio significantly,
especially in the first two cache levels. Compared with Original,
Gorder reduces over 30% cache miss numbers in every cache level
for Flickr and nearly 50% cache miss numbers for sd1-arc. As
indicated by Fig. 9(a) from the viewpoint of Gscore, RCM and
CHDFS are second to Gorder. From the number of cache misses,
RCM occurs 30% more cache miss numbers than Gorder in Flickr

and CHDFS occurs 20% more cache miss numbers than Gorder in
sd1-arc. The cache misses of MINLA, MLOGA and DegSort are
nearly 2 times of Gorder, and METIS orderings occur 30% more
cache misses than Gorder on average.

Exp-2 The running time speedup by GO-PQ: We show the speedup
by Gorder comparing with the other orderings. As the basis of
comparison, we first show the running time in second by Gorder

for all graph algorithms over the large real graphs in Table 5. Fig. 9
shows the speedup of Gorder over the other 9 orderings, for every
one of the 9 algorithms on the 8 large graphs. Here, the speedup

6
perf.wiki.kernel.org/index.php

Pokec Flickr LiveJ wiki G+ pld twitter sd1

Tw 13.4s 32.3s 39.5s 181s 719s 0.70h 1.48h 1.57h

Two 40.6s 140.8s 97.4s 536s 0.74h 1.84h 6.02h 4.24h

Rw 93% 92% 91% 82% 93% 97% 96% 97%

Table 8: Computing Time of GO-PQ (s: second, h: hour)

Pokec Flickr LiveJ wiki G+ pld twitter sd1

MINLA 445 510 828 1,796 2,099 2,437 4,134 6,876

MLOGA 5,377 4,324 5,001 14,869 6,431 9,424 12,077 33,169

RCM 1.45 1.75 3.48 14.95 29.39 45.46 144 120

DegSort 0.14 0.17 0.44 1.01 2.86 4.35 5.92 9.72

CHDFS 0.53 0.45 1.34 3.52 10.60 13.47 27.68 36.82

SlashBurn 1,309 231 2,110 5,471 18,363 10,690 12,986 22,649

LDG 12.00 21.82 103 586 4,351 9,987 21,078 25,024

METIS 209 571 492 – – – – –

Gorder 13.43 32.30 39.54 181 719 2,502 5,339 5,665

Table 9: Graph Ordering Time (in second)

of Gorder over another ordering X is shown as the relative differ-

ence of T (X)
T (Gorder)

, where T (X) indicates the running time of algo-

rithm on the ordering X . Note that the running time of T (Gorder)
is shown in Table 5 as the basis. In Fig. 9, for an ordering X ,
if its y-axis value β > 1, it means that Gorder outperforms the
ordering X in β times. Otherwise, the ordering X outperforms
Gorder. There are in total 72 (8× 9) pairs of graph algorithms and
graph datasets. From Fig. 9, we see that the graph algorithms run
fastest using Gorder. Gorder can achieve the best with the posi-
tive speedup (> 1) compared to the other orderings over 69 out of
72 cases, in nearly every testing. The best speedup of Gorder over
the Original ordering is larger than 2. There are only 3 out of 72
cases that Gorder fails to win the best (speedup < 1) but Gorder
is very close to the best results (speedup ≥ 0.92). Besides, we
have the following observations. (a) The speedup of the running
time by Gorder becomes more significant while the graph size in-
creases. Compared with Pokec, Flickr and LiveJournal, the other
5 datasets are much larger with at least 10 million nodes and 300
million edges. Given the small CPU cache, only limited graph in-
formation can be located within the CPU cache and hence the effect
of the cache usage becomes more significant for large graphs. (b)
Gorder shows different speedup performance for different graph
algorithms. DS and Kcore algorithms use a heap-like data struc-
ture which is not cache friendly in nature and thus influences the
speedup of Gorder. RCM is ordered by a BFS-like graph ordering
method and so it has comparable performance with Gorder in BFS
and SP algorithms. (c) The speedup results are consistent with the
cache performance of different orderings shown in the Table 3 and
Table 4. Furthermore, to give the details, we show the L1 CPU
cache miss ratio of all the 10 orderings when testing the 9 graph
algorithms over Flickr and sd1-arc in Table 6 and Table 7. These
results confirm that the running time of graph algorithms is greatly
influenced by the cache performance.

