
1

File: C:/bsd/rigel/Unification/LinUnify3.docx

Date: 2020 September – 2021 November – 2022 May

© Dennis de Champeaux

Faster Linear Unification Algorithm
Dennis de Champeaux

San Jose, CA USA
ddc2 AT ontooo DOT com

2022

Abstract
The Robinson unification algorithm has exponential worst case behavior. This triggered the

development of (semi-)linear versions around 1976 by Martelli, A. & U. Montanari as well as

by Paterson & Wegman. Another version emerged by Baader & Snyder around 2001. While

these versions are distinctly faster on larger input pairs, the Robinson version still does better

than them on small sized inputs. This paper describes yet another (semi-)linear version that is

faster and challenges also the Robinson version on small sized inputs. All versions have been

implemented and compared against each other on different types and sizes of input pairs.

Introduction

Robinson created the original unification algorithm [Robinson]. The significance of this

algorithm was described by [Martelli&Montanari] with:

This single, powerful rule can replace all the axioms and inference rules of the first-order

predicate calculus and thus was immediately recognized as especially suited to mechanical

theorem provers.

The Robinson algorithm – while used effectively in practice – has exponential behavior. Linear

versions were developed around 1976-1978 by Martelli, A. & U. Montanari

[Martelli&Montanari0] as well as by Paterson & Wegman [PatersonWegman] (PW).

Unfortunately the core procedure in the last paper of the PW version still had an error and it

could be improved [deChampeaux], 1986. That paper created another typo that was observed

and corrected in 1991 by [Jacobson] and again in 2020 by [Motroi&Ciobaca]. The thoroughly

corrected version is available at [GitHub].

Going from exponential to linear performance comes with a price. The PW linear algorithm

depends on a custom data structure that did not get the attention that it deserved. A preprocessor

is required to transform the traditional input format into that custom data structure; a

postprocessor produces a proper, unordered substitution (when the two arguments are unifiable).

We found a semi-linear algorithm in [BaaderSnyder] (BS) from 2001. Our implementation of

this version relies also on a custom, intricate data structure and requires similarly preprocessing

and post processing. The algorithm description in the original publication can be improved as

well by replacing three of four procedural modules by functions and by clarifying the data

structure employed. This version is also available at [GitHub].

A novel, third algorithm, DC, is described that does not require preprocessing to wrap the input

into another data representation. Instead each variable encountered during traversal of the input

https://arxiv.org/search/cs?searchtype=author&query=Motroi%2C+V

2

(without repetitions) exploits attributes in the variable’s object, which are used to capture

findings about the variable’s matches. It can be found also at [GitHub].

We compare those versions using generators for input pairs: four for unifiable pairs and four for

non-unifiable pairs. The preprocessing is overhead that makes the Robinson version (potentially)

competitive against the (semi-)linear ones on small inputs. Hence the three versions are also

compared against the Robinson version on two sets of small sized inputs.

Tactics for unification

The general approach in unification algorithms is showing doggedly that the two input

arguments are not unifiable and when running out of reject options admit that unification

succeeds with a unifier that has been assembled on the way.

We assume here for illustrative purpose a simple control structure. The two input arguments are

directed acyclic graphs with at least unique nodes for the variables and constants. A recursive

descent is done for the two input arguments. Rejections can occur when:

 Both arguments are constants that are different, for example a and b. One argument is a

constant and the other argument is a function expression, for example a and f(c). Both

arguments are function expressions but the function names are different, for example f(c)

and g(d e).

 One argument is a variable and the other argument is a function expression that contains

the variable, for example x and f(x). (Note that our parser associates with a functional

expression a container (HashSet) of the variables that occur in the expression.)

 Both arguments are variables while one is committed earlier to a functional expression

that contains the other variable, for example x is committed to f(y) and the other variable

is y.

 Both arguments are variable expressions and both are committed earlier to functional

expressions. This causes a recursion with the two functional expressions as input

arguments, which can fail.

