
Publishing base registries as
Linked Data Event Streams

Dwight Van Lancker1,3, Pieter Colpaert1, Harm Delva1,
Brecht Van de Vyvere1, Julián Rojas Meléndez1, Ruben Dedecker1,

Philippe Michiels2, Raf Buyle1,3, Annelies De Craene3, and Ruben Verborgh1

1 IDLab, Dep. of Electronics and Information Systems, Ghent University – imec
2 imec EDiT

3 Flemish Information Agency

Abstract. Fostering interoperability, Public Sector Bodies (PSBs) main-
tain datasets that should become queryable as an integrated Knowledge
Graph (KG). While some PSBs allow to query a part of the KG on their
servers, others favor publishing data dumps allowing the querying to
happen on third party servers. As the budget of a PSB to publish their
dataset on the Web is finite, PSBs need guidance on what interface to
offer first. A core API can be designed that covers the core tasks of Base
Registries, which is a well-defined term in Flanders for the management
of authoritative datasets. This core API should be the basis on which
an ecosystem of data services can be built. In this paper, we introduce
the concept of a Linked Data Event Stream (LDES) for datasets like
air quality sensors and observations or a registry of officially registered
addresses. We show that extra ecosystem requirements can be built on
top of the LDES using a generic fragmenter. By using hypermedia for
describing the LDES as well as the derived datasets, agents can dynami-
cally discover their best way through the KG, and server administrators
can dynamically add or remove functionality based on costs and needs.
This way, we allow PSBs to prioritize API functionality based on three
tiers: (i) the LDES, (ii) intermediary indexes and (iii) querying interfaces.
While the ecosystem will never be feature-complete, based on the market
needs, PSBs as well as market players can fill in gaps as requirements
evolve.

1 Introduction

Public Sector Bodies (PSBs) world-wide maintain and open up reference datasets
to foster interoperability by advocating the reuse of the identifiers for which they
are the authoritative source. In Flanders, for example, the Large-scale Reference
Database4 (LRD) contains millions of geospatial objects in the Flemish region [2].
On the one hand, the LRD publishes periodical data dumps or version material-
izations, which users have to fully download to stay up to date with the dataset.
4 https://overheid.vlaanderen.be/en/producten-diensten/large-scale-

reference-database-lrd

https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-database-lrd
https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-database-lrd


2 D. Van Lancker, et al.

With a querying API, on the other hand, users can query the dataset without
first having to download the entire dataset. Trying to meet the needs of their
reusers, PSBs will have to provide and maintain an increasing amount of such
querying APIs as specific end-user features are solved by creating feature-specific
APIs [7]. However both data dumps and querying APIs will never fully meet the
needs of their end-users, as a data dump gives a possibly outdated view on the
dataset, whereas a querying API provides its client only with a partial view of
the dataset.

To avoid synchronization problems with data dumps on the one hand, and
maintenance problems of an always increasing amount of querying APIs on the
other, trade-offs need to be made. This resulted in the question: “What is the
base API for base registries?”. PSBs must accept they will not be able to
implement any querying API on their own, but that there are other organizations
with other interests that can take up parts of the processing. In Section 2 we
discuss the definition of the European term “base registry”, the ideas behind
Linked Data Fragments and the recent initiative of Streaming Linked Data on
which our approach was inspired. In Section 3 we design a Linked Data Event
Stream (LDES) incrementally by first making sure everyone can download the
history and retrieve the latest updates on the data collection. In Section 4 we then
introduce three generic open-source building blocks for a FAIR [10] ecosystem,
where also third parties can build reusable indexes on top of an LDES. Finally
we discuss in Section 5 the three tiers of base registry management, creating a
vision for PSBs to set the priorities when deciding upon their next API.

2 Related Work

The term base registry was introduced by the European Commission and is
defined as a trusted and authoritative source of information, which can and
should be digitally re-used by others. A single organization is responsible and
accountable for the collection, use, updating and preservation of information.
Authoritative in this context means that a base registry is considered to be the
source of information and is thus up-to-date and of the highest quality 5. In
order to publish its base registries for maximum reuse on the Web, the Flemish
Information Agency (FIA) embraces Linked Data with the Flemish Interoper-
ability Program called Open Standards for Linked Organizations (OSLO). OSLO
develops unambiguous data standards to exchange data in an uniform way [1].

