--- name: fine-tuning-with-trl description: Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers. version: 1.0.0 author: Orchestra Research license: MIT tags: [Post-Training, TRL, Reinforcement Learning, Fine-Tuning, SFT, DPO, PPO, GRPO, RLHF, Preference Alignment, HuggingFace] dependencies: [trl, transformers, datasets, peft, accelerate, torch] --- # TRL - Transformer Reinforcement Learning ## Quick start TRL provides post-training methods for aligning language models with human preferences. **Installation**: ```bash pip install trl transformers datasets peft accelerate ``` **Supervised Fine-Tuning** (instruction tuning): ```python from trl import SFTTrainer trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, # Prompt-completion pairs ) trainer.train() ``` **DPO** (align with preferences): ```python from trl import DPOTrainer, DPOConfig config = DPOConfig(output_dir="model-dpo", beta=0.1) trainer = DPOTrainer( model=model, args=config, train_dataset=preference_dataset, # chosen/rejected pairs processing_class=tokenizer ) trainer.train() ``` ## Common workflows ### Workflow 1: Full RLHF pipeline (SFT → Reward Model → PPO) Complete pipeline from base model to human-aligned model. Copy this checklist: ``` RLHF Training: - [ ] Step 1: Supervised fine-tuning (SFT) - [ ] Step 2: Train reward model - [ ] Step 3: PPO reinforcement learning - [ ] Step 4: Evaluate aligned model ``` **Step 1: Supervised fine-tuning** Train base model on instruction-following data: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from trl import SFTTrainer, SFTConfig from datasets import load_dataset # Load model model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B") # Load instruction dataset dataset = load_dataset("trl-lib/Capybara", split="train") # Configure training training_args = SFTConfig( output_dir="Qwen2.5-0.5B-SFT", per_device_train_batch_size=4, num_train_epochs=1, learning_rate=2e-5, logging_steps=10, save_strategy="epoch" ) # Train trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer ) trainer.train() trainer.save_model() ``` **Step 2: Train reward model** Train model to predict human preferences: ```python from transformers import AutoModelForSequenceClassification from trl import RewardTrainer, RewardConfig # Load SFT model as base model = AutoModelForSequenceClassification.from_pretrained( "Qwen2.5-0.5B-SFT", num_labels=1 # Single reward score ) tokenizer = AutoTokenizer.from_pretrained("Qwen2.5-0.5B-SFT") # Load preference data (chosen/rejected pairs) dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") # Configure training training_args = RewardConfig( output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2, num_train_epochs=1, learning_rate=1e-5 ) # Train reward model trainer = RewardTrainer( model=model, args=training_args, processing_class=tokenizer, train_dataset=dataset ) trainer.train() trainer.save_model() ``` **Step 3: PPO reinforcement learning** Optimize policy using reward model: ```bash python -m trl.scripts.ppo \ --model_name_or_path Qwen2.5-0.5B-SFT \ --reward_model_path Qwen2.5-0.5B-Reward \ --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \ --output_dir Qwen2.5-0.5B-PPO \ --learning_rate 3e-6 \ --per_device_train_batch_size 64 \ --total_episodes 10000 ``` **Step 4: Evaluate** ```python from transformers import pipeline # Load aligned model generator = pipeline("text-generation", model="Qwen2.5-0.5B-PPO") # Test prompt = "Explain quantum computing to a 10-year-old" output = generator(prompt, max_length=200)[0]["generated_text"] print(output) ``` ### Workflow 2: Simple preference alignment with DPO Align model with preferences without reward model. Copy this checklist: ``` DPO Training: - [ ] Step 1: Prepare preference dataset - [ ] Step 2: Configure DPO - [ ] Step 3: Train with DPOTrainer - [ ] Step 4: Evaluate alignment ``` **Step 1: Prepare preference dataset** Dataset format: ```json { "prompt": "What is the capital of France?", "chosen": "The capital of France is Paris.", "rejected": "I don't know." } ``` Load dataset: ```python from datasets import load_dataset dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") # Or load your own # dataset = load_dataset("json", data_files="preferences.json") ``` **Step 2: Configure DPO** ```python from trl import DPOConfig config = DPOConfig( output_dir="Qwen2.5-0.5B-DPO", per_device_train_batch_size=4, num_train_epochs=1, learning_rate=5e-7, beta=0.1, # KL penalty strength max_prompt_length=512, max_length=1024, logging_steps=10 ) ``` **Step 3: Train with DPOTrainer** ```python from transformers import AutoModelForCausalLM, AutoTokenizer from trl import DPOTrainer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") trainer = DPOTrainer( model=model, args=config, train_dataset=dataset, processing_class=tokenizer ) trainer.train() trainer.save_model() ``` **CLI alternative**: ```bash trl dpo \ --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \ --dataset_name argilla/Capybara-Preferences \ --output_dir Qwen2.5-0.5B-DPO \ --per_device_train_batch_size 4 \ --learning_rate 5e-7 \ --beta 0.1 ``` ### Workflow 3: Memory-efficient online RL with GRPO Train with reinforcement learning using minimal memory. Copy this