A next tactic can be employed when all recursive traversals of the input have terminated and

when it is observed that two committed variables cause an occur-cycle. Consider the two inputs

P(x x y) and P(f(y) y g(x)). The variable x is committed to f(y), and y is committed to g(x), while x

and y are committed to each other, which causes the cycle: x-> f(g(x)).

These tactics are incorporated in the versions we have encountered. It is helpful that a variable

committed to an expression (constant or functional term) has a representative of an equivalence

class of expressions that can be made identical. Finding an expression that should be in the

equivalence class but does not fit causes a failure. We saw this happening in the last example

where x is committed to f(y), a representative of an equivalence class, and the attempted addition

of g(x) via y fails.

A Robinson type version

Our version of a Robinson type unification algorithm is part of a theorem prover with, among

others, a Kowalski type connection graph module [Kowalski]. The full code is available as part

of the class Atom [GitHub]. It has the tactics described above. After the tactics checks are

3

finished it still needs to produce a substitution (when a failure was not found). That is where the

exponential behavior resides.

The Robinson version performance

We use eight different generators for generating challenging argument pairs. The gen1 generator

produces unifiable pairs with this pattern:

 P(h(x1 x1) … h(xn xn) y2 … yn+1 xn+1)

 P(x2 … xn+1 h(y1 y1) … h(yn yn) yn+1)

To show the exponential nature of the timings of the Robinson algorithm we used examples in

the range 15-18:

Size Timing

15 81

16 103

17 483

18 1775

We ran the generator on an I3-2310M /8GB machine for the range of 10-18 seven times and

picked for each size the smallest time (in milliseconds).

Overview of the (semi-)linear unifier versions
As discussed above input arguments need to be preprocessed before a unification attempt can be

made for the PW version and the BS version, and if an ordered unifier is produced it needs to be

post processed.

This gives the following steps:

 Preprocessing:

o Parse the two arguments using a parser that takes a linear string representation

of a predicate expression and produces the typical LISP like tree representation

o In case of PW and BS create for each argument a directed acyclic graph (dag)

where a node contains an element from the tree representation with additional

infrastructure components

 Create a context with infrastructure for the unification function in which an outcome is

delivered:

o Apply the unification function to the two dags

o return the outcome null or the substitution

 Post-processing;

o Terminate with null if the unification failed, otherwise create a non-ordered

substitution

The parsing of predicate expression P(a ?x f(a ?x)) (dropping the ‘?’question marks) yields the

tree in figure 1.

 P

 a x f

 a x

Figure 1. The layout of P(a ?x f(a ?x)).

4

The root P has three downward links to the constant a, the variable x and a reference to the

function f, which has two downward links to the constant a and the variable x. Notice that the

multiple occurrences of terminals a and x are not here shared, while they are shared in the

representations of the versions.

The Unify DC version

No preprocessor

The DC version does not require the generation of a dag like structure as for the PW and the BS

versions. Constants and variables have unique representations. While the BS version requires

traversing an input argument twice, our version, like the PW version, traverses the input

arguments only once.

The unification functions

As in the PW and BS versions unification happens inside a context. This context contains an

instance of a Hashtable to keep track of all variables and there is also a sigma list that contains

a substitution, if any. In addition there is a ‘manual’ stack for pairs of arguments to reduce

system stack overflow when large (over size 100) input pairs are processed. The unify function

takes care of pre- and post-processing and invokes the function dunify for deciding unifiability.

Like the BS version the DC version has multiple components. The control flow with recursion

in unif2 and exploreVariable is shown in figure 7.

The left branch under unify relies on dunify, which delegates the input arguments to unif and

assembles an ordered substitution if unif reports success. The left branch under unif with

unif2 and unif4 has the reject tactics. The right branch under unif with unif3&5 does the

final occur-check. A key difference of this version resides in the unif2 module. It investigates

its two arguments thoroughly when at least one is a variable. The right branch under unify takes

care of post-processing when unification succeeds.

