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Abstract  
The Robinson unification algorithm has exponential worst case behavior. This triggered the 

development of (semi-)linear versions around 1976 by Martelli, A.  & U. Montanari as well as 

by Paterson & Wegman.  Another version emerged by Baader & Snyder around 2001. While 

these versions are distinctly faster on larger input pairs, the Robinson version still does better 

than them on small sized inputs. This paper describes yet another (semi-)linear version that is 

faster and challenges also the Robinson version on small sized inputs.  All versions have been 

implemented and compared against each other on different types and sizes of input pairs. 

 

Introduction 

Robinson created the original unification algorithm [Robinson]. The significance of this 

algorithm was described by [Martelli&Montanari] with: 

This single, powerful rule can replace all the axioms and inference rules of the first-order 

predicate calculus and thus was immediately recognized as especially suited to mechanical 

theorem provers.  

The Robinson algorithm – while used effectively in practice – has exponential behavior.  Linear 

versions were developed around 1976-1978 by Martelli, A.  & U. Montanari 

[Martelli&Montanari0] as well as by Paterson & Wegman [PatersonWegman] (PW). 

Unfortunately the core procedure in the last paper of the PW version still had an error and it 

could be improved [deChampeaux], 1986.  That paper created another typo that was observed 

and corrected in 1991 by [Jacobson] and again in 2020 by [Motroi&Ciobaca].  The thoroughly 

corrected version is available at [GitHub]. 

 

Going from exponential to linear performance comes with a price. The PW linear algorithm 

depends on a custom data structure that did not get the attention that it deserved.  A preprocessor 

is required to transform the traditional input format into that custom data structure; a 

postprocessor produces a proper, unordered substitution (when the two arguments are unifiable). 

 

We found a semi-linear algorithm in [BaaderSnyder] (BS) from 2001. Our implementation of 

this version relies also on a custom, intricate data structure and requires similarly preprocessing 

and post processing. The algorithm description in the original publication can be improved as 

well by replacing three of four procedural modules by functions and by clarifying the data 

structure employed. This version is also available at [GitHub]. 

 

A novel, third algorithm, DC,  is described that does not require preprocessing to wrap the input 

into another data representation.  Instead each variable encountered during traversal of the input 

https://arxiv.org/search/cs?searchtype=author&query=Motroi%2C+V
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(without repetitions) exploits attributes in the variable’s object, which are used to capture 

findings about the variable’s matches. It can be found also at [GitHub]. 

 

We compare those versions using generators for input pairs: four for unifiable pairs and four for 

non-unifiable pairs. The preprocessing is overhead that makes the Robinson version (potentially) 

competitive against the (semi-)linear ones on small inputs. Hence the three versions are also 

compared against the Robinson version on two sets of small sized inputs. 

 

Tactics for unification 

The general approach in unification algorithms is showing doggedly that the two input 

arguments are not unifiable and when running out of reject options admit that unification 

succeeds with a unifier that has been assembled on the way. 

 

We assume here for illustrative purpose a simple control structure. The two input arguments are 

directed acyclic graphs with at least unique nodes for the variables and constants.  A recursive 

descent is done for the two input arguments.  Rejections can occur when: 

 Both arguments are constants that are different, for example a and b. One argument is a 

constant and the other argument is a function expression, for example a and f(c).  Both 

arguments are function expressions but the function names are different, for example f(c) 

and g(d e).  

 One argument is a variable and the other argument is a function expression that contains 

the variable, for example x and f(x).  (Note that our parser associates with a functional 

expression a container (HashSet) of the variables that occur in the expression.) 

 Both arguments are variables while one is committed earlier to a functional expression 

that contains the other variable, for example x is committed to f(y) and the other variable 

is y. 

 Both arguments are variable expressions and both are committed earlier to functional 

expressions.  This causes a recursion with the two functional expressions as input 

arguments, which can fail. 

A next tactic can be employed when all recursive traversals of the input have terminated and 

when it is observed that two committed variables cause an occur-cycle. Consider the two inputs 

P(x x y) and P(f(y) y g(x)). The variable x is committed to f(y), and y is committed to g(x), while x 

and y are committed to each other, which causes the cycle: x-> f(g(x)). 

 

These tactics are incorporated in the versions we have encountered. It is helpful that a variable 

committed to an expression (constant or functional term) has a representative of an equivalence 

class of expressions that can be made identical. Finding an expression that should be in the 

equivalence class but does not fit causes a failure. We saw this happening in the last example 

where x is committed to f(y), a representative of an equivalence class, and the attempted addition 

of g(x) via y fails. 

