--- name: llamaindex description: Data framework for building LLM applications with RAG. Specializes in document ingestion (300+ connectors), indexing, and querying. Features vector indices, query engines, agents, and multi-modal support. Use for document Q&A, chatbots, knowledge retrieval, or building RAG pipelines. Best for data-centric LLM applications. version: 1.0.0 author: Orchestra Research license: MIT tags: [Agents, LlamaIndex, RAG, Document Ingestion, Vector Indices, Query Engines, Knowledge Retrieval, Data Framework, Multimodal, Private Data, Connectors] dependencies: [llama-index, openai, anthropic] --- # LlamaIndex - Data Framework for LLM Applications The leading framework for connecting LLMs with your data. ## When to use LlamaIndex **Use LlamaIndex when:** - Building RAG (retrieval-augmented generation) applications - Need document question-answering over private data - Ingesting data from multiple sources (300+ connectors) - Creating knowledge bases for LLMs - Building chatbots with enterprise data - Need structured data extraction from documents **Metrics**: - **45,100+ GitHub stars** - **23,000+ repositories** use LlamaIndex - **300+ data connectors** (LlamaHub) - **1,715+ contributors** - **v0.14.7** (stable) **Use alternatives instead**: - **LangChain**: More general-purpose, better for agents - **Haystack**: Production search pipelines - **txtai**: Lightweight semantic search - **Chroma**: Just need vector storage ## Quick start ### Installation ```bash # Starter package (recommended) pip install llama-index # Or minimal core + specific integrations pip install llama-index-core pip install llama-index-llms-openai pip install llama-index-embeddings-openai ``` ### 5-line RAG example ```python from llama_index.core import VectorStoreIndex, SimpleDirectoryReader # Load documents documents = SimpleDirectoryReader("data").load_data() # Create index index = VectorStoreIndex.from_documents(documents) # Query query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response) ``` ## Core concepts ### 1. Data connectors - Load documents ```python from llama_index.core import SimpleDirectoryReader, Document from llama_index.readers.web import SimpleWebPageReader from llama_index.readers.github import GithubRepositoryReader # Directory of files documents = SimpleDirectoryReader("./data").load_data() # Web pages reader = SimpleWebPageReader() documents = reader.load_data(["https://example.com"]) # GitHub repository reader = GithubRepositoryReader(owner="user", repo="repo") documents = reader.load_data(branch="main") # Manual document creation doc = Document( text="This is the document content", metadata={"source": "manual", "date": "2025-01-01"} ) ``` ### 2. Indices - Structure data ```python from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex # Vector index (most common - semantic search) vector_index = VectorStoreIndex.from_documents(documents) # List index (sequential scan) list_index = ListIndex.from_documents(documents) # Tree index (hierarchical summary) tree_index = TreeIndex.from_documents(documents) # Save index index.storage_context.persist(persist_dir="./storage") # Load index from llama_index.core import load_index_from_storage, StorageContext storage_context = StorageContext.from_defaults(persist_dir="./storage") index = load_index_from_storage(storage_context) ``` ### 3. Query engines - Ask questions ```python # Basic query query_engine = index.as_query_engine() response = query_engine.query("What is the main topic?") print(response) # Streaming response query_engine = index.as_query_engine(streaming=True) response = query_engine.query("Explain quantum computing") for text in response.response_gen: print(text, end="", flush=True) # Custom configuration query_engine = index.as_query_engine( similarity_top_k=3, # Return top 3 chunks response_mode="compact", # Or "tree_summarize", "simple_summarize" verbose=True ) ``` ### 4. Retrievers - Find relevant chunks ```python # Vector retriever retriever = index.as_retriever(similarity_top_k=5) nodes = retriever.retrieve("machine learning") # With filtering retriever = index.as_retriever( similarity_top_k=3, filters={"metadata.category": "tutorial"} ) # Custom retriever from llama_index.core.retrievers import BaseRetriever class CustomRetriever(BaseRetriever): def _retrieve(self, query_bundle): # Your custom retrieval logic return nodes ``` ## Agents with tools ### Basic agent ```python from llama_index.core.agent import FunctionAgent from llama_index.llms.openai import OpenAI # Define tools