The DC version exploits the object-orientedness of the input arguments. The Variable class has

been extended with additional attributes to capture the different states that a variable can be in;

among which:

 first, a Term that, if set, is a representative of an equivalence class

 isVroot, a boolean used for whether or not a variable is referring to another variable

 myVroot, a Variable which is set only for those variables whose isVroot attribute is

false

 unify

 dunify buildSigma

 unif exploreVariable

 descend

 unif2 unif3&5 exploreVariable*

 unif4 check

 unif2*

Figure 7. The control flow of the DC modules.

5

 variables, a HashSet type attribute which is a reference to a HashSet, if available, in

the first attribute that contains the variables in first

There is also a Boolean function isRoot(), which reports true if first != null.

The state of a variable is updated when it is matched against another term.

Pseudo code of the key functions unif2, unif4 and check

Variables play a key role in the DC version. A variable is an object with attributes that

characterize the different states it can be in:

 Initial:

A variable has not yet been encountered; its attributes are set to:

first = null; the type of first is Term, which can be a constant, or a functional

expression

 isVroot = true; a default

myVroot = null; the type of myVroot is Variable; a default

 Variable contains the representative of an equivalence class:

The variable has matched and its attributes are set to:

first = a term, which is a representative of an equivalence class
isVroot = true

 myVroot = null

 Variable does not contain the representative of an equivalence class:

The variable has matched against a variable; its attributes are set to:
 first = null

 isVroot = false

myVroot = a variable which contains the representative of an equivalence class, or it will

refer to a variable that has its isVroot = true

There is a size attribute with associated functions that is used to reduce the depth of the trees of

variables that point to a variable with the representative of an equivalence class. The

findVroot() function produces the current variable with isVroot = true and shortens the

path to the myVroot variable. For example when there is a myVroot chain of variables ?p->?q-

>?r>?s>?t using findVroot(?p) will return ?t and as a side effect ?p, ?q and ?r will

directly refer to ?t.

The unif2 function updates the states of variables when at least one of its two arguments is a

variable. We need the notion of a pre-substitution, which we define as a substitution that has not

yet been tested to be cycle free. The main purpose of unif2 is to generate a pre-substitution (a

representative of an equivalence class) for an unassigned variable. When it encounters two

variables both having already an assigned pre-substitution, it will recursively match them

because they belong – if the match succeeds in the same equivalence class. The message(..)

function returns false and optionally produces trace information in the implementation. The

unif2 function delegates its arguments to the function unif4 if both arguments are not

variables. (Hence the post condition of unif2 relies on the post condition of unif4 and the

other way around.)

The function unif2:

boolean unif2(Term s, Term t) {

 if (s.equals(t)) return true; // identical constants or variables

 if ((s instanceof Variable)) {

6

 Variable sv = (Variable) s;

 String svName = sv.getName();

 if (null == htv.get(svName)) { // insert sv in hash table

 htv.put(sv, svName);

 }

 if (!sv.isVroot) sv = findVroot(sv);

 // sv is root or sv is Vroot

 if ((t instanceof Variable)) {

 Variable tv = (Variable) t;

 String tvName = tv.getName();

 if (null == htv.get(tvName)) { // insert tv in hash table

 htv.put(tv, tvName);

 }

 if (!tv.isVroot) tv = findVroot(tv);

 // sv is root or sv is Vroot and tv is root or tv is Vroot

 if (sv.equals(tv)) return true;

 int sizes = sv.getSize(), sizet = tv.getSize();

 if (sizet <= sizes)

 sv.setSize(sizes + sizet);

 else

 tv.setSize(sizes + sizet);

 if (sv.isRoot()) {

 Term sterm = sv.getFirst();

 if (tv.isRoot()) {

 if (sizet <= sizes) {

 tv.isVroot = false;

 tv.myVroot = sv;

 } else {

 sv.isVroot = false;

 sv.myVroot = tv;

 }

 Term tterm = tv.getFirst();

 if (!unif2(sterm, tterm)) // match them

 return message("unif2C sterm tterm", sterm, tterm);

 return true;