The FIA has aligned its base registries with the definition as stated by the
European Commission, but extended it with three additional requirements: (i)
Base registries are part of a semantic system of uniform identified objects and
relations which are in line with the OSLO standards; (ii) The identifiers of objects
in a base registry should be re-used in other base registries (or datasets); and
(iii) Each base registry is obliged to have life-cycle and history management of

5 http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-
8a35-01aa75ed71a1.0017.02/DOC_1&format=PDF p. 31–32

http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-8a35- 01aa75ed71a1.0017.02/DOC_1&format=PDF
http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-8a35- 01aa75ed71a1.0017.02/DOC_1&format=PDF


Publishing base registries as LDES 3

their objects [2]. This extended definition is considered to be the core task of a
base registry.

Today, data controllers publish their data through a querying API, such as
the Open Geospatial Consortium (OGC)6 APIs for example. These APIs build
upon the legacy of OGC Web Service standards, of which WFS and WMS are
the most known. Although the WFS is a standardised – technical - protocol,
it does not provide interoperable data. Data in a smart city is about data in a
network, all linked in one way or another, which a WFS service lacks. At the
moment, it is even impossible to use a dataset described with the principles of
Linked Data as a data source in a WFS service, although recent efforts have
been made [3]. Furthermore, the processing done by such a service happens fully
on the server side, meaning that all costs are for the provider of it.

Instead of publishing their data through a querying API, data controllers also
have the possibility to publish a data dump of the dataset. Both interfaces have
in common that they only return a fragment of the dataset. Given a Linked
Data dataset, the result of each request to such interfaces is called a Linked
Data Fragment (LDF)7. On the axis of LDFs, both data dumps and querying
APIs are situated at the extremes, because the workload needed to compute
the fragments is divided differently between clients and servers. In the case of
a data dump, the processing burden is put on the client-side, but also allows
the most flexibility for the client. In the other case, providing a querying API
on top of the dataset puts the processing burden on the server, allowing any
kind of query and therefore limiting the availability of the API, i.e. a SPARQL
endpoint. In order to achieve efficient Web querying, in-between solutions that
provide an optimal balance between client and server effort are needed [8]. In-
between solutions exist, such as Triple Patterns Fragments, brTPF, Smart KG
and subject pages. These in-between solutions shift the needed processing more
towards the client and limit the different queries that can be executed on the
server.

Publishing data at a high speed has caused a shift in the data landscape, as
such that it does not always make sense anymore to use polling-based approaches.
Instead, it makes more sense to push this fast-changing (with an acceptable
latency of ≤ 10 seconds), continuously updating dataset to its consumers [9]. In
order to manage these streams of data, Stream Processing Engines have come to
aid [6]. To counter the problem that a data stream can be in all shapes and sizes,
an effort was needed by the Web of Data community. This led to the creation
of RDF Stream Processing techniques, which allows to process RDF-based data
streams. These ideas were already applied on non-sensor related datasets such
as DBPedia and Wikimedia, where the goal was to query of the latest changes,
with the term Streaming Linked Data [6]. However, more general the goal should
be to provide the ability to query over a window of updates on top of a stream,
which is similar to our goal, as we want to provide everyone as fast as possible
with the latest updates.

6 https://ogcapi.ogc.org/
7 https://linkeddatafragments.org/

https://ogcapi.ogc.org/
https://linkeddatafragments.org/


4 D. Van Lancker, et al.

3 A base API for base registries

A Linked Data Event Stream (LDES) extends the principles of an event stream
by publishing interoperable data re-using existing machine-readable data stan-
dards. We applied this data publishing strategy to two datasets: for context
information, we used the registry of all officially registered addresses in Flan-
ders, using the OSLO data standard8 to describe them. For a faster updating
dataset, we used measurements of air quality sensors, using the Semantic Sensor
Network Ontology.

