--- name: qdrant-vector-search description: High-performance vector similarity search engine for RAG and semantic search. Use when building production RAG systems requiring fast nearest neighbor search, hybrid search with filtering, or scalable vector storage with Rust-powered performance. version: 1.0.0 author: Orchestra Research license: MIT tags: [RAG, Vector Search, Qdrant, Semantic Search, Embeddings, Similarity Search, HNSW, Production, Distributed] dependencies: [qdrant-client>=1.12.0] --- # Qdrant - Vector Similarity Search Engine High-performance vector database written in Rust for production RAG and semantic search. ## When to use Qdrant **Use Qdrant when:** - Building production RAG systems requiring low latency - Need hybrid search (vectors + metadata filtering) - Require horizontal scaling with sharding/replication - Want on-premise deployment with full data control - Need multi-vector storage per record (dense + sparse) - Building real-time recommendation systems **Key features:** - **Rust-powered**: Memory-safe, high performance - **Rich filtering**: Filter by any payload field during search - **Multiple vectors**: Dense, sparse, multi-dense per point - **Quantization**: Scalar, product, binary for memory efficiency - **Distributed**: Raft consensus, sharding, replication - **REST + gRPC**: Both APIs with full feature parity **Use alternatives instead:** - **Chroma**: Simpler setup, embedded use cases - **FAISS**: Maximum raw speed, research/batch processing - **Pinecone**: Fully managed, zero ops preferred - **Weaviate**: GraphQL preference, built-in vectorizers ## Quick start ### Installation ```bash # Python client pip install qdrant-client # Docker (recommended for development) docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant # Docker with persistent storage docker run -p 6333:6333 -p 6334:6334 \ -v $(pwd)/qdrant_storage:/qdrant/storage \ qdrant/qdrant ``` ### Basic usage ```python from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams, PointStruct # Connect to Qdrant client = QdrantClient(host="localhost", port=6333) # Create collection client.create_collection( collection_name="documents", vectors_config=VectorParams(size=384, distance=Distance.COSINE) ) # Insert vectors with payload client.upsert( collection_name="documents", points=[ PointStruct( id=1, vector=[0.1, 0.2, ...], # 384-dim vector payload={"title": "Doc 1", "category": "tech"} ), PointStruct( id=2, vector=[0.3, 0.4, ...], payload={"title": "Doc 2", "category": "science"} ) ] ) # Search with filtering results = client.search( collection_name="documents", query_vector=[0.15, 0.25, ...], query_filter={ "must": [{"key": "category", "match": {"value": "tech"}}] }, limit=10 ) for point in results: print(f"ID: {point.id}, Score: {point.score}, Payload: {point.payload}") ``` ## Core concepts ### Points - Basic data unit ```python from qdrant_client.models import PointStruct # Point = ID + Vector(s) + Payload point = PointStruct( id=123, # Integer or UUID string vector=[0.1, 0.2, 0.3, ...], # Dense vector payload={ # Arbitrary JSON metadata "title": "Document title", "category": "tech", "timestamp": 1699900000, "tags": ["python", "ml"] } ) # Batch upsert (recommended) client.upsert( collection_name="documents", points=[point1, point2, point3], wait=True # Wait for indexing ) ``` ### Collections - Vector containers ```python from qdrant_client.models import VectorParams, Distance, HnswConfigDiff # Create with HNSW configuration client.create_collection( collection_name="documents", vectors_config=VectorParams( size=384, # Vector dimensions distance=Distance.COSINE # COSINE, EUCLID, DOT, MANHATTAN ), hnsw_config=HnswConfigDiff( m=16, # Connections per node (default 16) ef_construct=100, # Build-time accuracy (default 100) full_scan_threshold=10000 # Switch to brute force below this ), on_disk_payload=True # Store payload on disk ) # Collection info info = client.get_collection("documents") print(f"Points: {info.points_count}, Vectors: {info.vectors_count}") ``` ### Distance metrics | Metric | Use Case | Range | |--------|----------|-------| | `COSINE` | Text embeddings, normalized vectors | 0 to 2 | | `EUCLID` | Spatial data, image features | 0 to ∞ | | `DOT` | Recommendations, unnormalized | -∞ to ∞ | | `MANHATTAN` | Sparse features, discrete data | 0 to ∞ | ## Search operations ### Basic search ```python # Simple nearest neighbor search results = client.search( collection_name="documents", query_vector=[0.1, 0.2, ...], limit=10, with_payload=True, with_vectors=False # Don't return vectors (faster) ) ``` ### Filtered search ```python from qdrant_client.models import Filter, FieldCondition, MatchValue, Range # Complex filtering results = client.search( collection_name="documents", query_vector=query_embedding, query_filter=Filter( must=[ FieldCondition(key="category", match=MatchValue(value="tech")), FieldCondition(key="timestamp", range=Range(gte=1699000000)) ], must_not=[ FieldCondition(key="status", match=MatchValue(value="archived")) ] ), limit=10 ) # Shorthand filter syntax results = client.search( collection_name="documents", query_vector=query_embedding, query_filter={ "must": [ {"key": "category", "match": {"value": "tech"}}, {"key": "price", "range": {"gte": 10, "lte": 100}} ] }, limit=10 ) ``` ### Batch search ```python from qdrant_client.models import SearchRequest # Multiple queries in one request results = client.search_batch( collection_name="documents", requests=[ SearchRequest(vector=[0.1, ...], limit=5), SearchRequest(vector=[0.2, ...], limit=5, filter={"must": [...]}), SearchRequest(vector=[0.3, ...], limit=10) ] ) ``` ## RAG integration ### With sentence-transformers ```python from sentence_transformers import SentenceTransformer from qdrant_client import QdrantClient from qdrant_client.models import VectorParams, Distance, PointStruct # Initialize encoder = SentenceTransformer("all-MiniLM-L6-v2") client = QdrantClient(host="localhost", port=6333) # Create collection client.create_collection( collection_name="knowledge_base", vectors_config=VectorParams(size=384, distance=Distance.COSINE) ) # Index documents documents = [ {"id": 1, "text": "Python is a programming language", "source": "wiki"}, {"id": 2, "text": "Machine learning uses algorithms", "source": "textbook"}, ] points = [ PointStruct( id=doc["id"], vector=encoder.encode(doc["text"]).tolist(), payload={"text": doc["text"], "source": doc["source"]} ) for doc in documents ] client.upsert(collection_name="knowledge_base", points=points) # RAG retrieval def retrieve(query: str, top_k: int = 5) -> list[dict]: query_vector = encoder.encode(query).tolist() results = client.search( collection_name="knowledge_base", query_vector=query_vector, limit=top_k ) return [{"text": r.payload["text"], "score": r.score} for r in results] # Use in RAG pipeline context = retrieve("What is Python?") prompt = f"Context: {context}\n\nQuestion: What is Python?" ``` ### With LangChain ```python from langchain_community.vectorstores import Qdrant from langchain_community.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") vectorstore = Qdrant.from_documents(documents, embeddings, url="http://localhost:6333", collection_name="docs") retriever = vectorstore.as_retriever(search_kwargs={"k": 5}) ``` ### With LlamaIndex ```python from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import VectorStoreIndex, StorageContext vector_store = QdrantVectorStore(client=client, collection_name="llama_docs") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) query_engine = index.as_query_engine() ``` ## Multi-vector support ### Named vectors (different embedding models) ```python from qdrant_client.models import VectorParams, Distance # Collection with multiple vector types client.create_collection( collection_name="hybrid_search", vectors_config={ "dense": VectorParams(size=384, distance=Distance.COSINE), "sparse": VectorParams(size=30000, distance=Distance.DOT) } ) # Insert with named vectors client.upsert( collection_name="hybrid_search", points=[ PointStruct( id=1, vector={ "dense": dense_embedding, "sparse": sparse_embedding }, payload={"text": "document text"} ) ] ) # Search specific vector results = client.search( collection_name="hybrid_search", query_vector=("dense", query_dense), # Specify which vector limit=10 ) ``` ### Sparse vectors (BM25, SPLADE) ```python from qdrant_client.models import SparseVectorParams, SparseIndexParams, SparseVector # Collection with sparse vectors client.create_collection( collection_name="sparse_search", vectors_config={}, sparse_vectors_config={"text": SparseVectorParams(index=SparseIndexParams(on_disk=False))} ) # Insert sparse vector client.upsert( collection_name="sparse_search", points=[PointStruct(id=1, vector={"text": SparseVector(indices=[1, 5, 100], values=[0.5, 0.8, 0.2])}, payload={"text": "document"})] ) ``` ## Quantization (memory optimization) ```python from qdrant_client.models import ScalarQuantization, ScalarQuantizationConfig, ScalarType # Scalar quantization (4x memory reduction) client.create_collection( collection_name="quantized", vectors_config=VectorParams(size=384, distance=Distance.COSINE), quantization_config=ScalarQuantization( scalar=ScalarQuantizationConfig( type=ScalarType.INT8, quantile=0.99, # Clip outliers always_ram=True # Keep quantized in RAM ) ) ) # Search with rescoring results = client.search( collection_name="quantized", query_vector=query, search_params={"quantization": {"rescore": True}}, # Rescore top results limit=10 ) ``` ## Payload indexing ```python from qdrant_client.models import PayloadSchemaType # Create payload index for faster filtering client.create_payload_index( collection_name="documents", field_name="category", field_schema=PayloadSchemaType.KEYWORD ) client.create_payload_index( collection_name="documents", field_name="timestamp", field_schema=PayloadSchemaType.INTEGER ) # Index types: KEYWORD, INTEGER, FLOAT, GEO, TEXT (full-text), BOOL ``` ## Production deployment ### Qdrant Cloud ```python from qdrant_client import QdrantClient # Connect to Qdrant Cloud client = QdrantClient( url="https://your-cluster.cloud.qdrant.io", api_key="your-api-key" ) ``` ### Performance tuning ```python # Optimize for search speed (higher recall) client.update_collection( collection_name="documents", hnsw_config=HnswConfigDiff(ef_construct=200, m=32) ) # Optimize for indexing speed (bulk loads) client.update_collection( collection_name="documents", optimizer_config={"indexing_threshold": 20000} ) ``` ## Best practices 1. **Batch operations** - Use batch upsert/search for efficiency 2. **Payload indexing** - Index fields used in filters 3. **Quantization** - Enable for large collections (>1M vectors) 4. **Sharding** - Use for collections >10M vectors 5. **On-disk storage** - Enable `on_disk_payload` for large payloads 6. **Connection pooling** - Reuse client instances ## Common issues **Slow search with filters:** ```python # Create payload index for filtered fields client.create_payload_index( collection_name="docs", field_name="category", field_schema=PayloadSchemaType.KEYWORD ) ``` **Out of memory:** ```python # Enable quantization and on-disk storage client.create_collection( collection_name="large_collection", vectors_config=VectorParams(size=384, distance=Distance.COSINE), quantization_config=ScalarQuantization(...), on_disk_payload=True ) ``` **Connection issues:** ```python # Use timeout and retry client = QdrantClient( host="localhost", port=6333, timeout=30, prefer_grpc=True # gRPC for better performance ) ``` ## References - **[Advanced Usage](references/advanced-usage.md)** - Distributed mode, hybrid search, recommendations - **[Troubleshooting](references/troubleshooting.md)** - Common issues, debugging, performance tuning ## Resources - **GitHub**: https://github.com/qdrant/qdrant (22k+ stars) - **Docs**: https://qdrant.tech/documentation/ - **Python Client**: https://github.com/qdrant/qdrant-client - **Cloud**: https://cloud.qdrant.io - **Version**: 1.12.0+ - **License**: Apache 2.0