 }

 // sv is root and tv is not root, tv is Vroot

 tv.isVroot = false;

 tv.myVroot = sv; // tv refers to sv

 return true;

 }

 // sv is not root, is Vroot

 if (tv.isRoot()) {

 sv.isVroot = false;

 sv.myVroot = tv; // sv refers to tv

 return true;

 }

 // sv is not root, is Vroot & tv is not root, is Vroot

 if (sizet <= sizes) {

 tv.isVroot = false;

 tv.myVroot = sv;

 } else {

 sv.isVroot = false;

 sv.myVroot = tv;

 }

 return true;

 }

7

 // s variable & t not a variable

 if (sv.isRoot()) {

 Term sterm = sv.getFirst();

 if (!unif2(sterm, t)) return message("unif2F sterm t", sterm, t);

 return true;

 }

 // s variable & s is Vroot t not a variable

 sv.variables = t.getVariables();

 // the variables in the pre-substitution

 if (sv.variables != null && sv.variables.contains(sv))

 return message("unif2G t contains sv", t, sv);

 sv.setFirst(t); // create pre-substitution

 return true;

 }

 // s not a variable

 if ((t instanceof Variable)) {

 Variable tv = (Variable) t;

 String tvName = tv.getName();

 if (null == htv.get(tvName)) {

 htv.put(tv, tvName); // insert tv in hash table

 }

 if (!tv.isVroot) tv = findVroot(tv);

 if (tv.isRoot()) {

 Term tterm = tv.getFirst();

 if (!unif2(tterm, s)) return message("unif2H tterm s", tterm, s);

 return true;

 }

 // s not a variable & tv is not root isVroot

 tv.variables = s.getVariables();

 // the variables in the pre-substitution

 if (tv.variables != null && tv.variables.contains(tv))

 return message("unif2I s contains tv", s, tv);

 tv.setFirst(s); // create pre-substitution

 return true;

 }

 // s not a variable & t not a variable

 return unif4(s, t);

} // end unif2

The unif4 function takes as arguments two terms, both of which are not variables. Its task is to

recognize non-unifiability due to incompatible constants, function names, etc. Corresponding

arguments of functional terms are delegated to the unif2 module. However the description

below does not channel these argument pairs into unif2; instead they are pushed on a stack,

from which another function fetches the pairs and channels them into the unif2 module. This

modification was introduced to process large (over 100) sized input argument pairs.

boolean unif4(Term s, Term t) { // s and t are both not variables

 if (s instanceof FTerm) {

 FTerm s1 = (FTerm) s;

 if (t instanceof FTerm) {

 FTerm t1 = (FTerm) t;

 if (!s1.getFunction().equals(t1.getFunction())) return false;

 Vector s1Args = s1.getArgs(), t1Args = t1.getArgs();

 int lng = s1Args.size();

 for (int i = 0; i < lng; i++) {

8

 Term s1A = (Term)s1Args.elementAt(i),

 t1A = (Term)t1Args.elementAt(i);

 // to avoid stack overflow

 stack.push(new TermsPair1(s1A, t1A));

 }

 return true;

 } // t not FTerm

 return false;

 } // s not FTerm

 if (t instanceof FTerm) return false;

 // s & t are symbols

 return s.equals(t);

} // end unif4

The function unif5, not shown, has access to the set of variables in the two input arguments. It

contains a loop that invokes the check function on each variable and returns false if any of

these calls returns false.

The check function does the occur check. If the variable has a pre-substitution term in the first

attribute the variable has a reference to a HashSet, which contains the variables in that term.