<C> a tree:Collection ;
tree:shape <shacl.shape> ;
tree:member <Observation1 > .

<Observation1 > a sosa:Observation ;
sosa:resultTime "2020..." ;
sosa:hasSimpleResult "1" .

Listing 1.1: Linked Data Event Streams described with the TREE hypermedia
API specification

The definition of a LDES is a collection of immutable objects, such as an
observation made by a sensor or the version of an address. To describe LDESs,
we used a hypermedia specification, called the TREE Hypermedia API spec-
ification9. Using a hypermedia specification to describe event streams, makes
them self-descriptive. There is not really a definition of what an event stream
exactly is, which means, in order to replicate the event stream, the links have to
be followed. The TREE specification describes a LDES as a tree:Collection,
containing objects that are immutable, defined as tree:members. Each mem-
ber of the collection has a timestamp that indicates at which time the im-
mutable object was created. Furthermore, with tree:shape the specification
allows to link a SHACL shape [4] to the collection, indicating the content of
the immutable objects. The presence of such a SHACL shape is rather an op-
timization so that autonomous agents know beforehand what the content of
the immutable objects is within the collection. An example of the specifica-
tion is shown in Listing 1.1 and was also applied to air quality observations:
https://streams.datapiloten.be/observations.

However when implementing a LDES for data models that do not have the
concept of things that live in time, the model must be extended, which is the
case for an address or a sensor. It is possible for a sensor to change, take for
example the Bel-Air project10 in Flanders, where air quality sensor were fitted
to the roof of mail delivery vans. So periodically, not only the observation made
by a sensor changes, but it is also possible that the location of a sensor has
changed. The stated problem can be solved by using the concept of versions, for
example dcterms:isVersionOf can be used, as shown in listing 1.2. The Dutch

8 https://data.vlaanderen.be/ns/adres
9 https://treecg.github.io/specification/

10 https://www.imeccityofthings.be/en/projecten/bel-air

https://streams.datapiloten.be/observations
https://data.vlaanderen.be/ns/adres
https://treecg.github.io/specification/
https://www.imeccityofthings.be/en/projecten/bel-air


Publishing base registries as LDES 5

NEN3610 standard11 for example advocates the use of foaf:isPrimaryTopicOf.
Given that each sensor is uniquely identifiable, a URI can be created for it. This
URI can then be used as the object in the triple with dcterms:isVersionOf
as predicate. By combining the original URI and the timestamp on which the
event was generated, each version object is also uniquely identified, making them
individual reusable.

<C> a tree:Collection ;
tree:shape <shacl.shape> ;
tree:member <E1> .

<E1> prov:generatedAtTime "2020-01-01T00:00:00Z" ;
adms:versionNote "First version of this address" ;
dcterms:isVersionOf <AddressRecord1 > ;
dcterms:title "Streetname X, ZIP Municipality , Country" .

Listing 1.2: When a data model does not have the concept of things that live
in time, the model must be extended, for example, with the concept of versions.
Here, dcterms:isVersionOf is used to indicate which address object is affected
by this event.

Furthermore, the TREE Hypermedia API specification was also used to de-
scribe the metadata of each page. With tree:relation, the specification enables
users to describe the relation between a specific value and all members on a page
linked from the current page. Using this relation, a query agent can automat-
ically discover whether or not it is useful to go to the next page. The most
interesting fragmentation strategy for an event stream is time-based as the data
grows in time. As shown in listing 1.3, the first page, which always contains
the oldest objects, has a tree:GreaterThanOrEqualToRelation with the sec-
ond page, which indicates that all values of page two are greater than or equal
to those of page 1. To indicate on what property of the immutable object the
relation is based on, the predicate tree:path is used. The predicate tree:value
then contains the value for which all members on the next page are greater than
or equal to. In listing 1.3, sosa:resultTime is the property that the relation is
based on, and thus all members on ?page=2 have a sosa:resultTime that is
later than or equal to 2020-12-24T12:00:00Z.

