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ABSTRACT

The Moog ladder structure is a well known filter used in mu-
sical sound synthesizers and in music production. Previously
several digital models have attempted to imitate its nonlin-
ear and self-oscillating characteristics. In this paper we de-
rive a novel circuit-based model for the Moog filter and dis-
cretize it using the bilinear transform. The proposed non-
linear digital filter compares favorably against Huovilainen’s
model, which is the best previous white-box model for the
Moog filter. The harmonic distortion characteristics of the
proposed model match closely with those of a SPICE simu-
lation. Furthermore, the novel model realistically enters the
self-oscillation mode and maintains it. The proposed model
requires only 12 more basic operations per output sample than
Huovilainen’s model, but includes the same number of non-
linear functions, which dominate the computational load. The
novel nonlinear digital filter is applicable in virtual analog
music synthesis and in musical audio effects processing.

Index Terms—Acoustic signal processing, audio systems,
circuit simulation, music, resonator filters

1. INTRODUCTION

Real-time digital simulation of analog circuits, also known as
virtual analog modeling, is today an active area of research in
audio processing [1, 2, 3, 4]. This is especially true in the case
of filters employed in music production, of which the Moog
ladder filter [5] is one of the best known examples.

1.1. Relation to prior work

Modeling of Moog synthesizer circuits has been the subject
of many studies. In particular, the filter circuit has been thor-
oughly analyzed in [6, 7], which also provide linear digital
implementations, as well as in [1, 8, 9]. Additionally, other
analog filters with a similar circuit topology [10, 11, 12, 13]
and the Moog oscillator waveforms [14] have been studied.
However, one of the most desired features of the Moog lad-
der filter is the “warmth” in the output sound that is due to
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the nonlinear behavior of the circuit. Several attempts to digi-
tally emulate this characteristic have been made, ranging from
“heuristic” [15, 16], to black-box [17, 18], and physical mod-
eling [19, 20] approches. Huovilainen [19, 21] derived what
is, so far, the best white-box simulation method that preserves
the nonlinearity of the filter.

This paper describes a new derivation based on circuit
analysis of the continuous-time large-signal model of the fil-
ter’s core circuit, then proposes a new digital implementation
of it. This new implementation is confronted with the pre-
vious simulator described in [19] and it is shown to produce
outputs that more closely resemble Ngspice [22] simulation
results, which are taken as a reference. Furthermore, it also
improves on the accuracy in reproducing the self-oscillating
effect of the real filter.

Section 2 analyzes the filter circuit in order to derive a
realistic large-signal model of it. Section 3 describes its dis-
cretization and provides the proposed digital implementation.
Section 4 compares the new simulator with the previous one
and with Ngspice results. Section 5 concludes the paper.

2. ANALYSIS OF THE MOOG LADDER FILTER

Fig. 1 shows the transistor ladder circuit at the heart of the
Moog ladder filter [5]. At the “bottom” of this circuit is a dif-
ferential transistor pair, depicted in Fig. 2(a), which is driven
by the control current Ictl and into which the input voltage and

V+ ∆V4

Vin −k∆V4Ictl

Fig. 1: The Moog ladder circuit [5].
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Fig. 2: (a) Differential pair and (b) ladder stage.

part of the phase inverted output are fed. This is connected to
a series of four stages, each containing two transistors and one
capacitor. A single ladder stage is represented in Fig. 2(b).
The “top” of the last stage is directly connected to the voltage
generator V+, which also powers a series of resistors placed
between transistor bases of consecutive stages.

In this work we assume that the current gain factor (beta)
of the transistors is infinite, therefore the base currents are
null and the base voltages are constant. The same initial as-
sumption can be found in [19].

2.1. Differential pair

By assuming that the beta of a transistor is infinite, the large-
signal Ebers-Moll model [23] reduces to

IE ≈ −IC ≈ IS(e
VBE
VT − e

VBC
VT ), (1)

thus, since Ictl = I0,L + I0,R, we obtain

I0,L =
Ictle

k∆V4
VT + IS(e

−V1,R
VT − e−

V1,L
VT )

e
k∆V4
VT + e

−Vin
VT

, (2)

where k is the feedback coefficient and VT is the thermal volt-
age. This basic result will be used for the derivation of the
global model of the circuit later on.

2.2. Single stage

Since all capacitors in the circuit have the same capacitance
value C, it is possible to express the emitter current of each
transistor as

Ii,s = Ii−1,s ± C
d∆Vi
dt
⇒ Ii,s = I0,s ± C

i∑

j=1

d∆Vj
dt

, (3)

where s is either L (left) and the sign in both expressions is
+, or it is R (right) and the sign is −.