Hence a simple depth-first search will identify a cycle if there is one.

boolean check(Variable v) {

 if (v.checked) {

 return true;

 }

 if (v.checking) return message("check checking cycle", v, v); // cycle

 if (!v.isRoot()) { // not matched against a term

 if (v.isVroot) { // not matched against a variable

 v.checked = true;

 return true;

 }

 v.checking = true;

 Variable vnVroot = v.myVroot;

 if (!check(vnVroot)) return message("check2 ", v, vnVroot); // cycle

 v.checking = false;

 v.checked = true;

 return true;

 } // v is root

 v.checking = true;

 HashSet variables = v.variables;

 if (null == variables) { // nothing to check

 v.checking = false;

 v.checked = true;

 return true;

 }

 for(Iterator i = variables.iterator(); i.hasNext();) {

 Variable w = (Variable)i.next();

 if (!check(w)) return message("check3 v w ", v, w); // cycle

 }

 v.checking = false;

 v.checked = true;

 return true;

} // end check

Occur-check examples

We use the not unifiable pair:

 P(x h(z) f(x)) P(g(y) y z)

9

A recursive depth-first search of the check function starting with the variable z and proceeds

with:

 z - f(x) - x - g(y) - y - h(z) - z, which yields a cycle.

Reversing the arguments gives:

 y - h(z) - z - f(x) - x - g(y) - y, which yields a cycle.

The following example shows a cycle involving a myVroot link from x to z:

 P(x y z) P(f(y) z x)

which produces the cycle:

 x - z - f(y) - y - z

Reversing the arguments:

 P(z y x) P(x z f(y))

produces the cycle through the myVroot chain:

x - z - y and the match of x with f(y) producing the y in f(y) failure.

Correctness

To prove correctness of the DC version we need to establish first what is to be shown. We will

address:

 The unif2 and unif4 functions produce false when their inputs are not unifiable or they

produce pre-substitutions that eliminate differences between the two input arguments

downwards.

 The check function recognizes a cycle in a collection of pre-substitutions if present.

 If DC finds an ordered substitution su for the arguments pair a1-a2 without a cycle then:

a1.su = a2.su

 If there is a cycle free unifier su then DC will find it.

 If DC fails there is no cycle free substitution su for the arguments pair a1-a2 so that

a1.su = a2.su

 If there is a cycle free unifier su for the arguments pair a1-a2 then DC will find it.

 If there is not a cycle free unifier su for the arguments pair a1-a2 then DC will report

failure.

Lemma A The unif2 and unif4 functions produce false when their inputs are not unifiable or

they produce pre-substitutions that eliminate differences between the two input arguments

downwards.

Proof: The functions unif2 and unif4 are cross recursive; hence we can obtain post conditions

for one of them from what a (cross) recursive invocation produces. A base case in unif2 is the

test that the two input arguments are identical. Another base case is the recognition of non-

unifiability when a variable occurs in a potential pre-substitution term; otherwise the variable’s

first attribute is set with the other argument term, which indeed eliminates a difference

between the two input arguments. Invoking unif2 on already encountered representatives of

equivalent classes in its two variable arguments also eliminates differences between these

representatives or identifies non unifiable arguments. A base case in unif4 is the test for equality

when both arguments are constants. Reject base cases are combinations of a constant with a

function expression and two function expressions with different function names. Two function

expressions with the same function names triggers recursive invocations of unif2 on the

10

corresponding argument pairs and thereby contribute to the post condition of unif4 and hence

to the post condition of unif2.

QED

Lemma B The check function recognizes a cycle in a collection of pre-substitutions if present.

Proof: Reminder: a variable has a container with associated variables, a reference to the

container of the variables occurring in its pre-substitution, if any. A simplified recursive

definition checkR for checking a set of pre-substitutions to be cycle free is:

 boolean checkR(Variable v) {

 if (v.checked)

 return true; // v has been investigated already

 }

 if (v.checking) {

 return false; // found cycle

 }

 v.checking = true;

 if (v has no associated variables) {

 v.checking = false;

 v.checked = true;

 return true;

 }

 for each associated variable vx {

 if (!checkR(vx)) return false;

 }

 v.checking = false;

 v.checked = true;

 return true;

 }

The check function is an implementation of this definition.

QED

Lemma C If DC finds an ordered substitution su for the arguments pair a1-a2 without a cycle

then: a1.su = a2.su

Proof: Lemma A shows that pre-substitutions eliminate differences between the two input

arguments.

QED

Lemma D If there is a cycle free unifier su then DC will find it.

