--- name: senior-prompt-engineer description: World-class prompt engineering skill for LLM optimization, prompt patterns, structured outputs, and AI product development. Expertise in Claude, GPT-4, prompt design patterns, few-shot learning, chain-of-thought, and AI evaluation. Includes RAG optimization, agent design, and LLM system architecture. Use when building AI products, optimizing LLM performance, designing agentic systems, or implementing advanced prompting techniques. --- # Senior Prompt Engineer World-class senior prompt engineer skill for production-grade AI/ML/Data systems. ## Quick Start ### Main Capabilities ```bash # Core Tool 1 python scripts/prompt_optimizer.py --input data/ --output results/ # Core Tool 2 python scripts/rag_evaluator.py --target project/ --analyze # Core Tool 3 python scripts/agent_orchestrator.py --config config.yaml --deploy ``` ## Core Expertise This skill covers world-class capabilities in: - Advanced production patterns and architectures - Scalable system design and implementation - Performance optimization at scale - MLOps and DataOps best practices - Real-time processing and inference - Distributed computing frameworks - Model deployment and monitoring - Security and compliance - Cost optimization - Team leadership and mentoring ## Tech Stack **Languages:** Python, SQL, R, Scala, Go **ML Frameworks:** PyTorch, TensorFlow, Scikit-learn, XGBoost **Data Tools:** Spark, Airflow, dbt, Kafka, Databricks **LLM Frameworks:** LangChain, LlamaIndex, DSPy **Deployment:** Docker, Kubernetes, AWS/GCP/Azure **Monitoring:** MLflow, Weights & Biases, Prometheus **Databases:** PostgreSQL, BigQuery, Snowflake, Pinecone ## Reference Documentation ### 1. Prompt Engineering Patterns Comprehensive guide available in `references/prompt_engineering_patterns.md` covering: - Advanced patterns and best practices - Production implementation strategies - Performance optimization techniques - Scalability considerations - Security and compliance - Real-world case studies ### 2. Llm Evaluation Frameworks Complete workflow documentation in `references/llm_evaluation_frameworks.md` including: - Step-by-step processes - Architecture design patterns - Tool integration guides - Performance tuning strategies - Troubleshooting procedures ### 3. Agentic System Design Technical reference guide in `references/agentic_system_design.md` with: - System design principles - Implementation examples - Configuration best practices - Deployment strategies - Monitoring and observability ## Production Patterns ### Pattern 1: Scalable Data Processing Enterprise-scale data processing with distributed computing: - Horizontal scaling architecture - Fault-tolerant design - Real-time and batch processing - Data quality validation - Performance monitoring ### Pattern 2: ML Model Deployment Production ML system with high availability: - Model serving with low latency - A/B testing infrastructure - Feature store integration - Model monitoring and drift detection - Automated retraining pipelines ### Pattern 3: Real-Time Inference High-throughput inference system: - Batching and caching strategies - Load balancing - Auto-scaling - Latency optimization - Cost optimization ## Best Practices ### Development - Test-driven development - Code reviews and pair programming - Documentation as code - Version control everything - Continuous integration ### Production - Monitor everything critical - Automate deployments - Feature flags for releases - Canary deployments - Comprehensive logging ### Team Leadership - Mentor junior engineers - Drive technical decisions - Establish coding standards - Foster learning culture - Cross-functional collaboration ## Performance Targets **Latency:** - P50: < 50ms - P95: < 100ms - P99: < 200ms **Throughput:** - Requests/second: > 1000 - Concurrent users: > 10,000 **Availability:** - Uptime: 99.9% - Error rate: < 0.1% ## Security & Compliance - Authentication & authorization - Data encryption (at rest & in transit) - PII handling and anonymization - GDPR/CCPA compliance - Regular security audits - Vulnerability management ## Common Commands ```bash # Development python -m pytest tests/ -v --cov python -m black src/ python -m pylint src/ # Training python scripts/train.py --config prod.yaml python scripts/evaluate.py --model best.pth # Deployment docker build -t service:v1 . kubectl apply -f k8s/ helm upgrade service ./charts/ # Monitoring kubectl logs -f deployment/service python scripts/health_check.py ``` ## Resources - Advanced Patterns: `references/prompt_engineering_patterns.md` - Implementation Guide: `references/llm_evaluation_frameworks.md` - Technical Reference: `references/agentic_system_design.md` - Automation Scripts: `scripts/` directory ## Senior-Level Responsibilities As a world-class senior professional: 1. **Technical Leadership** - Drive architectural decisions - Mentor team members - Establish best practices - Ensure code quality 2. **Strategic Thinking** - Align with business goals - Evaluate trade-offs - Plan for scale - Manage technical debt 3. **Collaboration** - Work across teams - Communicate effectively - Build consensus - Share knowledge 4. **Innovation** - Stay current with research - Experiment with new approaches - Contribute to community - Drive continuous improvement 5. **Production Excellence** - Ensure high availability - Monitor proactively - Optimize performance - Respond to incidents