From (1) and (3) it follows that

e
−Vi,s

VT =
I0,s ± C

∑i
j=1

d∆Vj

dt

IS
e
−Vi,B

VT + e
−Vi+1,s

VT , (4)

and iteratively substiting Vi+1,s, while also taking into ac-
count that V5,L = V5,R = V+, it is possible to obtain

e
−Vi,s

VT =
αi

(
I0,s ± C

∑i
j=1

d∆Vj

dt

)
+ βi

IS
+ e

−V+
VT , (5)

where αi =
∑4
j=i e

−Vj,B
VT , βi = C

∑4
j=i+1 αj

d∆Vj

dt for i =
1...3, while β4 = 0. Therefore

e
∆Vi
VT =

αiIctl + 2γ

αi

(
I0,L + C

∑i
j=1

d∆Vj

dt

)
+ βi + γ

− 1, (6)

where γ = ISe
−V+

VT .

2.3. Global model

Substituting (5) into (2), solving for the bottom left-branch
current I0,L and then substituting again into (6), we obtain

e
∆Vi
VT =

αiIctl + 2γ

αi

(
ζiIctl + C

∑i
j=1 ηj

d∆Vj

dt

)
+ ηiβi + γ

− 1,

(7)

where ζi = e
k∆V4
VT +α1

e
k∆V4
VT +e

−Vin
VT +2αi

and ηi = e
k∆V4
VT +e

−Vin
VT

e
k∆V4
VT +e

−Vin
VT +2αi

.

Since αi � e
−Vin

VT for all i and γ ≈ 0, the previous expres-
sion can be reasonably approximated as

e
∆Vi
VT ≈ 1

1

1+e
−Vin+k∆V4

VT

+ C
Ictl

∑i
j=1

d∆Vj

dt

− 1, (8)

or equivalently as

d∆Vi
dt

=− Ictl

2C

[
tanh

(
∆Vi
2VT

)
+ tanh

(
Vin + k∆V4

2VT

)]

−
i−1∑

j=1

d∆Vj
dt

.

(9)
By comparing the previous expression for consecutive stages,
for i > 1 we obtain

d∆Vi
dt

=
Ictl

2C

[
tanh

(
∆Vi−1

2VT

)
− tanh

(
∆Vi
2VT

)]
, (10)

which coupled with

d∆V1

dt
= −Ictl

2C

[
tanh

(
∆Vi
2VT

)
+ tanh

(
Vin + k∆V4

2VT

)]

(11)
defines our continuous-time large-signal model of the circuit.
This is similar to the model derived in [19]. The differences
are in that, in [19], the right side of the equations is not divided
by 2 and the output voltage of the first stage, and hence of all
stages, has opposite polarity. The inversion of polarity does
not make any difference in practice.

3. DIGITAL IMPLEMENTATION

Differential equations (10) and (11) show how the derivative
of the output voltage at each stage depends instantly on the
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output voltages of both the previous stage and the current
stage. For the discretization of such expressions to be com-
putable, we approximated the derivative value by adding a
fictitious unit delay to the argument of hyperbolic tangents
where self-dependencies would occur, as well as, on a global
level, to ∆V4 when fed back to the first stage. Therefore, the
resulting discrete-time model is given by

d∆V1[n] =−Ictl

2C

[
tanh

(
∆Vi[n− 1]

2VT

)

+ tanh

(
Vin[n] + k∆V4[n− 1]

2VT

)]
,

(12)

d∆Vi[n] =
Ictl

2C

[
tanh

(
∆Vi−1[n]

2VT

)

− tanh

(
∆Vi[n− 1]

2VT

)]
. (13)

3.1. Bilinear transform

The output voltage at each stage is calculated by applying a
bilinear-transformed integrator to the derivative estimate. The
linear constant-coefficient difference (LCCD) equation defin-
ing the integrator is

Vi[n] = Vi[n− 1] +
dVi[n] + dVi[n− 1]

2fs
, (14)

where dVi[n] is the input, Vi[n] is the output, and fs is the
sample rate.

Furthermore, by applying basic block diagram properties,
the first stage can be simplified to resemble the others as indi-
cated in Fig. 3, which shows the optimized block diagram rep-
resentation of the entire discrete-time filter. This is composed
by a total of 5 hyperbolic tangent evaluations, 13 unit delays,
13 additions, 9 multiplications, and a sign change. It is also
interesting to notice that each ladder stage is implemented by
a second-order nonlinear filter, as indicated by Figs. 3(b) and
3(c). The integrator block included in the ladder stages is the
bilinear integrator (14).

3.2. Tuning the cutoff frequency

When low amplitude signals are applied to the filter, the hy-
perbolic tangent in each stage operates almost linearly, thus
the LCCD equation of a stage becomes

∆Vi[n] ≈ ∆Vi[n− 1] +A
(
∆Vi−1[n] + ∆Vi−1[n− 1]

−∆Vi[n− 1]−∆Vi[n− 2]
)
,

(15)

where A = Ictl/(8fsCVT). This corresponds, in the z-
domain, to

∆Vi(z)

∆Vi−1(z)
=

A+Az−1

1 + (A− 1) z−1 +Az−2
, (16)

+

1
2VT

−1

S1 S2 S3 S4

z−1

k

(a) Global ladder filter

+
A

2VT

∫

z−1

−

(b) Ladder stages S1...S3

+
A

2VT

∫

z−1

−

(c) Ladder stage S4

Fig. 3: Proposed implementation, where VT ≈ 26 mV at
room temperature.