Exp-3: Computing Gorder by GO-PQ: We show the computing
time to compute Gorder based on F (·). The basic algorithm Al-
gorithm 1 cannot process the large datasets within the limited time
and the results are omitted. We use GO-PQ algorithm to compute
the graph orderings and show the effectiveness of our new priority
queue operations by lazy-update strategy. Let Tw and Two be the
computing time for GO-PQ with and without the lazy-update strat-
egy, and let Rw denote the ratio of key update operations pruned by
the lazy-update strategy. Table 8 shows that over 90% operations
are pruned in most cases. With the lazy-update, GO-PQ runs very
fast for Pokec, Flickr and LiveJournal that have millions of nodes
and edges. For the largest billion-edge graphs like twitter (61.57
millions of nodes and 1,468 millions of edges) and sd1-arc (94.94

Order Pokec Flickr LiveJ wiki G+ pld twitter sd

Original 1,187 750 3,040 10,503 23,128 21,961 48,238 50,784

MINLA 1,176 843 3,471 10,322 25,543 20,698 44,536 48,218

MLOGA 1,181 787 3,427 10,121 24,229 20,829 45,698 48,899

RCM 1,091 673 2,883 7,272 20,371 18,657 40,730 36,334

DegSort 1,188 815 3,281 9,500 24,799 21,278 44,228 47,723

CHDFS 1,107 690 2,934 7,600 21,150 17,732 39,517 36,585

SlashBurn 1,219 810 3,452 10,031 24,616 21,564 44,261 45,134

LDG 1,168 793 2,940 10,137 23,569 22,740 47,841 55,234

METIS 1,131 843 3,232 – – – – –

Gorder 1,003 620 2,556 5,932 17,936 14,389 32,808 30,202

Table 10: Running Time of Diam (in second)

millions of nodes and 1,937 millions of edges), the computing time
Tw are about 1.5 hours. The computing time of the other orderings
are listed in Table 9. DegSort is the fastest because it simply sorts
the node set based on the degree information. RCM and CHDFS

are also faster than Gorder because both of them are obtained by the
variants of BFS traversal. However, it is important to note all graph
orderings, including Gorder by GO-PQ, are computed offline. The
cost saving by using Gorder for graph algorithm is huge, as it is the
total number of times of running a graph algorithm multiplied by
the cost saving for a single execution of the graph algorithm. For
some graph algorithms which require long computation time, the
time saving in a single execution is huge enough to cover the of-
fline ordering time, for example, Diam. We test Diam and show the
results in Table 10. For large datasets twitter and sd1-arc, Gorder
can save more than 6,000 seconds computing time even comparing
with RCM and CHDFS.

Four additional experiments are given in Appendix. We demon-
strate that Gorder can further accelerate a specialized BFS algo-
rithm, which aims to optimize the cache performance during the
graph traversal. Besides, we test the performance of Gorder under
multicore environment and graph systems. We also run graph algo-
rithms with profiling tools in datasets with Gorder. At the end, we
study Gorder in dynamic scenario with graph updates.

5. CONCLUSION
In this paper, we explore a general approach to reduce the CPU

cache miss ratio for graph algorithms with their implementations
and data structures unchanged. This problem is challenging, given
graphs are rather complex and the graph algorithms designed are
based on different techniques. We study graph ordering, which is to
find the optimal permutation φ among all nodes in a given graph G
by keeping nodes that will be frequently accessed together locally
in a window of size w, in order to minimize the CPU cache miss
ratio. We prove the graph ordering problem is NP-hard, and give a
new GO-PQ algorithm with a bounded 1

2w
-approximation in time

complexity O(
∑

u∈V
(dO(u))

2), where dO(u) is the out-degree of
node u in G. Since the number of updates is huge, we further pro-
pose the lazy-update strategy to reduce the cost of maintaining the
priority queue significantly. We conducted extensive experimental
studies to evaluate our approach in comparison with other 9 possi-
ble graph orderings using 8 large real graphs and 9 representative
graph algorithms. We confirm the efficiency of our graph ordering.
In nearly all testings, our graph ordering outperforms others. The
best speedup is > 2 in testing different graph algorithms over large
real graphs.

ACKNOWLEDGEMENTS: We thank Zhigang Wang to help conducting

the experiments in graph systems. This work was partially supported by the

grant of the Research Grants Council of the Hong Kong SAR, China No.

14209314 and Xuemin Lin was partially supported by ARC DP150102728,

DP140103578 and NSFC 61232006.

6. REFERENCES
[1] The Boost Graph Library: User Guide and Reference Manual.

Addison-Wesley Longman Publishing Co., Inc., 2002.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. Dbmss on a
modern processor: Where does time go? In Proc. of VLDB’99, 1999.

[3] L. Auroux, M. Burelle, and R. Erra. Reordering very large graphs for
fun & profit. In International Symposium on Web AlGorithms, 2015.

[4] J. Banerjee, W. Kim, S. Kim, and J. F. Garza. Clustering a DAG for
CAD databases. IEEE Trans. Software Eng., 1988.

[5] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores
decomposition of networks. CoRR, cs.DS/0310049, 2003.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: a multiresolution coordinate-free ordering for
compressing social networks. In Proc. of WWW’11, 2011.