Proof:

Let x->xs be a substitution member of su.

Let Vx = { v | v is a variable in the equivalence class of x }

Let Tx = (t | t is a term in the equivalence class of x }

For each v in Vx there is a path of pairs (v0, v1) ... (vn-1, vn) so that v0 = x and vn = v and (vz, vz+1)

were matched.

For each t in Tx there is a v in Vx so that they were matched, hence t and xs were matched

successfully.

11

DC will find these matches and thus obtains also the x->xs substitution member of su.

QED

Lemma E If DC fails there is no cycle free substitution so that a1.su = a2.su.

Proof: By contradiction according to lemma D.

QED

Lemma F If there is not a cycle free unifier su then DC will report failure.

Proof: By contradiction. If DC succeeds it obtains a cycle free unifier su.

QED

Theorem The DC version is correct according to the above lemmas.

Semi-Linearity

The functions unif2 and unif4 are executed at most as often as the number of nodes in the input

arguments. The check function is called as often as there are variables and their total effort is a

function of their number N. It is possible that after iterating over p variables the number of check

invocations is p+q < N. This entails that q variables will be skipped when iterating further over

the range (p+1 : N).

We consider this design of the occur check the most transparent we have encountered thus far.

The exception to linearity is the use, as in the BS version, of the findVroot() function, This

function implements the union-find algorithm. It has complexity O(n alpha(n)), where alpha is

the functional inverse of the Ackermann’s function, which may be considered a small constant

factor [Union-Find].

Post-processing

The PW, BS & DC versions produce ordered substitutions, which need post-processing. A

postprocessor was described for the PW version in [deChampeaux]. The design of that version

has been improved by replacing iteration by recursion. The implementations for the different

versions differ due to using different data structures. An example should explain how it works.

We can reuse the ordered substitution introduced in the Robinson section.

 [?x2 -> h(?x1 ?x1) ?x3 -> h(?x2 ?x2) ?y2 -> h(?y1 ?y1) ?y3 -> h(?y2 ?y2) ?x1 -> ?y1]

We need to replace ?x1 in ?x2 -> h(?x1 ?x1). A depth-first search on the variables will recognize

that the first occurrence of ?x1 in ?x2 -> h(?x1 ?x1) needs replacement. This triggers an

investigation whether ?y1in ?x1 -> ?y1 needs adjustment, which is not the case; hence ?x1 can

be marked with its ?x1 -> ?y1 substitution as being ‘ready’. This will prevent having to

investigate again the 2
nd

 occurrence of ?x1 in h(?x1 ?x1) and any other binding of ?x1, which can

be large number.

Timing comparisons of the versions

We use different tests to compare the four different versions. An appendix has examples of the

eight different generators for input pairs. These generators employ a size parameter for the

number of arguments of the input arguments’ signatures.

12

The timings were done on an I3 machine. After a warm-up, there is a loop for 500 iterations

which measures the run time. This is repeated 10 times and the shortest timing is reported. This

helps to compensate for the garbage collections that can interfere at any time. The entries

represent the average execution time in milliseconds over the four generators. The best timings

are shown in bold.

Small range for unifiable pairs

Size Robinson PW BS DC

1 0.00550 0.01100 0.00950 0.00750

2 0.01450 0.01750 0.01550 0.01200

3 0.02650 0.01550 0.01700 0.01650

4 0.08200 0.02050 0.02450 0.01450

5 0.29900 0.02600 0.02250 0.01850

6 1.19700 0.03300 0.02800 0.02300

Table 6 Timings for small sized unifiable pairs.

The Robinson version is the clear winner for the size = 1 row. This supports the position that

linear versions have too much overhead. The other rows challenge this verdict.

Small range for non-unifiable pairs

Size Robinson PW BS DC

1 0.00500 0.00600 0.00500 0.00450

2 0.00850 0.00950 0.00850 0.00750

3 0.01200 0.01350 0.01250 0.01100

4 0.01400 0.01650 0.01650 0.01450

5 0.01650 0.02100 0.02100 0.01850

6 0.02000 0.02600 0.02600 0.02300

Table 7 Timings for small sized non-unifiable pairs.

