--- name: senior-ml-engineer description: World-class ML engineering skill for productionizing ML models, MLOps, and building scalable ML systems. Expertise in PyTorch, TensorFlow, model deployment, feature stores, model monitoring, and ML infrastructure. Includes LLM integration, fine-tuning, RAG systems, and agentic AI. Use when deploying ML models, building ML platforms, implementing MLOps, or integrating LLMs into production systems. --- # Senior ML/AI Engineer World-class senior ml/ai engineer skill for production-grade AI/ML/Data systems. ## Quick Start ### Main Capabilities ```bash # Core Tool 1 python scripts/model_deployment_pipeline.py --input data/ --output results/ # Core Tool 2 python scripts/rag_system_builder.py --target project/ --analyze # Core Tool 3 python scripts/ml_monitoring_suite.py --config config.yaml --deploy ``` ## Core Expertise This skill covers world-class capabilities in: - Advanced production patterns and architectures - Scalable system design and implementation - Performance optimization at scale - MLOps and DataOps best practices - Real-time processing and inference - Distributed computing frameworks - Model deployment and monitoring - Security and compliance - Cost optimization - Team leadership and mentoring ## Tech Stack **Languages:** Python, SQL, R, Scala, Go **ML Frameworks:** PyTorch, TensorFlow, Scikit-learn, XGBoost **Data Tools:** Spark, Airflow, dbt, Kafka, Databricks **LLM Frameworks:** LangChain, LlamaIndex, DSPy **Deployment:** Docker, Kubernetes, AWS/GCP/Azure **Monitoring:** MLflow, Weights & Biases, Prometheus **Databases:** PostgreSQL, BigQuery, Snowflake, Pinecone ## Reference Documentation ### 1. Mlops Production Patterns Comprehensive guide available in `references/mlops_production_patterns.md` covering: - Advanced patterns and best practices - Production implementation strategies - Performance optimization techniques - Scalability considerations - Security and compliance - Real-world case studies ### 2. Llm Integration Guide Complete workflow documentation in `references/llm_integration_guide.md` including: - Step-by-step processes - Architecture design patterns - Tool integration guides - Performance tuning strategies - Troubleshooting procedures ### 3. Rag System Architecture Technical reference guide in `references/rag_system_architecture.md` with: - System design principles - Implementation examples - Configuration best practices - Deployment strategies - Monitoring and observability ## Production Patterns ### Pattern 1: Scalable Data Processing Enterprise-scale data processing with distributed computing: - Horizontal scaling architecture - Fault-tolerant design - Real-time and batch processing - Data quality validation - Performance monitoring ### Pattern 2: ML Model Deployment Production ML system with high availability: - Model serving with low latency - A/B testing infrastructure - Feature store integration - Model monitoring and drift detection - Automated retraining pipelines ### Pattern 3: Real-Time Inference High-throughput inference system: - Batching and caching strategies - Load balancing - Auto-scaling - Latency optimization - Cost optimization ## Best Practices ### Development - Test-driven development - Code reviews and pair programming - Documentation as code - Version control everything - Continuous integration ### Production - Monitor everything critical - Automate deployments - Feature flags for releases - Canary deployments - Comprehensive logging ### Team Leadership - Mentor junior engineers - Drive technical decisions - Establish coding standards - Foster learning culture - Cross-functional collaboration ## Performance Targets **Latency:** - P50: < 50ms - P95: < 100ms - P99: < 200ms **Throughput:** - Requests/second: > 1000 - Concurrent users: > 10,000 **Availability:** - Uptime: 99.9% - Error rate: < 0.1% ## Security & Compliance - Authentication & authorization - Data encryption (at rest & in transit) - PII handling and anonymization - GDPR/CCPA compliance - Regular security audits - Vulnerability management ## Common Commands ```bash # Development python -m pytest tests/ -v --cov python -m black src/ python -m pylint src/ # Training python scripts/train.py --config prod.yaml python scripts/evaluate.py --model best.pth # Deployment docker build -t service:v1 . kubectl apply -f k8s/ helm upgrade service ./charts/ # Monitoring kubectl logs -f deployment/service python scripts/health_check.py ``` ## Resources - Advanced Patterns: `references/mlops_production_patterns.md` - Implementation Guide: `references/llm_integration_guide.md` - Technical Reference: `references/rag_system_architecture.md` - Automation Scripts: `scripts/` directory ## Senior-Level Responsibilities As a world-class senior professional: 1. **Technical Leadership** - Drive architectural decisions - Mentor team members - Establish best practices - Ensure code quality 2. **Strategic Thinking** - Align with business goals - Evaluate trade-offs - Plan for scale - Manage technical debt 3. **Collaboration** - Work across teams - Communicate effectively - Build consensus - Share knowledge 4. **Innovation** - Stay current with research - Experiment with new approaches - Contribute to community - Drive continuous improvement 5. **Production Excellence** - Ensure high availability - Monitor proactively - Optimize performance - Respond to incidents