--- name: grpo-rl-training description: Expert guidance for GRPO/RL fine-tuning with TRL for reasoning and task-specific model training version: 1.0.0 author: Orchestra Research license: MIT tags: [Post-Training, Reinforcement Learning, GRPO, TRL, RLHF, Reward Modeling, Reasoning, DPO, PPO, Structured Output] dependencies: [transformers>=4.47.0, trl>=0.14.0, datasets>=3.2.0, peft>=0.14.0, torch] --- # GRPO/RL Training with TRL Expert-level guidance for implementing Group Relative Policy Optimization (GRPO) using the Transformer Reinforcement Learning (TRL) library. This skill provides battle-tested patterns, critical insights, and production-ready workflows for fine-tuning language models with custom reward functions. ## When to Use This Skill Use GRPO training when you need to: - **Enforce specific output formats** (e.g., XML tags, JSON, structured reasoning) - **Teach verifiable tasks** with objective correctness metrics (math, coding, fact-checking) - **Improve reasoning capabilities** by rewarding chain-of-thought patterns - **Align models to domain-specific behaviors** without labeled preference data - **Optimize for multiple objectives** simultaneously (format + correctness + style) **Do NOT use GRPO for:** - Simple supervised fine-tuning tasks (use SFT instead) - Tasks without clear reward signals - When you already have high-quality preference pairs (use DPO/PPO instead) --- ## Core Concepts ### 1. GRPO Algorithm Fundamentals **Key Mechanism:** - Generates **multiple completions** for each prompt (group size: 4-16) - Compares completions within each group using reward functions - Updates policy to favor higher-rewarded responses relative to the group **Critical Difference from PPO:** - No separate reward model needed - More sample-efficient (learns from within-group comparisons) - Simpler to implement and debug **Mathematical Intuition:** ``` For each prompt p: 1. Generate N completions: {c₁, c₂, ..., cₙ} 2. Compute rewards: {r₁, r₂, ..., rₙ} 3. Learn to increase probability of high-reward completions relative to low-reward ones in the same group ``` ### 2. Reward Function Design Philosophy **Golden Rules:** 1. **Compose multiple reward functions** - Each handles one aspect (format, correctness, style) 2. **Scale rewards appropriately** - Higher weight = stronger signal 3. **Use incremental rewards** - Partial credit for partial compliance 4. **Test rewards independently** - Debug each reward function in isolation **Reward Function Types:** | Type | Use Case | Example Weight | |------|----------|----------------| | **Correctness** | Verifiable tasks (math, code) | 2.0 (highest) | | **Format** | Strict structure enforcement | 0.5-1.0 | | **Length** | Encourage verbosity/conciseness | 0.1-0.5 | | **Style** | Penalize unwanted patterns | -0.5 to 0.5 | --- ## Implementation Workflow ### Step 1: Dataset Preparation **Critical Requirements:** - Prompts in chat format (list of dicts with 'role' and 'content') - Include system prompts to set expectations - For verifiable tasks, include ground truth answers as additional columns **Example Structure:** ```python from datasets import load_dataset, Dataset SYSTEM_PROMPT = """ Respond in the following format: [Your step-by-step thinking] [Final answer] """ def prepare_dataset(raw_data): """ Transform raw data into GRPO-compatible format. Returns: Dataset with columns: - 'prompt': List[Dict] with role/content (system + user messages) - 'answer': str (ground truth, optional but recommended) """ return raw_data.map(lambda x: { 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': x['question']} ], 'answer': extract_answer(x['raw_answer']) }) ``` **Pro Tips:** - Use one-shot or few-shot examples in system prompt for complex formats - Keep prompts concise (max_prompt_length: 256-512 tokens) - Validate data quality before training (garbage in = garbage out) ### Step 2: Reward Function Implementation **Template Structure:** ```python def reward_function_name( prompts, # List[List[Dict]]: Original prompts completions, # List[List[Dict]]: Model generations answer=None, # Optional: Ground truth from dataset **kwargs # Additional dataset columns ) -> list[float]: """ Evaluate completions and return rewards. Returns: List of floats (one per completion) """ # Extract completion text responses = [comp[0]['content'] for comp in completions] # Compute rewards rewards = [] for response in responses: score = compute_score(response) rewards.append(score) return rewards ``` **Example 1: Correctness Reward (Math/Coding)** ```python def correctness_reward(prompts, completions, answer, **kwargs): """Reward correct answers with high score.""" responses = [comp[0]['content'] for comp in completions] extracted = [extract_final_answer(r) for r in responses] return [2.0 if ans == gt else 0.0 for ans, gt in zip(extracted, answer)] ``` **Example 2: Format Reward (Structured Output)** ```python import re def format_reward(completions, **kwargs): """Reward XML-like structured format.""" pattern = r'.*?\s*.