 

A Robinson type version 

Our version of a Robinson type unification algorithm is part of a theorem prover with, among 

others, a Kowalski type connection graph module [Kowalski].  The full code is available as part 

of the class Atom [GitHub].  It has the tactics described above.  After the tactics checks are 
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finished it still needs to produce a substitution (when a failure was not found).  That is where the 

exponential behavior resides.  
 

The Robinson version performance 

We use eight different generators for generating challenging argument pairs. The gen1 generator 

produces unifiable pairs with this pattern:  

         P(h(x1 x1) … h(xn xn) y2 … yn+1 xn+1) 

         P(x2 … xn+1 h(y1 y1) … h(yn yn) yn+1) 

To show the exponential nature of the timings of the Robinson algorithm we used examples in 

the range 15-18:  

Size       Timing 

15                81 

16              103 

17              483 

18            1775 

We ran the generator on an I3-2310M /8GB machine for the range of 10-18 seven times and 

picked for each size the smallest time (in milliseconds).  

 

Overview of the (semi-)linear unifier versions 
As discussed above input arguments need to be preprocessed before a unification attempt can be 

made for the PW version and the BS version, and if an ordered unifier is produced it needs to be 

post processed. 

This gives the following steps: 

 Preprocessing: 

o Parse the two arguments using a parser that takes a linear string representation 

of a predicate expression and produces the typical LISP like tree representation  

o In case of PW and BS create for each argument a directed acyclic graph (dag) 

where a node contains an element from the tree representation with additional 

infrastructure components 

 Create a context with infrastructure for the unification function in which an outcome is 

delivered: 

o Apply the unification function to the two dags 

o return the outcome null or the substitution 

 Post-processing; 

o Terminate with null if the unification failed, otherwise create a non-ordered 

substitution  

The parsing of predicate expression P(a ?x f(a ?x))  (dropping  the ‘?’question marks) yields the 

tree in figure 1. 

 

 

 

 

 

 

 

                         P 

 

              a         x         f 

 

                         a                   x 

 

Figure 1. The layout of P(a ?x f(a ?x)).  
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The root P has three downward links to the constant a, the variable x and a reference to the 

function f, which has two downward links to the constant a and the variable x. Notice that the 

multiple occurrences of terminals a and x are not here shared, while they are shared in the 

representations of the versions.  

 

The Unify DC version 

No preprocessor 

The DC version does not require the generation of a dag like structure as for the PW and the BS 

versions. Constants and variables have unique representations. While the BS version requires 

traversing an input argument twice, our version, like the PW version, traverses the input 

arguments only once.  

 

The unification functions 

As in the PW and BS versions unification happens inside a context. This context contains an 

instance of a Hashtable to keep track of all variables and there is also a sigma list that contains 

a substitution, if any. In addition there is a ‘manual’ stack for pairs of arguments to reduce 

system stack overflow when large (over size 100) input pairs are processed.  The unify function 

takes care of pre- and post-processing and invokes the function dunify for deciding unifiability. 

 

Like the BS version the DC version has multiple components.  The control flow with recursion 

in unif2 and exploreVariable is shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

The left branch under unify relies on dunify, which delegates the input arguments to unif and 

assembles an ordered substitution if unif reports success. The left branch under unif with 

unif2 and unif4 has the reject tactics.  The right branch under unif with unif3&5 does the 

final occur-check.  A key difference of this version resides in the unif2 module.  It investigates 

its two arguments thoroughly when at least one is a variable.  The right branch under unify takes 

care of post-processing when unification succeeds. 

 

The DC version exploits the object-orientedness of the input arguments. The Variable class has 

been extended with additional attributes to capture the different states that a variable can be in; 

among which: 

 first, a Term that, if set, is a representative of an equivalence class 

 isVroot, a boolean used for whether or not a variable is referring to another variable  

 myVroot, a Variable which is set only for those variables whose isVroot attribute is 

false 

                                                      unify 

 

                                  dunify                               buildSigma 

                                    unif                                 exploreVariable 

                                                                           descend 

                  unif2                  unif3&5                 exploreVariable* 

                  unif4                  check                        

                  unif2* 

Figure 7.  The control flow of the DC modules. 
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 variables, a HashSet type attribute which is a reference to a HashSet, if available, in 

the first attribute that contains the variables in first 

There is also a Boolean function isRoot(), which reports true if first != null. 