<?page=1> a tree:Node ;
tree:relation [

a tree:GreaterThanOrEqualToRelation ;
tree:path sosa:resultTime ;
tree:node <?page=2> ;
tree:value "2020-12-24T12:00:00Z"^^xsd:dateTime .

] .

Listing 1.3: Within the TREE Hypermedia API specification, a relation to
another page can be described with tree:relation.

4 A Linked Data Event Streams ecosystem

We implemented three reusable building blocks:
11 https://geonovum.github.io/NEN3610-Linkeddata/

https://geonovum.github.io/NEN3610-Linkeddata/


6 D. Van Lancker, et al.

The metadata extractor can be used to read TREE metadata in a page
and show the next steps possible from the current page to an app or an
intermediary server. The extractor has been written within the Comunica
framework [5] and is available at https://github.com/TREEcg/comunica-
feature-tree/.

The LDES client reuses the metadata extractor to allow intermediary servers
to copy all members of a tree:Collection, and subscribe to new updates.
A fragment’s time to live is retained from its HTTP caching headers. A
polling interval can be configured to wait before refetching. Specifically for
an LDES, before emitting an immutable member of a collection, a cache
can be checked to check whether the object has not been emitted before.
This way, consumers only retrieve updated members of a collection. Code is
available at https://github.com/brechtvdv/event-stream-client.

The fragmenter reuses the LDES client to keep its own copy in sync and to
refragment the LDES based on a configuration. Code is available at https:
//github.com/hdelva/tree_index.

Fig. 1: A schematic overview of the fragmentation process. Values from each
individual event are used to place that event into one or more fragments. In
this example, the event represents a street labeled as “Admontstraat”, and this
label is used as the input of a prefix-based fragmenter. The logical links between
increasingly specific prefixes are stored in a separate storage layer, which is used
to generate the hypermedia descriptions. The events themselves are stored like
regular RDF data, and the contents of a fragment are persisted as a set of event
URIs.

Applications that require a specific subset of the data can be optimized by
consuming only the most relevant data for their use case. For instance, appli-
cations that focus on a specific geospatial region are more likely to reuse the
published data if they can filter out data from other regions.

To realize this, we have implemented an intermediary server that (re)frag-
ments an existing LDES into multiple smaller ones12. Every discovered im-
mutable object is assigned to one or more fragments, as illustrated in Fig. 1.
A LDES may be processed using multiple fragmentation strategies, resulting
in multiple orthogonal fragmentations, and some strategies can yield multiple
12 For example, a prefix fragmentation applied to the LDES of streetnames: https:

//fast-and-slow.osoc.be/data/streetname/prefix

https://github.com/TREEcg/comunica-feature-tree/
https://github.com/TREEcg/comunica-feature-tree/
https://github.com/brechtvdv/event-stream-client
https://github.com/hdelva/tree_index
https://github.com/hdelva/tree_index
https://fast-and-slow.osoc.be/data/streetname/prefix
https://fast-and-slow.osoc.be/data/streetname/prefix


Publishing base registries as LDES 7

fragments for a single event. In the latter case, the fragments can be ordered by
increasing specificity such as by prefix length or geospatial granularity. These
relations between fragments are stored separately from the events themselves,
and are used to generate the hypermedia controls.

5 Conclusion and future work

III
Querying
interfaces

II
Reusable
indexes

I
Linked Data

Event Streams

Third party 
indexes

Third party 
querying interfaces

v1 v2

- ?bbox=...&q=...
- sparql?q=...
- graphql?query=...
- … 

Append-only publishing

e.g., version materialized dumps

Querying interfaces

Fig. 2: The three layered shield of base registry data publishing: the core (I) is
what must be done by PSBs; the second layer (II) as well as the third layer
(III) can be done PSBs, but can equally be done by third parties. As tier 2
can be derived from tier 1 by anyone, and tier 3 from 2 and 1, base registry
managers must first focus on the Linked Data Event Stream, then prioritize
reusable indexes, and only then prioritize specific querying APIs. This will create
a level playing field for an ecosystem of data services on top of this dataset.