[7] P. Boldi, M. Santini, and S. Vigna. Permuting web graphs. In Proc. of
WAW’09, 2009.

[8] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski,
and J. Rattner. Platform 2015: Intel processor and platform evolution
for the next decade. Technology, 2005.

[9] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently
computing k-edge connected components via graph decomposition.
In Proc. of SIGMOD’13, 2013.

[10] M. Charikar, M. T. Hajiaghayi, H. Karloff, and S. Rao. l2 spreading
metrics for vertex ordering problems. In Proc. of SODA’06, 2006.

[11] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving
hash join performance through prefetching. In Proc. of ICDE’04,
2004.

[12] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index
performance through prefetching. In Proc. of SIGMOD’01, 2001.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On compressing social networks. In
Proc. of KDD’09, 2009.

[14] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In Proceedings of PLDI, Atlanta, Georgia, USA,
1999.

[15] P. Z. Chinn, J. Chvatalova, A. K. Dewdney, and N. E. Gibbs. The
bandwidth problem for graphs and matrices - a survey. Journal of

Graph Theory, 6(3), 1982.

[16] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3), 1979.

[17] J. Cieslewicz and K. Ross. Database optimizations for modern
hardware. Proc of the IEEE, 96(5), 2008.

[18] E. Cockayne. Domination of undirected graphs - a survey. In Theory

and Applications of Graphs, pages 141–147. Springer, 1978.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT press Cambridge, 2 edition, 2001.

[20] M. Fisher, G. Nemhauser, and L. Wolsey. An analysis of
approximations for finding a maximum weight hamiltonian circuit.
Operations Research, 27(4), 1979.

[21] M. R. Gary and D. S. Johnson. Computers and intractability: A guide
to the theory of np-completeness, 1979.

[22] A. George and J. W. Liu. Computer solution of large sparse positive
definite. 1981.

[23] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-K.
Chen, and P. Dubey. Cache-conscious frequent pattern mining on a
modern processor. In Proc. of VLDB’05, 2005.

[24] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and
D. Song. Evolution of social-attribute networks: measurements,
modeling, and implications using google+. In Proc. of IMC’12, 2012.

[25] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI Hollywood, CA, USA, 2012.

[26] C. M. Grinstead and J. L. Snell. Introduction to probability.
American Mathematical Soc., 2012.

[27] L. H. Harper. Optimal assignments of numbers to vertices. Journal of
the Society for Industrial and Applied Mathematics, 1964.

[28] U. Kang and C. Faloutsos. Beyond ‘caveman communities’: Hubs
and spokes for graph compression and mining. In Proc. of ICDM’11,
2011.

[29] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. J. Parallel Distrib. Comput., 48(1), 1998.

[30] M. G. Kendall. A new measure of rank correlation. Biometrika, 1938.

[31] Y. Koren and D. Harel. A multi-scale algorithm for the linear
arrangement problem. In Graph-Theoretic Concepts in Computer

Science. Springer, 2002.

[32] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a PC. In OSDI Hollywood, CA, USA, 2012.

[33] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social and
information networks. In Proc. of WWW’08, 2008.

[34] P. Lindstrom and D. Rajan. Optimal hierarchical layouts for
cache-oblivious search trees. In Proc. of ICDE’14, 2014.

[35] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for
recursive data structures. In Proc. of ASPLOS’96, 1996.

[36] The Apache Software Foundation. Giraph website.
http://giraph.apache.org.

[37] A. O. Mendelzon and C. G. Mendioroz. Graph clustering and
caching. In Computer Science 2. Springer, 1994.

[38] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. 1999.

[39] J. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms
for improved cache performance. IEEE Trans. Parallel Distrib. Syst.,
15(9), 2004.

[40] J. Petit. Experiments on the minimum linear arrangement problem.
Journal of Experimental Algorithmics (JEA), 2003.

[41] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In Proc. of VLDB’99, 1999.

[42] J. Rao and K. A. Ross. Making b+- trees cache conscious in main
memory. In Proc. of SIGMOD’00, 2000.

[43] I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear
ordering problems. Journal of Experimental Algorithmics (JEA),
2009.

[44] I. Safro and B. Temkin. Multiscale approach for the network
compression-friendly ordering. Journal of Discrete Algorithms, 2011.

[45] A. I. Serdyukov. An algorithm with an estimate for the traveling
salesman problem of the maximum. Upravlyaemye Sistemy,
25:80–86, 1984.

[46] Y. Shao, B. Cui, and L. Ma. PAGE: A partition aware engine for
parallel graph computation. IEEE Trans. Knowl. Data Eng., 27(2),
2015.

[47] M. Sharir. A strong-connectivity algorithm and its applications in
data flow analysis. Computers & Mathematics with Applications,
7(1), 1981.