The state of a variable is updated when it is matched against another term. 

 

Pseudo code of the key functions unif2, unif4 and check 

Variables play a key role in the DC version.  A variable is an object with attributes that 

characterize the different states it can be in: 

 Initial:  

A variable has not yet been encountered; its attributes are set to: 

first = null; the type of first is Term, which can be a constant, or a functional 

expression 

     isVroot = true; a default  

myVroot = null; the type of myVroot is Variable;  a default 

 Variable contains the representative of an equivalence class: 

The variable has matched and its attributes are set to:  

first = a term, which is a representative of an equivalence class 
isVroot = true 

      myVroot = null 

 Variable does not contain the representative of an equivalence class: 

The variable has matched against a variable; its attributes are set to:   
     first = null 

    isVroot = false 

myVroot = a variable which contains the representative of an equivalence class, or it will 

refer to a variable that has its isVroot = true 

There is a size attribute with associated functions that is used to reduce the depth of the trees of 

variables that point to a variable with the representative of an equivalence class. The   

findVroot() function produces the current variable with  isVroot = true and shortens the 

path to the myVroot variable. For example when there is a myVroot chain of variables ?p->?q-

>?r>?s>?t using   findVroot(?p) will return ?t and as a side effect ?p,  ?q and ?r will 

directly refer to ?t. 

 

The unif2 function updates the states of variables when at least one of its two arguments is a 

variable. We need the notion of a pre-substitution, which we define as a substitution that has not 

yet been tested to be cycle free. The main purpose of  unif2 is to generate a pre-substitution (a 

representative of an equivalence class) for an unassigned variable.  When it encounters two 

variables both having already an assigned pre-substitution, it will recursively match them 

because they belong – if the match succeeds in the same equivalence class. The message(..) 

function returns false and optionally produces trace information in the implementation. The 

unif2 function delegates its arguments to the function unif4 if both arguments are not 

variables.  (Hence the post condition of unif2 relies on the post condition of unif4 and the 

other way around.) 

The function unif2: 
 

boolean unif2(Term s, Term t) { 

  if ( s.equals(t) ) return true;  // identical constants or variables 

  if ( (s instanceof Variable) ) { 
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      Variable sv = (Variable) s; 

      String svName = sv.getName(); 

      if ( null == htv.get(svName) ) { // insert sv in hash table 

          htv.put(sv, svName); 

     }     

     if ( !sv.isVroot ) sv = findVroot(sv); 

     // sv is root or sv is Vroot 

     if ( (t instanceof Variable) ) { 

         Variable tv = (Variable) t; 

         String tvName = tv.getName(); 

         if ( null == htv.get(tvName) ) { // insert tv in hash table 

             htv.put(tv, tvName); 

         } 

         if ( !tv.isVroot ) tv = findVroot(tv); 

         // sv is root or sv is Vroot and tv is root or tv is Vroot  

         if ( sv.equals(tv) ) return true; 

         int sizes = sv.getSize(), sizet = tv.getSize(); 

         if ( sizet <= sizes )  

             sv.setSize(sizes + sizet);  

         else 

             tv.setSize(sizes + sizet); 

         if ( sv.isRoot() ) { 

             Term sterm = sv.getFirst(); 

             if ( tv.isRoot() ) { 

                 if ( sizet <= sizes ) { 

                     tv.isVroot = false; 

                     tv.myVroot = sv; 

                 } else { 

                     sv.isVroot = false; 

                     sv.myVroot = tv; 

                 } 

                 Term tterm = tv.getFirst(); 

                 if ( !unif2(sterm, tterm) ) // match them 

                     return message("unif2C sterm tterm", sterm, tterm); 

                 return true; 

             } 

             // sv is root and tv is not root, tv is Vroot 

             tv.isVroot = false; 

             tv.myVroot = sv; // tv refers to sv 

             return true; 

         } 

         // sv is not root, is Vroot 

         if ( tv.isRoot() ) { 

             sv.isVroot = false; 

             sv.myVroot = tv; // sv refers to tv 

             return true; 

         } 

         // sv is not root, is Vroot & tv is not root, is Vroot 

         if ( sizet <= sizes ) { 

             tv.isVroot = false; 

             tv.myVroot = sv; 

         } else { 

             sv.isVroot = false; 

             sv.myVroot = tv; 