def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b def add(a: int, b: int) -> int: """Add two numbers.""" return a + b # Create agent llm = OpenAI(model="gpt-4o") agent = FunctionAgent.from_tools( tools=[multiply, add], llm=llm, verbose=True ) # Use agent response = agent.chat("What is 25 * 17 + 142?") print(response) ``` ### RAG agent (document search + tools) ```python from llama_index.core.tools import QueryEngineTool # Create index as before index = VectorStoreIndex.from_documents(documents) # Wrap query engine as tool query_tool = QueryEngineTool.from_defaults( query_engine=index.as_query_engine(), name="python_docs", description="Useful for answering questions about Python programming" ) # Agent with document search + calculator agent = FunctionAgent.from_tools( tools=[query_tool, multiply, add], llm=llm ) # Agent decides when to search docs vs calculate response = agent.chat("According to the docs, what is Python used for?") ``` ## Advanced RAG patterns ### Chat engine (conversational) ```python from llama_index.core.chat_engine import CondensePlusContextChatEngine # Chat with memory chat_engine = index.as_chat_engine( chat_mode="condense_plus_context", # Or "context", "react" verbose=True ) # Multi-turn conversation response1 = chat_engine.chat("What is Python?") response2 = chat_engine.chat("Can you give examples?") # Remembers context response3 = chat_engine.chat("What about web frameworks?") ``` ### Metadata filtering ```python from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter # Filter by metadata filters = MetadataFilters( filters=[ ExactMatchFilter(key="category", value="tutorial"), ExactMatchFilter(key="difficulty", value="beginner") ] ) retriever = index.as_retriever( similarity_top_k=3, filters=filters ) query_engine = index.as_query_engine(filters=filters) ``` ### Structured output ```python from pydantic import BaseModel from llama_index.core.output_parsers import PydanticOutputParser class Summary(BaseModel): title: str main_points: list[str] conclusion: str # Get structured response output_parser = PydanticOutputParser(output_cls=Summary) query_engine = index.as_query_engine(output_parser=output_parser) response = query_engine.query("Summarize the document") summary = response # Pydantic model print(summary.title, summary.main_points) ``` ## Data ingestion patterns ### Multiple file types ```python # Load all supported formats documents = SimpleDirectoryReader( "./data", recursive=True, required_exts=[".pdf", ".docx", ".txt", ".md"] ).load_data() ``` ### Web scraping ```python from llama_index.readers.web import BeautifulSoupWebReader reader = BeautifulSoupWebReader() documents = reader.load_data(urls=[ "https://docs.python.org/3/tutorial/", "https://docs.python.org/3/library/" ]) ``` ### Database ```python from llama_index.readers.database import DatabaseReader reader = DatabaseReader( sql_database_uri="postgresql://user:pass@localhost/db" ) documents = reader.load_data(query="SELECT * FROM articles") ``` ### API endpoints ```python from llama_index.readers.json import JSONReader reader = JSONReader() documents = reader.load_data("https://api.example.com/data.json") ``` ## Vector store integrations ### Chroma (local) ```python from llama_index.vector_stores.chroma import ChromaVectorStore import chromadb # Initialize Chroma db = chromadb.PersistentClient(path="./chroma_db") collection = db.get_or_create_collection("my_collection") # Create vector store vector_store = ChromaVectorStore(chroma_collection=collection) # Use in index from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) ``` ### Pinecone (cloud) ```python from llama_index.vector_stores.pinecone import PineconeVectorStore import pinecone # Initialize Pinecone pinecone.init(api_key="your-key", environment="us-west1-gcp") pinecone_index = pinecone.Index("my-index") # Create vector store vector_store = PineconeVectorStore(pinecone_index=pinecone_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) ``` ### FAISS (fast) ```python from llama_index.vector_stores.faiss import FaissVectorStore import faiss # Create FAISS index d = 1536 # Dimension of embeddings faiss_index = faiss.IndexFlatL2(d) vector_store = FaissVectorStore(faiss_index=faiss_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) ``` ## Customization ### Custom LLM ```python from llama_index.llms.anthropic import Anthropic from llama_index.core import Settings # Set global LLM Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929") # Now all queries use Anthropic query_engine = index.as_query_engine() ``` ### Custom embeddings ```python from llama_index.embeddings.huggingface import HuggingFaceEmbedding # Use HuggingFace embeddings Settings.embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2" ) index = VectorStoreIndex.from_documents(documents) ``` ### Custom prompt templates ```python from llama_index.core import PromptTemplate qa_prompt = PromptTemplate( "Context: {context_str}\n" "Question: {query_str}\n" "Answer the question based only on the context. " "If the answer is not in the context, say 'I don't know'.