*?' responses = [comp[0]['content'] for comp in completions] return [1.0 if re.search(pattern, r, re.DOTALL) else 0.0 for r in responses] ``` **Example 3: Incremental Format Reward (Partial Credit)** ```python def incremental_format_reward(completions, **kwargs): """Award partial credit for format compliance.""" responses = [comp[0]['content'] for comp in completions] rewards = [] for r in responses: score = 0.0 if '' in r: score += 0.25 if '' in r: score += 0.25 if '' in r: score += 0.25 if '' in r: score += 0.25 # Penalize extra text after closing tag if r.count('') == 1: extra_text = r.split('')[-1].strip() score -= len(extra_text) * 0.001 rewards.append(score) return rewards ``` **Critical Insight:** Combine 3-5 reward functions for robust training. Order matters less than diversity of signals. ### Step 3: Training Configuration **Memory-Optimized Config (Small GPU)** ```python from trl import GRPOConfig training_args = GRPOConfig( output_dir="outputs/grpo-model", # Learning rate learning_rate=5e-6, # Lower = more stable adam_beta1=0.9, adam_beta2=0.99, weight_decay=0.1, warmup_ratio=0.1, lr_scheduler_type='cosine', # Batch settings per_device_train_batch_size=1, gradient_accumulation_steps=4, # Effective batch = 4 # GRPO-specific num_generations=8, # Group size: 8-16 recommended max_prompt_length=256, max_completion_length=512, # Training duration num_train_epochs=1, max_steps=None, # Or set fixed steps (e.g., 500) # Optimization bf16=True, # Faster on A100/H100 optim="adamw_8bit", # Memory-efficient optimizer max_grad_norm=0.1, # Logging logging_steps=1, save_steps=100, report_to="wandb", # Or "none" for no logging ) ``` **High-Performance Config (Large GPU)** ```python training_args = GRPOConfig( output_dir="outputs/grpo-model", learning_rate=1e-5, per_device_train_batch_size=4, gradient_accumulation_steps=2, num_generations=16, # Larger groups = better signal max_prompt_length=512, max_completion_length=1024, num_train_epochs=1, bf16=True, use_vllm=True, # Fast generation with vLLM logging_steps=10, ) ``` **Critical Hyperparameters:** | Parameter | Impact | Tuning Advice | |-----------|--------|---------------| | `num_generations` | Group size for comparison | Start with 8, increase to 16 if GPU allows | | `learning_rate` | Convergence speed/stability | 5e-6 (safe), 1e-5 (faster, riskier) | | `max_completion_length` | Output verbosity | Match your task (512 for reasoning, 256 for short answers) | | `gradient_accumulation_steps` | Effective batch size | Increase if GPU memory limited | ### Step 4: Model Setup and Training **Standard Setup (Transformers)** ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import LoraConfig from trl import GRPOTrainer # Load model model_name = "Qwen/Qwen2.5-1.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", # 2-3x faster device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token # Optional: LoRA for parameter-efficient training peft_config = LoraConfig( r=16, # Rank (higher = more capacity) lora_alpha=32, # Scaling factor (typically 2*r) target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj" ], task_type="CAUSAL_LM", lora_dropout=0.05, ) # Initialize trainer trainer = GRPOTrainer( model=model, processing_class=tokenizer, reward_funcs=[ incremental_format_reward, format_reward, correctness_reward, ], args=training_args, train_dataset=dataset, peft_config=peft_config, # Remove for full fine-tuning ) # Train trainer.train() # Save trainer.save_model("final_model") ``` **Unsloth Setup (2-3x Faster)** ```python from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name="google/gemma-3-1b-it", max_seq_length=1024, load_in_4bit=True, fast_inference=True, max_lora_rank=32, ) model = FastLanguageModel.get_peft_model( model, r=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha=32, use_gradient_checkpointing="unsloth", ) # Rest is identical to standard setup trainer = GRPOTrainer(model=model, ...) trainer.train() ``` --- ## Critical Training Insights ### 1. Loss Behavior (EXPECTED PATTERN) - **Loss starts near 0 and INCREASES during training** - This is CORRECT - loss measures KL divergence from initial policy - Model is learning (diverging from original behavior to optimize rewards) - Monitor reward metrics instead of loss for progress ### 2. Reward Tracking Key metrics to watch: - `reward`: Average across all completions - `reward_std`: Diversity within groups (should remain > 0) - `kl`: KL divergence from reference (should grow moderately) **Healthy Training Pattern:** ``` Step Reward Reward_Std KL 100 0.5 0.3 0.02 200 0.8 0.25 0.05 300 1.2 0.2 0.08 ← Good progression 400 1.5 0.15 0.12 ``` **Warning Signs:** - Reward std → 0 (model collapsing to single response) - KL exploding (> 0.5) (diverging too much, reduce LR) - Reward stuck (reward functions too harsh or model capacity issue) ### 3. Common Pitfalls and Solutions | Problem | Symptom | Solution | |---------|---------|----------| | **Mode collapse** | All completions identical | Increase `num_generations`, add diversity penalty | | **No learning** | Flat rewards | Check reward function logic, increase LR | | **OOM errors** | GPU memory exceeded | Reduce `num_generations`, enable gradient checkpointing | | **Slow