         } 

         return true; 

     } 
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     // s variable & t not a variable 

     if ( sv.isRoot() ) { 

         Term sterm = sv.getFirst(); 

         if ( !unif2(sterm, t) ) return message("unif2F sterm t", sterm, t); 

         return true; 

     } 

     // s variable & s is Vroot  t not a variable 

     sv.variables = t.getVariables(); 

          // the variables in the pre-substitution 

     if ( sv.variables != null && sv.variables.contains(sv) ) 

         return message("unif2G t contains sv", t, sv); 

     sv.setFirst(t); // create pre-substitution 

     return true; 

  } 

  // s not a variable 

  if ( (t instanceof Variable) ) { 

      Variable tv = (Variable) t; 

      String tvName = tv.getName(); 

      if ( null == htv.get(tvName) ) { 

          htv.put(tv, tvName); // insert tv in hash table 

      } 

      if ( !tv.isVroot ) tv = findVroot(tv); 

      if ( tv.isRoot() ) {  

          Term tterm = tv.getFirst(); 

          if ( !unif2(tterm, s) ) return message("unif2H tterm s", tterm, s); 

          return true; 

      } 

      // s not a variable & tv is not root isVroot  

      tv.variables = s.getVariables(); 

          // the variables in the pre-substitution 

      if ( tv.variables != null && tv.variables.contains(tv) ) 

          return message("unif2I s contains tv", s, tv); 

      tv.setFirst(s); // create pre-substitution 

      return true;  

  } 

  // s not a variable & t not a variable  

  return unif4(s, t);  

} // end unif2 

 

The unif4 function takes as arguments two terms, both of which are not variables. Its task is to 

recognize non-unifiability due to incompatible constants, function names, etc.  Corresponding 

arguments of functional terms are delegated to the unif2 module.  However the description 

below does not channel these argument pairs into unif2; instead they are pushed on a stack, 

from which another function fetches the pairs and channels them into the unif2 module.  This 

modification was introduced to process large (over 100) sized input argument pairs. 

 
boolean unif4(Term s, Term t) { // s and t are both not variables 

  if ( s instanceof FTerm ) { 

      FTerm s1 = (FTerm) s; 

      if ( t instanceof FTerm ) { 

          FTerm t1 = (FTerm) t; 

          if ( !s1.getFunction().equals(t1.getFunction()) ) return false; 

          Vector s1Args = s1.getArgs(), t1Args = t1.getArgs(); 

          int lng = s1Args.size(); 

          for ( int i = 0; i < lng; i++ ) { 
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              Term s1A = (Term)s1Args.elementAt(i), 

                   t1A = (Term)t1Args.elementAt(i); 

              // to avoid stack overflow 

              stack.push(new TermsPair1(s1A, t1A)); 

          } 

          return true; 

      } // t not FTerm 

      return false; 

  } // s not FTerm 

  if ( t instanceof FTerm ) return false; 

  // s & t are symbols 

  return s.equals(t); 

} // end unif4 

 

The function unif5, not shown, has access to the set of variables in the two input arguments. It 

contains a loop that invokes the check function on each variable and returns false if any of 

these calls returns false. 
 

The check function does the occur check.  If the variable has a pre-substitution term in the first 

attribute the variable has a reference to a HashSet, which contains the variables in that term. 

Hence a simple depth-first search will identify a cycle if there is one. 

 
boolean check(Variable v) { 

   if ( v.checked ) { 

     return true; 

   } 

   if ( v.checking ) return message("check checking cycle", v, v); // cycle 

   if ( !v.isRoot() ) { // not matched against a term 

  if ( v.isVroot ) { // not matched against a variable 

     v.checked = true; 

     return true; 

  } 

  v.checking = true; 

  Variable vnVroot = v.myVroot; 

  if ( !check(vnVroot) ) return message("check2 ", v, vnVroot); // cycle 

  v.checking = false; 

  v.checked = true; 

  return true; 

   } // v is root 

   v.checking = true; 

   HashSet variables = v.variables; 

   if ( null == variables ) { // nothing to check 

  v.checking = false; 

  v.checked = true; 

  return true; 

   } 

   for( Iterator i = variables.iterator(); i.hasNext(); ) { 

  Variable w = (Variable)i.next(); 

  if ( !check(w) ) return message("check3 v w ", v, w); // cycle 

   } 

   v.checking = false; 

   v.checked = true; 

   return true; 

} // end check 

 

Occur-check examples 

We use the not unifiable pair: 

       P(x h(z)  f(x) )        P(g(y)  y z) 
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A recursive depth-first search of the check function starting with the variable z and proceeds 

with: 

      z - f(x) - x - g(y) - y - h(z) - z, which yields a cycle. 