\n" "Answer: " ) query_engine = index.as_query_engine(text_qa_template=qa_prompt) ``` ## Multi-modal RAG ### Image + text ```python from llama_index.core import SimpleDirectoryReader from llama_index.multi_modal_llms.openai import OpenAIMultiModal # Load images and documents documents = SimpleDirectoryReader( "./data", required_exts=[".jpg", ".png", ".pdf"] ).load_data() # Multi-modal index index = VectorStoreIndex.from_documents(documents) # Query with multi-modal LLM multi_modal_llm = OpenAIMultiModal(model="gpt-4o") query_engine = index.as_query_engine(llm=multi_modal_llm) response = query_engine.query("What is in the diagram on page 3?") ``` ## Evaluation ### Response quality ```python from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator # Evaluate relevance relevancy = RelevancyEvaluator() result = relevancy.evaluate_response( query="What is Python?", response=response ) print(f"Relevancy: {result.passing}") # Evaluate faithfulness (no hallucination) faithfulness = FaithfulnessEvaluator() result = faithfulness.evaluate_response( query="What is Python?", response=response ) print(f"Faithfulness: {result.passing}") ``` ## Best practices 1. **Use vector indices for most cases** - Best performance 2. **Save indices to disk** - Avoid re-indexing 3. **Chunk documents properly** - 512-1024 tokens optimal 4. **Add metadata** - Enables filtering and tracking 5. **Use streaming** - Better UX for long responses 6. **Enable verbose during dev** - See retrieval process 7. **Evaluate responses** - Check relevance and faithfulness 8. **Use chat engine for conversations** - Built-in memory 9. **Persist storage** - Don't lose your index 10. **Monitor costs** - Track embedding and LLM usage ## Common patterns ### Document Q&A system ```python # Complete RAG pipeline documents = SimpleDirectoryReader("docs").load_data() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir="./storage") # Query query_engine = index.as_query_engine( similarity_top_k=3, response_mode="compact", verbose=True ) response = query_engine.query("What is the main topic?") print(response) print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}") ``` ### Chatbot with memory ```python # Conversational interface chat_engine = index.as_chat_engine( chat_mode="condense_plus_context", verbose=True ) # Multi-turn chat while True: user_input = input("You: ") if user_input.lower() == "quit": break response = chat_engine.chat(user_input) print(f"Bot: {response}") ``` ## Performance benchmarks | Operation | Latency | Notes | |-----------|---------|-------| | Index 100 docs | ~10-30s | One-time, can persist | | Query (vector) | ~0.5-2s | Retrieval + LLM | | Streaming query | ~0.5s first token | Better UX | | Agent with tools | ~3-8s | Multiple tool calls | ## LlamaIndex vs LangChain | Feature | LlamaIndex | LangChain | |---------|------------|-----------| | **Best for** | RAG, document Q&A | Agents, general LLM apps | | **Data connectors** | 300+ (LlamaHub) | 100+ | | **RAG focus** | Core feature | One of many | | **Learning curve** | Easier for RAG | Steeper | | **Customization** | High | Very high | | **Documentation** | Excellent | Good | **Use LlamaIndex when:** - Your primary use case is RAG - Need many data connectors - Want simpler API for document Q&A - Building knowledge retrieval system **Use LangChain when:** - Building complex agents - Need more general-purpose tools - Want more flexibility - Complex multi-step workflows ## References - **[Query Engines Guide](references/query_engines.md)** - Query modes, customization, streaming - **[Agents Guide](references/agents.md)** - Tool creation, RAG agents, multi-step reasoning - **[Data Connectors Guide](references/data_connectors.md)** - 300+ connectors, custom loaders ## Resources - **GitHub**: https://github.com/run-llama/llama_index ⭐ 45,100+ - **Docs**: https://developers.llamaindex.ai/python/framework/ - **LlamaHub**: https://llamahub.ai (data connectors) - **LlamaCloud**: https://cloud.llamaindex.ai (enterprise) - **Discord**: https://discord.gg/dGcwcsnxhU - **Version**: 0.14.7+ - **License**: MIT