With Linked Data Event Streams, this paper sets out a vision regarding
the core task of a PSB when publishing a base registry. The LDES, which is an
append-only publishing interface, is the last interface that must be removed when
austerity would strike. In Fig. 2, a conceptual three layered shield illustrating
the entire ecosystem sets out the next priorities. The PSB can bootstrap the
ecosystem by building reusable indexes on top of their LDES by using the TREE
indexer. This way, consumers – which can be both the PSB itself or third parties
– can more efficiently create querying interfaces on top the dataset. When a
third party for example needs an OGC API for geospatial querying, a geospatial
fragmentation will allow that third party to fetch the right parts of the dataset
just in time, blurring the lines between replication, prefetching and cacheable
querying.

A LDES and its reusable indexes are self-descriptive thanks to the TREE
Hypermedia Specification. Every page becomes part of a tree structure, and
clients, such as the LDES client or Comunica, can traverse the tree to answer



8 D. Van Lancker, et al.

certain queries. Multiple trees or indexes can be traversed in parallel, and the
fastest interface for a specific task can by dynamically selected. This makes the
ecosystem as a whole more resilient: there are always multiple paths to answer
a certain query, in worst case having to replicate the core LDES. Contrary to
the core LDES API, derived indexes can evolve faster: when a better geospatial
indexes has been thought of, the old geospatial index can be taken offline without
any problem.

Future work is to fully implement the TREE specification within the Comu-
nica [5] framework to perform among others SPARQL, GraphQL-LD and auto-
completion queries across Linked Data Fragments datasets. Query optimization
combining interface such as TPF [8] and various TREE views and collections
will be a challenge for the coming years.

References
1. Buyle, R., De Vocht, L., Van Compernolle, M., De Paepe, D., Verborgh, R., Van-

lishout, Z., De Vidts, B., Mechant, P., Mannens, E.: Oslo: Open standards for
linked organizations. In: Proceedings of the international conference on electronic
governance and open society: Challenges in Eurasia. pp. 126–134 (2016)

2. Buyle, R., Vanlishout, Z., Coetzee, S., De Paepe, D., Van Compernolle, M., Thijs,
G., Van Nuffelen, B., De Vocht, L., Mechant, P., De Vidts, B., et al.: Raising
interoperability among base registries: The evolution of the linked base registry for
addresses in flanders. Journal of Web Semantics 55, 86–101 (2019)

3. Jones, J., Kuhn, W., Keßler, C., Scheider, S.: Making the web of data available via
web feature services. In: Connecting a digital Europe through location and place,
pp. 341–361. Springer (2014)

4. Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl).(2017). W3C
recommendation (2017), https://www.w3.org/TR/shacl/#property-paths

5. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular sparql query engine for the web. In: International Semantic Web Confer-
ence. pp. 239–255. Springer (2018)

6. Tommasini, R., Ragab, M., Falcetta, A., Della Valle, E., Sakr, S.: A first step
towards a streaming linked data life-cycle. In: International Semantic Web Confer-
ence. pp. 634–650. Springer (2020)

7. Verborgh, R., Dumontier, M.: A Web API ecosystem through feature-
based reuse. Internet Computing 22(3), 29–37 (May 2018). https://-
doi.org/10.1109/MIC.2018.032501515, https://ruben.verborgh.org/articles/
web-api-ecosystem/

8. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Query-
ing datasets on the web with high availability. In: International Semantic Web
Conference. pp. 180–196. Springer (2014)

9. Van de Vyvere, B., Colpaert, P., Verborgh, R.: Comparing a polling and push-
based approach for live open data interfaces. In: International Conference on Web
Engineering. pp. 87–101. Springer (2020)

10. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.:
The fair guiding principles for scientific data management and stewardship. Scien-
tific data 3(1), 1–9 (2016)

https://www.w3.org/TR/shacl/#property-paths
https://doi.org/10.1109/MIC.2018.032501515
https://doi.org/10.1109/MIC.2018.032501515
https://ruben.verborgh.org/articles/web-api-ecosystem/
https://ruben.verborgh.org/articles/web-api-ecosystem/

	Publishing base registries as Linked Data Event Streams