Reversing the arguments gives: 

     y - h(z) - z - f(x) - x - g(y) - y, which yields a cycle. 

   

The following example shows a cycle involving a myVroot link from x to z: 

      P(x y z)         P(f(y) z x)  

which produces the cycle: 

       x - z - f(y) - y - z   

Reversing the arguments: 

      P(z y x)       P(x z f(y)) 

produces the cycle through the myVroot chain:  

x - z - y and the match of x with f(y) producing the y in f(y) failure. 

 

Correctness 

To prove correctness of the DC version we need to establish first what is to be shown. We will 

address: 

 The unif2 and unif4 functions produce false when their inputs are not unifiable or they 

produce pre-substitutions that eliminate differences between the two input arguments 

downwards. 

 The check function recognizes a cycle in a collection of pre-substitutions if present. 

 If DC finds an ordered substitution su for the arguments pair a1-a2 without a cycle then:  

a1.su = a2.su 

 If there is a cycle free unifier su then DC will find it. 

 If DC fails there is no cycle free substitution su for the arguments pair a1-a2 so that  

a1.su = a2.su 

 If there is a cycle free unifier su for the arguments pair a1-a2 then DC will find it. 

 If there is not a cycle free unifier su for the arguments pair a1-a2 then DC will report 

failure. 

 

Lemma A The unif2 and unif4 functions produce false when their inputs are not unifiable or 

they produce pre-substitutions that eliminate differences between the two input arguments 

downwards. 

Proof: The functions unif2 and unif4 are cross recursive; hence we can obtain post conditions 

for one of them from what a (cross) recursive invocation produces.  A base case in unif2 is the 

test that the two input arguments are identical. Another base case is the recognition of non-

unifiability when a variable occurs in a potential pre-substitution term; otherwise the variable’s 

first attribute is set with the other argument term, which indeed eliminates a difference 

between the two input arguments.  Invoking unif2 on already encountered representatives of 

equivalent classes in its two variable arguments also eliminates differences between these 

representatives or identifies non unifiable arguments. A base case in unif4 is the test for equality 

when both arguments are constants.  Reject base cases are combinations of a constant with a 

function expression and two function expressions with different function names. Two function 

expressions with the same function names triggers recursive invocations of unif2 on the 
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corresponding argument pairs and thereby contribute to the post condition of unif4 and hence 

to the post condition of unif2. 

QED 

 

Lemma B The check function recognizes a cycle in a collection of pre-substitutions if present. 

Proof: Reminder: a variable has a container with associated variables, a reference to the 

container of the variables occurring in its pre-substitution, if any. A simplified recursive 

definition checkR for checking a set of pre-substitutions to be cycle free is: 

    boolean checkR(Variable v) { 

        if ( v.checked )  

   return true; // v has been investigated already 

        } 

        if ( v.checking ) { 

             return false; // found cycle 

        } 

        v.checking = true; 

        if ( v has no associated variables ) { 

            v.checking = false; 

 v.checked = true; 

            return true; 

       } 

       for each associated variable vx { 

     if ( !checkR(vx) ) return false; 

       } 

       v.checking = false; 

       v.checked = true; 

       return true; 

   } 

The check function is an implementation of this definition. 

QED 

 

Lemma C If DC finds an ordered substitution su for the arguments pair a1-a2 without a cycle 

then:  a1.su = a2.su 

Proof: Lemma A shows that pre-substitutions eliminate differences between the two input 

arguments. 

QED 

 

Lemma D If there is a cycle free unifier su then DC will find it. 

Proof: 

Let x->xs be a substitution member of su. 

Let Vx = { v | v is a variable in the equivalence class of x } 

Let Tx = ( t | t is a term in the equivalence class of x } 

For each v in Vx there is a path of pairs (v0, v1) ... (vn-1, vn) so that v0 = x and vn = v and (vz, vz+1) 

were matched. 

For each t in Tx there is a v in Vx so that they were matched, hence t and xs were matched 

successfully. 
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DC will find these matches and thus obtains also the x->xs substitution member of su.  

QED 

 

Lemma E If DC fails there is no cycle free substitution so that a1.su = a2.su. 