[48] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In Proc. of KDD’12, 2012.

[49] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo. The more the merrier:
Efficient multi-source graph traversal. PVLDB, 8(4), 2014.

[50] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From “think like a vertex" to “think like a graph". PVLDB, 7(3),
2013.

[51] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke. Fast iterative
graph computation with block updates. PVLDB, 6(14), 2013.

[52] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs.
PVLDB, 7(14), 2014.

APPENDIX

CPU caches: In computer systems, the CPU cache plays a very im-
portant role to speedup computing by loading data from compara-
tive low speed main memory to high speed CPU cache and keeping
frequently accessed data in the CPU cache. In brief, most mod-
ern CPUs are equipped with three-level caches, namely, L1/L2/L3,
where an individual core is associated with its L1 and L2 caches,
and many cores share the same L3 cache. With the three-level CPU
cache, in computing, the CPU checks whether the requested data is
in the fastest L1 cache, then L2 cache and the slowest L3 cache. If
all CPU caches do not have the data, then the CPU copies a unit of
data pieces containing the requested data from the main memory to

1

2

n

1 2 n

..
..
..

......

(a) Adjacent Matrix

1

2

n

..
..

..

(b) Adjacent List

Figure 10: Graph Representations

the CPU cache. The unit of data to be transferred between the CPU
cache and the main memory is a CPU cache line, which is small
in size, e.g., 64 bytes (64B). In general, the L1 cache is smallest
and fastest, the L2 cache is relative larger and comparative slower,
and the L3 cache is the largest and is the slowest. Take Intel CPU
since Core i3 as an example. The sizes of L1 and L2 are 64KB
and 256KB, and the size of L3 is in the range of 3MB to 20MB.
The latency of L1, L2, L3 cache and memory is about 1, 3, 10, and
60 nanoseconds, respectively, if the corresponding cache miss oc-
curs.7 The latency of memory is high due to the fact that the CPU
needs to copy the cache line containing data from main memory to
the CPU cache. Given the fact that there exists a wide speed gap
between the CPU cache and the memory, reducing the cache miss
ratio on all three level CPU caches can significantly improve the
performance. On the other hand, the long latency of the memory
access will exist in a long period of time due to the “memory wall”
effect, which is caused by the fact that the slow improvement of
memory access time in chip industry cannot follow the pace of the
processor’s increasing clock frequency [8].

Graph algorithm implementation: To implement graph algorithms,
the well-known data structures to represent a graph G = (V,E) are
adjacency-matrix and adjacency-list [19]. The adjacency-matrix is
not the first choice in practice since it represents a graph using a
matrix which consumes large memory space, n × n, where n is
the number of nodes (Fig. 10(a)). The adjacency-list maintains a
graph G using an array of n lists. First, there is an array Adj of
size n to maintain all nodes. Second, for any node v in the array
Adj, denoted as Adj[v], there is a list of neighbor nodes u, if there
is an edge (v, u) in E. Such a list of neighbor nodes can be repre-
sented by either an array or a linked list, and the array representa-
tion (Fig. 10(b)) is desirable to avoid the pointer-chasing problem
which causes the CPU cache miss [35]. It is worth noting that, in
addition to the list of neighbor nodes, graph algorithms may main-
tain some additional information in Adj[v] to achieve efficiency.
For example, for PR, in Adj[v], it may maintain the node degree as
well as the PageRank value for every node v to compute PraageR-
ank iteratively, where the degree is represented by an integer type
of 4 bytes and the PageRank value is represented by a double type
of 8 bytes. In short, graph algorithms are implemented by the best
data structure to achieve high efficiency in dealing with complex
large graphs.

The proof of Theorem 2.1: We prove it by showing that the spe-
cial case (w = 1) is NP-hard. The NP-hardness of the graph or-
dering problem with w = 1 can be shown via a reduction from
the Hamiltonian path problem, which is to determine whether there
exists a path that visits every node of V (G) exactly once for a
given undirected graph G = (V,E). The Hamiltonian path prob-
lem is known as NP-complete [21]. We denote the Hamiltonian

7
software.intel.com/sites/products/collateral/hpc/

vtune/performance_analysis_guide.pdf

path as H(G) = (v1, v2, · · · , vn), where (vi, vi+1) ∈ E(G), for
1 ≤ i < n.