checklist: ``` GRPO Training: - [ ] Step 1: Define reward function - [ ] Step 2: Configure GRPO - [ ] Step 3: Train with GRPOTrainer ``` **Step 1: Define reward function** ```python def reward_function(completions, **kwargs): """ Compute rewards for completions. Args: completions: List of generated texts Returns: List of reward scores (floats) """ rewards = [] for completion in completions: # Example: reward based on length and unique words score = len(completion.split()) # Favor longer responses score += len(set(completion.lower().split())) # Reward unique words rewards.append(score) return rewards ``` Or use a reward model: ```python from transformers import pipeline reward_model = pipeline("text-classification", model="reward-model-path") def reward_from_model(completions, prompts, **kwargs): # Combine prompt + completion full_texts = [p + c for p, c in zip(prompts, completions)] # Get reward scores results = reward_model(full_texts) return [r["score"] for r in results] ``` **Step 2: Configure GRPO** ```python from trl import GRPOConfig config = GRPOConfig( output_dir="Qwen2-GRPO", per_device_train_batch_size=4, num_train_epochs=1, learning_rate=1e-5, num_generations=4, # Generate 4 completions per prompt max_new_tokens=128 ) ``` **Step 3: Train with GRPOTrainer** ```python from datasets import load_dataset from trl import GRPOTrainer # Load prompt-only dataset dataset = load_dataset("trl-lib/tldr", split="train") trainer = GRPOTrainer( model="Qwen/Qwen2-0.5B-Instruct", reward_funcs=reward_function, # Your reward function args=config, train_dataset=dataset ) trainer.train() ``` **CLI**: ```bash trl grpo \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --dataset_name trl-lib/tldr \ --output_dir Qwen2-GRPO \ --num_generations 4 ``` ## When to use vs alternatives **Use TRL when:** - Need to align model with human preferences - Have preference data (chosen/rejected pairs) - Want to use reinforcement learning (PPO, GRPO) - Need reward model training - Doing RLHF (full pipeline) **Method selection**: - **SFT**: Have prompt-completion pairs, want basic instruction following - **DPO**: Have preferences, want simple alignment (no reward model needed) - **PPO**: Have reward model, need maximum control over RL - **GRPO**: Memory-constrained, want online RL - **Reward Model**: Building RLHF pipeline, need to score generations **Use alternatives instead:** - **HuggingFace Trainer**: Basic fine-tuning without RL - **Axolotl**: YAML-based training configuration - **LitGPT**: Educational, minimal fine-tuning - **Unsloth**: Fast LoRA training ## Common issues **Issue: OOM during DPO training** Reduce batch size and sequence length: ```python config = DPOConfig( per_device_train_batch_size=1, # Reduce from 4 max_length=512, # Reduce from 1024 gradient_accumulation_steps=8 # Maintain effective batch ) ``` Or use gradient checkpointing: ```python model.gradient_checkpointing_enable() ``` **Issue: Poor alignment quality** Tune beta parameter: ```python # Higher beta = more conservative (stays closer to reference) config = DPOConfig(beta=0.5) # Default 0.1 # Lower beta = more aggressive alignment config = DPOConfig(beta=0.01) ``` **Issue: Reward model not learning** Check loss type and learning rate: ```python config = RewardConfig( learning_rate=1e-5, # Try different LR num_train_epochs=3 # Train longer ) ``` Ensure preference dataset has clear winners: ```python # Verify dataset print(dataset[0]) # Should have clear chosen > rejected ``` **Issue: PPO training unstable** Adjust KL coefficient: ```python config = PPOConfig( kl_coef=0.1, # Increase from 0.05 cliprange=0.1 # Reduce from 0.2 ) ``` ## Advanced topics **SFT training guide**: See [references/sft-training.md](references/sft-training.md) for dataset formats, chat templates, packing strategies, and multi-GPU training. **DPO variants**: See [references/dpo-variants.md](references/dpo-variants.md) for IPO, cDPO, RPO, and other DPO loss functions with recommended hyperparameters. **Reward modeling**: See [references/reward-modeling.md](references/reward-modeling.md) for outcome vs process rewards, Bradley-Terry loss, and reward model evaluation. **Online RL methods**: See [references/online-rl.md](references/online-rl.md) for PPO, GRPO, RLOO, and OnlineDPO with detailed configurations. ## Hardware requirements - **GPU**: NVIDIA (CUDA required) - **VRAM**: Depends on model and method - SFT 7B: 16GB (with LoRA) - DPO 7B: 24GB (stores reference model) - PPO 7B: 40GB (policy + reward model) - GRPO 7B: 24GB (more memory efficient) - **Multi-GPU**: Supported via `accelerate` - **Mixed precision**: BF16 recommended (A100/H100) **Memory optimization**: - Use LoRA/QLoRA for all methods - Enable gradient checkpointing - Use smaller batch sizes with gradient accumulation ## Resources - Docs: https://huggingface.co/docs/trl/ - GitHub: https://github.com/huggingface/trl - Papers: - "Training language models to follow instructions with human feedback" (InstructGPT, 2022) - "Direct Preference Optimization: Your Language Model is Secretly a Reward Model" (DPO, 2023) - "Group Relative Policy Optimization" (GRPO, 2024) - Examples: https://github.com/huggingface/trl/tree/main/examples/scripts