# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # /// script # dependencies = [ # "trl", # "Pillow>=9.4.0", # ] # /// """ pip install pillow # Tested on 8x H100 GPUs accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/sft_vlm.py \ --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ --model_name_or_path llava-hf/llava-1.5-7b-hf \ --gradient_accumulation_steps 8 \ --output_dir LLaVA-1.5-7B-SFT \ --torch_dtype bfloat16 For LLaVA-NeXT, use: (requires transformers>=4.45) --model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) --model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/sft_vlm.py \ --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ --model_name_or_path HuggingFaceTB/SmolVLM-Instruct \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 1 \ --output_dir SmolVLM-SFT \ --torch_dtype bfloat16 \ --use_peft \ --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj """ import torch from datasets import load_dataset from transformers import AutoModelForImageTextToText from trl import ( ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) if __name__ == "__main__": parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) training_args.max_length = None ################ # Model, Tokenizer & Processor ################ torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, torch_dtype=torch_dtype, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForImageTextToText.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) ################ # Training ################ trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, peft_config=get_peft_config(model_args), ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)