which can be mapped to the Laplace domain using the inverse
bilinear transform as

∆Vi(s)

∆Vi−1(s)
= ABfs

[
1 +A+B

s+ fs (1−A−B)

− 1−A−B
s+ fs (1−A+B)

]
,

(17)

where B =
√
A2 − 6A+ 1. Since A > 0 and B > 0, the

leading pole has the cutoff frequency

fc =
fs

2π
(1−A−B), (18)

from which Ictl is derived as Ictl = 8πCVT
fs−πfc

fs+πfc
fc, and

therefore the cutoff frequency can be set by parameter A in
Figs. 3(b) and 3(c) as

A = π
fc

fs

1− π fc

fs

1 + π fc

fs

. (19)

4. EVALUATION

In this section the proposed implementation is confronted
with the previous model presented in [19]. Both are based on
approximate discrete-time solutions of analogous continuous-
time differential equations constituting the large-signal model
of each circuit stage, which results in a clear similarity be-
tween the top-level filter structures. At the stage level, how-
ever, the previous model uses first-order filters, while the new
model uses second-order filters, as outlined in Section 3.

They also show similar performance despite the addition,
in the new model, of a total of 12 operations, namely 3 mul-
tiplications, 4 additions, 4 unit delays, and a sign change,
since the extra computational cost introduced is negligible
when compared to the 5 hyperbolic tangent evaluations that
are present in both implementations. However, this might not
be the case if these last operations are implemented by table
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(a) Previous model
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(b) New model
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(c) SPICE simulation

Fig. 4: Normalized harmonic spectra up to the 10th harmonic of the outputs obtained by exciting the models operating at a 384-
kHz sample rate with a 2-s long, 0.1 V logarithmically swept sine from 20 Hz to 100 kHz and applying the analysis technique
described in [24] on the output signals. The model parameters are set so that the cutoff frequency of each ladder stage is 1 kHz
and the global feedback gain value is 4.0. The fundamental and odd harmonic responses are represented by solid lines, and the
even harmonic responses are shown by dashed lines.

lookup or polynomial approximation, yet the total computa-
tional cost is sufficiently small for practical real-time imple-
mentations.

In order to evaluate the quality of the generated outputs,
both models were confronted with the results obtained by
using the SPICE-based [25] Ngspice circuit simulator [22]
and feeding it with the same test input signals. In particu-
lar we performed logsweep analysis [24] to check the static
harmonic response, by using a 2-s long, 0.1 V logarithmically
swept sine from 20 Hz to 100 kHz with the simulators op-
erating at a 384-kHz sample rate, with the cutoff frequency
of 1 kHz and a feedback gain value of 4.0. The normalized
harmonic spectra of the output signals up to 10th harmonic
are shown in Fig. 4. It is immediate to notice that the new
model shows significant improvement in distortion character-
istics around the cutoff frequency. Further analysis of the dif-
ferences in the responses by subtracting the model response
from the SPICE simulation would be misleading because of
frequency warping.

It was indeed expected that at a feedback gain value such
that the dominant poles of the global filter are located on the
imaginary axis, the system would start to self oscillate at the
cutoff frequency. It can be shown that such value is k = 4.0
[6], and the previous analysis on one side confirms the the-
oretical result through circuit simulation, while on the other
it shows that the new model is more realistic, in this regard,
than the previous one, which instead starts to self oscillate at
higher feedback levels.

A further confirmation of the different behavior w.r.t. self-
oscillation between the two implementations can be seen in
Fig. 5, which visualizes the outputs obtained by exciting the
two models operating at a 96-kHz sample rate, with the stage
cutoff frequency of 1 kHz and a feedback gain value of 4.0,
with a 1-s long, 1 V, 1.5708 kHz sine wave. As soon as the
input excitation stops, the self-oscillation effect starts to take
place in both models, but while it keeps steady in the new one,

it rapidly fades out in the other.
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Fig. 5: Outputs obtained by exciting the previous model (top)
and the new model (bottom) operating at a 96-kHz sample
rate, with the stage cutoff frequency of 1 kHz and a feedback
gain value of 4.0, with a 1-s long, 1 V, 1.5708 kHz sine wave.

In the end, the proposed solution does not substantially
improve the tuning and phase shifting errors described in [19],
thus still needing compensation for these unwanted side ef-
fects [16].

5. CONCLUSIONS

A new derivation of the large-signal model of the Moog lad-
der filter and a new digital implementation were presented.
This new implementation was evaluated by confronting the
generated outputs with those obtained from a previous model
[19] and from the Ngspice [22] circuit simulator.

Despite a small extra computational cost, which is most
likely negligible in any practical implementation, the new
simulator was found to provide a more realistic output and
to model the self-oscillating effect of the circuit more accu-
rately than its predecessor. The novel Moog ladder filter will
be useful in virtual analog music synthesizers and in audio
effects processing. Audio examples are available at http:
//www.acoustics.hut.fi/go/icassp13-moog.
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