Adding the timings for Robinson and DC versions for the sizes 1 &2 and for the unifiable and

non-unifiable pairs we obtain:

Robinson: 3350 and DC: 3150.

For the size 3 we obtain:

Robinson: 3850 and DC: 2750.

Thus DC is also competitive on those small sized inputs.

The advantages that Robinson has on sizes 4-6 on non-unifiable pairs is lost when considering

the timings of the unifiable pairs.

13

Large range for a combination of the unifiable and non-unifiable pairs

Size PW BS DC

5 0.02475 0.02250 0.01875

10 0.05750 0.05400 0.04175

20 0.16400 0.15350 0.12350

40 0.56850 0.52400 0.47875

Table 8 Timing for the combination of large sized unifiable and non-

unifiable pairs.

The data in table 8 supports the conjecture that the removal of preprocessing, the use of the

different data structures and the central role of variables in DC made a positive difference.

Discussion, future work and conclusion

Unification algorithms are similar in that they distinguish between non-unifiability based on

structural differences in the two input arguments and alternatively failing an occur check. The

three (semi-)linear versions have different designs for doing the occur check using different data

structures for representing the input arguments. Two versions have their own ways to preprocess

the arguments and wrap them in richer data structures. The third version avoids the overhead of

preprocessing. While checking for structural differences it uses additional attributes in variables

to register properties that accumulate during the arguments scrutinizing phase. Our timings show

that our 3
rd

 version, DC, out performs the two other (semi-)linear ones.

An earlier extensive study [HoderVoronkov] claimed that the original Robinson version is best

for theorem proving settings. Our admittedly limited testing does not support their conclusion

that small sized arguments are best handled by the Robinson version. Hence we hope that others

can elaborate our findings.

The representation of a physical object could be done with nine parameters for location, velocity

and spin. Reasoning about Sudoku problem solvers could rely also on predicates with nine

arguments. Hence domains are conceivable where the versions discussed are a better fit than the

Robinson algorithm.

Unification algorithms are used also in problem solving settings to ascertain that an operator can

be applied and if so obtain the required substitutions. The PDDL language was developed to

specify domains with its operators [PDDL]. It is likely that the versions discussed can be used to

deal with complex contextual/ temporal preconditions in these PDDL domains.

Our experiments were done using implementations in the Java language. Using its object-

oriented features has been a major advantage to represent predicate calculus expressions and to

model the additional infrastructures required in the different versions. The DC version exploits

the object-ness of variables so that it was easy to add additional attributes in their class, which

was crucial to reduce overheads. Object-Orientation has promoted conceptual architectures and

designs. Newer data structures may still be forthcoming that will provide even better

(unification) algorithms.

14

Statements and Declarations

The author has not been funded and there are no competing interests.

References

[BaaderSnyder] Baader, F. & W.Snyder, Unification theory, Chapter 8 in HANDBOOK OF

AUTOMATED REASONING, Edited by Alan Robinson and Andrei Voronkov, Elsevier

Science Publishers B.V., 2001.

https://www.cs.bu.edu/fac/snyder/publications/UnifChapter.pdf

[deChampeaux] de Champeaux, D., About the Paterson-Wegman Linear Unification Algorithm,

Journal of Computer and System Sciences, vol 32, no 1, pp 79-90, 1986 February.

https://doi.org/10.1016/0022-0000(86)90003-6

[Jacobson] Jacobson, E., Unification and anti-unification, Technical report, 1991.

http://erikjacobsen.com/pdf/unification.pdf

[GitHub] https://github.com/ddccc/Unification

[HoderVoronkov] Hoder K., Voronkov A. (2009) Comparing Unification Algorithms in

First-Order Theorem Proving. In: Mertsching B., Hund M., Aziz Z. (eds) KI 2009: Advances

in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science, vol 5803. Springer,

Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-04617-9_55

[Kowalski] Kowalski, A Proof Procedure Using Connection Graphs, s Journal of the Association

for Computing Machinery, Vol. 22, No. 4, October 1975, pp. 572-59.

https://doi.org/10.1145/321906.321919

[Martelli&Montanari0] Martelli, A. & U. Montanari, Unification in linear time and space: A

structured presentation. Internal Rep. B76-16, Ist. di Elaborazione delle Informazione, Consiglio

Nazionale delle Ricerche, Pisa, Italy, July 1976.