For an arbitrary undirected graph G = (V,E) with n nodes
and m edges, we construct a directed graph G′ as follows. Let
V (G′) = V (G) and E(G′) = ∅, initially. Then, for every edge
(u, v) ∈ E(G), we add 3 new nodes, denoted as xuv1, xuv2, and
xuv3, into V (G′), such that V (G′) = V (G′)∪ {xuv1, xuv2, xuv3},
and add 6 new directed edges into E(G′) as E(G′) = E(G′) ∪
{(xuv1, u), (xuv1, v), (xuv2, u), (xuv2, v), (xuv3, u), (xuv3, v)}.
As can be observed, by such construction of G′, if 2 nodes, u and v,
are neighbors in G, they share 3 common in-neighbors in G′. Let
V (G′) = V (G) ∪ X , where X is the set of all newly added nodes.
We have |V (G′)| = n+3m for |X| = 3m. Note that E(G′) does
not include any edges from E(G) by the graph construction. All
edges in E(G′) are newly added from the newly added nodes to the
nodes in V (G). In other words, there is no edge between any two
nodes in V (G′) \X , and there is no edge between any two nodes
in X .

Below, we show that the Hamiltonian path, H(G), exists for G
iff there exists a graph ordering φ for G′ with F (φ) = 3(n−1)+2.

Let H(G) be the Hamiltonian path found for G, a graph order-
ing φ found for G′ is φ(G′) = (· · · , xi, v1, v2, · · · , vn, xj , · · ·),
where (v1, v2, · · · , vn) is the Hamiltonian path, H(G), of G that
appears continuously in φ without any xi ∈ X in between, xi is
an in-neighbor of v1, and xj is an in-neighbor of vn. Here, since
(v1, · · · , vn) is the Hamiltonian path of G, we have S(vi, vi+1) =
3 for 1 ≤ i ≤ n − 1 in G′. Also, we have S(xi, v1) = 1 and
S(vn, xj) = 1 due to their neighboring relationship constructed in
G′, and S(xi, xj) = 0 due to the fact that there are no edges among
any two nodes, xi and xj , in G′. Thus, F (φ) = 3(n − 1) + 2 for
the graph ordering φ in G′.

Next, given the graph G′ constructed, let the graph ordering φ
found in G′ be φ(G′) = (· · · , up1 , · · · , up2 , · · · , up3 , · · ·) where
upi is a node in V (G), and upi+1

is the next node of upi that also
appears in V (G), for 1 ≤ i ≤ n − 1. We show that the Hamilto-
nian path of G is a consecutive sequence in φ found for G′ when the
maximum score F (φ) = 3(n− 1)+2 is achieved. In other words,
the maximum score cannot be achieved if there are nodes in X (=
V (G′) \ V (G)) appearing between any two nodes, upi and upi+1

,
in φ. First, we show that F (φ) = 3(n− 1) + 2 cannot be achieved
if there are nodes in X appearing between two nodes in V (G). As-
sume that there are nodes in X appearing between upi and upi+1

such as φ[upi , upi+1
] = (upi , xi1 , xi2 , · · · , xis , upi+1

). Recall
that in G′, S(xi, xj) = 0 for any two nodes xi, xj ∈ X , and
S(x, u) ≤ 1 and S(u, x) ≤ 1 for any node x ∈ X and any node
u ∈ V (G). Therefore, F (φ[upi , upi+1

]) ≤ 2, and hence the score
for the entire φ is less than 3(n − 1) + 2 if there exists such a
subsequence in φ. Second, we show that the maximum score ob-
tained for φ is 3(n − 1) + 2. Since the optimal score cannot be
obtained if there are nodes in X appearing between two nodes in
V (G), the graph ordering φ consists of 3 sequences, X1, V (G),
and X2 in such an order, where X1 ∪X2 = X = V (G′) \ V (G).
The scores F (X1) and F (X2) for the two sequences X1 and X2

are zero, since they do not any edges among themselves. The max
score of the sequence for V (G) is 3(n−1) if every two consecutive
nodes, upi and upi+1

for 1 ≤ i < n share 3 in-coming neighbors.
Also, the max score between the last node in the sequence for X1

and the first node in the sequence for V (G) is 1, and the max score
between the last node in the sequence for V (G) and the first node
in the sequence for X2 is 1.

The graph ordering problem is NP-hard, since its special case is
equivalent to the Hamiltonian path problem, which is NP-complete.

✷

The proof sketch of Theorem 3.2: It requires O(n) iterations to
compute the permutation iteratively (line 3-10). In each iteration,
it scans the set of the remaining nodes VR (line 5-8) in O(n), and
computes the scores between the scanned node and the nodes in the
window (line 6) in O(w · dmax). The total time complexity of GO
(Algorithm 1) is O(w · dmax · n2). ✷

The proof sketch of Theorem 3.3: Regarding time complexity,
there are two terms. The first term is related to the updates (incKey
and decKey). For every node v ∈ G, the updates occur only twice
for v’s neighbors and siblings, one for incKey and one for decKey,
when v is to join/leave the window. Overall, computing neighbor-
ing relationships in G is O(m), and computing sibling relation-
ships in G is O(