Proof: By contradiction according to lemma D. 

QED 

 

Lemma F If there is not a cycle free unifier su then DC will report failure. 

Proof: By contradiction.  If DC succeeds it obtains a cycle free unifier su. 

QED 

 

Theorem The DC version is correct according to the above lemmas. 

 

Semi-Linearity 

The functions unif2 and unif4 are executed at most as often as the number of nodes in the input 

arguments. The check function is called as often as there are variables and their total effort is a 

function of their number N. It is possible that after iterating over p variables the number of check 

invocations is p+q < N.  This entails that q variables will be skipped when iterating further over 

the range (p+1 : N). 

We consider this design of the occur check the most transparent we have encountered thus far. 

 

The exception to linearity is the use, as in the BS version, of the findVroot() function, This 

function implements the union-find algorithm. It has complexity O(n alpha(n)), where alpha is 

the functional inverse of the Ackermann’s function, which may be considered a small constant 

factor [Union-Find]. 

 

Post-processing 

The PW, BS & DC versions produce ordered substitutions, which need post-processing. A 

postprocessor was described for the PW version in [deChampeaux].  The design of that version 

has been improved by replacing iteration by recursion.  The implementations for the different 

versions differ due to using different data structures.  An example should explain how it works. 

We can reuse the ordered substitution introduced in the Robinson section. 

     [?x2 -> h(?x1 ?x1) ?x3 -> h(?x2 ?x2) ?y2 -> h(?y1 ?y1) ?y3 -> h(?y2 ?y2) ?x1 -> ?y1] 

We need to replace ?x1 in ?x2 -> h(?x1 ?x1). A depth-first search on the variables will recognize 

that the first occurrence of ?x1 in ?x2 -> h(?x1 ?x1) needs replacement.  This triggers an 

investigation whether ?y1in ?x1 -> ?y1 needs adjustment, which is not the case; hence ?x1 can 

be marked with its ?x1 -> ?y1 substitution as being ‘ready’.  This will prevent having to 

investigate again the 2
nd

 occurrence of ?x1 in h(?x1 ?x1) and any other binding of ?x1, which can 

be large number.    

 

Timing comparisons of the versions 

We use different tests to compare the four different versions.  An appendix has examples of the 

eight different generators for input pairs. These generators employ a size parameter for the 

number of arguments of the input arguments’ signatures.  
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The timings were done on an I3 machine.  After a warm-up, there is a loop for 500 iterations 

which measures the run time. This is repeated 10 times and the shortest timing is reported.  This 

helps to compensate for the garbage collections that can interfere at any time.  The entries 

represent the average execution time in milliseconds over the four generators. The best timings 

are shown in bold. 

  

Small range for unifiable pairs 

    

Size Robinson PW BS DC 

1 0.00550 0.01100 0.00950 0.00750 

2 0.01450 0.01750 0.01550 0.01200 

3 0.02650 0.01550 0.01700 0.01650 

4 0.08200 0.02050 0.02450 0.01450 

5 0.29900 0.02600 0.02250 0.01850 

6 1.19700 0.03300 0.02800 0.02300 

Table 6 Timings for small sized unifiable pairs. 

 

The Robinson version is the clear winner for the size = 1 row.  This supports the position that 

linear versions have too much overhead.  The other rows challenge this verdict. 

 

Small range for non-unifiable pairs 

    

Size Robinson PW BS DC 

1 0.00500 0.00600 0.00500 0.00450 

2 0.00850 0.00950 0.00850 0.00750 

3 0.01200 0.01350 0.01250 0.01100 

4 0.01400 0.01650 0.01650 0.01450 

5 0.01650 0.02100 0.02100 0.01850 

6 0.02000 0.02600 0.02600 0.02300 

Table 7 Timings for small sized non-unifiable pairs. 

 

Adding the timings for Robinson and DC versions for the sizes 1 &2 and for the unifiable and 

non-unifiable pairs we obtain: 

Robinson: 3350 and DC: 3150.   

For the size 3 we obtain: 

Robinson: 3850 and DC: 2750.   

Thus DC is also competitive on those small sized inputs. 

The advantages that Robinson has on sizes 4-6 on non-unifiable pairs is lost when considering 

the timings of the unifiable pairs. 
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Large range for a combination of the unifiable and non-unifiable pairs 

 

Size PW BS DC 

5 0.02475 0.02250 0.01875 

10 0.05750 0.05400 0.04175 

20 0.16400 0.15350 0.12350 

40 0.56850 0.52400 0.47875 

Table 8 Timing for the combination of large sized unifiable and non-

unifiable pairs. 