[Martelli&Montanari] Martelli, A. & U. Montanari, An Efficient Unification Algorithm, 1982.

https://doi.org/10.1.1.96.6119.pdf

[Motroi&Ciobaca] Motroi, V. & S. Ciobaco, A Typo in the Paterson-Wegman-de Champeaux

algorithm, 2020.

https://dev.arxiv.org/abs/2007.00304

[PatersonWegman] Paterson, M.S. & M.N. Wegman, Linear Unification, Journal of Computer

System Science 16 (2): pp 158-167, 1978.

https://doi.org/10.1016/0022-0000(78)90043-0

[PDDL] https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

https://www.cs.bu.edu/fac/snyder/publications/UnifChapter.pdf
https://doi.org/10.1016/0022-0000(86)90003-6
http://erikjacobsen.com/pdf/unification.pdf
https://github.com/ddccc/Unification
https://doi.org/10.1007/978-3-642-04617-9_55
https://doi.org/10.1145/321906.321919
https://doi.org/10.1.1.96.6119.pdf
https://arxiv.org/search/cs?searchtype=author&query=Motroi%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Motroi%2C+V
https://dev.arxiv.org/abs/2007.00304
https://doi.org/10.1016/0022-0000(78)90043-0
https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

15

[Robinson] Robinson, J.A., A machine-oriented logic based on the resolution principle, J. Assoc.

Comput. Mach. 12, No 1, pp 23-41, 1965.

[Union-Find] https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Appendix Eight generators
Eight generators were used for obtaining argument pairs to compare the performance of the

versions discussed. These generators take as argument the size for a pair. To get an impression

of the size of these problems we show for each generator the instances for size 1 and 2. The

generators produce unifiable or non-unifiable pairs. The generator names that end with “f”

produce non-unifiable pairs.

Generator Size 1 Size 2

gen1 P(h(x1 x1) y2 x2)

P(x2 h(y1 y1) y2)
P(h(x1 x1) h(x2 x2) y2 y3 x3)

P(x2 x3 h(y1 y1) h(y2 y2) y3
gen1f P(h(x1 x1) y2 aa)

P(x2 h(y1 y1) y2)
P(h(x1 x1) h(x2 x2) y2 y3 aa)
P(x2 x3 h(y1 y1) h(y2 y2) y3

gen3 P(x0 f(x1 x1) x1 f(x2 x2))

P(f(y0 y0) y0 f(y1 y1) y2)
P(x0 f(x1 x1) x1 f(x2 x2) x2 f(x3 x3))

P(f(y0 y0) y0 f(y1 y1) y1 f(y2 y2) y3)

gen3f P(x0 f(x1 x1) x1 f(x2 x2))
P(f(y0 y0) y0 f(x0 x0) y2)

P(x0 f(x1 x1) x1 f(x2 x2) x2 f(x3 x3))
P(f(y0 y0) y0 f(y1 y1) y1 f(x0 x0) y3)

gen4 P(x1 y1)

P(g(y1 y1) f(x2))
P(x1 y1 x2 y2)

P(g(y1 y1) f(x2) g(y2 y2) f(x3))
gen4f P(x1 y1)

P(g(y1 y1) x1)
P(x1 y1 x2 y2)
P(g(y1 y1) f(x2) g(y2 y2) x1)

gen2 P(x1)

P(f(y))

P(x1 f(x2))

P(f(x2) f(f(y)))
gen2f P(x1)

P(f(x1))
P(x1 f(x2))
P(f(x2) f(f(x1)))

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