∑

v

∑

u∈NI(v)
dO(u)). Here, O(

∑

v

∑

u∈NI(v)

dO(u)) = O(
∑

(u,v)∈E
dO(u)) = O(

∑

u
(dO(u))

2). Thus, we

have O(m+
∑

v

∑

u∈NI(v)
dO(u)) = O(m +

∑

u
(dO(u))

2) =

O(
∑

u
(dO(u))

2), since m <
∑

u
(dO(u))

2. The second term is
related to inserting vmax into P by popping it fromQ in all n itera-
tions. The time complexity for GO-PQ is O(µ ·∑

u∈V
(dO(u))

2+
n · ̺). ✷

The proof sketch of Theorem 3.4: Let’s see the time complexity
got by Theorem 3.3. First, the time complexity of µ related to
updates is O(1), because both decKey(vi) and incKey(vi) are in
O(1), as Algorithm 3 and Algorithm 4. The pop() needs to adjust
the linked list when update(top) < 0. When update(top) < 0,
by key(top) ← key(top) + update(top), update(top) will be set
to zero. Here the time complexity of pop() is O(n) in the worst
case. However, pop() is in the reverse of incKey which increases
the key values. The total key value decreased by pop() cannot
be larger than the total key values increased by incKey. In other
words, the total time consumption on pop() for all nodes, related
to O(̺ · n), cannot be larger than the overall time consumption
on incKey. Since the overall time consumption on incKey is at
most as large as the number of neighboring and sibling relationship
pairs, O(m +

∑

u∈V
(dO(u))

2) = O(
∑

u∈V
(dO(u))

2), the time

complexity of GO-PQ algorithm is in O(
∑

u∈V
(dO(u))

2). ✷

The proof sketch of Theorem 3.5: We consider the sequence of
key updates over vi as a one-dimensional random walk, which
starts at 0 and moves +1 (incKey(vi)) or -1 (decKey(vi)) with
equal probability at each step. Let ML be the max number that the
random walk reaches after L steps. It is worth noting that ML in-
dicates the number of data structure adjustments in incKey(vi) that
satisfies the condition of update(vi) > 0. We have ML ≥ 0 and
λL
vi
≥ 0. The step of moving +1 corresponds to incKey whereas

the step of moving -1 corresponds to decKey. For every step of
moving -1, it does not affect the max number of ML. For every
step of moving +1, ML increases further only when the sum of
the previous moving steps is larger than the current ML, and ad-
justing the doubly linked list for vi only occurs when ML further
increases. Hence, we have E(λL

vi
) = E(ML). Based on the re-

sult in [26] (Page 481), we have E(ML) ∼
√

2L
π

for a sufficiently

large L, which completes the proof. ✷

Example-A: Consider the example G in Fig. 2. Supposed the GO
algorithm has already inserted (v6, v9, v5, v1, v2) into the array
of P after 5 iterations and the window size w = 3. The current
window consists of the last three nodes, (v5, v1, v2). Here, v2
is the newest node inserted into the window and will be removed
from the window after 3 new nodes to be inserted in the following
3 iterations. In these 3 iterations in the GO algorithm, the local-
ity score between v2 and the remaining nodes that have not been
inserted into P need to be repeatedly computed in line 5-6. On

(a) The priority queue Q
Node ID prev next key update

v1 ∅ ∅ 3 0

v2 ∅ ∅ 4 0

v3 v7 v8 2 -2

v4 ∅ v10 3 0

v5 ∅ ∅ 2 0

v6 ∅ ∅ 0 0

v7 v11 v3 2 -2

v8 v3 v12 2 -2

v9 ∅ ∅ 2 0

v10 v4 v11 3 0

v11 v10 v7 3 0

v12 v8 ∅ 2 -2

(b) The headQh

key head end

0 ∅ ∅
1 ∅ ∅
2 v7 v12

3 v4 v11

4 ∅ ∅

Table 11: A snapshot of Q

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki G+ pld

sp
e
e
d
u
p
 o

f
G

o
rd

e
r

(a) BFS256

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki G+ pld

sp
e
e
d
u
p
 o

f
G

o
rd

e
r

(b) BFS256 (4 threads)

Figure 11: Optimized BFS

the other hand, the GO algorithm wastes time to compute it for v3,
v7, v8 and v11 in line 5-6, although they have no neighbor/sibling
relationships with the nodes in the window.