 

The data in table 8 supports the conjecture that the removal of preprocessing, the use of the 

different data structures and the central role of variables in DC made a positive difference. 

 

Discussion, future work and conclusion 

Unification algorithms are similar in that they distinguish between non-unifiability based on 

structural differences in the two input arguments and alternatively failing an occur check. The 

three (semi-)linear versions have different designs for doing the occur check using different data 

structures for representing the input arguments.  Two versions have their own ways to preprocess 

the arguments and wrap them in richer data structures.  The third version avoids the overhead of 

preprocessing. While checking for structural differences it uses additional attributes in variables 

to register properties that accumulate during the arguments scrutinizing phase.  Our timings show 

that our 3
rd

 version, DC, out performs the two other (semi-)linear ones. 

 

An earlier extensive study [HoderVoronkov] claimed that the original Robinson version is best 

for theorem proving settings.  Our admittedly limited testing does not support their conclusion 

that small sized arguments are best handled by the Robinson version. Hence we hope that others 

can elaborate our findings.  

 

The representation of a physical object could be done with nine parameters for location, velocity 

and spin. Reasoning about Sudoku problem solvers could rely also on predicates with nine 

arguments.  Hence domains are conceivable where the versions discussed are a better fit than the 

Robinson algorithm.  

 

Unification algorithms are used also in problem solving settings to ascertain that an operator can 

be applied and if so obtain the required substitutions. The PDDL language was developed to 

specify domains with its operators [PDDL].  It is likely that the versions discussed can be used to 

deal with complex contextual/ temporal preconditions in these PDDL domains. 

 

Our experiments were done using implementations in the Java language. Using its object-

oriented features has been a major advantage to represent predicate calculus expressions and to 

model the additional infrastructures required in the different versions. The DC version exploits 

the object-ness of variables so that it was easy to add additional attributes in their class, which 

was crucial to reduce overheads. Object-Orientation has promoted conceptual architectures and 

designs.  Newer data structures may still be forthcoming that will provide even better 

(unification) algorithms. 
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Appendix Eight generators 
Eight generators were used for obtaining argument pairs to compare the performance of the 

versions discussed.  These generators take as argument the size for a pair. To get an impression 

of the size of these problems we show for each generator the instances for size 1 and 2. The 

generators produce unifiable or non-unifiable pairs. The generator names that end with “f” 

produce non-unifiable pairs. 

 

Generator Size 1 Size 2 

gen1     P(h(x1 x1) y2 x2) 

P(x2 h(y1 y1) y2) 
P(h(x1 x1) h(x2 x2) y2 y3 x3) 

P(x2 x3 h(y1 y1) h(y2 y2) y3 
gen1f    P(h(x1 x1) y2 aa) 

P(x2 h(y1 y1) y2) 
P(h(x1 x1) h(x2 x2) y2 y3 aa) 
P(x2 x3 h(y1 y1) h(y2 y2) y3 

gen3       P(x0 f(x1 x1) x1 f(x2 x2) ) 

P(f(y0 y0) y0 f(y1 y1) y2) 
P(x0 f(x1 x1) x1 f(x2 x2) x2 f(x3 x3) ) 

P(f(y0 y0) y0 f(y1 y1) y1 f(y2 y2) y3) 

gen3f      P(x0 f(x1 x1) x1 f(x2 x2)) 
P(f(y0 y0) y0 f(x0 x0) y2) 

P(x0 f(x1 x1) x1 f(x2 x2) x2 f(x3 x3) ) 
P(f(y0 y0) y0 f(y1 y1) y1 f(x0 x0) y3) 

gen4       P(x1 y1) 

P(g(y1 y1) f(x2)) 
P(x1 y1 x2 y2) 

P(g(y1 y1) f(x2) g(y2 y2) f(x3)) 
gen4f      P(x1 y1) 

P(g(y1 y1) x1) 
P(x1 y1 x2 y2) 
P(g(y1 y1) f(x2) g(y2 y2) x1) 

gen2      P(x1) 

P(f(y)) 

P(x1 f(x2)) 

P(f(x2) f(f(y))) 
gen2f     P(x1) 

P(f(x1)) 
P(x1 f(x2)) 
P(f(x2) f(f(x1))) 

 

 

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