training** | < 1 it/s | Enable `use_vllm=True`, use Unsloth, reduce seq length | | **Format ignored** | Model doesn't follow structure | Increase format reward weight, add incremental rewards | --- ## Advanced Patterns ### 1. Multi-Stage Training For complex tasks, train in stages: ```python # Stage 1: Format compliance (epochs=1) trainer_stage1 = GRPOTrainer( model=model, reward_funcs=[incremental_format_reward, format_reward], ... ) trainer_stage1.train() # Stage 2: Correctness (epochs=1) trainer_stage2 = GRPOTrainer( model=model, reward_funcs=[format_reward, correctness_reward], ... ) trainer_stage2.train() ``` ### 2. Adaptive Reward Scaling ```python class AdaptiveReward: def __init__(self, base_reward_func, initial_weight=1.0): self.func = base_reward_func self.weight = initial_weight def __call__(self, *args, **kwargs): rewards = self.func(*args, **kwargs) return [r * self.weight for r in rewards] def adjust_weight(self, success_rate): """Increase weight if model struggling, decrease if succeeding.""" if success_rate < 0.3: self.weight *= 1.2 elif success_rate > 0.8: self.weight *= 0.9 ``` ### 3. Custom Dataset Integration ```python def load_custom_knowledge_base(csv_path): """Example: School communication platform docs.""" import pandas as pd df = pd.read_csv(csv_path) dataset = Dataset.from_pandas(df).map(lambda x: { 'prompt': [ {'role': 'system', 'content': CUSTOM_SYSTEM_PROMPT}, {'role': 'user', 'content': x['question']} ], 'answer': x['expert_answer'] }) return dataset ``` --- ## Deployment and Inference ### Save and Merge LoRA ```python # Merge LoRA adapters into base model if hasattr(trainer.model, 'merge_and_unload'): merged_model = trainer.model.merge_and_unload() merged_model.save_pretrained("production_model") tokenizer.save_pretrained("production_model") ``` ### Inference Example ```python from transformers import pipeline generator = pipeline( "text-generation", model="production_model", tokenizer=tokenizer ) result = generator( [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': "What is 15 + 27?"} ], max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9 ) print(result[0]['generated_text']) ``` --- ## Best Practices Checklist **Before Training:** - [ ] Validate dataset format (prompts as List[Dict]) - [ ] Test reward functions on sample data - [ ] Calculate expected max_prompt_length from data - [ ] Choose appropriate num_generations based on GPU memory - [ ] Set up logging (wandb recommended) **During Training:** - [ ] Monitor reward progression (should increase) - [ ] Check reward_std (should stay > 0.1) - [ ] Watch for OOM errors (reduce batch size if needed) - [ ] Sample generations every 50-100 steps - [ ] Validate format compliance on holdout set **After Training:** - [ ] Merge LoRA weights if using PEFT - [ ] Test on diverse prompts - [ ] Compare to baseline model - [ ] Document reward weights and hyperparameters - [ ] Save reproducibility config --- ## Troubleshooting Guide ### Debugging Workflow 1. **Isolate reward functions** - Test each independently 2. **Check data distribution** - Ensure diversity in prompts 3. **Reduce complexity** - Start with single reward, add gradually 4. **Monitor generations** - Print samples every N steps 5. **Validate extraction logic** - Ensure answer parsing works ### Quick Fixes ```python # Debug reward function def debug_reward(completions, **kwargs): responses = [comp[0]['content'] for comp in completions] for i, r in enumerate(responses[:2]): # Print first 2 print(f"Response {i}: {r[:200]}...") return [1.0] * len(responses) # Dummy rewards # Test without training trainer = GRPOTrainer(..., reward_funcs=[debug_reward]) trainer.generate_completions(dataset[:1]) # Generate without updating ``` --- ## References and Resources **Official Documentation:** - TRL GRPO Trainer: https://huggingface.co/docs/trl/grpo_trainer - DeepSeek R1 Paper: https://arxiv.org/abs/2501.12948 - Unsloth Docs: https://docs.unsloth.ai/ **Example Repositories:** - Open R1 Implementation: https://github.com/huggingface/open-r1 - TRL Examples: https://github.com/huggingface/trl/tree/main/examples **Recommended Reading:** - Progressive Disclosure Pattern for agent instructions - Reward shaping in RL (Ng et al.) - LoRA paper (Hu et al., 2021) --- ## Usage Instructions for Agents When this skill is loaded: 1. **Read this entire file** before implementing GRPO training 2. **Start with the simplest reward function** (e.g., length-based) to validate setup 3. **Use the templates** in `templates/` directory as starting points 4. **Reference examples** in `examples/` for task-specific implementations 5. **Follow the workflow** sequentially (don't skip steps) 6. **Debug incrementally** - add one reward function at a time **Critical Reminders:** - Always use multiple reward functions (3-5 is optimal) - Monitor reward metrics, not loss - Test reward functions before training - Start small (num_generations=4), scale up gradually - Save checkpoints frequently (every 100 steps) This skill is designed for **expert-level implementation**. Beginners should start with supervised fine-tuning before attempting GRPO.