Example-B: To reduce the cost for the repeated computation, the
GO-PQ algorithm uses a data structure to record the locality scores
between every remaining node and the nodes of the window, and
only updates the locality scores of the necessary nodes. Since the
data structure needs to efficiently find the node with the highest lo-
cality score in every iteration, it is implemented as a priority queue
denoted as Q. Assume that GO-PQ has inserted (v6, v9, v5, v1, v2)
into the array P . In the next iteration in the GO-PQ algorithm, we
insert v4, which is the node having the largest score, into P , and
perform incKey(·) operations for all neighbors and siblings of v4
that have not been inserted yet, namely, v10 and v11. Node v5 is
the oldest node in the current window. So the GO-PQ algorithm re-
moves v5 from the window and perform decKey(·) operations for
all neighbors and siblings of v5 that have not been inserted, namely,
v10 and v11. No computation is needed for the nodes v3, v7, v8 and
v11. Finally, the resulting graph ordering is φ = (v6, v9, v5, v1, v2,
v4, v10, v11, v7, v3, v8, v12). ✷

Example-C: Supposed the GO-PQ algorithm has already inserted
(v6, v9, v5, v1, v2) into the array of P and the window of size
w = 3 contains v5, v1, and v2. Table 11 shows the snapshot of Q,
where the top points to v4 which will be returned as the node vmax

with the max true key value in this iteration. Since the update(·)
for v3, v7, v8, v12 is -2, at least, the next two incKey(·) for them
do not need to adjust the doubly linked list. ✷

Additional Exp-A: Optimized BFS and multicore performance:
The recent work [49] designs a specialized BFS algorithm aiming
to improve the cache performance during graph traversal. Gorder

can further improve the cache usage of the optimized graph traver-
sal algorithms. Fig. 11(a) shows the speedup of Gorder when ap-
plied for the best optimized BFS algorithm of [49], BFS256. It
utilizes SIMD instructions and 256-bit wide registers. Here, the
speedup of Gorder is the ratio of the running time by BFS256 us-
ing the original datasets over the running time by BFS256 in the

1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki G+ pld twitter sd1

sp
e
e
d
u
p
 o

f
G

o
rd

e
r

Figure 12: PageRank (4 threads)

0.95
1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki G+ pld twitter sd1

s
p
e
e
d
u
p
 o

f
G

o
rd

e
r

(a) GraphChi

0.95
1.0

1.1

1.2

1.3

1.4

>1.5

Pokec Flickr LiveJ wiki G+ pld

s
p
e
e
d
u
p
 o

f
G

o
rd

e
r

(b) PowerGraph

Figure 13: PageRank on Graph Systems

datasets withGorder. BFS256 cannot deal with the largest 2 dataset
twitter and sd1-arc. The speedup of Gorder in BFS256 algorithm
in Fig. 11(a) is close to that in basic BFS algorithm in Fig. 9(c).
It shows that Gorder can be used to further support the algorithms
like BFS256 to enhance the performance. Furthermore, we test the
performance of Gorder under multicore environment and run the
BFS256 and PR with 4 threads (the machine used has 4 physical
core). Fig. 11(b) and Fig. 12 show the speedup results which are
similar with those by the single thread versions. In Fig. 12, the
speedup of Gorder in wikilink and sd1-arc is larger than 2.

The cache performance in a multicore environment is also the
bottleneck of the graph computing, as shown in the single core
graph computing in Fig. 1. This is because in a multicore envi-
ronment, even though every core has its own L1/L2 cache, all cores
share the same L3 cache which makes the cache resource even more
limited to every core.

Additional Exp-B: Graph Systems: In real applications, graph
data can be too large to be fit into one machine’s memory. Many
graph systems have been developed in recent years to support scal-
able graph computing. We conduct testing using two graph sys-
tems, GraphChi [32] and PowerGraph [25]. Here, GraphChi is a
graph system developed on just a PC by storing the graph data in the
external disk and loading the requested graph data into the memory
when necessary. On the other hand, PowerGraph is the representa-
tives of distributed graph system, which partitions the large graph
into several partitions and store them separately in a cluster of ma-
chines. For testing GraphChi, we install GraphChi on the same
Linux server to be used for all testing. For testing PowerGraph, we
install them in a cluster of 32 machines which are equipped with
Intel Core i3-2100 CPU and 8GB memory.

Fig. 13(a) shows the speedup of Gorder when running the PageR-
ank algorithm in GraphChi. The speedup of Gorder in wikilink

and sd1-arc is more than 1.8 times. Compared with Fig. 9(g), we
can see that the improvement of cache performance by Gorder on
GraphChi is significant. This is because GraphChi attempts to op-
timize the random access program and Gorder is able to reduce
the random access problem greatly by storing the nodes with high
locality.

Fig. 13(b) shows the speedup of Gorder when running the PageR-
ank algorithm in PowerGraph. The speedup results for the two
largest graphs twitter and sd1-arc are missing, because the 32 ma-
chine cluster used cannot run the two datasets successfully due to

1.0

1.2

1.4

1.6

1.8

>2

NQ BFS DFS SCC SP PR DS Kcore Diam

s
p
e
e
d
u
p
 o

f
G

o
rd

e
r

(a) Profiling in Flickr

1.0

1.2

1.4

1.6

1.8

>2

NQ BFS DFS SCC SP PR DS Kcore Diam

s
p
e
e
d
u
p
 o

f
G

o
rd

e
r

(b) Profiling in sd1-arc

Figure 14: Profiling

S S’

0

1e+7

2e+7

3e+7

4e+7

0 -5% -10% -15% -20% -25% -30%

G
sc

o
re

(a) Delete Edges

0

1e+7

2e+7

3e+7

4e+7

0 +5% +10% +15% +20% +25% +30%

G
sc

o
re

(b) Insert Edges

0

1e+7

2e+7

3e+7

4e+7

0 -5% -10% -15% -20%

G
sc

o
re

(c) Delete Nodes

0

1e+7

2e+7

3e+7

4e+7

0 +5% +10% +15% +20%

G
sc

o
re

(d) Insert Nodes

Figure 15: Graph Updates in Flickr

the excessive memory usage on node replication. It is worth men-
tioning that PowerGraph has its own mechanism to partition the
graph into the clusters of machines. This implies that nodes with
close IDs, as done by Gorder, are not necessary to be allocated into
the same machine. Nevertheless, Gorder provides a good initial
ordering, which boosts the PowerGraph system to generate a good
graph partitions and the graph algorithms running on the system
can benefit from Gorder through the good partition. On the other
hand, we find that the improvement by Gorder on Giraph [36] is
less obvious. Here, Giraph is optimized for simple partition strate-
gies and a high quality graph partition may not lead to the good
performance. It is the implementation issues according to the em-
pirical study of [46].

In general, the issue of applying Gorder to a distributed graph
system is rather complicated. A key issue is whether the graph par-
titioning used in a distributed graph system can take the advantage
of Gorder, among many factors that influence the performance of
distributed graph system, such as load balancing. We plan to study
it as our future work.

Additional Exp-C:Gorder with Profiling: Profiling tool can record
the statistics information, including the frequency of function calls,
the function workload and branch probability, during the previous
runs of the graph algorithms. The compiler GCC can use these
historical statistics information to optimize the code if the pro-
gram is compiled with the GCC parameter -fprofile-generate and
-fprofile-use.8 We compile the program with the GCC profiling
tools and run the graph algorithms in datasets with original order
and Gorder to make the comparisons. The results are shown in
Fig. 14. Profiling information does improve the graph computing

8
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

time when running the optimized code in original datasets. Also
profiling information can help graph algorithms running with our
Gorder even faster. In Fig. 14, the speedup of Gorder for every
graph algorithm is nearly the same comparing with the speedup re-
sult running without profiling information shown in Fig. 9. As the
analysis of Exp-2 in Section 4, in Fig. 14, the speedup of Gorder
in large dataset sd1-arc is much more significant than the results in
small dataset Flickr because the cache can hold very limited infor-
mation of large graph when running the graph algorithms.

Additional Exp-D: Graph Update: In practice, graphs need to
be updated by insertion/deletion of nodes/edges. It is costly to
recompute the Gorder for every update of the graph. Here, we
show the performance of Gorder, without any recomputing, when
nodes/edges are inserted/deleted. In other words, we do not up-
date the Gorder for any edge insertion/deletion and node removal.
The node IDs remain unchanged in these cases. For node inser-
tion, we simply put the node to be inserted at the end of Gorder and
assign it with a new node ID in order. For node deletion, we sim-
ply remove the nodes from the datasets. To test node-deletion and
node-insertion, we do the following. We randomly delete nodes up
to 20% of the total number of nodes in a graph dataset for node
deletion, and then we insert the deleted nodes back to the graph
incrementally for node insertion. To test edge-deletion and edge-
insertion, we also randomly delete edges up to 30% of the total
number of edges in a graph dataset for edge deletion, and then we
insert the deleted edges back to the graph incrementally for edge
insertion. In the figures, we show the difference with and with-
out recomputing. Here, S denote the Gscore of the node ordering
without recomputing, and S′ denote the Gscore of the node or-
dering by recomputing after updates. Fig. 15 shows the results in
Flickr. Fig. 15(a) shows the influence of Gscore after deleting 5%-
30% edges randomly from the original graph. Fig. 15(b) shows
the influence of Gscore after adding back 5%-30% edges randomly
selected. Gorder is not sensitive to the edge insertion/deletion.
Fig. 15(c) and Fig. 15(d) show the results of node insertion/deletion.
Note that deleting x% nodes causes deleting about 2x% adjacent
edges. Inserting a large number the new nodes at the end has im-
pacts on the performance. Based on the results, the recomputing
timing can be determined.

